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Abstract  

Study on Performance Improvement Techniques 
and Applications of Deep Learning

     Seoung-Ho Choi
 Major in Electronic Information 

Engineering
 Dept. of Electronic Information 

Engineering
      The Graduate School       

        Hansung University

 
     Deep learning currently shows high performance in many real-life 
applications and has been applied to various environments, and research 
has been conducted. However, since deep learning is a black-box model, 
it is difficult to interpret it, and it is difficult to understand why it is 
getting better. Therefore, we will look at the research contents on the 
fields of application of deep learning performance improvement 
technology and deep learning to improve the performance of existing 
deep learning. To improve the performance of deep learning, we 
proposed the contents of the improvement of deep learning technology, 
which is improved by grasping where the problem is.
  Improved performance of deep learning technology, we look at seven 
types of technology. First, the bi-activation function: this is an 
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enhancement activation function that is enhanced in the convolution 
neural network. Second, it is the loss of a neural network that is 
continuously occurring, and the continuous correction cascade loss occurs 
through continuous online learning. Third, non-linear regularization: This 
is an improved regularization version for the regularization method. 
Fourth, it is a new auxiliary component for optimizing the deep learning 
model. The fifth is ensemble normalization for stable learning. The sixth 
is the similarity analysis of actual fake fingerprints and fake fingerprints 
generated by DCGAN. Seventh is a multi-path decoder scheme with 
error reduction embedding in one-hot bi-directional Seq2Seq with 
adaptive regularization for music composition.
  In addition, deep learning that expresses high performance will be 
introduced to technology applied to real life. In technology using deep 
learning, we will look at four types of technology. The first is the 
importance of adaptive seeding. The second is the module comparison 
study in the image captioning. Third, the visualization of outlier data. 
Fourth, it is a stable and fine-grained segmentation that uses batch 
normalization and focal loss and L1 regularization in the U-Net 
structure.
  Through this, we will create a new deep learning theory using deep 
learning to improve the performance of the deep learning model and 
proceed to future research in the new research field.

【Keyword】deep learning. performance, improvement, application,        
                 technology 
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Chapter 1  Introduction

1.1 Research objectives

  

  Deep Learning currently shows high performance in many real-life applications 

and has been applied to various environments and research has been conducted. 

However, since deep learning is a black-box model, it is difficult to interpret it, 

and it is difficult to understand why it is getting better. So, we show high 

performance as an advantage of the deep learning model.

  There are three ways to improve the existing deep learning performance in 

terms of data. First, more data is obtained. This is due to the increase in the 

amount of data information judged by the deep learning model, which improves 

performance. At this time, if the quality of the acquired data is poor, rather, it 

shows low performance. Therefore, it is important to augment good quality data. 

Second, adjust the data scale. The process of adjusting the data scale has 

three-step. The first step normalized to 0 to 1. The second step rescaled to -1 to 

1. Third step standardized.

  In terms of deep learning model improvement, technologies such as hyper 

parameter optimization, batch size and adjustment, early stop, regularization, 

dropout, and network search methods are known as ways to improve the 

performance of deep learning models. However, even though many studies have 

been conducted, various issues still exist that require new problems and solve 

existing problems. We would like to suggest several ways to improve 

performance in the deep learning model. We explain in the next section.
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1.2  Research contents

Figure 1. Taxonomy of contents of my thesis

    We intend to reduce the problems and obtain an opinion to improve the 

performance of the deep learning model. Figure 1 is a taxonomy the proposed 

methods. We obtain high performance using deep learning. We describe the 

contents of the research conducted by the technique of improving the 

performance of the existing deep learning model. The following are research on 

the performance improvement techniques from the previous research. 

 3.1 The bi-activation function: an enhanced version of an activation function in 

convolution neural network, 3.2 Scale calibration cascade smooth loss of 

generative adversarial networks with online continual task learning, 3.3 Nonlinear 

exponential regularization: an improved version of regularization for deep learning 

model, 3.4 Novel auxiliary components to help optimize deep learning model, 3.5 

Ensemble normalization for stable training, 3.6 Multi way decoder scheme with 

error reduction embedding on one-hot bi-directional seq2seq with adaptive 

regularization for music composition, and 3.7 Similarity analysis of actual fake 

fingerprints and generated fake fingerprints by DCGAN.

  To improve the performance of the existing deep learning model, we will 
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describe application research using deep learning in addition to the research 

conducted. The following is an application study using existing deep learning. 4.1 

Study on the importance of adaptive seed value exploration, 4.2 Stable 

acquisition of fine-grained segments using batch normalization and focal loss with 

l1 regularization in U-Net structure 4.3 Visualization techniques for outlier data, 

4.4 Component-based comparative analysis of each module in image captioning

  In conclusion, the contributions of this thesis will explain the limitations and 

additional directions for research and existing methods related to methods for 

improving the performance of the deep learning model and application research.
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Chapter 2  Basics of Deep Learning Techniques and 

Application

 Recently, deep learning has been making achievements that have been planned 

in several fields. It has been successfully applied, such as showing better results 

than a person. Therefore, to understand the contents described, the background 

knowledge of deep learning will be described. Deep Learning is composed of 

three categories. The first is supervised learning, the second is unsupervised 

learning, and the third is reinforced learning. Supervised learning is a method of 

learning a model with a correct answer and a label for a correct answer. 

Unsupervised learning finds input characteristics only in the input state. 

Reinforcement learning is a method of updating through compensation according 

to the current state. Deep learning consists of the convolution model, sequential 

model, generative adversarial model, reinforcement learning, and transfer learning. 

The advantage of deep learning is high performance. The disadvantage of deep 

learning is that it has a large amount of calculation in the course of learning. In 

addition, deep learning requires a large amount of data. Because if you enter the 

wrong quality data in the deep learning model, the wrong garbage result will 

occur. The existing research will be described based on the type of deep 

learning.

2.1  Techniques 

 2.1.1 Convolution Neural Networks (CNN)

 CNN uses a local filter to calculate by sharing the filter in the image. CNN is 
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strong in regional characteristics because it uses local filters to perform 

calculations. The following are the contents studied in the convolution method to 

improve music composition performance. H.-M. Sulfur et al. [1] used the 

characteristics of the Mel-frequency spectrum coefficient, and the discrete Fourier 

transform coefficient, and the raw PCM (Pulse Code Modulation) sample as the 

CNN input. J. Lee and J. Nam [2] improved multi-level and multi-scale 

functions from CNN and improved CNN performance through aggregation to 

improve music composition performance.

2.1.2  Recurrent Neural Network (RNN)

  RNN recursively reflects information over time. RNN is a method of receiving 

data in a single direction and processing data for each state, and it is important 

to include time information in the input and to maintain each state well [3-6]. 

The improvement of the performance research through the combination of the 

existing RNN and various models is as follows. A. Huang and R. Wu [4] tried 

to improve the music composition performance by using the combination of 

RBM and RNN to improve memory. R. Vohra et al. [5] proposed to 

successfully apply harmonic music generation by combining DBN (Deep Belief 

Network) and LSTM (Long Short Term Memory) to improve memory. Q. Lyu et 

al., [6] proposed a method of combining RRTBM to improve the memory of 

LSTM. The combination of RBM, DBN, and RTRBM in a continuous model 

was intended to improve the performance of music composition by improving the 

memory ability of the existing RNN.

2.1.3  Sequence to Sequence
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  Seq2Seq is composed of an encoder-decoder model, and has the feature of 

reflecting information about the previous output in the decoder model section. 

The advantage of Seq2Seq is that the encoder-decoder learns at the same time so 

that Seq2Seq is more useful than RNN in evaluating the length problem of the 

generated result and generating the continuously generated result. As a 

disadvantage, only the information of a short reflection is considered, so causality 

based on sequential input is not considered. The research using the existing 

Seq2Seq is as follows. D. Spital [7] proposed a new data expression system to 

transfer the characteristics of one composer to another composer and confirmed 

that it is possible to transmit music compositions using the Seq2Seq at the 

composer level.

2.1.4  Generative adversarial network (GAN)

  GAN improves production performance through alternative learning. Research 

using GAN consists of two types. The first subsection is the static creation of 

music, and the next subsection is the creation of a music sequence.

 The research on the static music creation network is as follows. A. Knower et 

al. [9] proposed a GAN-based model for removing the staff line. The removal of 

the staff line referred to here is an important preprocessing step in optical music 

recognition. It is a difficult task to reduce noise in the existing music score 

image and maintain the quality of the music symbol context at the same time. 

In order to remove the staff line, GAN was used to improve music composition 

performance.

 The research on how to create a sequence type network is as follows. In 
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SeqGAN [10], there is a limit in the case of creating a discrete sequence in the 

existing GAN. Because the generation model was not easy to update information 

from the discriminator to the creator, the information was not updated. Therefore, 

the concept of compensation was introduced by Reinforcement Learning (RL) to 

the creator and applied to the continuous generation process. Through this, the 

balance between the current score and the future score was obtained, and the 

result that the entire sequence was generated was obtained. S.-g. Lee et al. 

Proposed the application of SeqGAN to create a polyphonic music sequence [11].

2.1.5  Conditional GAN

 H.-M. Liu and Y.-H. Yang [12] is a method of improving the existing musical 

notation to improve the performance of music production, and to improve the 

existing musical expression, by entering the instrument information into the 

generator to extract information from the first stage of extraction. During the 

creation process, it was confirmed that it was sufficiently reflected and generated. 

In addition, we improved the performance of multi-instrument music production 

by inputting it as a condition in the process of generating music as an input 

condition. R. Manzelli [13] shows that the GAN model learning was generated 

through more reliably reflecting information through the input of additional 

conditions to address the nuances of primitive audio generation and the part that 

does not understand the richness of expression. After all, conditional learning can 

confirm that it reflects various information more stably.

2.1.6  Auto encoder
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 The study of music composition using Auto Encoder is as follows. G. Brunner 

et al. [16] calculates the information of μ and σ to create a new potential space 

by reflecting noise and style classification information. This improved the 

performance of music composition by improving the area between different data 

spaces in the potential variable space. A. Tikhonov and I. Yamshchikov [17] 

calculated the average σ during the process of moving from the encoder to the 

decoder and used the variable Bayesian noise along with the new Bayesian noise 

as input to the decoder. Through Bayesian noise, we improved the music 

composition performance through more robust learning. Finally, Y.-A. Wang et 

al. [18] designed the VAE(Variational Auto Encoder) model using a modular 

model to model music compositions as a domain in which the modular encoder 

encodes potential information and provides greater flexibility in data expression. 

Through this, data performance was efficiently expressed to improve music 

composition performance.

2.1.7  Transfer learning

 Transfer learning is advantageous in that it efficiently reflects common 

information of information. However, there is a tendency to depend on 

performance according to common information. Therefore, there is a point where 

important semantic information must be handed over.

2.1.8  Knowledge distillation

 Knowledge Distillation is a way for the student model to learn through the 

information of the existing teacher model. This method enables efficient learning 
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in knowledge transfer and can be effectively applied in various areas. Y.-N. 

Hung [19] created more realistic and different music audio by receiving different 

information through each CNN. This is an improvement in the performance of 

music composition through the reflection of various music information.

2.1.9  Cycle Loss

  Let's look at two methods of loss used in music composition and deep 

learning. The loss function consists of a cycle loss and a triple loss method. G. 

Brunner et al. [20] used the strong characteristics of domain transmission by 

using the cycle loss. G. Brunner et al. [20] applied cycle loss on  GAN, which 

uses cycle loss for symbolic music domain transfer, in which research conducted 

using VAE (Variational Autoencoder) and GAN for image style and domain 

transmission. R. Lu et al. In [21], entering triple metrics is an important issue in 

applications that retrieve a lot of music information. To solve this, we learned 

the information extracted from metrics similar to the triple input. Triple input 

shows better performance than single input or two inputs. The triple input shows 

a more well-preserved result in a relatively similar part. In addition, performance 

is improved by four or more generalization experiments, but if the number of 

inputs increases, the cost increases.

2.1.10  Reinforcement learning

 Reinforcement learning (RL) is a process in which an agent receives 

compensation from the environment and updates the new state whenever the 

environment has a new state. RL applied the policy gradient series algorithm of 
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PPO (Proximal Policy Optimization) to the continuous optimization of 

information, and before showing better results in music production, L. Yu et al. 

[10] proposed creating a data generator. In addition, the RL's updated update 

process rewarded GAN discriminators as a single reward. In addition, N. Kotecha 

[22] remembers the details of the past and solves the problem of having clear 

and consistent functions, and inputs the expected values ​​and the existing music 

data from the Bi-axial LSTM that creates the music rules to enter the DQN. The 

following section describes how to apply deep learning music for music 

composition. 

2.1.11  Hybrid model

 The hybrid model has been extensively studied in the direction of 

complementing the advantages and disadvantages of the existing model. H.-M. 

Liu and Y.-H. Yang [14] uses the structure of the hybrid auto-encoder GAN. 

The existing automatic encoder cannot generate various types, and the GAN 

model generates various types of images, but the generated images do not reflect 

the existing input image well. However, if you use Hybrid Autoencoder GAN, 

various images are created using the characteristics that reflect the input image 

well. There are many studies to supplement existing shortcomings.

2.1.12  Style transfer

 In style transition, various music-related studies on style transition related to 

music deep learning are being conducted because existing music information must 

be properly reflected and reflected in other styles. There is also a problem of 
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moving the characteristics of one composer to the song of another composer. In 

order to solve these problems, the following research has been conducted in the 

transmission of music styles. D. Coster and B. Mathieu [27] have traditionally 

used a limited number of codes for single or polyphonic music. However, 

additional research is needed on the creation of captain music through a style 

transition. The following describes the latest deep learning technology and 

application method.

2.1.13  Activation function

 It is important for the activation of the existing deep learning model to pass 

meaningful information in the course of the model training. It is also important 

not to be destroyed in the process of learning it. In the existing activation 

function research, the RELU function [31] uses the RELU function to alleviate 

the problem that the weight is lost when the model is learned.

2.1.14 Loss function

  The loss function, which is a rule for learning a deep learning model, is 

important to efficiently design and learn the loss function to learn about the 

information that the model does not judge correctly. In the existing loss function 

study, the cross-entropy function is mainly used to minimize the difference 

between the data distribution we have and the Gaussian distribution of the 

model. The cross-entropy function is mainly used.
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2.1.15 Regularization

  Deep learning is a supplementary regularization technique that helps the deep 

learning model not to fall into overfitting. In the existing regularization study, L1 

regularization [32] reflects the absolute value of the size of the difference 

between the prediction of the model and the actual correct answer. L2 

regularization [32] is reflected as the sum of squares of the differences between 

the prediction of the model and the actual correct answer.

