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Inception-V3 ResNet-152 VGG-16 DUNET
Jetson AGX Xavier 86.3 ms 157.7 ms 50.4 ms 160.7 ms
Jetson TX2 103.9 ms 198.6 ms 76.8 ms 246.4 ms

(2 2-1] &< A dlojglo] dict DNN¥ F& A7+ 8l

[¥ 2-1]2 DUNETe] @ <12 dHolHE F&Esh=tl A== At
Inception—V3(Szegedy, C., et al, 2016), ResNet—152(He, K., Ren, S., et
al, 2016) 12]11 VGG-16(Simonyan, K., et al, 2014) Al 7H¢] DNN=o©]
@ 9= dolHE FESk=dl dgw AlRRE dEZAQ AdHidE AAFQ]
Jetson AGX Xavier?} Jetson TX2(NVIDIA Jetson TX2 Developer Kit,
online)olAl St Axtolrt, [H 2-1]o|4 &I 4= Slx°] DUNETS] &
E AZF2 o2 DNNoJ e Xt 3.28f Jof, Ay oA 5L A|A"HS
Az A2 A7 A HoleE HdE %, 59 dolE7F B2l DNN
o FEEE HAo|EE Jetson AGX Xaviero|A A& oA 54 A|AH O]
& 48 A2 DUNETS F8 A7kl 160.7 ms?t Bl DNN<
Inception—-V39] F& A|7FQ1 86.3 msE TSH 247 mso|il Jetson TX20fA]
= 9F 350.3 ms7} 22T}

[1% 2-3]2 DUNETY Fx&5 yetdith. on|x|e} X (feature map)
UEtll= AR ES 28 AR Uifel ou|x] E= w AW HH|xEo]
UL 9lew] e AZtaEe] 28 s Al Adsg ol
A=l AdQlt. ¢= 3x3 HAEFA(convolution), HiZ] =Eeto]A|o]
Batch Normalization) A5 123l rectified linear unit(ReLU)Q| <£A=Z
A" ASES uigitt. ¢ 7F r1HATE d45H07 Qe Aon CP=
b 28, CPe b 3W dgHom Qe ASEOlL  Comkxk
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40.37%% *Agct. o] DUNETS] Ak £4S Hasietyl 2 A

o
e A2AZ7] S8l 4 3o HAERA Al didE manHer Foof
-

1 Adas= 256,

d

) e Al&"l GPU 4= <t HGD A3 A4

&Y A e AREEE Jetson AGX Xavier= 9 219 HEZHA
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Network(cuDNN), online)?} &2 z|ge g ofEFgAlolAd Hd Nzt o
g ofEeAlol A 7H&EEHE GPUE ARG €A A& & Ut o] GPU
L AH AEY XA AMREE GPUS npriA2 stedlo] 4+59] HE
2~ gS A Ygeh. E9F CUDA AE&(Harris, M., online)2 2| Yate] &
A 2 SM(Streaming Multiprocessors)©] 5]-8oh= 3t oA ofg] ==&
Alzof ofsf) Adais= | 2 AdES Al AT 4 ok

ojggt ¢t HE A7t JHedel®: 25kl oy | =Y Ad o
27 Al A Ae, @ dHdE GPUS W&
(Lim, C. & Kim, M., 2021). =gt GPU EAH o= HxH#o]7] wfid],
A oAA EdE& 48ok= DUNETY| &2 497 =+
DNNo] GPU®| Execution Engine(EE) Fofl Wz dot=d
o] ZAH}, d¥tA o2 PyTorch(Pytorch, online), TensorFlow(Tensorflow,
online)ot 22 izl AHHdH DNN2 vjZ] ©Hej= AHejx]o] APH
H(Xiang, Y. & Kim, H., 2019). &, A3 ©@9+= A DNNo|H "o
2 Jl=eHzel 557 (head-of-line blocking) =A|7} EAtct(Karol, M.,
et al, 1987).
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D) et E NIC A2 2A
[19 3-1] 2 =&olA Atsh= dHlHE NIC AJAR FLxoln] gl
ZZA LS ARgShs EE AfEelth. 293 n/l® o]Fod B2l DNN&
DNNp=A{L, Ly, Ly... [, } & YJERJI RE 2HFo)A o2+ A4 54
A Y T Ly Ly, LA AdiAd 34 "HA e dE ARt
DNN;el NICE #A-gsto] Az 34 25 std 1,9 &9 HHE 949
og W= VI-SVM  VI-SVM¥ L9 &% HHES Ygozw w:
VI-SVM  VI-SVM,0] EAgtt. DM L3t AZEWA AFoz FAH
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< A4S HEelg Yoz b= PI-SVM PI-SVM, ,7t it
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DNNy Thread

