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국 문 초 록  

형태보존암호 FF1 및 FF3를 위한 딥러닝 기반 
신경망 구별자

한 성 대 학 교 대 학 원

융 합 보 안 학 과

융 합 보 안 전 공

김 덕 영

 
     차분 특성을 만족하는 데이터를 무작위 데이터와 구별하는 작업을 구

별자 공격 (Distinguisher attack)이라고 한다. CRYPTO 2019에서 Gohr는 

라운드 축소된 SPECK에 대해 최초의 딥러닝 기반 구별자를 발표했으며, 이

후 이를 바탕으로 다양한 후속 연구가 이어졌다. 이 연구들을 바탕으로, 본 

논문에서는 NIST (국립표준기술연구소) 표준 형태보존암호인 FF1, FF3-1에 

대한 싱글 및 멀티 차분을 활용한 최초의 신경망 구별자를 제안한다. 기존 

연구는 FF3-1의 내부 암호화 알고리즘으로 SKINNY를 사용한 반면, 본 연

구에서는 AES 암호화를 사용하는 표준 FF1과 FF3-1 구현을 적용하고 기존 

구별자에서 사용된 차분을 활용한다. 단일 0x0F (또는 0x08) 차분을 사용할 

경우 FF1은 10라운드에서 0.85, FF3-1은 8라운드에서 0.98의 최고 정확도를 

달성했다. 소문자 도메인에서는 평문과 암호문 조합 수가 증가함에 따라, FF1

은 최대 2라운드에서 0.52, FF3-1은 최대 2라운드에서 0.55의 최고 정확도로 

구별할 수 있었다. 또한, 본 논문에서 FF1과 FF3-1에 대해 다중 차분을 사용
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하는 고급 신경망 구별자를 제안하였다.

【주요어】 차분 분석, AES 암호, 구별자 공격, 형태보존암호, 딥러닝
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제 1 장  서론

제 1 절  형태보존암호에 대한 구별자 공격  

   차분 분석은 주요 암호 분석 기술 중 하나로 차분 특성을 분석하여 키

를 예측할 수 있는 기술이며, 이를 위해 차분 특성을 만족하는 여러 암호

문이 필요하다. 차분 특성을 만족하는 데이터 (입력/출력 차분)와 무작위 

데이터를 구별하는 과정을 구별자 공격이라고 한다. 차분을 분류하는 방

식에 따라 이진 분류 모델 (무작위 데이터와 입력 차분을 구별)과 다중 

분류 모델 (여러 입력 차분을 구별)로 나눌 수 있다. 다양한 암호 알고리

즘에 대한 딥러닝 기반의 구별자 공격 연구들이 진행되었다.

   딥러닝은 데이터가 가지는 특징을 분석하고 그에 따른 확률적 예측을 

제공 이러한 이유로 차분 특성을 활용한 딥러닝 기반 구별자에 대한 연구

가 활발히 진행되고 있으나, 형태보존암호 (FPE) 방식에 대한 딥러닝 기

반 구별자 연구는 아직 충분히 이루어지지 않았다.

   본 논문에서는 NIST (국립표준기술연구소) 표준 형태보존암호인 FF1, 

FF3-1에 대한 단일 및 다중 차분을 활용한 최초의 신경망 구별자를 제안

한다. 
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제 2 장  관련 연구

제 1 절  형태보존암호 (FPE)  

   형태보존암호는 NIST 표준에서 선정된 암호 알고리즘이다. 최근 개인

정보보호법 시행 등으로 인해 데이터베이스 (Database, DB) 암호화의 중

요성이 커졌으며, 특히 주민등록번호, 신용카드번호 등의 암호화가 주요 

이슈로 대두된다. DB 암호화에 기존 암호기술을 적용할 경우 데이터의 타

입이 변하거나 길이가 증가하여 DB 스키마 변경이 필요하지만 형태보존

암호를 사용 할 경우 데이터의 타입과 같이 보존하는 암호화 방식이므로 

DB 스키마의 변경 없이 암호화를 적용할 수 있다. 