2.1.16 Normalization

  Normalization, which helps the deep learning model to learn stably, is 

important to learn through the stabilization of signals so that large values do not 

occur in the course of the deep learning model training. In the existing 

normalization study, the batch normalization [33] is normalized by using the 

variance and the mean to input the input to each layer of the model, and the 

model learns stably.

2.1.17 Measure

  Since the deep learning model is used to calculate the difference between the 

predicted value and the actual correct answer, it is important to learn using any 

measure because the deep learning model is used to update the error in the 

process of learning deep learning. In the case of PSNR in the measurement 

study, it has been used to discriminate the generated image at the maximum 

signal-to-noise ratio. This was studied by SSIM measure to evaluate the quality 
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in three aspects: Luminance, contrast, and structural.

2.2  Application 

2.2.1 Visualization

  Deep learning shows good performance when good data is entered as input 

and low performance when bad quality data is entered. Therefore, it is necessary 

to visualize and judge the training data in advance. In the existing visualization 

study, the t-SNE [34] method is studied as a dimensional reduction and 

visualization methodology, and t-SNE is mainly used to visualize data.

2.2.2 Image captioning

  Image captioning [35] is the process of viewing an image and automatically 

attaching the appropriate description. In the existing image captioning study, CNN 

was used to extract the characteristics of an image, and the extracted image 

feature was used as the initial hidden cell input of RNN to reflect the text 

information as an input, and after calculation in the cell, the description in the 

model appears as output.
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Chapter 3  Performance Improvement Technique

Existing deep learning is composed of three categories.  The first is supervised 

learning, the second is unsupervised learning, and the third is reinforcement 

learning. Supervised learning is a method of learning a model with a correct 

answer and a label for a correct answer. Unsupervised learning finds input 

characteristics only in the input state. Reinforcement learning is a method of 

updating through compensation according to the current state. Deep learning 

consists of convolution neural networks, sequential networks, generative 

adversarial networks, reinforcement learning, and transfer learning.

First, let’s take a look at the researched method to improve performance in the 

method used as a basic component of deep learning.

3.1 The Bi-activation Function: an Enhanced Version of an Activation Function  

      in Convolution Neural Networks

This research describes the bi-activation function that has been researched 

during the existing acquisition method. S.-H. Choi and K. Kim [6] description of 

Bi-activation is as follows. 

Introduction: RELU, a function frequently used as an activation function, can 

be simply expressed : f(x)=max(0,x), when x is the input of a neuron. That is, 

the output is zero when x < 0 (called a blocking area) and the output is the 

same as the input when x >= 0 (called a linear output area). Those properties 

indicate that the only positive part of the existing activation function is reflected 

and it takes more time to train the model. In addition, it is a disadvantage that 
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it does not reflect generalized characteristics in the model because it does not 

reflect negative partial information. 

To improve this problem, we propose a bi-activation function as an improved 

version of a activation function. To verify the performance of the bi-activation 

function, We extensively experimented on CNN with typical datasets such as 

MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100 and compared the results 

with those of RELU and eLU. As a result, the bi-activation function shows 

better performance than RELU and eLU in all experiments.

Figure 2 Process of bi-activation function: (a) Pos-activation function, (b) Neg-a
ctivation function, (c) Bi-activation function.

Proposal Method: Bi-activation function consists of two types: pos-activation 

function and neg-activation function. In terms of RELU, the pos-activation 

function is the same as the existing RELU. That is, there is a blocking area 

when x < 0 and a linear output area when x >= 0. Neg-activation function has 

a blocking area when x >= 0 and a linear output area when x < 0. Simply 
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neg-activation function is expressed: fx=max(x,0).  Figure 2(c) show bi-activation 

function, which consists of pos-activation function and neg-activation function. 

Pos-activation function has a blocking area, when x < 0 and a linear output 

area, when x >= 0 and neg-activation function has vice versa. CNN reflect the 

nonlinearity of inputs and outputs of training data using the activation function 

by properly selecting the linear output area.

Figure 3 Experiment of activation function: (a) Existing method, (b) Proposal 
method, (a)i RELU, (a)ii eLU, (b)i bi-RELU, (b)ii bi-eLU.

Experimental Results: We tested the novel bi-activation function. The proposed 

method applied to existing functions. Figure 3 show the result of the 

experiments. Firstly, Figure 3(a) show RELU, and eLU and Figure 3(c)-(d) 

shows the result of applying the bi-activation function method to RELU and 

eLU, respectively. The CNN model used is intended to see the effect of a 

large-margin model prediction effect using Log SoftMax. When applying this log 

SoftMax, NLL Loss is generally applied. However, there is a problem that a 

non-convex effect causes the NLL loss. Therefore, cross-entropy is applied to 

generate the convex effect of the model. This is because the convex function 
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creates a unique solution and can be easily solved using the gradient method. 

Therefore, studies have been conducted to apply convex after applying 

cross-entropy to log SoftMax. The CNN model is defined as a validation model 

to verify that the activation function experiment group presented. Figure 3 is 

efficient even when there are few parameters. Four models are composed of 

Figure  4(a) CNN-Large, Figure 4(b) CNN-Middle, Figure 4(c) CNN-Small, and 

Figure 4(d) CNN-Little. The number of CNN-Large filter maps based. The model 

was designed based on the number of filter maps with CNN-Middle 0.75 times, 

the number of filter maps with CNN-Small 0.5 times, and the number of filters 

with CNN-Little 0.25 times. The loss used for the CNN model uses 

cross-entropy, and the optimization method is experimentally verified using the 

Adam optimization. We experimented with training datasets such as MNIST, 

Fashion MNIST, CIFAR-10, and CIFAR-100. When the proposed method is 

better than the activation function, it is indicated in bold.

 Figure 4 Experiment of model sample: (a) CNN-Large, (b) CNN-Middle, (c) C
NN-Small, (d) CNN-Little.
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We compare the experiments using the MNIST dataset with Seed 999, 500, 

and 1 to analyze the influence of each filter number. The experimental results 

are to verify results obtained from Table 1. That is different depending on the 

number of filters. First of all, linear activation showed a decrease in test value 

when there were a large number of filters. However, eLU with nonlinear features 

exhibited a performance increase and decreased as the number of filters 

decreased, which confirms that the appropriate number of filters should found 

when inferring through the Activation function in the model. Also, there is a 

problem of finding an appropriate number of filters, even when the bi-activation 

function is applied. When the bi-RELU is applied, the accuracy increases linearly 

and decreases as the number of filters decreases. The bi-eLU exhibits a nonlinear 

phenomenon in which the accuracy increases as the number of features decreases, 

then decreases and then increases. The performance varies depending on the 

number of filters and the nonlinearity of the activation function.

The proposal method receives both positive and negative information from the 

activation function and outputs less error value and improved performance than 

activation that seems to improve performance by making the feature a little 

clearer by processing both positive and negative information at the same time. 

The comparison of the same number of filters showed that most of them 

improved over a activation function.

Table 1. Comparison of influence according to the number of CNN model featur
e maps (a) CNN-Large, (b) CNN-Middle, (c) CNN-Small, (d) CNN-Little.

RELU eLU bi-RELU bi-eLU
(a) Loss Acc Loss Acc Loss Acc Loss Acc

Train 2.303 0.110 2.822 0.139 1.961 0.353 2.503 0.260
Test X 0.062 X 0.125 X 0.312 X 0.260
(b) Loss Acc Loss Acc Loss Acc Loss Acc

Train 2.302 0.110 2.828 0.137 1.912 0.361 2.368 0.291
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We test the proposal method with the CNN-Small model and 2 layer CNN  t
o verify the effect of the proposal method in Figure 5.

Figure 5 Experiment of two layer CNN

To analyze the initial random influences of the proposed method, we conducted 

experiments about three seed values, Seed 999, Seed 500, and Seed 1. We 

perform a quantitative analysis of the experimental results using the average of 

three seed test results. In Table 2, the proposed method obtained an increase of 

0.305 on average in the case of Train in bi-RELU in the MNIST dataset. The 

accuracy was reduced by 2.3%. The test resulted in a 4.1% improvement. In 

bi-eLU, the average loss was reduced by 0.307 during the train. Accuracy 

increased by 10.4%. W improved by 10.4%. The average of both methods loss 

results reduces by 0.001, a 4.05% improvement in the train, and a 7.29% 

accuracy increase in the test. In Fashion-MNIST, On average loss increased 

0.011, accuracy increased 5.766% on the test, and the same on test in bi-RELU. 

On average, bi-eLU showed a loss reduction of 0.463 in loss, Improve accuracy 

14.2% in the train, and 14.58% in the test. The average of two methods reduce 

loss  0.226 in the train, improves the accuracy by 10.0% in the train, and 

Test X 0.125 X 0.031 X 0.166 X 0.078
(c) Loss Acc Loss Acc Loss Acc Loss Acc

Train 2.303 0.110 2.826 0.138 1.897 0.371 2.548 0.235
Test X 0.125 X 0.0625 X 0.5 X 0.1875
(d) Loss Acc Loss Acc Loss Acc Loss Acc

Train 2.302 0.110 2.828 0.137 1.912 0.361 2.368 0.291
Test X 0.125 X 0.031 X 0.166 X 0.078
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improves the accuracy by 7.29% in the test. In CIFAR-10, in the case of 

bi-RELU, Loss shows a 0.0345 increase in a train, 6.96% accuracy improvement 

in a train and a 13.9% inaccuracy reduction in the test. In bi-eLU, loss 

decreases by 0.036, 1.46% on average accuracy improve, and the same in the 

test. The average of the two methods is 0.023 increase in loss, 4.2% accuracy 

improvement in a train, and a 6.9% accuracy reduction in the test. In the case 

of CIFAR-100, bi-RELU shows an average loss 0.486 increase in accuracy, 

3.23% accuracy in trains, and the same result in the test. In bi-eLU, Loss 

decreases by 0.172 on average, improves accuracy by 0.67%, and is the same 

when testing. The average of both methods is 0.156 increase in loss, 1.95% 

increase of accuracy, and the same in the test. Finally,  the average result of 

improvement and reduction of the four data sets shows that the bi-activation 

function method shows 0.018 reductions in train, 5.06% accuracy improves, and 

1.8975% accuracy improves in test. In the case of MNIST and Fashion MNIST, 

the proposed method shows the improved results in Train and Test, which shows 

that the performance is improved by learning more effectively the positive 

information and negative information model and obtaining a more precise 

decision boundary. However, the complexity of data from CIFAR-10 increased as 

the number of image sizes, and image channels increased compared to the 

MNIST series. Nevertheless, the proposed method considers both positive 

information and negative information at the same time so that the average 

accuracy increased by classifying through clear boundaries in the train, but the 

generalized boundary not found in the test accuracy due to the poor performance. 

We can see that the decision boundary that led to the data found. This cause is 

seen to occur as the data size and data channel increase. In the case of data of 

CIFAR-100, the complexity increases as the number of classes in this model 
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increases, so it inferred that the data not adequately learned. That shows that the 

loss value is significantly higher than the data set result. Also, We can see that 

the proposed method  decreases when the performance increases when tested 

with various seed values. This method is more affected by the influence of the 

initial value because the proposed method reflects bi-directional information 

confirm.  Finally, the proposed method influenced by data and seed value, but it 

confirmed that reflecting positive and negative information helps to improve 

model learning and performance by maximizing the margin between model 

information.

Table 2. Train / Test accuracy and loss in CNN-Small according to Seed 999 on 
CNN small.

(a) MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 2.303 0.110 2.304 0.101 2.304 0.103 4.611 0.01
eLU 2.826 0.138 2.820 0.139 2.841 0.136 6.918 0.035

bi-RELU 1.897 0.371 1.737 0.397 2.431 0.161 5.136 0.041
bi-eLU 2.548 0.235 2.445 0.256 2.766 0.150 6.611 0.041

Test Acc Acc Acc Acc
RELU 0.125 0.1875 0.1875 0
eLU 0.0625 0.125 0 0

bi-RELU 0.5 0.3125 0.041 0
bi-eLU 0.1875 0.3125 0 0

Table 3. Train / Test accuracy and loss error in CNN-Small according to Seed 5
00 on CNN small.

(b) MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc

RELU[1] 2.303 0.111 2.304 0.102 2.304 0.102 4.610 0.009
eLU[2] 2.834 0.139 2.839 0.139 2.84 0.137 6.902 0.035

bi-RELU 1.836 0.395 1.621 0.437 2.407 0.164 5.071 0.044
bi-eLU 2.524 0.241 2.296 0.301 2.807 0.154 6.705 0.04

Test Acc Acc Acc Acc
RELU 0.125 0.125 0.1875 0
eLU 0.0625 0.0625 0.0625 0

bi-RELU 0.3125 0.4375 0.0625 0
bi-eLU 0.1875 0.1875 0.03125 0
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Table 4. Train / Test accuracy and loss error in CNN-Small according to Seed 1 
on CNN small.

(c) MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 0.142 0.973 0.41 0.863 2.304 0.102 4.61 0.010
eLU 2.843 0.139 2.834 0.14 2.84 0.137 6.923 0.035

bi-RELU 1.931 0.357 1.693 0.405 2.407 0.164 5.109 0.041
bi-eLU 2.508 0.254 2.361 0.289 2.807 0.154 6.766 0.042

Test Acc Acc Acc Acc
RELU 0.875 0.875 0.1875 0
eLU 0.0625 0.125 0 0

bi-RELU 0.437 0.4375 0.0416 0
bi-eLU 0.125 0.25 0 0

Figure 6 Performance analysis of proposal methods. x) small of CNN, y) two la
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yer of CNN, a) Using MNIST dataset, b) Using Fashion MNIST, A) Activation 
function of RELU, B) Activation function of eLU, C) Activation function of bi-
RELU, D) Activation function of bi-eLU, i) Seed 1, ii) Seed 250, iii) Seed 500, 
iv) Seed 750, v) Seed 999

Figure 6 is composed of 2 parts. The upper scatter plot is the result of the 

variance of the activation function. The lower histogram is the result of the 

performance of the activation function. We include the results of experiments 

with five seeds and two CNN models in Figure 6. The above experiment 

calculates the average for each activation function. The notation is written as 

(mu, std). mu  is mean, std is the standard deviation. RELU is (0.54227, 

0.2271). eLU is (0.543914, 0.29004). bi-RELU is performance analysis of 

proposal methods in Figure 5. x) small of CNN, y) two layer of CNN, a) Using 

the MNIST dataset, b) Using Fashion MNIST, A) Activation function of RELU, 

B) Activation function of  eLU, C) Activation function of bi-RELU, and D) 

Activation function of bi-eLU. The results of Figure 5 show more clustered plots 

of eLU variance compared to RELU. This is because the nonlinear characteristics 

reflect more clustered results. In Figure 5, the results of experiments applied to 

each activation function for each of the two models show that some variation in 

performance occurs for each seed.