I_1 L2 L3 Ln

L+ outpust Lz output

» lob

VISV DM,

Thread Pool
Thread "[ T

[C17 3-1] YHit= NIC A2/ A9Y Fx

e A3k FIFO(First-In-Firse-Oud) WA19] t7] Foleh. 5ol
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= P19 9gt RS APt B =R E= AES 59 olg &
AP 47l A o] Ao dhal| 2pAls] Arggict,
Aleret 7oz 7]& NICO A4 34 Fx&s F2I% A NIC
A BE ouZzod "add VI-SVM,DM 1|11 PI-SVMe] 74
Al Eo] wE7b A2l dHH = ALEHAE FA|glo] AFS 4 Uk
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sttt Add 34 9AS Sasks A% 24Z A Bt fge o
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<
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rlo

2 doMe AdA ¥4 ds ¥ F Add A4 59 71¥, = HGD
Hol eDenoizerE ZAHbACl 25 &

1) eDenoizer A7
[17 3-2]+= eDenoizer®] 2ts WA Yepfir] @ Z2kl(Offline) o
Aot & Bt (Run-time) HAZ 7450} Qlrt. ZelofA DUNETe
7 El|(Tucker Decomposition)(Tucker, L. R., 1966)E -85t & w4 X
% (Fine Tuning)& 53 F&m £4lo] H4sh HEE g5t DUNET S
dett A g gAoAE 34 DNN 29 A8 =(DNN Model Threads),
F7F(Job Queue), AE HA(Kernel Launcher)® FAH AAEd ZHYY
35 Fs o/ DNN Zdlvt DUNETo] Adisct, DNN gl Agts=
9 AA|(Operating System)ES F3] CPU AAlEdH d 2 Rd=z 74
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Computational Cost in a Convolutional Layer = k,x k, X c; X ¢, xw, X h,

256 Tucker
Decomposition

(BN [ Relt | ' ﬁ/—|'
Conv C Conv
RENEREEY 1x1

7} Wag DUNETY A ¥ig A224 A% 67 &4 2

(19 3-4]= [2" 2-3]19] 9% A A 945 A 2ot 275 o
A2 uvepd Jfdeltt [O7 2-3]9] €& A #A ol &3 AE4t
25691 =t 7] 3x3 Ad ®AZE QI o] AE ®WAME ZZF 152, 131 19
2569 & AdS4E HAE Al A9 #2 AEFA ’IAZ EofjEt of
o] AEFA AT AsF v82 [19 3-4]e] #7]"H FAle o ozl
ot 719 AAEED kK, Xk, X ¢ X, Xw, X h, = 3x3x512x256x38x38
= 1,703,411,7127F 1x1x512x152x38x38+3x3x152x131x38x38+1x1
x131x256x38x38 = 419,580,192=2 s FEO] AEFMH AatefFo] oF
75.4% Ak Uz 3 o] AEFA AZ] olF A-8stH DUNETE]
A QdFe T 25.41% Fashy dibgo]l g4t DUNET o=
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Algorithm 1 Multi-DNN Scheduling Framework

1: function construct_layers(DNN;;)

2 for ] «+ 0 to last;; do & lastig: last layer index of DN Ny
3 layersiy[l] + L., & Ll 1" layer of DN N4 defined offline
4 end for