   이와 같이 형태보존암호는 일반적인 블록 암호와 달리 평문의 형식과 

길이를 그대로 유지한 상태로 암호화를 수행하는 기법이다. 예를 들어, 신

용카드 번호 (16자리 10진수) 중 특정 6자리를 암호화해야 하는 상황에 

128비트 블록 크기의 AES 블록 암호를 이용하면, 암호문의 길이는 고정

적으로 128비트가 된다. 이는 약 20비트에 불과한 해당 평문 구간에 비해 

암호문이 6배 이상 커지는 결과를 초래한다. 반면, 형태 보존 암호를 적용

하면 평문과 동일한 길이 및 형식을 유지할 수 있어 기존 데이터베이스 

시스템에 대한 구조적 변경이나 추가 용량 확보 없이 효율적인 데이터 보

호가 가능하다.

   NIST 표준으로 지정된 암호는 FF1, FF3-1가 있다. FF1과 FF3-1는 

각각 10라운드와 8라운드로 구성되며 블록 크기와 키 크기는 각각 32비

트와 128비트이다. 또한 Feistel 구조로 설계되었으며, 내부 라운드 함수

로 암호화 함수 (예: AES)를 사용하며, 해당 암호화 알고리즘은 변경 될 

수 있다. 위의 두 암호는 유사한 점도 있지만, FF1은 FF3-1보다 더 높은 

라운드를 가짐으로서 상대적으로 더 안전하며 FF3-1은 FF1에 비하여 데

이터 처리량이 더 높다는 이점이 있다.
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제 2 절  차분 암호 분석(Differential Cryptanalysis)  

   차분 암호 분석은 블록 암호의 대표적인 암호 분석 방법 중 하나이다. 

입력 차분 ()은 평문 쌍 ( , ) 간의 XOR이고, 출력 차분 ()은 암호문 

쌍 간의 XOR이다. [수식 2-1]과 같이 와은 각각 와을 암호화 ( )

한 결과이다. 출력 차분 ( )은 와을 XOR하여 얻을 수 있다. 여기서 차

분 특성은 입력 차분과 출력 차분의 쌍 (,  )을 의미한다. 이상적인 암호는 

임의의 입력 차분에 대해 암호화된 출력 차분이 고르게 분포되어야 하지만, 

취약한 암호 알고리즘은 특정 차분에 대응하는 일정한 출력 차분을 보인다. 

입력 차분에 따른 출력 차분의 발생 확률이 랜덤 확률보다 높다면, 그 암호문

은 랜덤과 구별이 가능해진다. 이러한 특성은 암호화가 진행되더라도 유지되

며, 확률적으로 분석할 수 있다.

[수식 2-1] 차분 암호 알고리즘    

제 3 절  인공 신경망 

   딥러닝 네트워크는 여러 층으로 구성되며, 각 층은 다수의 뉴런으로 이

루어져 있고 뉴런은 이전 층에서 전달된 가중치를 합산한 후, 활성화 함수

를 통해 최종 출력을 계산한다. 이 과정은 입력 층에서 시작해 각 층을 거

치며 반복된다. 

   네트워크는 손실 함수를 활용해 예측된 출력과 실제 레이블 간의 차이

를 최소화하며 학습한다. 이 과정에서 최적화 함수를 사용하여 효과적으

로 학습을 진행한다. 네트워크가 훈련되면, 훈련된 가중치를 사용하여 예

측을 수행할 수 있으며 잘 훈련된 네트워크는 훈련되지 않은 데이터에 대
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해서도 강력한 예측 성능을 보인다.