Conclusion: We have demonstrated an improved performance by the 

Bi-activation function. Bi-activation function combines pos-activation function and 

neg-activation function in a small number of parameter spaces. Compared with 

the existing activation function, the Bi-activation function considers bi-directional 

information to reflect generalization characteristics in the model through 

bi-directional information. As this reflects the bi-directional characteristic, it can 

be seen that the convergence speed is faster in the learning process than when 



- 24 -

reflecting on the existing single characteristic. Because reflecting the information 

with the existing activation function has a high complexity in processing the 

information while processing through the bi-directional information, the 

complexity is somewhat lower, so the convergence speed seems to be faster. To 

show the advantage of the proposed activation function, We verified the effect of 

the initialization method on the input of the bi-directional information in a few 

parameters that show that bi-directional information is a little bit better when it 

is nonlinear. Since the weight of the model of the existing deep learning has a 

value between 0 and 1, the weight information of the deep learning model 

between 0 and 1 more effectively reflects the nonlinear characteristics through 

the activation function having a nonlinear characteristic. This property of the 

proposed transform effectively used for optimization or edge device deep 

learning.

Through this, this study examined the bi-activation study. Next, we describe the 

improved cascade loss in the loss function.

3.2 Scale Calibration Cascade Smooth Loss of Generative Adversarial Networks  

     with Online Continual Task Learning.

This research describes the cascade loss  that has been researched during the 

existing acquisition method. We description of cascade loss is as follows [37]. 

Introduction : Many deep learning models go through the process of learning 

[38]. The most influential part of this learning process is the loss, which tells 

how to learn. A lot of deep learning models are coming out, but most 

importantly, when a deep learning model receives new data and processes it 

newly, the loss formula determines how much new data is reflected and how 
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much existing data is reflected.

In the deep learning model, while loss outputs the information as one 

information from the last stage of the deep learning model, we found that three 

problems can occur directly. And indirectly from loss's point of view, We 

discovered a new problem in the process of learning deep learning models. First, 

the last layer of deep learning is feature vectors with independent features. These 

feature vectors have various view features. Since various feature vectors are 

implied, loss assumed that the information overlapping of the feature vectors 

might occur, and congestion may increase during the calculation. Also, since 

deep learning only uses a single loss, it was speculated that if the character is 

reflected in the wrong direction during the optimization of the single loss, the 

learning is conducted in the wrong direction. And if the value from loss has a 

skewed distribution to one side, it is assumed that it will be learned in the 

wrong direction. The above assumption is assumed to be a phenomenon that can 

occur directly in a deep learning loss. Indirectly, indirectly, it is assumed that 

the deep learning model can be learned in a good direction if it is sustainable in 

terms of loss, and there is a process of learning minutely by various tasks 

because existing deep learning models are three types of learning. i.e.,) offline 

learning, online learning, incremental learning, Offline learning is a batch-based 

method that does not change the approximation of a function until the initial 

training is completed. Online learning is a way to learn data by data without 

waiting for the initial training to complete. Finally, incremental learning is a 

method of learning incrementally. This deep learning model learning method has 

studied through three categories. However, there is a problem that does not 

depend on each method and is common to all three learning methods. This is a 

catastrophic forgetting problem that occurs in continuous learning. Catastrophic 
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forgetting problem means that learned information disappears without being 

maintained. We alleviate this catastrophic forgetting problem that is very 

important in the direction of life long deep learning model. We have assumed 

that the method of learning with precision is necessary for the deep learning 

model to be sustainable.  In addition, these problems can often occur in the 

process of continuously learning the deep learning model when the actual deep 

learning model is deployed and operated in real service. The above problems 

need to be researched to improve deep learning to learn for a long time 

continuously. Therefore, the contribution is as follows.

l We novel defined direct three and indirect types of problems that arise 

from existing losses. We proved that the proposed direct problem could be 

alleviated by the proposed loss function.

l To prove, we defined three types of direct problems, we proposed Scale 

Correction Cascade Smooth Loss (SCCSL). The SCCSL consists of 

three-component. The first component is based on smooth loss. The second 

component is cascade component to make stronger judgment criteria by 

maintaining existing judgment rules to some extent and reflecting new 

judgment information on existing rules. The third component is a scale 

correction for learning by making the information acquired in the process 

of reflecting the information. Also, we propose the cause of the loss 

problem and prove the reason for the problem to be solved.

l We defined a new indirect problem of learning to mitigate problems that 

may arise indirectly. This is a learning method for continuously learning 

from the model. The definition of learning is the method for fine-grained 

learning on deep learning.
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Proposal Methods: We defined three direct problems and indirect problems on 

the existing loss function. 

Definition 1 : The overlapping information in the lost inputs occurs, and 

errors occur, which prevents the deep learning model from learning properly.

Description : We have proposed a smooth component that can resolve 

redundant information and errors to prove reliable learning. The final input of 

the existing model consists of various feature vectors (feature maps). We tried to 

prove that it is necessary to improve the error by proving that each feature map 

should be mapped with minimized error in the process of mapping into one 

space of the loss. For this purpose, this study proposes soft components. Details 

of the soft components are described in the subsections below. We can see that 

the problem defined is reduced by suggesting soft components

Definition 2 : The method of learning using a single loss in a loss causes a 

problem in that the learning is not good because it leads the learning in a 

direction that is inaccurate.

Description : We have proposed a cascade component to solve the problem of 

learning in the wrong direction in a single loss. This is to learn information 

from a single direction in the correct direction through error correction. T h e 

details of the cascade component are described in the subsections below. By 

suggesting the cascade component, we can reduce the problems defined.

Definition 3 : Since the error in the loss occurs in an unbalanced state or 

balanced state, If there is a problem that the learning is difficult due to the 

unbalance information.

We proposed a scale correction component to solve the unbalanced information 

in the loss. Detailed methods for the scale correction component are described in 

the subsections below. By suggesting a scale correction component, we can 
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alleviate the problems defined. This is because when learning in one tilted state, 

only the information inclined to one side in the model is reflected by learning 

only the information, which may cause a feature that does not have a 

generalized characteristic.

We propose SCCSL loss to improve the method proposed in this study 

through direct problem definition that can occur in the loss. Our SCCSL is 

composed of three components. First is the Smooth component, Second is the 

novel cascade component. The third is the novel loss of the Scale correction 

component. The novel proposal losses are as follows.

SCCSL :=  


  



    log        (1)

Eq. 1 is the loss proposed. The proposal loss is a basic loss based on smooth 

loss. Based on the base loss, the two losses are merged through the cascade 

component. It is composed of a scale correction method to unbalance information 

based on two merged losses. m is the number of data.   means ground truth. 

A detailed description of each method is given in the subsection below. We 

explain each proposed method to analyze this.

Smooth component for reduce co-adaptive information and error information: 

We propose a method using the smooth component as the basis of the loss. If 

the function is smooth and the Taylor series at all points is equal to the loss 

value, it has the advantage of being an analytic function.

    

  
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neg  max  





  



maxmax                                          (2)

The analysis of the cascade component is as follows. Experiments were 

conducted using three losses of smooth loss, focal loss, and cross-entropy loss. 

Eq. 2 proposed as a single loss is explained.   means the ground truth 

answer set for learning the GAN's discriminator.   means the value predicted 

by the discriminator of the GAN.  m is the value of the total iteration number 

sum. We calculated the positive value and negative value separately. In this case, 

the positive value denotes by pos, and the negative amount is indicated by neg. 

The pos expression   tries to express common information by 

multiplying. neg is reflected in   through    to maximize the 

non-correct answer. The reason for calculating the pos and neg divided is to 

consider only positive value and to make the negative value as 0, divide it by 

using sum for pos and neg as 0. Also, we wanted to set this to 0 from neg-pos 

+ 1. The reason for applying neg-pos is to reflect a clear difference by 

reflecting only scarce information. We applied max max at the same time to 

generate a huge amount of information from max. We filter it by using a 

specific value through the max function, so we set it as above to accurately 

reflect the value of one category. The Smooth loss design the MAX to extract a 

smooth value using the value calculated at zero. The smooth loss divides into 

the front part and the rear section. For the first part, the most influential role 

maximizes by pos-neg, and the most massive value extract through max through 

attention. And in the second term, the value of   -   remains for the 

difference between them, and there is much value for   here. Subtracting the 
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last word in the preceding clause, we can deduce that   information in   

information is a strong part of   through subtraction. This results in a large 

value for  which is far from the number of  . It can assume that the 

value between   and   maximize.

Cascade component for calibration information: The cascade component in Eq. 

3 is a method of using the result value of the existing loss as a second loss 

input. This method has the advantage of learning in the right direction through 

calibration if the existing loss goes to the wrong case.  In the process of 

correcting a certain value properly, it is better to produce a better effect, but in 

case of incorrect calibration, it may have an adverse effect.

                                         (3)

Scale Correction Component for Unbalance Information:

Scale Correction Component  :=   
log                (4)

The scale correction method proposed is as follows. Eq. 4 is a novel scale 

correction for continuous acquisition information by scale interpolation.   

means an existing loss.   is the influence covariance of the scale term. And  

is the scale term the attenuation term for general acquisition influence of the 

existing loss. The impact depends on continuous task loss on the coefficients of 

the two parameters. We try to confirm the influence of scale correction through 

various scale index values. In the case of scale correction, in the case of the 

information rarely generated in the past, the correction is large, so that the rare 

information can be stably obtained. This helps to obtain fine-grained and accurate 

information stably and improve the overall information acquisition amount.
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Qualitative analysis of the SCCSL: We propose an SCCSL that is composed 

of three components (i.e., Smooth component, Cascade component, and Scale 

correction component). We conducted a qualitative analysis by a section on the 

generation of loss results for the impact of SCCSL. We analyze the SCCSL by 

dividing the interval on the numerical value. First, the interval was defined by 

dividing it into positive infinity, positive value, zero, a negative value, and 

negative infinity. In the case of total loss at infinity, nan is generated because it 

is not learned. The positive value is a case where the sum of weights is less 

than one. In the above case, the pred is good. If 0, no learning is done. 

Negative values do not match pred. Negative infinity does not occur. The 

SCCSL does not learn when the positive value is zero. Learning is only learned 

in positive and negative cases.

The smooth component means that it can be differentiated, and the derivative 

is continuous, and the loss can be differentiated k times, and all of the 

derivative loss is continuous. The above situation can show that there is a 

continuous derivative of every order at every point x in the solid line off. For 

this reason, we propose to use the smooth loss as the basis of the loss.

The cascade component is a method of using the output of an existing loss as 

the input of a new loss. This method can be changed in the right direction 

when the existing information is wrong by applying the new method with the 

existing information partially preserved. However, there is a disadvantage that the 

existing information can be changed in the wrong direction. However, the 

cascade component tries to improve the effect of forgetting existing information 

when learning.

The scale correction component is a method of using the information 

imbalance, when data is acquired, an imbalance between types occurs according 
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to the ratio of the number of data. In this case, when the model learns the 

unbalanced information, it is more likely to misjudge one side. We tried to learn 

effectively through the calibration about the possibility of false judgment.

Pros and cons of proposal method: The proposed method has three pros. First, 

It can be confirmed that it helps to judge the information efficiently by 

maximizing the margin between the characteristics of the distribution. This helps 

to make a clear determination by eliminating duplicate information determined by 

the model. Second,  If it comes out through one characteristic, it is calibrated 

using another characteristic, so it can have generalized characteristics by 

reflecting characteristics. Also, when learning in the wrong direction during the 

learning process in the model, the mixture is corrected using different 

characteristics, so it is in the generalized direction. Third, It can help to learn 

more stably in the learning process such as overfitting or underfitting by 

correcting the balanced information in the process of learning the imbalanced 

data.

The proposed method has five cons. First, only the method that can be 

processed in terms of signal processing in the model is described. This can show 

the influence of learning performance on signal stabilization, regulation, initial 

model state, and analysis based on Convex characteristics. For the proposed 

method, it is necessary to conduct other influence analysis on stabilization, 

regulation, the initial state of the model, and convex characteristics.

Second, The experiment was applied only to the model of Generation 

Adversarial Networks. However, in order to generalize the method proposed, it is 

necessary to apply the experiment to experiments such as segmentation, object 

detection, classification, etc.

Third, We experimented with various losses, two models, and two small image 
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data sets. It is necessary to experiment with various sizes and sizes, such as 

images with large resolution, fine images, and packet data. 

Fourth, To clearly show the influence of the method by the slope, it is 

necessary to mathematically interpret the feature map in terms of learning flow 

to find out the direction indicated by the slope of the feature map.

Fifth, It is necessary to mathematically prove the influence of each method.

Sixth, We need to confirm the impact proposed through the domain adaptation 

experiment.

Seventh,  It is necessary to apply it to various state of the art technologies. 

However, it seems necessary to apply the experiment to the lightweight model, 

the distillation model, and the distributed model. Because the lightweight model 

can handle different amounts of parameters, the performance may be different. 

Similarly, in the knowledge distillation model, it is necessary to experiment on 

the above because learning performance affects the content according to the 

quantity and quality of information. Finally, it is assumed that the method 

proposed can show a better effect because it receives and processes the 

characteristics of various models in distributed computing. Therefore, the above 

process should be tested and verified.

Novel Online Continual Task Learning: We define online continual task 

learning methods that explain how to learn at the aspect of the loss function is 

more fine-grained learning on deep learning models. To clarify problems, we 

define a method using the task information and continual learning. This is shown 

in Figure 7 briefly and clearly for the proposed method. In the previous 

researches, there have been many studies of online learning and continuous 

learning. However, in previous studies is not a precise method of learning a task 

about the online way. We think that the study that reflects more precisely in 
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online learning and continues learning is essential for the AI life long model. 

Therefore, we define a problem called online continual learning that considers 

both online learning and continuous learning issues at the same time. We define 

the more critical problems in the problems based on online continual learning 

and propose sub-research topics of related problems through pros and cons. First, 

We explain the contents based on online continual learning.

Figure 7 Novel problem that explain the direction to get a descriptive on few da
ta learning at online continual task learning optimization

The term online continual learning is used [39]. However, looking at the 

episodic gradient memory for continual learning [40], a reference to the 

terminology used in [39], does not come out as online continual learning. 