5 return layers;;

6: end function

7. function execute_dnn(layers;;, DNN;;)

8 prev_output < input image

9 for | « 0 to last;z do

10: job!, layers « layers;4[l]

11: jubf.d.dnm «— prev_output

12: enqueue( jabf.d)

13: wait_signal(sig)

14: prev_output +— output

15: end for

16: end function

17: function execute_job( f)

18: A

19: while (job queue is empty) do

20: do nothing

21 end while

22 job front < dequeue( )

23: output « execute_kernel(joby,, ;)

24: send_signal(sig)

25: goto A:

26: end function

[19 3-5] eDenoizer®] 52t ¢85S et & I
2 ®ASH Aoltt. [18 3-2]9] ZF DNN R A8 ==construct_layers ()

9} ezecute_dnn()2] F 7le] =r ASPECH Wz, ZF DNN REo] A=z
e nste] lagers,llle @xapelols Hol® 7t DNNe| 74 4

i)
it
_IhTI

RE Axgozn L2 YYPA} A7)A layers, )= DNN 24 Z0] ld
A2 ou)sla id= DNN A1¥ A5 (17 3-519] 2~43)S vetdct. 1),

E3x3 [ERH, BN A%, o3 97 848 F49 22 o] DNN o
oz w0l gk,

DNNo| ~dEe] ez it & s A% 728 2t 9z
W DNN2 AgHch. DNNel| dlolel7t =W layers, it A=l 3

]
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o] 4Hm (2™ 3-500Ae I=00l22 I A WA AZFS oudh
I3 the ol datel AEHI Ad dA Aade Jetk(2d 3-5]
o 10~13%). GPUel g5l o] gas|flrt= AlZ1do] A=W GPU
o &9 HolHE thgol #3E o] dHor oA AFdrH(aE 3-5]9]
113, o714 1=1). o|d #H2 L; 5 AH8s viAe Ffo] ¢hmd o 717
grE g,

Ad AA9 FQ ZZL [1™ 3-519 execute_job()oll YERT Qlth.
(28 3-2]14 & &= gl=el 7 dAE o2 7Me] 71 Adee] osf &
ol HlE7] AeR Haste] 8% e ARy 3-519] 19~229).
F2E 2 evecute_kernel()Z o AP 3-5]9] 239) o ¢
7l 28 E= 849 & GPU 7|92 sy, CUDA 2EH F shUE

) ~AEE ZEdYa 24
[2F8 3-519] construct_layers()+= eDnoiser A3 ZFol= ANgEx] 9
om emEoldl PHE HAHolmm FA diidoli ALl b
execute_job()-= 9 7V e @49 & FESH] wiZel 0(1)9] Al
7 B ol #3¥e DNNO| 2495 47t n=last,; A w, n/fle] 245 F
ol AL DNN A ZFo A2Fd 4 GlOB=R execute_dnn()2] At E3
T On)oltt.

A R EE Fofl tigk Flock)= 5 o YAst= LH|ER ]I
Shte] DNNwE Adsh= AlARA = 2 =FollA Aldtshes ¥ ds
g&Fo|A 1 [17 3-2]9} Zo] DUNETS ZEget of2] DNNo| Ao
A== oA m&dolth [O1F 3-2]04 =1 5 Uxo] w49

5

DNNEo] o] 428 238 uet 974 2457 CUDA AEYS

l
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re
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o
rlr
Hu

oAl Atsh= AHit=E NICO| &84 HTT

“
A Adede Addstal Aol AH8E ZF DNNO| VIeF PIo] 9dF HE&
Al
=

1) A4 273
2 AFL NIVIDAY] Jetson AGX Xavier(o]s} AGX-Xavier)E ER
AHgE AA”HOFE ARRIATH [HE 4-1]2 AGX-Xavierd] stEgoje Ax
Efojo] ARFe ZH7; UrEpdt

