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Random @Output difference

[ 3-1] Model One A& dlo|g] Al

olefst M FPEZ Fol 4ustel dolHo Ui WAe fAgoR
yole RA4, A 2% AAU $UHS RAPL B ERNE %
A (0-9) B ABA (-2) Eollolets T kA @42 42 71 dlold
e nefste, dEE Ae HE B2 G 1E () gllg B G
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#elo] 16948 4a19ed, ol Dunkelmane] W44 27sle] A

oF Aoz WYX g4 (4 SKINNY, SPECK, AES)S} =gxdolm g r}oFst
FPE #&o) FdstA 48T &+ Ut

2) Architecture and Traning

ModelOne2 dAdE #HF dolg (g Il ¢) E= &3 dolg (G 1l ¢)
£ ¢goz ol o] dyg (Fhd O)E: ¢s (Fhd )2 ERgt dolH
Aol e Aol 23tH 7+ HEx e AT ZF wHlo EFE, oF
de AT &0l 24 ASS T =2 ASoAE AlTLR|E B4
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Algorithm 3—1 ModelOne: Training procedure

>a=

D>Generate ciphertexts

>a is training accuracy

o =

1. Training Data 7D < [ ] D>Empty state
2. for i from 0 ton — 1 do
3: Choose random plaintext 7, and P,
4: Py« Pydd
5! Ciphertexts ), C},and C, < FPE,, (P,,P,,andP,)
6: TD, < Assign labels 0 to (G|l ¢}) and 1 to (G | Gy)
7. end for
8: Train model DL with 7D
9! a < Output of DL
10: if a > %then
11: Continue the training procedure
12 else
13: Abort DL
14: end if
[&3718]F 3-1] ModelOne Training procedure

(" C,or C,
1 1
Y
oO|1{-]1]|1
é é é é Input
. Hidden
Output

Random (0) or Cipher (1)

[18 3-2] ModelOne®] A]A®l tjo]o] 14
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(1% 3-31& ModelMule] tH Q2] AHEe Abgsto] 1A A4 7wt
AAE dol AL etk ModelOnedt §AF5HA, 499 B2 p2 A

4 F QY s, & Agstel BR £, WY (=R XOR 4342, olF
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TEANAE =2F EHQl (0-9)3 AFAF =l (a—2)
2 0x0] 1K (K& 0x0-0xF)& Z-g3ttt. ModelMul2
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Random @®Input differences
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Y Dataset
Random @Output differences
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Algorithm 3—2 ModelMul: Training procedure

D>Empty state
>Step 2

means FF1 or FF3 encryption

DC} P C is from class ¢

P>a is training accuracy

Da=—

1: Training Data 7D < [ ]
2: Choose randim plaintext P
3: Ciphertext ¢ <« FPE,, (P) >FPE,,.
4: for i from 0 to n—1 do
50 P, < P®
6: C — FPE,, (P)
7: Append 7D with (C & C,i)
8: end for
9: Repeat from Step 2
10: Train DL model with 7D
11: a<— Output of trained DL model
120 if a > 1 then
n
13:  Continue the training procedure
14: else
15: Abort DL model
14: end if
[&12]E 3-2] ModelMul Training

procedure
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Al 3 @ Model One, ModelMul : 3}to] = u}e}n] €]
1) ModelOne Hyper—Parameter

[ 3-1]2 ModelOne (FF1 % FF3-1)°] stolmutatu|glE A A|SH
k. ModelOne®] 749, Epoch+= Z+ZF 203} 152 AAEHW, BE LTt
A5 AA% Pl dolo] (Dense)”} AFEHETE ModelOne2 48 d
olfE WH HlolEel dT HlolH= FEst= ol EF A

2, &4 48 oA Crossentropy o5 ARESHY. ESH A
g Aoz d#l Adam FAg} oprb mdo] A8EM, Sy o]

Aol A FAoR AT (7] S5EL 0.0010/H, AR 24

I s+55S 0.0001742] ZHAAZITh.