제 4 절  차분 암호 분석을 위한 신경망 구별자  

   신경망은 주어진 입력 차분에 대해 특정 출력 차분을 확률적으로 만족

시킬 수 있기 때문에, 구별자 공격에 효과적인 해결책이 될 수 있다. 이와 

관련된 연구는 주로 Gohr의 연구를 기반으로 진행되었으며, 대상 암호와 

입력 차분에 초점을 맞추고 있다. CRYPTO’19에서 제안된 Gohr의 연구에

서는 라운드 수가 축소된 SPECK32/64에 대한 최초의 신경망 구별자가 

소개되었고, 이 구별자는 최대 7라운드 동안 암호화된 데이터와 무작위 

데이터를 성공적으로 구별하였다. 또한, 전이 학습을 통해 분석 가능한 라

운드가 최대 8라운드까지 확장되었다. Baksi et al.의 또 다른 연구에서는 

다중 입력 차분과 단일 입력 차분을 고려한 두 가지 신경망 구별자 모델

을 제안하여 GIMLI, ASCON, KNOT, Chaskey 암호에 적용하였다. 제안

된 MLP 기반 신경망 구별자는 8라운드 GIML, 3라운드 ASSCON, 10/12

라운드 KNOT (256/512비트), 4라운드 Chaskey를 성공적으로 구별하였

다. 
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제 3 장  제안 기법

   본 장에서는 FPE 방식 (FF1 및 FF3-1)을 위한 신경망 구별자를 설

명한다. 신경망 구별자는 Baksi et al.의 최신 논문을 기반으로 하였으며, 

FPE 방식에 대한 신경망 구별자는 Dunkelman et al.의 ePrint’20 논문을 

참조하였다. 본 연구에서는 FPE 방식의 차분 특성을 분석하고 이를 활용

해 두가지 구현 모델 (ModelOne 및 ModelMul)을 제시한다. 두 모델은 

사용된 입력 차분의 유형에 따라 구분되며, 상세한 설계과 구현 방법은 본 

장 1절, 2절에서 구체적으로 다룬다.

제 1 절  ModelOne: 단일 입력 차분  

 1) Dataset

   [그림 3-1]은 ModelOne의 단일 입력 차분을 사용하여 전체 생성 과정과 

생성된 데이터 셋을 나타낸다. 먼저 랜덤 평문  , 를 준비하여 입력 차분

을 적용한 (=  XOR ) 를 얻는다. 그 후,  , 을 암호화하여 , 

를 얻는다. 이는 사전에 정의된 차분 특성 (=  XOR )을 만족하지 

않는 일반적인 경우에 해당하며 ||에 라벨 0을 할당한다. 반면, 특정 차

분 특성 (=  XOR )을 만족하는 평문 , 는 암호화를 거쳐  , 

로 변환되며, 해당 쌍은 특정 확률에서 차분 특성 (=  XOR )을 충족

하는 관계를 가지므로 ∥에는 라벨 1을 할당한다.
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[그림 3-1] Model One 차분 데이터 셋

   이러한 접근은 FPE를 통해 암호화된 데이터의 원래 형식을 유지함으로 

데이터 무결성, 규제 준수, 시스템간 호환성을 보장한다. 본 논문에서는 숫

자 (0-9) 및 소문자 (a-z) 도메인이라는 두 가지 형식적 특성을 가진 데이터

셋을 고려하며, 암호문 쌍을 비트 단위로 연결한 구조 (예: || 혹은 

∥)를 활용한다. 또한, 입력 차분 데이터 셋으로는 0x0∥K (K는 0x0~0xF 

범위의 16진수)를 적용하였는데, 이는 Dunkelman의 방정식에 근거하여 선택

한 것으로 내부 함수 (예: SKINNY, SPECK, AES)와 독립적이므로 다양한 

FPE 구현에 유연하게 적용할 수 있다.

2) Architecture and Traning

   ModelOne은 연접된 랜덤 데이터 (∥ ) 또는 암호 데이터 (∥ )

를 입력으로 받아 이를 랜덤 (라벨 0)또는 암호 (라벨 1)로 분류한다. 데이터 

셋의 암호문 쌍에 포함된 각 비트는 입력 계층의 각 뉴런에 할당되며, 이후 

입력 계층의 출력이 은닉 계층을 통과한다. 출력 계층에서는 시그모이드 활성

화 함수를 적용하여 0과 1사이의 최종 값을 계산한다. 이 최종 값과 실제 값 

(0 또는 1)간의 손실을 계산한다. 

   [그림 3-2] 및 [알고리즘 3-1]은 단일 차분을 사용하는 ModelOne의 

전체 프로세스를 보여주며 입력 데이터를 구별하기 위한 학습이 올바르게 

수행될 경우, 해당 모델은 FF1 및 FF3-1에 대한 신경망 구별자로 작동
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할 수 있다. 이때, 단일 입력 차분에 대한 유효한 구별자로 작동하기 위해

서는 랜덤 예측 확률인 
 이상의 정확도를 달성해야 한다.