GPU 512-core Volta GPU with Tensor Cores
CPU 8—core ARM v8.2 64-bit CPU
8MB L2 + 4MB L3
Memory 32GB 256-Bit LPDDR4x
Jetpack ver 4.2
oS Linux kernel version 4.9.140
CUDA CUDA 10.0.166

E 4-1] Jetson AGX Xavier AA|AHE

Agof= Carlini model(Carlini, N. & Wagner, D., 2017),
AlexNet(Krizhevsky, A., et al, 2017), MobileNetV1(Howard, A. G., et al,
2017), SqueezeNet(Iandola, F. N., et al, 2016) ¥ 4%7F° DNNZ EHA
DNNe=z ARgsiglom R7IE HAstshr] 9o 4709 DNN< 742}
Carlini, Alex, Mobile, Squeezez= I3ttt 4719 EFAl DNN 5o A8H
glolg A& CIFAR-10 dlo]H Al(Krizhevsky, A. & Hinton, G,
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Adv. detect ACC.(%)}
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Adv. detect ACC.(%)
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(23 4-310141 ¢ % 9l Carlini, Alex, Mobile® 22 (34, (14,
2dh), (19, 3§, 4%) 2934 100%°] Her=z

o] ZA 5920l wat Squeeze= VI-SVM-& 434512 41l PI-SVMTH 438
st7]12 ottt oluf 2% F=3t PI 99t &€& walsty] fdf PI 95t &
2l&0] 3oz =

1~3519] A&H 3719 2454 PI $I5HS EA|ste S 53t

3) QTE NIC A28 A% B7H

2 AP GHUE NIC A2de @e ZzAs $4014 e
DNN# NIC7H Wadoz AawA A" Axdels 9y Zzqs
NIC Al2g)7t Histe] A% H7he AR (19 4-41 Pe ZaAs
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oA FEol IHHL DNNS| 2t 2459 VI-SVM E§ A& o 2t
o] mgAlxoA FEE. [2¥ 4-41914 VI Proc., VhProc= 27t L%

L9 VI-SVM& FE2st= Atk DM 23 PI-SVM2 [17 3-1]
AdEe B2 2=l AFE A HlsHA shte] Ao A3
™ DM Proc= L°| sldsk= DMe F&stk= ZREANA, DM, PL ,Proc.+
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DNNj; Process
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v @ * I ‘ ¥ ‘ @
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[13 4-4] HE] Z2AA NIC AAHQ A 12

Multiprocessing: ~ Process—based  parallelism, online)&  AH8sIALL
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= ke ZEAIASA AES] AT Folm PI— Queves 2t 29 %
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B2, 2l A oA Aol AMEEE ol= HGDel A& dloly Al
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Attack Method Attacked Model
FGSM IncV3
FGSM IncResV2
o FGSM Res
Tram'mg' Set and FGSM IncV3/IncResV2/Res
Validation Set
IFGSM2 IncV3/IncResV2/Res
IFGSM4 IncV3/IncResV2/Res
IFGSMS IncV3/IncResV2/Res

(2 4-2] stat 452 SAt A4 A

A AAE AAst7] 1ol ImageNet &  Al(Training set)ollA]
30,000%49] 44 HlolHE F&% & IS F7Iste]l A4 dlolHE =t
3 oojm) & AdoMe [E 4
He FGSM [FGSMeolH FGSMeo] n¥l WHEEH [FGSMno 2 7|3},
54 DNNEHH AAE ABdst7] ¢lsi AM&E DNN)2 Inception—V3,
InceptionResnet V2(Szegedy, C., et al, 2017) Z12]1 ResNet50 V2(He, K.,
Res, S., et al, 2016) F 37} ARgst¥ o 3709 nds &+ A&
A2 AJAE YAdst=dl AHEFcH(Tramer, F., et al, 2017). ®7]E 73]
st7] sl 2+ ¥4 DNNL IncV3, IncResV2 12|31 ReszZ EZ|gth HE
AA oA sts DA, e(F= DA 104 16 AtolollA FdstA A

| A dlolHE ZFET A o5 dleolE 9] Tl 240,0007H010. A

=]
T3E

L =
< Holg Ale ws7] fsf &9 dloly Ale v o AMgH Fdet B
o] ARgHM o]F 918l ImageNet & AlofA 10,00071¢] HolHE F&3t