Therefore, we define the term online continual learning.

Definition 4 : online continual learning problem is to learn one by one in 

continual learning problems about new data at continual learning.
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We define this as Online continual learning in Definition 4. The problem .

Definition 5 : online continual task learning problem is to learn more 

efficiently about more precise learning methods about new tasks at Online 

continual learning.

We define this as online continual task learning in Definition 5. The problem 

proposed explains in more detail in Figure 6.

Why the research direction design by the above method is that in the process 

of learning continuous information, it is necessary to secure delicate information. 

That can lead to the model falling in the wrong direction when viewed as a 

whole, no matter how sensitive the information is. Therefore, the study conduct 

in consideration of both micro information and the overall tendency for the 

model.

The new problem explained in detail in Figure 7. Generally, to learn and 

evaluate the deep learning model, data is composed, and a part of data extract 

from the constructed information, and the task of the average value of the 

extracted data reflect in the deep learning model. You get the result of the task 

you want through the above learning process repeatedly. In the above process, 

learning the average information of the layout has a problem that the value of 

the task reflects unclearly. However, the new problem proposed demonstrates the 

task of each little data in the course of continuous learning of the data, so the 

model learns through the task that can be confirmed by the human. The method 

of acquiring through the assignment, which can be confirmed by a person like 

that, is advantageous in that it can reflect the task which is known by the 

person. However, the newly defined problem has four difficulties.

Firstly, there is a difficulty in obtaining information by efficiently storing the 
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current knowledge and reducing the vibration in the process of getting standard 

information continuously. The reason why we need to converge by reducing the 

vibration from the task is that there is a case where the task does not converge 

when the task reflects. Next, there is a difficulty in obtaining the size of the 

task unevenly in the course of collecting continuous task data. Therefore, the size 

of the task becomes unbalanced, which makes it difficult to reflect a rare task, 

and there is a problem that the information shifts to one side through uneven 

task processing.

Also, To obtain a steady task, it is difficult to efficiently reflect and maintain 

continuous task data in existing distributions for information to reflect on the 

existing distribution. If the present task information disappears, it makes an 

incorrect judgment about the data that you have already learned.

Finally, models that have a steep task and reflect inclination have difficulty in 

storing single information and generalized information. A model that efficiently 

processes only one information is not available in many fields.

We propose a sub research topic of online continual task learning, which is 

inspired by segmentation that is existing computer vision deep learning studies.

Corollary: Online continual task learning is a theory for learning more 

precisely, accurately, and explicitly the phenomena that occur in traditional 

Online continual learning. Online continual task learning is necessary for an 

explicit and accurate learning model. Therefore, Online continual task learning 

discussed in three areas: e.g.) Online instance task learning, b) Online semantic 

task learning, and c) Online panoptic task learning.

Online continual task learning discusses in three areas in Corollary 6. i.e.) a) 
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Online instance task learning, b) Online semantic task learning, and c) Online 

panoptic task learning.

Firstly, Online continual instance task learning is a method of learning per 

instance task in an Online continual task learning environment. The advantage of 

this method is that you can make precise decisions about each instance task. The 

disadvantage is that much fluctuation occurs when a new instance task comes in.

Additionally, Online continual semantic task learning is a method of learning 

by the semantic task in an Online continual task learning environment. The 

advantage of the above method is that it can find semantic information quickly 

and can use for real-time information processing. The disadvantage of the above 

method is that the allocation of contiguous memory space is difficult when the 

semantic task is massive. 

Finally, Online continual panoptic task learning combines the above method — 
online continual instance task learning with Online semantic task learning. An 

advantage of Online continual panoptic task learning is that you can consider 

both instance information and semantic information at the same time. The 

disadvantage of the Online panoptic task, learning is that it takes much 

computation to acquire. 

Experimental result and discussion:
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Figure 8. Compare of optimization methods on verified of proposal loss

Experimental verification of the proposed method performs on two image 

generation models, Valina-GAN and LSGAN at a single image generation task. 

The data used in the experiment verify by two datasets.

We first prove the problem due to the overlapping information in the loss; the 

deep learning model is not properly trained. We first try to verify the 

experimental results by using a method that can influence the successive 

acquisition of the continuous task information in a single loss. The influence of 

batch size on the single smooth loss was analyzed using weight decay. We can 

see that the variation of the loss reduces by applying the weight decay, and the 

discriminator loss and the generator loss maximize. As can be seen from this 

phenomenon, weight decay is less sensitive to batch size. However, if there is 

no weight decay, we can see that the batch size converges later, depending on 

the larger. Adam optimizer is well used and well used, but we analyzed the 

influence of three optimization methods to verify the proposed method. The 

result of the AdaDelta shows that the generator loss learns the cross-entropy and 
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focal loss with similar loss values. In the case of the smooth loss, it can seem 

that the loss value is somewhat higher than the two methods in obtaining the 

continuous task information stably. It assumes that the knowledge of the 

continuous task information gathered is not varied or corrected in the correct 

direction because only the max value obtains in smooth loss calculation. Smooth 

and focal loss analyzed according to three optimization methods and potential 

variable spaces that are to confirm the influence of generation performance 

according to the impact of the Z latent space size according to the input on the 

generation model. As the latent variable space increases, the convergence 

phenomenon appears later when the influence of the Z latent space influenced by 

the size of the potential variable area. It is essential to map and store the 

optimized values in the memory space through optimized parameters of the size 

of the storage space according to the data, which is necessary for model 

convergence through optimization of the model.

In summary, the smooth component can obtain smooth information. Also, we 

show that the model converges by acquiring knowledge reliably on a single loss, 

even if only a single loss used because of the correction obtained in the case of 

focal loss. However, there is some limitation in acquiring a piece of continuous 

task information in a single loss. The experimental result of the cascade 

component, which is a method to solve the constraint using the new 

environment, is as follows.

We secondly prove the problem of the method of learning using a single loss 

in a loss causes a problem in that the learning is not good because it leads the 

learning in a direction that is inaccurate. To verify the cascade component, we 

experimented about the proposed method when training with the Fashion MNIST 

dataset. Experimental results using the Cascade component are as follows.
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We compare of optimization methods on verified of proposal cascade 

component that composed of 4 batch size, L1 0.0 regularization, L2 0.5 

regularization, Z latent space size 100, and in Valina-GAN model using grayscale 

Fashion-MNIST dataset. i) Adadelta, ii) Adagrad, iii) Adam,  a) Smooth loss, b) 

Smooth correction loss,  i) Adadelta, ii) Adagrad, iii) Adam

Figure 8 is a comparison between Smooth and Smooth correction loss 

according to the optimization method. The result of applying the Cascade 

component has an error range of 0.5 to 1.4 when only a single component is 

applied, but the cascade component has a small error value of 0.2 to 0.4. This 

can be confirmed that when the existing loss is learning in the wrong direction, 

the loss reflected later is stably learned through the correction effect.

The cascade component has the advantage of being able to reuse a loss having 

the same characteristics and applying a loss having different characteristics. Since 

it is composed of a pipeline, it can be applied to parallelization, It is a way to 

apply multiple loss rather than apply. By applying a lot of loss, it is possible to 

make a loss that can be performed more precisely and to shorten learning time 

through loss. Cascade component has advantages such as performance 

enhancement, parallelism, reflection of characteristics, but there is a disadvantage 

that loss increases. 

Third, it is assumed that the learning is difficult due to the imbalance of 

information because the error occurring in the loss occurs in an imbalanced state. 

A scale correction method is proposed. Experiments verifying the proposed 

method for scale correction are as follows. Adopted cascade component is the 

results of applying the scale correction component, correction correction 

component is a strong influence of Scale calibration, and showed only one 

learning or no learning at the time of confrontational learning. However, the 
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results of the smooth correction component show that it is possible to improve 

the existing learning by calibration through scale calibration. Scale correction 

shows better learning results. We prove this cascade component by applying 

scale calibration. To achieve stable acquisition for continuous task information 

through size calibration to obtain continuous task information, the result of 

verifying the novel scale correction method is as follows. To analyze the 

influence on the scale correction was explained in particular by the importance 

of the value of gamma and alpha in the scaling. We compare of the effect of 

test smooth calibration method on alpha and gamma coefficients at Learning rate 

0.0007, Batch size 4, L1 0.25 regularization, L2 0.25 regularization, Z latent 

space size 100, Adam optimizer, Gumbel distribution in Valina-GAN (alpha 0.25, 

alpha 0.5, alpha 0.75, beta 2.0, beta 3.0, and beta 4.0). When the smooth 

calibration method, alpha was changed from 0.25 to 0.75 through 0.25 

increments, and beta was changed from 1 to 4 through 1 increase. Experimental 

results show that the influence of attention on the impact of alpha and gamma 

does not affect the generation of the generated image. Scale term, the effect of 

the parameter in the scale is influential in creating the image in the Valina-GAN. 

These results show that, when the scale term enters, it is corrected for the 

acquisition of the continuous task information so that results obtained. However, 

it confirmed that the influence on the steady of the continuous task information 

acquisition is independent of the impact on gamma and alpha. Supplementary 

data were presented as a detailed basis for the proposed method.

Conclusion: We propose three direct problems and indirection problems that 

can occur in a loss and verify them through three new methods about three 

directions problem. In addition, we have defined a new learning method that can 
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alleviate problems that may occur indirectly in the loss. The new learning 

method is called online continual task learning. In our newly proposed loss, we 

confirmed that we could alleviate three problems that can occur in the existing 

loss that the novel smooth component, novel cascade component, novel scale 

correction component proposed to reflect task information. 

First, the smooth component is smoothly displayed by maximizing the margin 

between feature information while various feature vectors reflect duplicate 

information through input, thereby reducing errors from various feature vectors. It 

is confirmed that the performance is improved.

Second, it shows the characteristic of the loss of parallelism from the cascade 

component and shows that it can apply the loss of features. The continuous task 

information synthesis by cascade component plays an essential role in the 

formation of new information. Also, the effect of regularization of the continuous 

task information may suppress the long term potentiation. However, the formation 

of memory through the continuous task information stored in the parameters of 

the model can withstand a massive amount of continuous task information 

stabilize inhibitor. Thus, it has shown that the synthesis of a continuous task 

may not be necessary for model parameter enhancement. It can see that the 

continuous task information synthesis using the cascade component of the 

required continuous task information synthesis is not unconditional. 

Third, it can confirm that the learning is good by reflecting the task 

information stably through the scale interpolation. The scale of obtained the 

continuous task information has a distribution of scales, and it can confirm that 

the information between the continuous task information is obtained stably by 

balancing the continuous task information through the calibration of the scale of 

the continuous task information.



- 43 -

Finally, in order to continuously and precisely learn from the loss function, 

this study proposed a new online continual task learning method. This seems to 

allow us to move toward research where we can correct fine-grained information 

in the wrong part of the model through learning.

In the future, we will conduct research that can analyze and correct problems 

that can occur in deep learning models through fine-grained and precise learning 

methods. We will study the process of stably learning through the process of 

making a new loss using Bayesian theory.

Through this, this study examined the cascade loss with online learning study. 

Next, we describe the nonlinear exponential regularization [40]

3.3 Nonlinear Exponential Regularization : An Improved Version of           

       Regularization for Deep Learning Model

Introduction : Deep learning models try to train the lowest points of cost 

functions. In the process of learning to the lowest target points, the direction 

should be given to go to the direction. To direction, the cost function, which 

tells how to learn, must be carefully devised with proper regularization. However, 

most existing regularizations of the linear combination of L1 and L2 

regularization is a supplementary role to assist the loss. This regularization is 

responsible for driving the model in the right direction for learning. In the case 

of simple linear combinations, the simple linear combination of L1 and L2 

regularization causes a problem that the characteristics of L1 and L2 

regularization are not reflected well. We studied how to efficiently reach the 

target point by reflecting the influence of characteristics of L1 and L2 

regularization efficiently. From extensive experiments, we can find that the 

nonlinear exponential combination of important loss in regularization considerably 
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reflects the characteristics of L1 and L2 regularization. Well-known regularization 

methods in deep learning models are L1 and L2 regularization [32]. L1 

regularization is the absolute value of the error between the actual and predicted 

values, and L2 regularization [32] is defined as the sum of squares of errors. L1 

regularization is more robust for outlier than L2 regularization because L2 

regularization is calculated by the square of the error [2]. L2 regularization 

always gives a unique value for each vector [32]. This keeps low features and 

finds better predictions. In some cases, L1 regularization can output the same 

value. This makes it possible for the L1 regularization to be used as feature 

selection. As a result, this L1 regularization is suitable for sparse coding. 

However, there is a non-differentiation point. We want to well regulate the 

model through each of these L1 and L2 regularization. We can experiment by 

applying each regulation in various ways. For example, We generally use linear 

addition for regularization. The performance of the two regulatory methods is not 

reflected effectively because this linear combination of two regularizations is 

reflected symmetrically. From this observation, we propose a new method of 

regularization through nonlinear exponential regularization for better regulation 

performance by reflecting each performance efficiently. 
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                                 (5) 

OUR PROPOSAL : Eq. 5 is the nonlinear exponential regularization to find 

optimal solution and fast convergence. In Eq. 5, n is the class number, m is the 

total sum of n,   is the result of the ground truth, and   :is the model 

prediction result. We use two terms for regularization. One is the average of 

absolute of the difference between the model predictions and the model ground 
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truth to make robustness to the outliers of the predicted values. The other is the 

average of the square of the difference between the model predictions and the 

model ground truth. We combined each regularization term through the 

exponential function. We used L1 regularization as a scaling term and L2 

regularization as a phase term of the exponential function. We can also use L2 

regularization as the scale term and L1 regularization as the phase term of the 

exponential function. However, we did not experiment with L2 regularization as 

the scale term because we only wanted to reflect the magnitude through the 

absolute value. Consequently, we conduct the nonlinear combinations of 

regularization and apply the exponential operation to combinations of existing 

regularization such as L1 and L2 regularization. The experimental method to 

verify the proposed regularization is as follows: a) L1 regularization, b) L2 

regularization, c) linear combination of L1 and L2 regularization, d) nonlinear 

exponential combination of L1 and L2 regularization. To verify regularization 

effect, we experiment with four regularization coefficients, e.g.) 0.0, 0.25, 0.5, 

and 0.75. Also, we experimented on three-loss (Cross entropy, Focal loss, and 

Hinge loss) using Adam with Vanilla-GAN and LSGAN [41]. 