 Algorithm 3-1 ModelOne: Training procedure  

  1: Training Data  ← [ ]                         ▷Empty state 
  2: for i from 0 to n – 1 do

  3:     Choose random plaintext   and 
  4:     ← ⊕

  5:     Ciphertexts  , ,and   ← ( , ,and)  ▷Generate ciphertexts

  6:      ← Assign labels 0 to (∥) and 1 to (∥)

  7: end for 

  8: Train model  with                            

  9:  ← Output of                                    ▷a is training accuracy

 10: if  > 


then

 11:     Continue the training procedure           

 12: else                             

 13:     Abort                                                    ▷  


 14: end if

[알고리즘 3-1] ModelOne Training procedure

[그림 3-2] ModelOne의 시스템 다이어그램 
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제 2 절  ModelMul: 다중 입력 차분  

 1) Dataset

   [그림 3-3]은 ModelMul의 다중 입력 차분을 사용하여 전체 생성 과정과 

생성된 데이터 셋을 나타낸다. ModelOne과 유사하게, 임의의 평문 을 생

성 후 입력 차분을 적용하여 평문 을 생성 (=  XOR )하고, 이를 

암호화하여 암호문 을 생성한다. 암호문 와 을 연결하여 (∥ ) 

학습 데이터로 사용한다. 이때, 이 에 해당하면 이를 클래스 n-1로 할당

한다 (예: 에 대응하는 은 클래스 2로 분류). 다중 입력 차분을 사용하는 

구별자에서도 숫자 도메인 (0-9)과 소문자 도메인 (a-z)을 사용하며, 입력 차

분 0x0||K (K는 0x0-0xF)를 활용한다. ModelMul은 여러 차분 특성 (예: 

0x01, 0x02, 0x08)을 학습하여 어떤 차분이 사용되었는지 구별할 수 있다. 

 [그림 3-3] ModelMul 차분 데이터 셋

2) Architecture and Training

   [그림 3-4] 및 [알고리즘 3-2]는 다중 입력 차분을 사용하는 ModelMul

의 시스템 로직을 보여준다. 이 모델에서 입력 차분으로 ,  , ...,    

(n>2)을 선택한다. 훈련 단계에서 딥러닝 모델이 출력에서 특정 패턴(즉, 차

분 특성)을 학습하여 ModelMul은 다중 입력 차분을 구별할 수 있게 된다. 

ModelOne이 랜덤 차분과 단일 차분만을 구별할 수 있는 반면, ModelMul은 
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여러 차분 특성을 만족하는 데이터를 구분하는 데 활용된다. n개의 입력 차

분이 사용될 경우, 유효한 구별자로 작동하려면 랜덤 데이터 확률(
 )을 초과

하는 정확도가 필요하며 학습 정확도가 
 을 넘으면 모델은 암호문 출력에서 

패턴을 찾아내고, 이를 기반으로 차분 공격이 진행된다. 반대로 학습 정확도

가 
  이하라면 모델은 작동을 중단한다. 즉, ModelMul은 차분 특성을 만족

하는 암호문 쌍을 입력으로 받아 사용된 입력 차분에 따라 이를 분류한다. 이

를 통해 암호 데이터에서 사용된 입력 차분을 효과적으로 구별할 수 있다. 

 Algorithm 3-2 ModelMul: Training procedure  
  1: Training Data  ← [ ]                         ▷Empty state 
  2: Choose randim plaintext                             ▷Step 2

  3: Ciphertext  ← ( )       ▷means FF1 or FF3 encryption

  4: for  from 0 to -1 do 
  5:       ←  ⊕ 
  6:      ← ()

  7:     Append  with (⊕ ,)             ▷⊕   is from class 

  8: end for                        

  9: Repeat from Step 2                                   

 10: Train  model with 

 11: ← Output of trained  model                ▷a is training accuracy

 12: if   


 then                           

 13:    Continue the training procedure                                        

14: else      

 15:   Abort  model                                            ▷  


 14: end if

[알고리즘 3-2] ModelMul Training procedure
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[그림 3-4] ModelMul 시스템 다이어그램