Al <& 80,0007H¢] AF dlold A& ARt
BAE dlolg Ala 457 918 [#F 4-3]9F Zo] white-box &7}

black—box &4 g3t

<
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Attack Method Attacked Model
. FGSM IncV3
White-box-test-set IFGSM4 IncV3/IncResV2/Res
o FGSM Inception-V4
Black-box-test~set IFGSM4 Inception-V4

[E 4-3] HAEE St A4 SA

giE dold e FAs] I8 [E 4-319 2ol white-box FZ}
black-box &2 A-83trt ImageNete] A5 Al(validation set)oll4 10,000
ol HolHE FE%t &, [® 4-3]9F 22 34 TS 7IeH. White—box
FAol= DUNET el DNN¢! Inception-V37} 82 DNNOZ AREH
JFA - black—box &2 o= DUNETQ] EFAl DNNZ} o} Inception—V4[40]
7} Abga,

iy
n

3) AdA Ao gk E5F P

B AgoAe HA 2d) g0 ans g5t AR, &2 AA
450 WIE &RIsty] 9ls HA Eoi7F DUNETS] &7 Agtzof ojF ¢
mz2leA] BEAdith. A2, 7€ DUNETH HA EIE Hgs
DUNET®] Hol/dS "lwetth. ojuf Holgolgt DUNETS 53 o AR
StAl ¢ DNNejA Atz o7 59 $9 £F Ages sh=

Juigit, £5 A A@T Aol AHeNA & 42 AL

—E—,C!:

o

7hH AdiA oAl it BA ZSiE 283 DUNETS] 7 Ak
2 AdelA= DUNETS 4 3o AEFA #Ad "ol 87 EiE
o AEHE 3709 HA 2o dAES 247 A83E "o 8E gRlstH
AQA oJAl= [E 4-3]°] = White—box—test—set¥} Black—box—test—set
Sl AdE . White-box—test—sete] Hth2] o|A|e] 4% Inception—V3
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Black—box—test—set®] Hth& A= Inception—V3 th4l Inception-V4E A}
goto] B, ¥4 A FES 4Y5t= B2 DNN2 Inception—-V3ol|t}.

Result in Org. DUNET Approx. DUNET
Clean-image-test-set 76.2% 76.53% 76.38%
White-box-test—set 75.2% 72.31% 70.59%
Black-box-test—set 75.1% 74.86% 74.45%

[# 4-4] 27 A v

[ White—box—test—set A=
Black—box—test—seto] et 7 ALLE yetdrh [F 4-4]°|A Org.
DUNETS $A45t2 &g 7128 DUNETS 9m|sts Approx. DUNET-2
g7 &#oE 283t DUNETS Wedth ZF At [® 4-3]9] Sle=
FGSM¥}  IFGSM4 & 4] ot 7% A= Huolnh
White-box—test—set®] 4% B Es|7} EF7F AT 1.78% n|ftoz
&S 0™, Black—box—test—set®] A-¢ 0.41%2] A5 Ao/} TZHL} o]
25t A= HA #ol= DUNETY 4ol dAAasiHate 43 AA 4%

=]
T
B
Mo
o
oz,
L

O

o] A9l TAsHA] dette AL HolEth ES 4 dHolHE ARSS AH
Ao e s #3517} 0.15% unlgte g 79| it

=l ®71" Aol ol Org.