al

L o 4
o

oli
9

2) ModelMul Hyper—Parameter

[ 3-1]2 ModelMul (FF1 % FF3)¢] slolmutztu|glE AA|H}.
ModelMul®] 7$-, Epoch®= Z}zF 203 152 A=W, ModelOnedt
3t Densedllo]o]7t AFgH 138y ModelMule &8 2ES wEsis=
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ofe] TR A4S RRADL OF Fas BRE S
Model ModelOne ModelMul
Schemes FF1 / FF3 FF1 / FF3
Epochs 20/15 20/15

Loss function Binary cross—entropy Categorical
Cross—entropy
Optimizer Adam(0.001 to 0.0001, learning rate decay

Activation function ReLuhidden)
Softmax(output) | Sigmoid(output)
Batch size 32

Hidden layers 5/4 hidden layers (with 64 / 128 units)
Parameters 173,956 / 74,497 | 173,956/75,787

(% 3-1] A7Y 797 mde] sto]Huatng

_11_




A1RA A &7

2 AL Ubuntu 20.04.5 LTSS} Tesla T4 (GPU) 12GB RAMS A|¢
st ZEket HFY 222l Google Colaboratoryoll A 3= itk
239 &H 2= TensorFlow 2.12.07t Python 3.9.160] ARE-E]| ATt

A 23 A5 B7F ModelOne)

B A [B 4-1], [BE 4-2]18 EW & =vele] AF¢, FFl ¥
FF3-1°14 48 ROz O0x0F / 0x08& A& w, ModelOne2 1082
E / 8ZR2E7HA] HolHE anHo=r wdEY 4 glod, Z+7F 0.85 / 0.98
o] =2 FYEE AL o2 4 AES AT 9, 0x0F / 0x08KE
o dddoe=r w2 g5 % Heltt,

ARAF THele] HE} A2 EY ALY £ FIFEel =t
FF1, FF3-1¢]A] ModelOne% o 28tE7A] dlolEE FET 4 9o
o, 0xO0F / 0x08Z AFRE w 0.522 / 0.559] AELE FAst=T, o=
Z2b ErQlo T thA W2 xjoltt ¥ ZHE 0x03 / 0x01& AR
|

oﬁ _|lI
o

—1

39, OxOF / 0x08°] H|3§ 0.1 / 0.35 Ax e AL E Helth E A
B =4 ge] 54 484 0 deldS ko B8 A58 - 988
3ol g,
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Ox Number(10Rounds) Lowercase(2Rounds)
Training | Validation Test Reliability | Training | Validation Test Reliability
01| 0.732 0.741 0.733 0.233 0.500 0.500 0.500 0.000
02| 0.741 0.752 0.743 0.243 0.510 0.512 0.510 0.010
03| 0.711 0.712 0.711 0.211 0.522 0.520 0.522 0.022
04| 0.751 0.752 0.752 0.252 0.511 0.512 0.510 0.010
05| 0.752 0.751 0.752 0.252 0.511 0.512 0.511 0.011
06| 0.751 0.752 0.752 0.252 0.511 0.512 0.511 0.011
07| 0.751 0.751 0.752 0.252 0.511 0.511 0.511 0.011
08| 0.801 0.802 0.802 0.302 0.511 0.511 0.511 0.011
09| 0.841 0.842 0.841 0.341 0.522 0.521 0.522 0.022
0A| 0842 0.841 0.841 0.341 0.500 0.510 0.510 0.010
OB| 0.822 0.821 0.822 0.322 0.511 0.511 0.511 0.011
0C| 0.855 0.854 0.855 0.355 0.500 0.500 0.500 0.000
0D| 0.788 0.788 0.788 0.288 0.511 0.511 0.511 0.011
OE| o0.811 0.812 0.811 0.311 0.522 0.521 0.522 0.022
OF| 0.855 0.854 0.855 0.355 0.522 0.522 0.522 0.022
[3 4-1] FF1 ModelOne 2%
Ox Number(8Rounds) Lowercase(2Rounds)
Training | Validation Test Reliability | Training | Validation Test Reliability
01| 0.629 0.624 0.623 0.123 0.545 0.544 0.543 0.043
02| 0.829 0.825 0.825 0.325 0.552 0.548 0.545 0.045
03| 0.783 0.769 0.771 0.271 0.52 0.514 0.513 0.013
04| o0.761 0.756 0.757 0.257 0.523 0.52 0.517 0.017
05| 0.773 0.752 0.747 0.247 0.539 0.538 0.537 0.037
06| 0.758 0.748 0.75 0.25 0.519 0.519 0.523 0.023
07| 0.756 0.739 0.74 0.24 0.529 0.529 0.529 0.029
08| 0.987 0.976 0.977 0.477 0.554 0.554 0.554 0.054
09| 0.962 0.942 0.941 0.441 0.543 0.543 0.549 0.049
0A| 0.969 0.953 0.951 0.451 0.534 0.534 0.532 0.032
0B| 097 0.965 0.966 0.466 0.526 0.526 0.522 0.022
0C| 097 0.959 0.959 0.459 0.536 0.536 0.539 0.039
0D| 0.968 0.965 0.966 0.466 0.524 0.524 0.518 0.018
OE| 0.964 0.963 0.963 0.463 0.549 0.549 0.551 0.051
OF| 0.965 0.939 0.941 0.441 0.524 0.54 0.524 0.024