제 3 절  Model One, ModelMul : 하이퍼파라미터  

 1) ModelOne Hyper-Parameter 

   [표 3-1]은 ModelOne (FF1 및 FF3-1)의 하이퍼파라미터를 제시한

다. ModelOne의 경우, Epoch는 각각 20과 15로 설정되며, 모든 노드가 

완전히 연결된 형태의 레이어 (Dense)가 사용된다. ModelOne은 입력 데

이터를 랜덤 데이터와 암호 데이터로 구별하는 이진 분류 작업을 수행하

므로, 손실 함수로 이진 Crossentropy 함수를 사용한다. 또한, 성능이 우

수한 것으로 알려진 Adam 최적화 함수가 모델에 적용되며, 학습률은 학

습 과정에서 동적으로 조정된다 (초기 학습률은 0.001이며, 세부 조정을 

위해 학습률을 0.0001까지 감소시킨다).

 2) ModelMul Hyper-Parameter 

   [표 3-1]은 ModelMul (FF1 및 FF3)의 하이퍼파라미터를 제시한다. 

ModelMul의 경우, Epoch는 각각 20과 15로 설정되며, ModelOne과 동일

한 Dense레이어가 사용된다. 그러나 ModelMul은 출력 차분을 만족하는 
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여러 암호문 쌍을 분류하므로 다중 클래스 분류를 수행한다. 

Model ModelOne ModelMul
Schemes FF1 / FF3 FF1 / FF3
Epochs 20/15 20/15

Loss function Binary cross-entropy
Categorical 

cross-entropy
Optimizer Adam(0.001 to 0.0001, learning rate decay

Activation function
ReLu(hidden)

Softmax(output) Sigmoid(output)
Batch size 32

Hidden layers 5/4 hidden layers (with 64 / 128 units)
Parameters 173,956 / 74,497 173,956/75,787

[표 3-1] 신경망 구별자 모델의 하이퍼파라미터
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제 4 장  실험 및 평가

제 1 절  실험 환경  

   본 실험은 Ubuntu 20.04.5 LTS와 Tesla T4 (GPU) 12GB RAM을 지원

하는 클라우드 컴퓨팅 플랫폼인 Google Colaboratory에서 수행되었다. 프

로그래밍 환경으로는 TensorFlow 2.12.0과 Python 3.9.16이 사용되었다. 

제 2 절  성능 평가 (ModelOne)  

   본 절에서 [표 4-1], [표 4-2]를 보면 숫자 도메인의 경우, FF1 및 

FF3-1에서 입력 차분으로 0x0F / 0x08을 사용할 때, ModelOne은 10라운

드 / 8라운드까지 데이터를 효과적으로 구별할 수 있으며, 각각 0.85 / 0.98

의 높은 정확도를 달성했다. 다른 입력 차분을 사용할 경우, 0x0F / 0x08보

다 상대적으로 낮은 정확도를 보인다. 

   소문자 도메인의 경우, 평문과 암호문의 경우의 수가 증가함에 따라 

FF1, FF3-1에서 ModelOne은 최대 2라운드까지 데이터를 구별할 수 있으

며, 0x0F / 0x08를 사용할 때 0.522 / 0.55의 정확도를 달성하는데, 이는 

숫자 도메인에서보다 다소 낮은 수치이다. 입력 차분 0x03 / 0x01을 사용할 

경우, 0x0F /  0x08에 비해 0.1 / 0.35 정도 낮은 정확도를 보인다. 본 실

험은 특정 암호에 특정 차분일 때 데이터를 높은 확률로 예측할 수 있음을 

확인하였다.
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0x Number(10Rounds) Lowercase(2Rounds)
Training Validation Test Reliability Training Validation Test Reliability