DUNET® Zotof spAgt AA2E= 27 Hert 2t olgfgt xpol7h it

A AAE BAoks d AHeEE

ImageNet o8] Alo] & olnx7} F29j2 A&7 wjio|tt, wpehA

2 Ao AgE 9 9 HAE dog] Ayt HGD9| dolg A2 &

FHrel gle™ Org. DUNETE] stz A|EAZF HGDoF FYstH =t HGD

o] Aot Org. DUNETS] A= o2k & Aglo|A Approx. DUNET9]
ATt 2 Y oA 545 Org. DUNET®] A5 Hlwgich

s olfe
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DUNETS] Ho]A

DUNET9] 342 Atz dAlof Sl =2 flole= negative noises
BAste Zolth o]yt ZHeA DUNETS] 7]5& o2 REa olHshs
Aol Ihsstt. [® 4-4]2 AdE dAE F9¢€ B2 DNNeJ
Inception-V3d wfje] Artejry. Holg=S B7Ft= 22 DUNET ot Al
Inception-V3E EFZl DNNO2 ARgSH vt DUNET 25 ASr g9l A
ElAl DNN-2 Inception-V37} ofd o2 E£70] DNNog AAgtE Ao]
oh. [® 4-5]%= DUNETS] Holde &It Zolw ®Zl DNNoz
ResNet—1522 ARg3st Aifo|ct,

Result in Org. DUNET Approx. DUNET
Clean—-image-test-set 77.4% 73.7% 73.5%
White-box-test—set 75.8% 71.35% 70.86%
Black-box-test—set 76.1% 72.07% 71.58%

[Z 4-5] ResNet—1522 #Ho]A 3z}l

[£ 4-4]9] Ave} mrbz dolde Tl A white-boxet
black-box B4 BEeld HA Halrh g ARA Ad @Ag} 7z
DUNET #o|7} 0.49% mlgrelglom B4 dloleE A8d 48 Aulds
0.2% mlgre] B AT Aoz A% A5t Aol Gt

4) eDenoizer A5 F71E 935t A|7F v
B AF oA eDenoizer?] A3 AL Hrislr] el T /1A AS

oA Arlo] = A ¥4 232 B2 DNN(nception—V3)}

DUNETYH A== Aeoltt, & WA HH2 dA Adg9T &= 2dS xgt
sto] o 79 o2 DNNF & == Hfolth 7[24or 2 =7
o] &£FM(eDenoizer)e A-8got= 492t £F4 glo] PyTorch Tl

o5 Ad" DNN2 Adsh= 45 vl
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AletEl eDenoizer= DUNET ¢14HS Zo]7] 95 HA Esz A

T £74 BES % BISHE eDenoizer® HEHEQ A A5 =4
gt @ 7 &7 FEe dk=m %At & &749 7 FiEe] AA
A el EdHo= vtgEE WS AERit ZF AYoA= DUNET

7} €4 DNN#} DUNETHF 32 A] A7t B
(1% 4-8]- DUNET} EFZl DNNSI Inception—V3ito] ghA A3 =
d o] Aol (a),(b) 1= (o)ollA 72 thE X1 e= DUNETS #
- AA Azt A DNNO| 22 A7he 5 53e 34 el S8 AIRE

A Inf,, [F)E Btk [ 4-8]9 (@A & 4 Uxol, & =wolA

AlQret Astsr A4 7Y AAlEE ZdYIE BT AEStH Hot B
FE2 A7l 51.72% S=Ht. [19 4-8]9] (b)= eDenoizer® A7A1Ed T
AU a4t Hes EIshes Aol X 41.3%°] A3 A)RF o
S 3o [O1" 4-8]19 (0« HA & AA9 axgt Hojsm A =
Aol tigt §A &Eolle & 17%2] At @52 o|H T

)

W) AH DNN FE7 SA6] Arjd o4 B9 A A7k 8]
AR gl © AR AR A% Uehys] 918 DUNETZ e
DNN 2Jo]% o] th2 DNNg b= AAdlolq @ Asart. A4
2 oA H4lo] WaF DNN 9jo|x Aaigh th2 DNNSS A= DNNojg}
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(Approx. DUNET) (Org. DUNET) (Org. DUNET) (Org. DUNET) (Approx. DUNET)(Org. DUNET)