[E 4-2] FF3-1 ModelOne A3}&E
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A34d 45 B7F (ModelMul)

[ 4-3]2 ModelMul®] 48 2= dlojgAle] gt AlF A Eolch
ModelMul 48] 22 0x0 | KE Arggich Zb dlojgAle AMSH o
A2 Aol whet AAEH, b SdiAe 29T HlolH 2 AT FF,
FF3—101]/\1 1 At AFRo 7 7HEEE 0x0F, 0x08S 14 AEoz A
Aot Az ohg g 2] dish dHolHE st A dloleAlS A/dst
Aok FES A= AR A9 Y Aol wet Aotk A& &

i)

A2 AR Al AE ALSE A, 03333 (=5) ool AgwE sk
o welo] gmsicha @ 4 ik
Dataset Data Size Input Difference Pair Valid Accuracy
11 01, 08 »0.500
12 01, 02, 08 »0.333
13 01 ~ 03, 08 »0.250
14 01 ~ 04, 08 »0.200
15 01 ~ 05, 08 >0.166
16 01 ~ 06, 08 >0.142
17 9186097 | 01 ~ 08 »0.125
18 per class Ol N 09 >0111
9 01 ~ 0A »0.100
110 01 ~ 0B »0.090
111 01 ~ 0C »0.083
112 01 ~ 0D »0.0.76
113 01 ~ OE »0.071
114 01 ~ OF 20.066

(2 4-3] ModelMul 1% 22 Hlo[EA AT AR

11 ~ 114 (4= 229 ookt x2bel dish AdS Fastalen, =2t
ool AR EHel RRoA faRt AGEE GASHAH 9Y oY
RS AFESH= ModelOnedt vhzb7iz] 2, ModelMul®: 0x0 || K 2FE-E
He 4 Q7] diZoll FF1¥t FE3-10f diste] faeh A2 2-Egeh. of
& [E 4-4]¢} [# 4-5]= ZFZF FF13}F FF3-19] 8 22 HlolgAlef o=
ModelMul®] A4 AE HojFct
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Datset Number (8 Rounds) Lowercase (2 Rounds)
Training | Validation | Test | Reliability | Training | Validation Test Reliability
I1 0.520 0.520 0.520 0.020 0.520 0.520 0.520 0.020
12 0.340 0.339 0.340 0.007 0.360 0.360 0.360 0.027
I3 0.260 0.260 0.260 0.010 0.270 0.270 0.270 0.020
14 0.210 0.210 0.210 0.010 0.200 0.200 0.200 0.010
I5 0.170 0.170 0.170 0.004 0.180 0.180 0.180 0.004
16 0.150 0.150 0.150 0.008 0.150 0.150 0.150 0.008
17 0.130 0.130 0.130 0.005 0.130 0.130 0.130 0.005
I8 0.120 0.120 0.120 0.009 0.120 0.120 0.120 0.009
19 0.120 0.110 0.120 0.020 0.100 0.100 0.110 0.010
110 0.100 0.100 0.100 0.010 0.100 0.100 0.100 0.010
111 0.090 0.090 0.090 0.007 0.090 0.090 0.090 0.007
112 0.080 0.080 0.080 0.004 0.080 0.080 0.080 0.004
113 0.080 0.080 0.080 0.009 0.080 0.080 0.080 0.009
114 0.070 0.070 0.070 0.004 0.070 0.070 0.070 0.004