01 0.732 0.741 0.733 0.233 0.500 0.500 0.500 0.000

02 0.741 0.752 0.743 0.243 0.510 0.512 0.510 0.010

03 0.711 0.712 0.711 0.211 0.522 0.520 0.522 0.022

04 0.751 0.752 0.752 0.252 0.511 0.512 0.510 0.010

05 0.752 0.751 0.752 0.252 0.511 0.512 0.511 0.011

06 0.751 0.752 0.752 0.252 0.511 0.512 0.511 0.011

07 0.751 0.751 0.752 0.252 0.511 0.511 0.511 0.011

08 0.801 0.802 0.802 0.302 0.511 0.511 0.511 0.011

09 0.841 0.842 0.841 0.341 0.522 0.521 0.522 0.022

0A 0.842 0.841 0.841 0.341 0.500 0.510 0.510 0.010

0B 0.822 0.821 0.822 0.322 0.511 0.511 0.511 0.011

0C 0.855 0.854 0.855 0.355 0.500 0.500 0.500 0.000

0D 0.788 0.788 0.788 0.288 0.511 0.511 0.511 0.011

0E 0.811 0.812 0.811 0.311 0.522 0.521 0.522 0.022

0F 0.855 0.854 0.855 0.355 0.522 0.522 0.522 0.022

[표 4-1] FF1 ModelOne 결과표 

0x Number(8Rounds) Lowercase(2Rounds)
Training Validation Test Reliability Training Validation Test Reliability

01 0.629 0.624 0.623 0.123 0.545 0.544 0.543 0.043

02 0.829 0.825 0.825 0.325 0.552 0.548 0.545 0.045

03 0.783 0.769 0.771 0.271 0.52 0.514 0.513 0.013

04 0.761 0.756 0.757 0.257 0.523 0.52 0.517 0.017

05 0.773 0.752 0.747 0.247 0.539 0.538 0.537 0.037

06 0.758 0.748 0.75 0.25 0.519 0.519 0.523 0.023

07 0.756 0.739 0.74 0.24 0.529 0.529 0.529 0.029

08 0.987 0.976 0.977 0.477 0.554 0.554 0.554 0.054

09 0.962 0.942 0.941 0.441 0.543 0.543 0.549 0.049

0A 0.969 0.953 0.951 0.451 0.534 0.534 0.532 0.032

0B 0.97 0.965 0.966 0.466 0.526 0.526 0.522 0.022

0C 0.97 0.959 0.959 0.459 0.536 0.536 0.539 0.039

0D 0.968 0.965 0.966 0.466 0.524 0.524 0.518 0.018

0E 0.964 0.963 0.963 0.463 0.549 0.549 0.551 0.051

0F 0.965 0.939 0.941 0.441 0.524 0.54 0.524 0.024

[표 4-2] FF3-1 ModelOne 결과표 
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제 3 절  성능 평가 (ModelMul)  

   [표 4-3]은 ModelMul의 입력 차분 데이터셋에 대한 세부 정보이다. 

ModelMul은 입력 차분 0x0∥K를 사용한다. 각 데이터셋은 사용된 입력 

차분 쌍에 따라 설정되며, 각 클래스는 개의 데이터로 구성된다. FF1, 

FF3-1에서 가장 적합한 차분으로 간주되는 0x0F, 0x08을 고정 차분으로 설

정하며 서로 다른 입력 차분에 대해 데이터를 확장하면서 데이터셋을 생성하

였다. 유효한 정확도는 사용된 입력 차분의 개수에 따라 정해진다. 예를 들어, 

입력 차분 세 개를 사용하는 경우, 0.3333 (=
 ) 이상의 정확도를 달성해야 

해당 모델이 유효하다고 할 수 있다.

  

Dataset Data Size Input Difference Pair Valid Accuracy
I1

per class

01, 08 >0.500
I2 01, 02, 08 >0.333
I3 01 ~ 03, 08 >0.250
I4 01 ~ 04, 08 >0.200
I5 01 ~ 05, 08 >0.166
I6 01 ~ 06, 08 >0.142
I7 01 ~ 08 >0.125
I8 01 ~ 09 >0.111
I9 01 ~ 0A >0.100
I10 01 ~ 0B >0.090
I11 01 ~ 0C >0.083
I12 01 ~ 0D >0.0.76
I13 01 ~ 0E >0.071
I14 01 ~ 0F >0.066

[표 4-3] ModelMul 입력 차분 데이터셋 세부 정보 

   I1 ~ I14 (입력 차분의 다양한 조합)에 대해 실험을 수행하였으며, 숫자 

도메인과 소문자 도메인 모두에서 유효한 정확도를 달성하였다. 단일 입력 

차분을 사용하는 ModelOne과 마찬가지로, ModelMul도 0x0∥K 차분을 구

별할 수 있기 때문에 FF1과 FF3-1에 대하여 유효한 구별자로 작동한다. 아

래 [표 4-4]와 [표 4-5]는 각각 FF1과 FF3-1의 입력 차분 데이터셋에 따른 

ModelMul의 실험 결과를 보여준다.
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Datset
Number (8 Rounds) Lowercase (2 Rounds)