(a) (b) (c)
(13 4-8] BtZl DNN¥ DUNET®HS A3l oo 42d -3 Azt vla
st A H DNNi+= ResNet—152 170, RegNet(Radosavovic, 1., et al, 2020)
17], ResNext(Xie, S., et al, 2017) 17} 1281 WideResNet(Zagoruyko, S.,
et al, 2016) 17§o|t}t. 2 =FoA+= DUNET# el DNN9! Inception—V3
o =2 FAEHE FARL U A 47§9] AEH DNNojl= W2 A4
B3 AHE S CPUS OSE &Fdll Folx 4217t GPUE &
Aefol| FFdE=2] oFRE FletH [19 4-9= [ 4-8]3 Zo] ot
z27 (@), (b), © 293 (Dol hf,,(F)E HERdT
T &£348 BF Hgotd [Od 4-9]9 (¢ Zo] B+ 5 FE

AlZto] eDenoizer A8 Al 48.36% T=dtt. ol= DUNETZ B2l DNN<J
L7t =S % eDenoizer’} $H AdEl= AHH DNNO| 7HIS oA
Sith= AL Bis] HolZo)h eDenoizer® 8357 A o8] DUNETH Ef
7 DNN9| A5 A9 olfs F2 TAE ZoA AAF 4497t GPU
AR Aot 3 71N B A7 aedor WYEHY] ol
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AddoME HA EIIE Bl DNNeo A&ttt o]E a8l Inception—V3,
ResNet—152, VGG-16 12]al RegNet= EFZl DNNO2 Aoty @ malel
oA BA ZolE A8&s & Z §A DNNS DUNETH Zglsto] g7
DNNHE Al A7He =33k} [18 4-10]12 eDenoizer?] 2753 T

925 AHESHL B4 DNNe| B2 23] 289 47 Aolg Z3¢ Lefx
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ABSTRACT

Research on Software—Based Adversarial Attack
Defense for Embedded Systems

Joo, Sang—Hyun
Major in IT Convergence Engineering
Dept. of IT Convergence Engineering

The Graduate School

Hansung University

Recently, the types of adversarial attacks that induce deliberately
incorrect classification results from DNN results are becoming more
sophisticated and diversified. Accordingly, DNNs are frequently exposed
to adversarial attacks, and the result of misclassification due to
adversarial attacks in embedded systems, such as drones and autonomous
driving systems, can be fatal. However, it is very difficult for embedded
systems to quickly detect or defend against adversarial attacks due to the
limited performance and memory capacity of DNN computing system
resources. If dedicated hardware is developed for this purpose, there is a
burden in terms of cost and it is difficult to flexibly cope with changes
in the attack method and the target DNN. To solve this problem, this
paper introduces each technique for defense through adversarial attack
detection and adversarial example restoration in embedded systems. For
adversarial attack detection, we propose embedded NIC system, which is
a software—based adversarial attack detection technique. This solution
selects the hidden layer to proceed with detection among the hidden
layers of the target DNN in order to minimize the memory required for
attack detection. In addition, when the target DNN inference is in
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progress, it is detected in parallel and the running time gap between the
two is minimized. For adversarial example restoration, eDenoizer is
proposed. eDenoizer reduces the amount of computation required for the
DNN convolutional kernel tensor, which removes adversarial perturbation,
by applying Tucker decomposition. Furthermore, when restoration is
performed simultaneously with other DNNSs, the priority assigned in the
host CPU is delivered to the GPU, so that the adversarial defense can be
performed preferentially. As a result of the experiment, the embedded
NIC system can reduce the difference in execution time by up to 99.6%
and reduces memory usage by 83.9% compared to before applying the
proposed solution, and eDenoizer is able to reduce the inference speed
accompanied by adversarial example restoration by 51.72% with a slight
reduction in classification accuracy of 1.78%.

(Key words] Adversarial Attack Detection, Adversarial Attack Defence,

Embedded System
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