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(b) Proposed method Single model Training process
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Algorithm 1 Training process

1: repeat

2 s ~ Uniform({S,5 —1,...,0})

3 t ~ Uniform({0, ..., T})

4: e~ N(0,I)

5: Tyl LRI, Tihy Thh = DVVT(J“) xre RIXHXW
6 if s =5 then

7 75 = IDWT(zy) > T € RIXHAXW
8 else if s = 5 — 1 then

9: x5 = IDWT(x + 1) > Ef € RIXAXW
10: else if s = 5 — 2 then
11: rfa = IDWT (2 + zin + 2hi) > E'g £ R3xHxW
12: else
13: Ty=1x > Original image for remaining scales
14: end if
15: 5 = axh + 1 — aye
16: Update model g by taking a gradient descent step on:
17; Volle — ea(Z5,t,8) |1

18: until converged

[E 3-1] Agsts mde g duds. & 2%, 1= Bd2H,
& TFPAISE mol=, o 9 ouHA], o= B SEtuE S et v,
= ol W aRYAES YEhdn

OHE3-4E B Al AlRbee S mele] &k B ot 1|

N4 melAFe] WG FHe FAW Aolxo BE HPER o] Foix
olu A wetrl=g PAHSHE Ao A

= e, o R s 9
= TY A A e oA dgu|= FHOo 8 AIAE, H 5}
27del deAE 2H(Discrete—Wavelet
Transform)< £3] 453 ARTS 133}
AL s&= 7FF 2 3 sFE AFske 0714
olult} Elel~® 7} 7HE 07bx] wWstsith, 34 A] 7FSAOF w0l =

etk
rE

o] oulAe] WAHow ZrHu 7+ AAYNA 27 ouA HE %7
A olel@ dloley wHloAe] Fops %‘réﬁ% SRR IELE P
e oju) w}ovg B0l A AR &

2 JlAy. 29 sAQz Aol 42401]*1” AF o5, 2T

%
2

_12_



(2% 3-5] Akete male] ofmX AL s AEY A o= 4
AR A 27 ol =B UEh 5= A4E AF olnAE ou @
S mizte a9l 2N ARE oAt AAl A ouAE A
Fab HAgolth 7 2ALNN HAHQ o= AAZ Fa) oWA =

738k, shel 27d e Aart A9l 2Ad e A Aol wtdEn

gl 2ALelN ARE TR onHe] TxH Hede nEe)
e, w elasolA el 2Ade] AAE omAE e AAUAL
NN Ul ER WS F A9 2AUe S4w ARee ZeAss 4

Raiae

_13_



Algorithm 2 Sampling process
1: foralls=5,5—-1,...,0do

2: LT ~ N(O I)

3: fort=1T,...,1do

4: €g = Ey( L )

5: 7 = \/l_( r$ — V1 — agep(zf, t, 5)) > Predicted z
6: if s =5 then

7 EFf = ff

8: else

0 7 g Bt 4 (1 - )

10: end if
11: T g = Mfg (T 4 /T — ag_1eg(F5,t,s) > DDIM update

12: end for
13: end for

Bl =8l 7oA o] Y o= XA Hxold ZEAAE S
t=0°4 AAE oln A= HE® DDIM(Denoising Diffusion Implicit
Model)[14]9] HHC|E F&lo] wet A" Feu|gr7E uHo]lE =
o S Hoke =AY sollM AFa HEFES AAGS Bl o]
Aol 22 Fx7t SHdan. 49 2AdAAE THAIRE o]l=8 B
A 2ALAN BdE AFa Ao A Fll Gt 3o
o, olglg a9 2AY FRO| T} 7 BAAagolA wrE Ao R o] F
oAxith. & ATl A AStets ATA =AY opIEA = a9l ALl
M AT S, A9 AL S 58S AR dA sk

H
A& AU G ol A9 ABAH AW P A8
A

jip

ofj

/HJ,]. 210 E/\]o]] 342-1‘ 3 _/': 9\}1:], 5156}, 7]%0 o]j/\ﬂii‘%] jl].;(é
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4.1 HolHA AH AA

oA A 1009 @ oA E o FaqH At Altst
2 dlo] o}7| Bl X = GELU(Gaussian Error Linear Unit) @43} d4E
23+ fully convolutional networkE 7|Wto 2 FASAT. AX @84
HEste] ofrld A4ks wiAlsile™, MY REdM s =AY sof
bl el ro] ARE gapdor Qmydit, FAHgor AlQlyl 9] 9
H 9 (Sinusoidal Positional Embedding) & &3] =AY Y} B8 RS
Tdsta, ol& GELU &3t $h7F £3d ¥ #ololdd F3x A =

