OAK

적응형 미니배치 데이터 재분배를 통한 멀티 GPU 환경에서 딥러닝 학습 응용의 효율성 향상

= Improving the Efficiency of Deep Learning Applications in a Multi-GPU Environment via Adaptive Mini-batch Data Redistribution
Metadata Downloads
Type
Article
Author(s)
김명선
Department
AI응용학과
Creator
김인모
Citation Title
대한전자공학회논문지(전자공학회논문지)
Citation Volume
59
Citation Number
9
Citation Start Page
2022.9
Issued Date
2022-09
DOI
10.5573/ieie.2022.59.9.51
ISSN
2287-5026
EISSN
2288-159X
Publisher
대한전자공학회
Keyword
Fair-share schedulingDeep learning applicationsMulti-GPUSlow-down
URI
http://dspace.hansung.ac.kr/handle/2024.oak/1076
Appears in Collections:
AI응용학과 > 1. Journal Articles
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.