Figure 9. Effect of ours proposal for suboptimal training path gradients, a) L1 

regularization b) Nonlinear exponential regularization (Our proposal)
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Figure 9 shows the visualization of the effect of nonlinear exponential 

regularization on the L1 in terms of weight. Nonlinear exponential regularization 

results reduce the complexity of the weight by giving the scaling effect of L1 

regularization. By lowering the complexity of the weights, the gradient in model 

moves efficiently to suboptimal optimization.

We conducted experiments based on the type, e.g.) Normal, Laplace, logistic, 

Gumbel, and size, e.g.) 100, 500, 1000 of latent variables. We checked the 

performance of the methods using MSE (Mean Square Error) and PSNR (Peak 

Signal to Noise Ratio). 

Experimental image generation task results: We used three losses of focal, 

hinge, and cross-entropy to compare the images generated by Vanilla-GAN and 

LSGAN. As a result, the images created by the GAN with the hinge loss are 

clearer than those created by the GAN with the other loss. In the training 

process, the Vanilla-GAN using hinge loss with a smooth slop was found to be 

stable to generate images. Figure 10 shows the comparative analysis of proposed 

nonlinear exponential regularization and linear regularization. As a result, 

nonlinear exponential regularization generally has fewer errors than linearly 

combinational regularization on two datasets and two models. 
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Figure 10. Comparative analysis of proposed methods to help fast convergence in 
training a) Vanilla-GAN, b) LSGAN, i) Cifar10, and ii) Cifar100 

Table 5 Experimental results using two datasets on two models: top 5 values of 
PSNR and MSE

We extracted the top 5 values from the experimental results as the 5 lowest valu
es in the MSE and the highest values in the PSNR in Table 5. Our nonlinear e
xponential regularization (proposed in table) shows lower MSE of 0.71 and better 
PSNR of 0.0275 than the linearly combined regularization of L1 and L2 (existin
g in a table). 

Measure Model Dataset Existing Proposed

MSE
Vaniila-GAN Cifar 10 51.47±1.50 50.33±0.78

Cifar 100 57.15±3.01 56.81±2.88

LSGAN Cifar 10 51.12±1.34 50.13±0.61
Cifar 100 56.31±2.95 55.94±2.91

PSNR
Vanilla-GAN Cifar 10 50.87±0.13 50.96±0.06

Cifar 100 50.52±0.33 50.44±0.22

LSGAN Cifar 10 50.90± 0.11 50.97±0.05
Cifar 100 50.48±0.23 50.51±0.23
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Figure 11 Generated images by a) linearly combined regularization and 
b) nonlinear exponential regularization

Figure 11 shows generated images by linearly combined regularization and 

nonlinear exponential regularization. Proposed regularization generates better 

images than the linearly combined regularization. This may be because proposed 

exponential regularization finds more optimal of gradients by focusing more 

important loss. The effects of nonlinear exponential regularization are applied to 

semantic segmentation and verified. 

Table 6. Ablation study of our proposal in two models, a) loss, b) loss with 

linear combination of L1 and L2 regularization, c) loss with nonlinear 

exponential regularization of L1 and L2 regularization, d) loss with nonlinear 

exponential regularization of L1 and L2 regularization and linear regularization of 

L1 and L2 regularization

DSC F1 Score IOU Precision Recall
a 0.7275 0.7275 0.7715 0.7275 0.7275
b 0.7255 0.7255 0.77 0.7255 0.7255
c 0.728 0.728 0.7715 0.728 0.728
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Table 6 shows the experimental results by applying batch 2, learning rate 0.07, 

early stop, and seed 777 in Semantic Segmentation. Experiments using FCN [42] 

and U-Net [43] averaged five experiments. Percentages are expressed through the 

result of the division reference value after 100 times the difference between the 

reference value and the comparison value. To verify the regularization effect, 

Table 6(a) shows only cross-entropy. Table 6(b) shows the linear combination of 

L1 and L2 regularization in addition to cross-entropy, Table 6(c) shows the 

nonlinear exponential regularization in addition to cross-entropy, and Table 6(d) 

shows the ensemble regularization that is composed of linear combination of L1 

and L2 regularization and nonlinear exponential regularization in addition to 

cross-entropy. Nonlinear exponential regularization improved DSC 0.06%, F1 

score 0.06%, IOU 0%, Precision 0.06%, and Recall 0.06% than origin. Nonlinear 

exponential regularization improved DSC 0.34%, F1 score 0.34%, IOU 0.19%, 

Precision 0.34%, and Recall 0.34% than linear combination of L1 and L2 

regularization. Nonlinear exponential regularization improved DSC 0.535%, F1 

score 0.549%, IOU 0.337%, Precision 0.549%, and Recall 0.549% than ensemble 

regularization. 

We conducted for further improvement. However, the performance did not 

improve. We experimented with an EMA (Exponential Moving Average) 

regularization. EMA is a first-order infinite impulse response filter that applies 

weighting factors which decrease exponentially. The weighting for each older 

datum decreases exponentially, never reaching zero. The graph at right shows an 

example of the weight decrease. The equation of EMA can be expressed as 

d 0.7241 0.724 0.7689 0.724 0.724
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   ∶=
 Step 1. A × L1  - (1 - A) × L1  - B × L2 

 Step 2.  × 1 +   (1 − ) × 2                    (6) 

Eq 6 is the exponential moving average. A is a coefficient of L1 regularization. 
B is a coefficient of L2 regularization. For verifying the performance of our pro
posal, we experimented based on cross-entropy using Adam optimization with FC
N, U-Net, Deep Lab v3 [44] using VOC, ATRdataset. We checked the performa
nce of the method using DSC, F1 Score, IOU, Loss, Precision, Recall for the qu
antitative analysis. Note that these results come out with 5 iterations of the exper
iment, batch size 2, seed 777, and early stopping used. Our experiment occurred 
in a desktop with GTX-1080ti as GPU and Ubuntu 18.04 as the operating syste
m. 

Table 7. Comparative test for verification of nonlinear exponential average movin
g in the VOC dataset. a) loss, b) loss with linear combination of L1 and L2 reg
ularization, c) loss with exponential moving average linear combination of L1 an
d L2 regularization, i) FCN, ii) U-Net, iii) Deep lab v3

Table 7 shows the result of the comparative test for verification of nonlinear exp
onential average moving in the VOC dataset. In this experiment, three regularizat
ion methods are tested: no regularization, linear combination, and exponential mo

Model Methods DSC F1 Score IOU Loss Precision Recall

i
a 0.733 0.733 0.776 1.125 0.733 0.733
b 0.727 0.727 0.772 1.096 0.727 0.727
c 0.730 0.730 0.774 1.254 0.730 0.730

ii
a 0.735 0.735 0.777 1.610 0.735 0.735
b 0.733 0.733 0.776 2.742 0.733 0.733
c 0.739 0.739 0.780 2.387 0.739 0.739

iii
a 0.706 0.706 0.759 2.516 0.706 0.706
b 0.710 0.710 0.761 1.963 0.710 0.710
c 0.698 0.698 0.754 1.740 0.698 0.698

average
a 0.724 0.724 0.767 1.75 0.724 0.724
b 0.723 0.723 0.769 1.933 0.723 0.723
c 0.723 0.723 0.769 1.793 0.722 0.722
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ving average (EMA) with linear combination. Exponential moving average has lo
wer performance among all methods when comparing the average of indexes. Co
mpared with no regularization from our proposal, it has a 0.14% decrease in bot
h DSC and F1 score, 0.28% decrease in precision, and recall. On the other han
d, EMA has an increase in IOU and loss, with 0.26% and 2.40%, respectively. 
When compared with linear combination, the proposed method has the same valu
e as linear on DSC, F1 score, an IOU, and less value on loss, precision, recall, 
which decrease rate is 7.81%, 0.14%, and 0.14% respectively. 

Table 8. Comparative test for verification of nonlinear exponential average movin
g in ATR dataset using linear coefficient a) loss, b) loss with linear combination 
of L1 and L2 regularization, c) loss with exponential moving average linear com
bination of L1 and L2 regularization, i) FCN, ii) U- Net, iii) Deep labv3 

Table 8 shows the results of the comparative test for verification of nonlinear ex
ponential average moving in the ATR dataset. Three regularization methods are a
lso tested: no regularization, linear combination of L1 and L2 regularization, and 
exponential moving average (EMA) with a linear combination of L1 and L2 regu
larization. In general, EMA has low performance among all methods when comp
aring the average of indexes. Compared with no regularization, EMA has a 0.4
1% decrease in both DSC and F1 score, 0.54% decrease in precision and recall, 
and 0.13% decrease in IOU. On the other hand, EMA has an increase in loss w

Model Methods DSC F1Score IOU Loss Precision Recall

i
a 0.718 0.718 0.764 1.054 0.721 0.721
b 0.719 0.719 0.764 1.046 0.719 0.719
c 0.717 0.717 0.763 1.203 0.717 0.717

ii
a 0.726 0.726 0.769 1.087 0.726 0.726
b 0.723 0.723 0.767 1.113 0.723 0.723
c 0.721 0.721 0.766 1.097 0.721 0.721

iii
a 0.767 0.767 0.797 0.773 0.767 0.767
b 0.763 0.763 0.795 0.839 0.763 0.763
c 0.766 0.766 0.797 0.933 0.766 0.766

average
a 0.737 0.737 0.776 0.971 0.738 0.738
b 0.735 0.735 0.775 1.085 0.735 0.735
c 0.734 0.734 0.775 1.077 0.734 0.734
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ith 9.84%. When compared with linear combination, EMA has the same value as 
linear on IOU, and less value on DSC, F1 score, loss, precision, recall, which d
ecrease rate is 0.14%, 0.14%, 0.74%, 0.14%, and 0.14% respectively 
We experiment with the exponential moving average combination of L1 and L2 r
egularization functions for regularization. We can see that nonlinear exponential 
moving average combination lower the performance. Reflecting exponential movin
g average through recurrent method efficiently move them to optimal in the mod
el. The experimental method implanted the experiment in batch size 2 because th
e larger batch size is limited to work on due to the out of memory in our deskt
op device. Some cases turned out to get better performance but normally get low
er performance because of the smaller batch size. 

Table 9. Comparative test for verification of ours experiment in an average of A
TR dataset and VOC dataset using convex coefficient a) loss, b) loss with linear 
combined of L1 and L2 regularization, c) loss with nonlinear exponential regulari
zation, d) loss with exponential moving average regularization. 

The results in Table 9 show that EMA may improve, but nonlinear exponential r
egularization, which can be easily applied, performs better.

Conclusion : We propose the nonlinear exponential regularization of L1 and L2 f
or termed exponential regularization. Also, an exponential moving average regular
ization experiment was conducted. We can see that a nonlinear combination impr
oves performance. Because it was confirmed that the nonlinear features helped th
e model to go to the optimal that the model has efficiently. We experimented wi
th nonlinear exponential regularization with fixed reflection and exponential avera
ge moving regularization with dynamic reflection with dynamic reflection in the 

Methods DSC F1 Score IOU Loss Precision Recall

a 0.727 0.727 0.77 1.394 0.727 0.727
b 0.725 0.725 0.77 1.499 0.725 0.725
c 0.728 0.728 0.77 1.618 0.728 0.728
d 0.727 0.727 0.77 1.357 0.729 0.729
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process of making regularization.
In the future, we want to make sure that the hybrid regularization process is effe
ctively reflected in the optimization process rather than the fixed and dynamic re
gularization process. Also we will be conducted to the optimal in consideration o
f general characteristics. 

Through this, this study examined the nonlinear regularization study. Next, we 

describe the novel auxiliary components to help optimize deep learning model 

[45].

3.4 Novel Auxiliary Components to Help Optimize Deep Learning Model

Introduction : GAN has been widely applied in various fields. However, mode c
ollapsing, vanishing gradient, and catastrophic forgetting are occurring in the train
ing process in GAN. First, mode collapsing does not yield general results for un
expected inputs because models trained with insufficient data only consider certai
n characteristics. Secondly, the vanishing gradient problem occurs while the gener
ative adversarial network is training through the distribution of latent variable inp
ut. Thirdly, catastrophic forgetting forgets the information of existing data in the 
process of reflecting new data information.
l We propose three subsidiary component to solve the problems that can occur 

in this GAN. The three auxiliary components are illustrated in Figure 12.
l The first component is the hybrid regularization method.
l The second component is the hierarchical clustering method. 
l The third method is to increase width of the distribution.
l Through the above three factors, it was confirmed that problems and perform

ances in GAN can be improved.
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Figure 12. Our Auxiliary Components

Proposal Method: We propose hybrid regularization to reflect heterogeneous featu
res. The hybrid regularization concept is shown below. We definition of hybrid r
egularization that can reflect the heterogeneous features proposed. We tested usin
g two cases. i.e.) a combination of nonlinear and linear chrematistic, the combina
tion of nonlinear static and nonlinear dynamic chrematistic. We are learning thro
ugh the regularization of single characteristic proceeds with model optimization w
ith limited scope for model optimization. We have defined the cause of the probl
em. Through this, we intend to improve the proposed problem through heterogen
eous features. This may not be the best point for the model. Therefore, it is nec
essary to find the optimal point of the model by expanding the range that expres
ses by reflecting various characteristics. To verify this, we propose a novel hybri
d regularization that can reflect characteristics. We intend to verify the reason for 
reflecting heterogeneous characteristics using three analyzes.
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Figure 13. Visualization using contour map to analyze the impact of the propose
d method

First, the analysis using contour lines is as follows. Figure 13 shows result that t
he generated value is analyzed using the formula np.sin(x) ∗ ∗10 + np.cos(10 
+ y ∗ x) ∗ np.cos(x). First, in the case of generating an unbalanced value, x 
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generated 40 values up 0 to 5, and y was analyzed using 40 values up 0 to 5. 
The result represents the top six of the Figure 2. Second, in the case of generati
ng a balanced value, x generated 40 values up -5 to 5, and y was analyzed usin
g 40 values up 0 to 5. The results represent in the bottom six of Figure 13
Figure 13(a) expresses the frequency of occurrence of the value in the existing e
xperimental equation as a contour line. Figure 13(b) expresses the frequency of o
ccurrence of the value as a contour line when applied to the experi- mental form
ula using the L1 and L2 regularization addition formulas. Figure 13(c) expresses 
the frequency of occurrence of the value as a contour line when Nonlinear expo
nential regularization applies to the experimental formula. Figure 13(d) expresses 
the frequency of occurrence of the value as a contour line when Nonlinear expo
nential regularization and linear combination L1 and L2 regularization applies to 
the experimental formula. Figure 13(e) expresses the frequency of occurrence of t
he value as a contour line when Exponential average moving regularization is ap
plied to the experimental formula. Figure 13(d) expresses the frequency of occurr
ence of the value as a contour line when Exponential average moving regularizat
ion and nonlinear exponential regularization are applied. 
Figure 13, when the regularization is applied, we can see that a lot of values of 
0 were generated compared to the existing one. In the case of the picture, Figur
e 13(b), values other than 0 are gathered to the upper left and lower right. This 
seems to be a phenomenon that maximizes the margin of 0 as values other than 
0 widen at both ends. Also, in the case of the picture Figure 13(c)(d)(f), these c
ontour lines appear, which can be viewed as a local minimum in the hyperplane 
space of the neural network model. In a situation where a value of 0 occurs a l
ot, expanding the range (the size of the contour line) where the local minimum 
can be seen or finding a range that can be optimized by the model increases the 
amount of information the model can learn, resulting in better optimization. It se
ems that we can go to the branch.
In Figure 13, it was analyzed by generating balanced data and unbalanced data. I
n the case of balanced data, it can be seen that the value near 0 is more cluster
ed than the contour line. If we explain this in an analogy to the hyperplane in a 
neural network, it can also be seen that a lot of minimum local areas are genera
ted. In addition, when generating positive and negative values, it can be confirme



- 57 -

d that the shape of the contour line is seen as a straight line. This confirmed th
at the occurrence of the extreme value was generated as a stronger straight line t
han creating a soft boundary line.