Training Validation Test Reliability Training Validation Test Reliability

I1 0.520 0.520 0.520 0.020 0.520 0.520 0.520 0.020

I2 0.340 0.339 0.340 0.007 0.360 0.360 0.360 0.027

I3 0.260 0.260 0.260 0.010 0.270 0.270 0.270 0.020

I4 0.210 0.210 0.210 0.010 0.200 0.200 0.200 0.010

I5 0.170 0.170 0.170 0.004 0.180 0.180 0.180 0.004

I6 0.150 0.150 0.150 0.008 0.150 0.150 0.150 0.008

I7 0.130 0.130 0.130 0.005 0.130 0.130 0.130 0.005

I8 0.120 0.120 0.120 0.009 0.120 0.120 0.120 0.009

I9 0.120 0.110 0.120 0.020 0.100 0.100 0.110 0.010

I10 0.100 0.100 0.100 0.010 0.100 0.100 0.100 0.010

I11 0.090 0.090 0.090 0.007 0.090 0.090 0.090 0.007

I12 0.080 0.080 0.080 0.004 0.080 0.080 0.080 0.004

I13 0.080 0.080 0.080 0.009 0.080 0.080 0.080 0.009

I14 0.070 0.070 0.070 0.004 0.070 0.070 0.070 0.004

[표 4-4] FF1 ModelMul 결과표 
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Datset
Number (8 Rounds) Lowercase (2 Rounds)

Training Validation Test Reliability Training Validation Test Reliability

I1 1.00 1.00 1.00 0.500 0.55 0.55 0.55 0.050

I2 0.99 1.00 0.99 0.657 0.54 0.54 0.54 0.207

I3 0.72 0.72 0.72 0.470 0.38 0.37 0.37 0.120

I4 0.46 0.45 0.45 0.250 0.29 0.29 0.29 0.090

I5 0.33 0.33 0.33 0.164 0.24 0.23 0.23 0.064

I6 0.25 0.25 0.25 0.108 0.20 0.20 0.20 0.058

I7 0.22 0.22 0.22 0.095 0.17 0.17 0.17 0.045

I8 0.19 0.19 0.19 0.079 0.15 0.15 0.15 0.039

I9 0.17 0.17 0.17 0.070 0.13 0.13 0.13 0.030

I10 0.16 0.15 0.15 0.06 0.12 0.12 0.12 0.030

I11 0.14 0.14 0.14 0.057 0.11 0.11 0.11 0.027

I12 0.13 0.12 0.12 0.044 0.10 0.10 0.10 0.024

I13 0.12 0.11 0.12 0.049 0.09 0.09 0.09 0.019

I14 0.11 0.11 0.11 0.044 0.08 0.08 0.08 0.014

[표 4-5] FF3-1 ModelMul 결과표
   

   I1 ~ I14중, I2은 숫자 및 소문자 (domain) 영역에서 가장 높은 신뢰도

를 보였다 (신뢰도는 테스트 정확도와 검증 정확도를 의미). 본 연구 결과

에 따르면, 사용되는 차분의 특성의 수가 증가할수록 신뢰도는 감소하는 

경향을 보인다. 이러한 현상은 구분해야 할 차분 특성이 많을수록 해결해

야 할 문제가 복잡해지기 때문인 것으로 판단된다 (일반적으로 데이터가 

복잡해질수록 더 복잡한 모델 구조가 필요). 또한 입력 차분에 따라 최적의 

신경망 구조가 존재할 것으로 판단된다.

제 4 절  각 차분 특성과 데이터셋에 따른 신뢰도 표 

  

   [그림 4-1]은 각 차분 특성과 데이터셋에 따른 신뢰도를 보여준다. 