H
AL ==, 2de J|E = 78 3-394 AAE U-NetS A}

Mo & rr

g3ttt 23S NVIDIA GeForce RTX 3090 GPU 7oA F=a=] o
H, 7F 274G 7]E Bk Bl 7=1000 Efdage] obd 7=100 E}
A=sS ARtk 852 Adam  SE[PIAE AREE}C]
=
[}

b tgEle] BE 27 FEel FEF HES

42 A% B7}

Type Metric SinGAN ConSinGAN GPNN Ours
Diversity LPIPS Div.t 0.18£0.07 0.15£0.07 0.1£0.07 0.52 + 0.06
NIQE| 73£1.5 6.4£0.9 7.7£2.2 6.1+25
No reference IQA NIMA?T 5.6+ 0.5 5.5£0.6 5.6£0.7 4303
MUSIQ?T 43+ 9.1 45.6%9 52.8+10.9 54.7 £ 9.1
Patch Distribution SIFID| 0.15+ 0.05 0.09+0.05 0.05+0.04 0.49 £ 0.27

[ 4-1] =4 gl= olnx Al g AZF4 A7}

412 127)9) olvl o] tla] Te B ol A4 w5 4
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@A wla AnE wolEth Alkels mde] e AgH olmAel A
74 FA3 R F M S9elq AE A4 F 97E 9

3 SinGAN©I| A AL o o] ] Frechet Inception
Distance[19](SIFID)S H7} A% = AEs}th. SIFIDE FID9F A3
Wao g A oln X9} AA oju|x|o] X @9 5 #E 7He] HAL

g zg9n. mad wde A4 FAd $44e dFas 99
NIQE(Natural Image Quality Evaluator)[15], NIMA(Neural Image
Assessment)[16], MUSIQ(Multi—scale Image Quality

Transformer)[17]¢} 22 Fx §le ovx] 4 H7 AxeEs 83
ATk g, AAE om Ao Y te B AL AHRE Akl
LPIPS(Learned Perceptual Image Patch Similarity)[18] A Ex = =44
B A=E Atstaih o W, B4 =2d ATt A= LPIPS grol &
TE gAY A= olm A7t *@"4Q°q‘ﬂri’ B7tek=d F4-104 FS1

of olmxe] FAA SHAME FSsHM tdFY = oInA

Input SinGAN ConSinGAN GPNN Ours
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ABSTRACT

Efficient Image Synthesis Method Using Single
Reference Image—Based Diffusion Model

Kim, Ji—Soo

Major in Applied Artificial Intelligence
Dept. of Applied Artificial Intelligence
The Graduate School

Hansung University

Recent advances in representation learning have led to remarkable
progress in image synthesis. However, most innovative models heavily rely
on large—scale training datasets, limiting their practical applications. This
paper presents a novel diffusion model that can generate diverse,
high—quality images from a single reference image. Our proposed method
combines wavelet domain frequency decomposition with a hierarchical
scale structure to address the artifact accumulation problem inherent in
existing approaches.

Specifically, we introduce a U-—Net architecture with restricted
receptive fields to prevent overfitting to global information, while enabling
effective feature learning in the frequency domain through wavelet

transforms. Through extensive experiments, we demonstrate that our
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model achieves superior visual quality and diversity compared to existing
single—image generation methods, and wvalidates its effectiveness in
real—world applications such as image harmonization. Furthermore, our
proposed model significantly reduces the lengthy sampling time of
conventional diffusion models, improving computational efficiency while
enabling stable image generation at arbitrary resolutions.

Our research presents a novel solution to the image generation
problem in limited data environments and demonstrates various practical
applications. The quantitative and qualitative evaluations show that our
method outperforms previous approaches across multiple metrics,
including LPIPS diversity scores and no-—reference image quality
assessments. Future work will focus on extending this methodology to
achieve faster inference speeds and enhanced image quality through

advanced optimization techniques.

[Key words] Diffusion Models, Single Image Generation, Wavelet

Transform
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