Figure 14. Visualization frequency using loss error to analyze the impact of the 
proposed method

Second, analysis using frequency of occurrence is as follows. In the Figure 14, e
ach regularization method is applied to the cross-entropy. When an unbalanced v
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alue generated as input, x generated 40 values up 0 to 5, and y analyzes using 
40 values up 0 to 5. In the case of generating a balanced value, x generated 40 
values up to -5 to 5, and y was analyzed using 40 values up to -5 to 5. The re
sult value output using the above experiment method is as follows. In the case o
f the picture in Figure 14, the upper part is the case of using unbalanced data. I
t can be seen that the result value generated is between 0 and 1, but 9 specific 
values generate it. In addition, in the case of Figure 14(c),(d),(f), the frequency o
f occurrence largely gather at the value of 0. In the case of Figure 14(a), (e), it 
was confirmed that the generated value is symmetrically generated based on 0.5 
on the x-axis through the opposite sign. The bottom is the case that occurred usi
ng balance data. The results show that four results generated on the x-axis. In th
e case of Figure 14(a), (e), it appears that the generated value is symmetrical ab
out the y-axis. In the case of Figure 14(c), (d), (f), it appears that the value is 
gathered to the bottom right.
Eventually, the results from the experimental formula can be checked by gatherin
g specific result values. This can be confirmed by the phenomenon that the deep 
learning model constantly learns, and the uniform value constantly learns. Therefo
re, it seems that research should be conducted in the future by optimizing genera
lization by reflecting various values rather than constantly reflecting specific valu
es.
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Figure 15. Visualization scatter plot using loss error map to analyze the impact o
f the proposed method

Third, the analysis using the LogisticGroupLasso model is as follows. Figure 15 
analyzes the results generated using the LogisticGroupLasso model. We tried to a
nalyze the model and sparsity values generated through this. The generated x-axis 
is noisy probabilities, and the y-axis is noise-free probabilities. It was confirmed 
that the overall generated shape create as the shape of the convex function. It w
as confirmed that the degree of clustering of the results generated by applying ea
ch regularization method was different. Depending on the regularization method, 
a variety of non-clustered values generate, but the value of the frequency that is 
not clustered can be determined as an outlier in the process of learning the mod
el, causing learning in the wrong direction. Therefore, it can be confirmed that it 
is important to design the regularization method efficiently so that sparse values 
are less likely to occur.
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The pseudo-code that applies the hybrid regularization proposed to two cases is a
s follows. Pseudo-code 1 and Pseudo-code 2 show how the proposed method is 
applied to a deep learning model training.

Figure 16. Comparison of the regularization methods tested using visualization
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Qualitative analysis of our proposal: When the weight visualization of the nonline
ar exponential regularization effect for each regularization is performed, a differen
t decision boundary is expressed for each regularization. Depending on the shape 
of the decision boundary, the deep learning model helps to optimize it stably. W
e showed the result of alleviating the optimization problem slightly in the case o
f hybrid regularization, which reflects both fixed and dynamic features simultaneo
usly. However, when using the hybrid feature, it was confirmed that this model 
has features that correlate with each other and that the model helps optimize. W
hen the features of different features have a shape of features that did not help i
n learning the model, the model was less optimized, and the performance deterio
rated. In the end, it was confirmed through experiments with various regularizatio
ns that it is important to find an adaptive regularization suitable for the model.
In Figure 16, the regularization methods tested are analyzed by using the formula 

of       . This can be thought of as the hyperplane shape of deep lear
ning models. Figure 16(a) shows no normalization experiment, Figure 15(b) show
s L1 and L2 regularization, Figure 16(c) shows Nonlinear exponential regularizati
on, Figure 16(d) shows nonlinear exponential regularization. L1 and L2 when reg
ularization is applied, Figure 16(e) is when Exponential average moving regulariz
ation is applied, and Figure 16(f) is when exponential average moving regularizat
ion and nonlinear regularization is applied. Through the above results, according 
to the regularization, the hyperplane space that the model can have a narrow vall
ey shape. If it has such a narrow valley shape, it seems that the model can quic
kly converge to learn to the optimal point.

Relation analysis: We use five functions to analyze the relationship between the l
oss and the regularization function. e.g.) Sqrt, relu function, eLU, bi-relu [36], an
d bi-eLU [36]. We experimented with four methods. e.g.) sqrt, relu, eLU, bi-relu, 
bi-eLU. We adopt five functions on four regularization methods. e.g.) Exponential 
moving average with linear coefficient, exponential moving average with convex 
coefficient, hybridv2 with linear coefficient, and hybridv2 with the convex coeffic
ient. We tried to confirm that it is effective for deep learning models to reflect 
meaningful information through analysis of the relationship between the loss and 



- 62 -

regularization.
Seed analysis: We analyzed the regularization performance using five seed values. 
We analysis the experimented using five seed values. e.g.) 1, 250, 500, 777, and 
999. We tried to confirm by using a regularization that the quality expressed in 
the model is changed by the seed value.

Figure 17. Visualization of experiment system configure

Hybrid regularization experiment system Figure 17 shows the system configuratio
n tested. The experiment consists of five stages. Step 0 is an experimental metho
d of impact analysis on seed values. Step 1 takes seed values and generates initi
al values for the model. The second stage is the FCN and U-Net used in the ex
periment. Step 3 is to analyze the association between loss and the regularizatio
n. Step 4 is to evaluate the prediction results of the model. To improve the abo
ve problems, we propose a hybrid regularization to reflect static and dynamic fea
tures.
First, we analyze the relationship between the loss function and the regularizatio
n. This is because reflecting
meaningful information on the regularization is a process of optimizing the mode
l, and it confirms that it converges quickly through learning with the shortest pat
h. It can also prevent going in the wrong direction.
Second, to analyze the relationship between the covariate of regularization, two a
nalyzes were used: convex and linear coefficient. Deep learning models generally 
have hyperplanes with convex characteristics. At this time, the learning position v
ibrates while the learned position vibrates during the optimization of the model. 
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This is to check whether the characteristics of the regularization should have con
vex characteristics or whether the model is reflected, including the linear characte
ristics, to help optimize the model.
Third, the analysis conduct by setting five seed values using regularization. Beca
use the deep learning model train with the initial distribution of the model chang
ed according to the initial seed value. Finally, we try to confirm whether the mo
del is trained stably by analyzing the regularization according to the initial state 
of the model.

Hybrid regularization experiment setting : The experiment apply to U-Net and FC
N of the semantic segmentation task. We experimented with our proposal with K
eras in an Ubuntu environment. We recorded the average value through 5 experi
ment iterations. Experiments apply to FCN and U-Net using VOC and ATR data
sets in the image segmentation task. Cross entropy loss use for experiments. The 
applied results evaluate using DSC, F1 Score, IOU, Loss, Precision, and Recall. 
We analysis the experimented using five seed values. E.g.) 1, 250, 500, 777, and 
999. The equation for our hybrid regularization method is as follows. A and B a
re the covariates of the regularization.

combination L1 and L2 regularization
with convex coefficient := (1)
A∗L1+(1−A)∗L2

combination L1 and L2 regularization
with linear coefficient := (2)
A ∗ L1 + B ∗ L2

Nonlinear exponential regularization
with linear coefficient (static):= (3) A ∗ L1e(1−A)∗L2

Exponential moving average with linear coefficient (dynamic) :=
Step1:=A∗L1−(1−A)∗L1−B∗L2 (4) Step2 := A ∗ Step1 + B ∗ L2

Exponential moving average with convex coefficient (dynamic) := Step1:=A∗L1−(1−A)
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∗L1−B∗L2 Step2 := A ∗ Step1 + ((1 − A) ∗ L2)
(5)

Hybridv2 regularization with convex coefficient
(static and dynamic) := Step1 := A ∗ L1 − (1 − A) ∗ L1 − B ∗ L2
�
Step2:= A∗Step1+((1−A)∗L2) +A ∗ L1e(1−A)∗L2

Hybridv2 regularization with linear coefficient
(static and dynamic) Step1 := A ∗ L1 − B ∗ L1 − B ∗ L2 Step2 := A ∗ Step1 
+ (B ∗ L2) +A ∗ L1eB∗L2

Hybridv2 regularization with linear coefficient adopted relu
(relation analysis using linear filtering) := Step1 := A ∗ L1 − B ∗ L1 − B ∗ L2 S
tep2 := Relu(A ∗ Step1 + (B ∗ L2)) +A ∗ L1eB∗L2

Hybridv2regularization with linear coefficient adopted Bi−eLU
(relation analysis using bi-ploar filtering) := Step1 := A ∗ L1 − B ∗ L1 − B ∗ L2 
Step2 := eLU(A ∗ Step1 + (B ∗ L2) −eLU(A ∗ Step1 + (B ∗ L2)) +A ∗ L1eB
∗L2

Formula of regularization method used in experiment: The equation used in the e
xperiment is as follows. Equation 1 is the convex combination of L1 and L2 reg
ularization. Equation 2 is a linear combination of L1 and L2 regularization. This 
is to confirm the effect of convex and linear on the relationship between L1 and 
L2 regularization in Equation 1 and 2. Equation 3 is nonlinear exponential regula
rization. This is to confirm the static effect of the nonlinear exponential regulariz
ation function. Equation 4 is an exponential moving average with the linear coeff
icient. Equation 5 is an exponential moving average with the con- vex coefficien
t. Equation 4 and 5 are nonlinear exponential regularization. This is to confirm t
he dynamic effect of the convex and linear relationship on the nonlinear exponen
tial regularization. Equation 6 is an exponential moving average and nonlinear ex
ponential regularization with the convex coefficient. Equation 7 is an exponential 
moving average and nonlinear exponential regularization with the linear coefficien
t. Equation 6 and 7 is an exponential moving average and nonlinear exponential 
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regularization. This is to confirm the static and dynamic effect of the convex an
d linear relationship on the nonlinear exponential regularization. Equation 8 is an 
exponential moving average, and nonlinear exponential regularization with the line
ar coefficient adopts relu. Equation 9 is Exponential moving average with linear 
coefficient hybrid adopt Bi-eLU. Equation 8 and 9 is the exponential moving ave
rage. This is to confirm the static and dynamic characteristic effect of filtering a
bout a single filter (6) and bi filter relationship on the nonlinear exponential regu
larization. The results obtained from the experiments are as follows. A combinati
on of exponential moving average and a combination of L1 and L2 regularizatio
n is called hybrid regularization. Combination exponential moving average and no
nlinear exponential regularization is called hybrid v2 regularization.

Table 10. Experiment index of Hybrid regularization

Name Index A
None Experiment 1

Combination L1 and L2 regularization 
with convex coefficient

Experiment 2

Combination L1 and L2 regularization 
with linear coefficient

Experiment 3

Nonlinear exponential regularization
 with convex coefficient

Experiment 4

Nonlinear exponential regularization
with linear coefficient

Experiment 5

Exponential hybrid regularization with 
convex coefficient

Experiment 6

Exponential hybrid regularization with 
linear coefficient

Experiment 7

Exponential moving average regulariza
tion with convex coefficient adopted 

no filter
Experiment 8

Exponential moving average regulariza
tion with convex coefficient

 adopted relu
Experiment 9

Exponential moving average regulariza
tion with convex coefficient

Experiment 10



- 66 -

 adopted eLU
Exponential moving average regulariza

tion with convex coefficient
 adopted bi-relu

Experiment 11

Exponential moving average regulariza
tion with convex coefficient

 adopted bi-eLU
Experiment 12

Exponential moving average regulariza
tion with linear coefficient

 adopted no filter
Experiment 13

Exponential moving average regulariza
tion with linear coefficient 

adopted relu
Experiment 14

Exponential moving average regulariza
tion with linear coefficient 

adopted eLU
Experiment 15

Exponential moving average regulariza
tion with linear coefficient 

adopted bi-relu
Experiment 16

Exponential moving average regulariza
tion with linear coefficient 

adopted bi-eLU
Experiment 17

Exponential hybridv2 regularization wi
th convex coefficient adopted no filter

Experiment 18

Exponential hybridv2 regularization wi
th convex coefficient adopted relu

Experiment 19

Exponential hybridv2 regularization wi
th convex coefficient adopted elu

Experiment 20

Exponential hybridv2 regularization wi
th convex coefficient adopted bi-relu

Experiment 21

Exponential hybridv2 regularization wi
th convex coefficient adopted bi-elu

Experiment 22

Exponential hybridv2 regularization wi
th convex coefficient adopted no filter

Experiment 23

Exponential hybridv2 regularization wi Experiment 24
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Table 10 summarizes the index of the experiment used. We tested using 27 regu
larization equations.