Dunkelman의 연구에 따르면, 0x08 차분 특성은 형태보존암호 (FPE)에서 가

장 우수한 차분 특성으로 밝혀졌으며, 0x01과 0x02는 상대적으로 열악한 차

분 특성으로 나타난다. FF1에서 ModelOne은 입력이 0x0F일 때 두 도메인 

모두에서 가장 높은 신뢰도를 보인다. FF3-1에서 ModelOne은 Dunkelman 

등의 결과와 같이 0x08 차분 특성일 때 가장 높은 신뢰도를 보였다. 또한 

FF3-1에서 ModelMul은 I2 데이터셋을 사용할 경우 두 도메인 모두에서 가
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장 높은 신뢰도를 나타낸다.

[그림 4-1] 차분 특성과 데이터셋에 따른 신뢰도
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제 5 장  결론 및 향후 연구 방안

   본 연구에서 FF1 및 FF3-1에 대한 최초의 신경망 구별자 모델을 제

안한다. 입력 차분을 분류하는 방식에 따라 모델 유형을 이진 분류 

(ModelOne)과 다중 분류 (ModelMul)로 구분하였다. ModelOne의 경우, 

0x0F 차분 특성을 사용할 때 10라운드에서 약 0.85의 높은 정확도를 달

성하였으며, 0x08 차분 특성을 사용할 때는 8라운드에서 약 0.98에 달하

는 높은 정확도를 기록하였다. 또한, 소문자 도메인에서는 최대 2라운드까

지 구분 가능 하였다. ModelMul은 모든 경우에서 정확도가 유효 정확도

를 상회하였으며, 특히 I2 데이터 셋을 활용했을 때 가장 높은 신뢰도를 

보였다. 이와 같은 결과에 본 구현에서 기존 연구와 다른 내부 암호화 함

수를 사용했음에도 불구하고 차분 특성과 그에 따른 확률이 유지되는 경

향을 보여주는데, 이는 입력 차분 0x0||K가 내부 암호화 함수에 종속되

지 않는다는 점을 시사한다. 따라서 본 연구에서 제안한 구별자는 FF3-1 

변형에도 충분히 적용 가능할 것으로 예상된다. 향후 연구에서는 

ModelMul을 더 넓은 도메인에 대해 훈련시키는 것을 목표로 한다. 모델

의 범용성을 높이기 위해서는 모델 최적화뿐만 아니라 다양한 도메인 데

이터를 폭넓게 활용하는 것이 중요하므로, 이를 중심으로 연구를 진행할 

계획이다. 또한 이번 연구에서는 실험 환경의 제약으로 인해 대용량 데이

터나 확장된 도메인 기반 데이터 활용에 어려움이 있었으나, 향후 실험 환

경 개선을 통해 신뢰도 높은 검증을 수행할 예정이다. 
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ABSTRACT  

Deep-Learning-Based Neural Distinguisher for 
Format-Preserving Encryption Schemes FF1 

and FF3

Kim, Duk-Young

Major in Convergence Security

Dept. of Convergence Security

The Graduate School

Hansung University

     Distinguishing data that satisfy the differential characteristic from random 

data is called a distinguisher attack. At CRYPTO’19, Gohr presented the first 

deep-learning-based distinguisher for round-reduced SPECK. Building upon 

Gohr’s work, various works have been conducted. Among many other works, 

we propose the first neural distinguisher using single and multiple differences for 

format-preserving encryption (FPE) schemes FF1 and FF3. We harnessed the 

differential charac- teristics used in FF1 and FF3 classical distinguishers. They 

used SKINNY as the inner encryption algorithm for FF3. On the other hand, we 

employ the standard FF1 and FF3 implementations with AES encryption (which 

may be more robust). This work utilizes the differentials employed in FF1 and 

FF3 classical distinguishers. In short, when using a single 0x0F (resp. 0x08) 

differential, we achieve the highest accuracy of 0.85 (resp. 0.98) for FF1 (resp. 

FF3) in the 10-round (resp. 8-round) number domain. In the lowercase domain, 
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due to an increased number of plaintext and ciphertext combinations, we can 

distinguish with the highest accuracy of 0.52 (resp. 0.55) for FF1 (resp. FF3) in 

a maximum of 2 rounds. Furthermore, we present an advanced neural 

distinguisher designed with multiple differentials for FF1 and FF3. With this 

sophisticated model, we still demonstrate valid accuracy in guessing the input 

difference used for encryption.

【Key words】 Differential Cryptanalysis, AES Encryption, Distinguisher
Attack, Format-Preserving Encryption, FPE, Deep Learning
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