[E 4-4] FF1 ModelMul Z3%
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Datset Number (8 Rounds) Lowercase (2 Rounds)
Training | Validation | Test | Reliability | Training | Validation Test Reliability
I1 1.00 1.00 1.00 0.500 0.55 0.55 0.55 0.050
12 0.99 1.00 0.99 0.657 0.54 0.54 0.54 0.207
13 0.72 0.72 0.72 0.470 0.38 0.37 0.37 0.120
14 0.46 0.45 0.45 0.250 0.29 0.29 0.29 0.090
15 0.33 0.33 0.33 0.164 0.24 0.23 0.23 0.064
16 0.25 0.25 0.25 0.108 0.20 0.20 0.20 0.058
17 0.22 0.22 0.22 0.095 0.17 0.17 0.17 0.045
18 0.19 0.19 0.19 0.079 0.15 0.15 0.15 0.039
19 0.17 0.17 0.17 0.070 0.13 0.13 0.13 0.030
110 0.16 0.15 0.15 0.06 0.12 0.12 0.12 0.030
111 0.14 0.14 0.14 0.057 0.11 0.11 0.11 0.027
112 0.13 0.12 0.12 0.044 0.10 0.10 0.10 0.024
113 0.12 0.11 0.12 0.049 0.09 0.09 0.09 0.019
114 0.11 0.11 0.11 0.044 0.08 0.08 0.08 0.014

[E 4-5] FF3-1 ModelMul Az}
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ABSTRACT

Deep—Learning—Based Neural Distinguisher for
Format—Preserving Encryption Schemes FF1
and FF3

Kim, Duk—-Young

Major in Convergence Security
Dept. of Convergence Security
The Graduate School

Hansung University

Distinguishing data that satisfy the differential characteristic from random
data is called a distinguisher attack. At CRYPTO'19, Gohr presented the first
deep—learning—based distinguisher for round-reduced SPECK. Building upon
Gohr’s work, various works have been conducted. Among many other works,
we propose the first neural distinguisher using single and multiple differences for
format—preserving encryption (FPE) schemes FF1 and FF3. We harnessed the
differential charac— teristics used in FF1 and FF3 classical distinguishers. They
used SKINNY as the inner encryption algorithm for FF3. On the other hand, we
employ the standard FF1 and FF3 implementations with AES encryption (which
may be more robust). This work utilizes the differentials employed in FF1 and
FF3 classical distinguishers. In short, when using a single OxOF (resp. 0x08)
differential, we achieve the highest accuracy of 0.85 (resp. 0.98) for FF1 (resp.

FF3) in the 10-round (resp. 8-round) number domain. In the lowercase domain,
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due to an increased number of plaintext and ciphertext combinations, we can
distinguish with the highest accuracy of 0.52 (resp. 0.55) for FF1 (resp. FF3) in
a maximum of 2 rounds. Furthermore, we present an advanced neural
distinguisher designed with multiple differentials for FF1 and FF3. With this
sophisticated model, we still demonstrate valid accuracy in guessing the input

difference used for encryption.

[Key words)]  Differential Cryptanalysis, AES Encryption, Distinguisher
Attack, Format-Preserving Encryption, FPE, Deep Learning
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