Hierarchical concurrency optimization Concurrency control has been applied to im
prove the performance of models. However, there was no hierarchical simultaneo
us optimization in the process of optimizing the model. Therefore, we propose a 
new hierarchical concurrency optimization for training deep learning model optimi
zation. Hierarchical concurrency optimization is composed of two-component. The 
first component is loss with regularization. The second component is optimization 
with weight decay. The two-component are applied simultaneously to different m
odel positions. The proposed method express in pseudo-code. It applied weight d
ecay to optimization in the process of optimizing the model hierarchically with L
1 regularization and L2 regularization. Algorithm 3 is the pseudo-code of hierarc
hical optimization proposed. The advantages of this hierarchical concurrency opti
mization method are as follows. Firstly, it can be reconfigured in a simpler, smal
ler step in the optimization phase. It is easy to understand deep learning models 
and to design and implement models. Second, it provides a standard interface tha
t each method can work with. The independence of each method simplifies the 
method of the whole method. Third, when you need to correct or improve the f
unctional errors of each method, you can complete it by replacing only that met
hod without having to rewrite the entire deep learning model. There is an advant

th convex coefficient adopted relu
Exponential hybridv2 regularization wi

th convex coefficient adopted eLU
Experiment 25

Exponential hybridv2 regularization wi
th convex coefficient adopted bi-relu

Experiment 26

Exponential hybridv2 regularization wi
th convex coefficient adopted bi-eLU

Experiment 27
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age that the internal change of one method does not affect the operation of anot
her method.
It is necessary to provide hierarchical concurrency optimization in a situation whe
re multiple data accesses the model simultaneously while the deep learning model 
learns multiple data. This should make it possible to consistently reference the in
formation inside the model in the process of updating the values in the model. 
Because, in the process of requiring precise calculation using deep learning mode
l, two problems can occur. First, when different transactions perform update oper
ations continuously in a situation where loss and optimization execute simultaneo
usly, a phenomenon in which the previously executed loss operation is overwritte
n may occur. Second, optimization may be executed while loss is being execute
d, and information inside the model may be broken. Therefore, we propose a hie
rarchical concurrency optimization that can alleviate these problems and verify it 
with performance evaluation for image generation. When the method proposed is 
applied, in the process of updating the weight of the model, it is possible to gen
erate an image with high resolution through precise calculation by simultaneously 
controlling the updating statement inside the model. Also, it is possible to acquir
e a phenomenon in which the learning error of the model is reduced compared t
o the existing one. The proposed method is not only applicable to GAN, but we 
can be applied to all deep learning models.

Effect of model optimization We will divide and explain two cases of informatio
n in the process of model optimization. e.g.) if they have the same characteristic
s or if they have different characteristics.
First, the case has the same characteristics will be described. Here, the same cha
racteristic means information that is semantically similar and can be viewed as th
e same characteristic. At this time, the characteristics produced through a similar 
degree can be viewed as a group or as a single information. When information 
generated in the model is similar, the overlap may occur between the informatio
n, and convergence may occur more quickly. In contrast, when the information g
enerated in the model is not similar, the margin between the two pieces of infor
mation is maximized to obtain a criterion for maximizing the information.
Second, the case of having different characteristics will be described. Here, the d
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ifferent characteristics are cases where they have completely different characteristi
cs, such as examples of fixed characteristics and dynamic characteristics. In the c
ase of reflecting the fixed and dynamic characteristics of the example in the mod
el at the same time, by reflecting the heterogeneous characteristics, the model ac
quires robust generalization to various features.

Figure 18. Relation analysis in optimization

We will explain the relationship between the components used by the deep learni
ng model for optimization through two examples. Figure 18 is expressed by divi
ding the components used to optimize the model into two regions. In the optimiz
ation area, there are components of the optimizer and weigh decay method. In th
e Loss area, there are components of loss and L1 and L2 regularization. For eac
h component, the relationship was expressed in two ways. When there is a direct 
relationship, it is expressed as a solid line as a strong relationship. And if there 
is an indirect relationship, it is expressed as a dotted line as a weak relationship.
The components used in the experiment were expressed in a form similar to a g
raph network or tree. After confirming the influence on each component through 
visualizing the relationship between each component helps the actual model to op
timize. However, if the model is not a component that does not help to optimiz
e, you need to insert other components to fix the model’s components so that th
e model can optimize. It is important to extract the maximum performance throu
gh the optimization of the model through the correlation analysis for each of the
se components.
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Effect of image generation The environment for generating images has been studi
ed a lot in the field of existing graphics research. Many studies have been cond
ucted to make images realistic in the process of generating images in the above 
research field. Also, in recent deep learning, the field of graphics research using 
deep learning has been actively researched to make the image similar to the real 
thing [46]. It argues that the creation of an image in real life should be applied 
to the generator to accurately determine the real image and real data in the Gene
rative adversarial network. In the process of generating an image using deep lear
ning, the hypothesis was that by removing the noise by analyzing the noise gene
rating part in terms of temporal information reflected in the generator, the image 
could be generated as a real image with high resolution. In this study, we first t
ry to explain this using the graph coloring example, which is well known in exi
sting algorithms.
First, the image is composed of objects, cases of similar things grouped based o
n low-level information. The information in the image can be visualized using th
e form of a tree. If you visualize using the tree form, you can do an overall to
pic about the image [47]. Through this, it is possible to understand the image. A
lso, to create semantic images, associations are created through pre-defined infor
mation. Therefore, the relationship between the image information and the tree or 
graph network is expressed. This is compared to the generator of the Generative 
Adversarial Network (GAN) experiment. This was visualized in the picture 8. Fir
st, the hyper parameter setting consists of the potential variable space and the ba
tch size. Second, the image generator consists of the generator of the GAN. Thir
d, the image created from the constructor is displayed. Fourth, the generated ima
ge is measured using PSNR. Three problems can occur in the process of creatin
g an existing image. First, if particle noise or the like is not removed, blurring 
of the image may occur. Second, in the image rendering process, information nee
ds to be created semantically and graphically. If it is not created correctly, strang
e pictures may be created. Third, as the number of batch sizes and the informati
on on the grid generated in the latent variable space increase, complexity increas
es. This increases the complexity of the information and the amount of informati
on that must be reflected from the viewpoint of the generator. Since the amount 
of information increases, if the amount of information is not optimized, a proble
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m that the image generation performance of the model is low may occur.
In addition to the previous problems, to create a realistic image during the image 
generation process, a sophisticated generator was designed in the generator during 
the image generation process [48]. It is essential to increase the performance by 
making the generator complex, but we thought it was essential to select the opti
mal performance of the model through simple ideas like the proposed method. T
herefore, it was thought that problems generated in the model could be reduced 
even if the hyper parameter tunning is efficiently performed in the GAN using a 
generator. Therefore, the analysis of the impact on image creation through hyper 
parameter tunning of the model is as follows.
Effect of hyper parameter fine tuning In the initial learning process, the hyper pa
rameter setting is essential for deep learning [49]. In the initial setting, in the pr
ocess of model learning, the simulated annealing process of the model by the hy
per parameter occurs gradually and precisely. When the information of the existin
g learning data reflect in this way, the information generates in the model, and t
he adaptation of the new data is more stably generated, thereby reducing the cat
astrophic problem, which is an effect of forgetting the existing data [50]. Therefo
re, it can learn more stably than the conventional learning method. As a disadva
ntage, it seems that the learning process may take longer than the existing learni
ng method at the optimal point of the model. However, for the deep learning m
odel to go in the direction of the life long model, it seems to be important to a
daptively modify the hyper parameter whenever an input event occurs so that the 
model can stably reflect new information. Through this, the process of fine- tuni
ng the hyper parameters of the model is essential in the process of learning the 
pre-trained model that has already trained, but in the initial learning process, the 
deep-learning model fine-tuning the hyper parameters of the model to learn as a 
sustainable model. We can see the possibility that the process is essential.

Hierarchical concurrency optimization experimental setting: We conducted experim
ents using MNIST and Fashion MNIST. The results of the model evaluate using 
two PSNR and MSE. We experimented with four losses (i.e., Cross entropy, Lea
st-squares loss, Smooth loss, and Focal loss) using Vanilla GAN and LSGAN  r
esults using two generative adversarial networks. The average value of the experi
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ment describes two times.
Figure 19 is the experimental configuration system. Step 0 is to set the number 
of batch sizes of learning data. Step 1 is the initial potential variable size setting 
of the Generative adversarial network. Step 2 is LSGAN and Vanilla GAN, whic
h are the models used in the experiment. Step 3 is the loss setting, the rule for 
training the model. Here, origin loss means cross-entropy for Vanilla GAN and 
Least square loss for LSGAN. Step 4 is two evaluation indicators for evaluating 
the generated image and model error. PSNR is an index for evaluating the resolu
tion by applying to the generated image. Also, MSE (Mean Square Error) is an 
evaluation index for measuring errors in the difference between the predicted val
ue and the actual value of the model.

Figure 19. Experimental System

Width of distribution of latent variable : We observed that the effect of the distr
ibution of latent variable on the GAN is related to three existing problems. Ther
efore, To confirm the effect of the distribution of latent variable on the GAN thr
ough the setting of distribution of a latent variable, the experimental method was 
first performed by increasing the width of the distribution of the latent variable. 
In the analysis method, according to the increasing width of the distribution. The
refore, the experiment carries out by increasing the width of the distribution of t
he latent variable. Since changing the distribution of the latent variable directly t
o find the cause can identify the problem, it is essential to change the distributio
n of the latent variable directly.



- 73 -

Figure 20 Four distribution visualizations : (a) Laplace distribution, (b) logistic di
stribution, (c) Normal distribution, and (d) Gumbel distribution

Figure 20 shows the visualization of four distributions. Figure 20(a) shows the L
aplace distribution, Figure 20(b) shows the logistic distribution, Figure 20(c) sho
ws the normal distribution, and Figure 20(d) shows the Gumbel distribution.

In Table 11, x is the distribution input, m is the mean of the distribution input, 

s is the standard deviation, and 
  in the Gumbel distribution of Table 11

(d), B is the scale parameter. The distribution shown in Figure 20 is the distribu
tion used in the experiment with increasing the width of distribution of latent var
iable to show three problems. It was confirmed through experiments with increasi
ng distribution width that the effects of the setting of distribution of latent variab
les were related to three existing problems. First, mode collapsing use to show t
he effect of increasing the width of the distribution of the latent variable. To ver
ify, we experimented with Unrolled GAN [51], which can visualize mode collaps
ing.

Table 11. Comparison of effects on Unrolled GAN training by increasing width 
of initial latent variable

Discriminator for real 
image

Discriminator loss for fake 
images

Loss of Generator

a) Laplace 
distribution

0.682 0.687 0.715

b) logistic 
distribution

0.682 0.694 0.711
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The reason for using mode collapsing in the analysis is that it can intuitively 

check the effect of training on the setting of distribution of the latent variable 

while tracking the degree of reflection on the distribution. Also, the shape of the 

distribution of the latent variable can be interpreted.

The results of verifying the effect on the training of Unrolled GAN by 

increasing the width of the distribution of the latent variable shown in Figure 21. 

c) Normal 
distribution

0.676 0.689 0.714

d) Gumbel 
distribution

0.669 0.697 0.741
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Figure 21. Mode collapse visualization of four distributions using Unrolled 

GAN, i) visualization of eight distributions during the training process, and ii) 

visualization of eight distributions after training

The discriminator loss for the real image is the loss value when the real data 

is judged. The discriminator loss for a fake image is the loss value when 

judging the data produced by the generator. The loss of the generator is the loss 

value when the generator creates a new image with a variable as input. As the 

width of distribution increases, the loss value of the generator increases, and the 

discriminator loss for the real image decreases. This means that as the width of 

the distribution increases, it becomes possible to distinguish between real and 
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fake images more accurately. The distributions in Figure 21(i)(a)-(c) show the 

concentration of the distribution in the lower-left corner. However, the 

distribution in Figure 21(i)(d) shows the density of distribution concentrated on 

the bottom right and top. This means that the training tendency changes when 

the width of the distribution exceeds a certain width. The red line in Figure 

21(ii) is a visualization of the weight distribution of the Unrolled GAN. As the 

width of the distribution gets wide, the distribution of weights in the Unrolled 

GAN tends to be softer. The tendency to soften is that the gradient information 

reflected in the existing distribution is reflected by the change of the smooth 

gradient information. In Figure 21(ii)(d), we can see a lot of blue dots gathered 

in the lower right corner. This is because when the width of the distribution 

exceeds a certain width, the training tendency is changed to reflect the 

information of the inclination of the distribution as the information of the 

constant inclination. When the width of the distribution goes beyond a certain 

level, the information of the gradient is gathered into a certain space, so it is 

confirmed that the GAN is stable in training. The experiment of increasing the 

width of the distribution means that the existing training can be used as a way 

to go stably by changing the direction. We confirmed that the GAN model has 

an important influence on training according to the influence of the setting of 

the distribution of the latent variable.

In measuring the effect on the GAN according to the setting of distribution of 

a latent variable, it inspires that the interior of the model interprets in terms of 

generalization by inputting the distribution with generalization characteristics. 

Information that can interpret the model information is expressed differently 

according to the expressive power that interprets according to the number of 

parameters of the discriminator of the GAN model. This is because the 
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expression of the trained feature is trained in various ways according to the 

discriminator’s performance. Therefore, the result of the image generated by 

reducing the influence on the distribution through the averaging and making the 

generalized distribution is to check the shape of the pattern according to the 

clustering degree of pixels. Analyze the shape of the pattern and analyze the 

effect of the pattern to show the possibility of being used as a way to interpret 

the model. Since the process of selecting the distribution is necessary, we tried 

to identify the generation pattern that responds to the generalization aspect by 

inputting the distribution having the generalization characteristic in the 

distribution. 

Figure 22. Comparison of GAN discriminator parameters

In Figure 22(i), we experimented with a discriminator consisting of dropouts 

on three layers 1024, 512, and 256 to the existing distribution. In Figure 22(ii), 
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we applied the log method to the existing distribution and the discriminator 

consisting of dropouts on three layers 512, 512, and 256. In Figure 22(iii), we 

experimented with the logarithmic and 0.1 scale multiplying method of the 

existing distribution and the discriminator consisting of three layers (512, 512, 

and 256). Figure 22(a)-(c) shows the experimental results of increasing the 

distribution width using GAN. The GAN model was used to identify the 

generation pattern. GAN not well trained. Therefore, the experiment conducts 

using GAN because the effect of distribution change clearly shows. The 

distributions used to increase the distribution width shows in Figure 22(a) 

Normal distribution, Figure 22(b) logistic distribution, and Figure 22(c) Gumbel 

distribution. The log applied for the experiment shows that when the input value 

is 0 1, the smaller the input value, the smaller the output value. It shows the 

effect of separating and discarding rarely generated values from the training data. 

Also, as the input value increases, the output value does not increase in 

proportion but increases slightly. This phenomenon has the effect of averaging 

the input data. By averaging and reducing the impact on the distribution of the 

latent variable and creating a generalized distribution, the results of the generated 

images attempted to confirm the pattern shape according to the degree of 

clustering. We also want to confirm that the characteristics of the main 

components reflect through the characteristics of the log. We experimented with 

the effect of maintaining the pixel color information and the clustering of the 

pixel distribution according to the distribution of latent variable change by 

reducing the number of parameters of the GAN discriminator. In Figure 22(i), 

the discriminator consists of three layers 1024, 512, and 512. Figure 22(i)(b) 

Logistics and Figure 22(i)(c) Gumbel distribution, the pattern produced by the 

experiment, does not have a human-understandable pattern. However, the pattern 
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is important to interpret from the standpoint of the model. The above results 

show that as the width of the distribution of the latent variable increases, a 

pattern is created through the combinatorial optimization of information that 

reflects the characteristics of the existing data. In addition, when the number of 

discriminator parameters is analyzed by reducing the weight, it is confirmed that 

the principal component characteristics of the generated image are represented 

and generated. Second, the effect of increasing the width of the distribution of 

the latent variable is shown by using a vanishing gradient. The loss of the 

trained model use to confirm the importance of the setting of the distribution of 

the latent variable. 

Figure 23. Variation of loss value analysis of vanishing gradient using four 

distributions in LSGAN, (a) MSE loss, (b) Hinge loss, (i) Normal distribution, 

(ii) logistic distribution, (iii) Laplace distribution, and (iv) Gumbel distribution

We are applying these four distributions to the LSGAN, the loss results of the 

model shown in Figure 23. Figure 23 shows the results of the loss change 
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analysis of vanishing gradient using four distributions in LSGAN. As shown in 

Figure 23(a), the loss variation in the Gumbel distribution is very similar to the 

Normal distribution. Also, the results in Figure 23(b) show that the Gumbel 

distribution has the smallest loss variation. The small fluctuations in the loss 

width of the generator are shown by maintaining a constant interval through the 

information of the gradient that does not disappear as the model is repeatedly 

trained.

Figure 24. Stability analysis for pixel location and catastrophic forgetting where 

color information can be forgotten in test images according to random training 

data selection and training for GAN using size 8, a) Normal distribution, b) 

logistic distribution, c) Laplace distribution, d) Gumbel distribution, i) 0 epoch, 

ii) 250 epoch, iii) 500 epoch, iv) 750 epoch, and v) 1000 epoch

Third, the effect of increasing the width of the distribution of the latent 

variable shown by catastrophic forgetting. The importance of the distribution is 
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verified by sampling the generated results of the trained model at equal intervals 

as the width of the distribution of latent variable increases. Figure 24 shows an 

equally spaced image of a training procedure using randomly selected eight batch 

sizes from GAN with hinge loss. As the width of the distribution of the latent 

variable increases, it confirms that better performance maintains without forgetting 

the color information trained in the same parameter space. In particular, it sees 

that the result of the Gumbel distribution is well maintained without forgetting 

the color information acquired in the same parameter space. Figure 24 shows an 

equally space an equally spaced image of a training procedure using randomly 

selected 8 batch sizes from GAN with hinge loss. As the width of distribution 

increases, it is confirmed that better performance is maintained without forgetting 

the color information trained in the same parameter space. In particular, it can 

be seen that the result of the Gumbel distribution is well maintained without 

forgetting the color information trained in the same parameter space. This 

confirms that catastrophic forgetting can be reduced by distribution selection.
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Figure 25. Spatio-temporal analysis of color space mapping of latent variable 

based on the relationship between batch size and distribution size for the 

performance of generated images during hinge loss on GAN training, i) static 

selection batch size 2, ii) static selection batch size 8, a) 100 latent variable 

sizes, b) 500 latent variable sizes, and c) 1000 latent variable sizes

Figure 25 shows the spatio temporal analysis of color information mapping in 

the GAN. Spatio-temporal analysis of color information in each distribution was 

performed with cifar10 data for each batch size and potential variable size. 

Gradually decreasing the size of the latent variable tends to gather and train 

important information from the data. Given the change over time, the general 

characteristics of the latent variable of the input tend to remain large. However, 

in the case of color information, it can be seen that the smaller the latent 

variable, the smaller the change in color information. As a result of spatial 

analysis over time, it has been found that general features are more resistant to 

size changes. However, as the batch size changes, the color information feature 

changes more often. In other words, catastrophic forgetting of existing deep 

training models often occurs when the distribution space is small.

Experimental Setting: We examined the importance of the distribution using 

three problems of experiments with increasing the width of the distribution. By 

confirming and observing the importance of the distribution, we propose a 

distribution in which the Gumbel distribution helps the GAN image generation 

performance. To verify this, we experiment with four distribution and 

five-generative adversarial networks: LSGAN, GAN, cGAN [52], ACGAN [53], 

and semiGAN [54]. The CIFAR-10 and CIFAR-100 data sets were also used to 

test for loss of MSE and loss of hinge.
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Experiment Result: First, the experimental results of the first component, hybrid 

regularization, are as follows. The order of the results of the bar graph listed in 

the order of index in Table 10. Also, the standard deviation was drawn on a bar 

graph to express the degree of dispersion of each method. The loss showed the 

most stable error performance when convex coefficients were used in hybrid v2, 

reflecting nonlinear fixed and nonlinear dynamic information. And in terms of 

performance, hybrid v1 combining exponential moving average and combination 

L1 and L2 regularization showed the best performance. Through this, it 

confirmed that the deep learning model was stably trained or showed the high 

performance to reflect the hybrid characteristics.

It was confirmed that the deep learning model could learn most stably by 

reflecting the non-linear dynamic and fixed features. We confirmed that reflecting 

the non-linear dynamics and linear fixed features is higher than other 

regularization methods in terms of performance.

Table 12. Experiment result of regularization using U-Net on ATR dataset with 

Seed 250

Regularization DSC F1 Score IOU Loss Precision Recall
Experiment1 0.724 0.724 0.768 1.072 0.724 0.724
Experiment2 0.723 0.723 0.767 1.525 0.723 0.723
Experiment3 0.724 0.724 0.768 1.398 0.724 0.724
Experiment4 0.724 0.724 0.768 1.364 0.724 0.724
Experiment5 0.724 0.724 0.767 1.287 0.724 0.724
Experiment6 0.723 0.723 0.767 1.222 0.723 0.723
Experiment7 0.724 0.724 0.768 1.278 0.724 0.724
Experimen8 0.724 0.724 0.768 1.255 0.724 0.724
Experiment9 0.724 0.724 0.768 1.228 0.724 0.724
Experiment10 0.724 0.724 0.768 1.237 0.724 0.724
Experiment11 0.724 0.724 0.768 1.195 0.724 0.724
Experiment12 0.724 0.724 0.768 1.164 0.724 0.724
Experiment13 0.724 0.724 0.768 1.136 0.724 0.724
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Table 12 shows the performance of the experiments to verify the proposed 

method tested. As a result of Table 11, it was confirmed that the hybrid 

regularization proposed improved 0.1 % in terms of segmentation performance. In 

terms of loss, the best experiment, compared to the previous one, showed an 

error reduction of 3 % or more. At this time, the hybrid regularization v2 

showed the lowest performance through non-linear fixed features and dynamic 

features through bi-directional non-linear filtering. This seems to be that the 

non-linear features adequately reflected in the model learning process in the same 

non-linear environment.

As a result of analyzing the relationship between the loss and the 

regularization function in Table 12, it was confirmed that the loss value is 

slightly higher when simple addition performed. What reflected through addition 

is that the complexity of information is somewhat improved through the 

superposition of information, so the loss value seems to be rather high. However, 

as a result of using RELU, eLU, Bi-relu, and Bi-eLU to reflect the degree of 

normalization, filtering using RELU reflects the linear characteristics, so the loss 

Experiment14 0.724 0.724 0.768 1.112 0.724 0.724
Experiment15 0.724 0.724 0.768 1.115 0.724 0.724
Experiment16 0.724 0.724 0.768 1.095 0.724 0.724
Experiment17 0.724 0.724 0.768 1.08 0.724 0.724
Experiment18 0.725 0.724 0.768 1.075 0.724 0.724
Experiment19 0.725 0.725 0.768 1.09 0.725 0.725
Experiment20 0.725 0.725 0.768 1.077 0.725 0.725
Experiment21 0.725 0.725 0.768 1.069 0.725 0.725
Experiment22 0.725 0.725 0.768 1.07 0.725 0.725
Experiment23 0.725 0.725 0.768 1.077 0.725 0.725
Experiment24 0.725 0.725 0.768 1.07 0.725 0.725
Experiment25 0.725 0.725 0.768 1.052 0.725 0.725
Experiment26 0.725 0.725 0.768 1.044 0.725 0.725
Experiment27 0.725 0.725 0.768 1.042 0.725 0.725
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is reduced compared to the conventional addition. Also, as a result of filtering 

using eLU, it can be seen that non-linear features reflected more stably than 

linear features. And bi-activation was applied to learn by extracting essential 

features by reflecting the information of bi-polar. The bi-relu linearly filtered 

effect shows a learning loss value similar to a single non-linear filtering result. 

Also, it confirmed that bi-eLU shows a simple linear effect when the 

non-linearly filtered effect is not right in both directions but shows a lower error 

value when finding an essential feature through non-linear filtering.

Additionally, the regularization performance, according to the change of seed 

value, was analyzed. The results of the regularization analysis through the change 

of the seed value were included in the supplementary. As a result of analyzing 

the performance of regularization by changing the seed value, it shows the effect 

that the performance of regularization changes somewhat depending on the initial 

seed occurrence. Because the learning of the deep learning model changes with 

probability by the initial state of the deep learning model, it shows a 

non-uniform trend. Through this, it can be confirmed that it is essential for the 

deep learning model to create an initial state that can stably reflect information. 

Also, it seems necessary to study the robust regularization even in this initial 

state.

Hybrid test results show better results when the features that dynamically 

reflected, and the features that dynamically reflected are effectively mixed and 

reflected. But in all cases, it does not improve. To further develop the hybrid 

regularization, it seems necessary to make an optimal combination of static and 

dynamic features. In the case of Bi-eLU, It confirms that the deletion of shared 

information that can be reflected in the loss and non-linear sparse information 

reflected in the model optimization. Hybrid regularization finds a lower error and 
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slightly improved performance as a result of the seed value experiment. Seed test 

results show that the performance varies greatly depending on the initial state of 

the model. This confirms the need for a study of robust regularization in the 

initial model state.

The experimental result of the second component, Hybrid concurrency 

optimization, is as follows. The results of the experiment for hierarchical 

concurrency optimization described the average values of Vanilla GAN and 

LSGAN. We show the result when weight decay and L1 and L2 regularization 

are not applied. 

We show the result when only weight decay is applied. When only weight 

decay is applied, it can be seen that the overall image generation performance is 

slightly improved. This is because Adam optimization learns as the optimization 

shift reduces by zooming in on the weight decay value, so it seems that the 

performance improves by optimizing the generator during the image generation 

process.

This was compared not only by using image generation performance, but also 

by using error values. This was a comparative analysis of discriminator errors. 

We show the result when weight decay and L1 and L2 regularization are not 

applied. When this applies to weight decay, the performance is similar to the 

previous result. When weight decay and L1 and L2 regularization are applied 

simultaneously, the error value reduces. However, if the coefficients of L1 and 

L2 regularization strongly enter according to the potential variable space size, 

data type, and batch size number. It confirms that the error performance slightly 

improved. Therefore, it was confirmed that it is important to find the 

regularization coefficient adaptively according to the hyperparameters. Also, to 

check the influence of weight decay when there is regularization, weight decay, 
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and no weight decay were tested and compared in the case of L1 0.25 and L2 

0.25 regularization. When comparing all the results of the experiment, there was 

no change. This seems to have obtained a similar error value because it has 

been reached through regularization on a similar optimization point. Therefore, 

the hierarchical concurrency optimization method seems to have a difference in 

performance depending on the characteristics of the regularization coefficient.

Figure 26. Comparison of the regularization methods tested using loss

Figure 27. Comparison of the regularization methods tested using IOU

Third, the experimental results of the third component, the width of the 

distribution of a latent variable, are as follows. We tested the mean values of 

PSNR (Peak Signal-to-Noise Ratio) and MSE (Mean Square Error) of five 

experiments for LSGAN and GAN using cross-entropy and hinge loss based on 

four batch sizes with CIFAR-10 and 100 datasets. (Batch size 256, batch size 

128, batch size 64, and batch size 32). The other results of the other three 
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distributions are similar to the Gumbel distribution. The difference of the 

reference distribution values was obtained from the experimental distribution 

values when calculating the improvement values. We then divided by the 

difference and used the improvement using the product of 100. The reference 

distribution used as a reference is the Normal distribution. Experimental 

distribution values are Laplace, logistic, and Gumbel. For the quantitative analysis 

of the generated image, we use the mean pixel value of the generated image and 

the standard deviation of the pixels. The PSNR and MSE of the Normal 

distribution are μ= 47.923, σ = 0.7442 and μ = 103.4947, σ = 14.152, 

respectively. The PSNR and MSE of the logistic distribution are μ = 47.938, σ= 

0.760 and μ = 103.152, σ = 14.460, respectively. The PSNR and MSE of the 

Laplace distribution are μ = 47.923, σ = 0.716 and μ = 103.412, σ = 13.755, 

respectively. The PSNR and MSE of the Gumbel distribution are μ= 47.959, σ = 

0.750 and μ = 102.651, σ = 14.108, respectively. Gumbel distribution performs 

better than others. The distribution does not have a significant impact on 

performance, but this performance difference indicates that the Gumbel 

distribution certainly helps to ensure stable training. We also visualized the mean 

and standard deviation to confirm the variance of each method and found similar 

variances in all four distributions. In our experiments, we often experience 

catastrophic forgetting in discriminator parameters when the width of the 

distribution is small. Also, the results of images obtained from cGAN, ACGAN, 

and semiGAN without qualitative influences of the discriminator parameters 

proposed to provide qualitative analysis of the four distributions in Figure 28.
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Figures 28. Qualitative analysis of images generated for stable training in 

generator of GAN using a series of conditional GAN. i) cGAN, ii) ACGAN, iii) 

semi GAN, a) Normal distribution, b) Laplace distribution, c) logistic distribution, 

and d) Gumbel distribution

We can see that the image generated as a result of the Gumbel distribution in 

Figure 28 creates a smooth shape. This is because the curve shape of the 

Gumbel distribution has a smooth elliptic curve shape than other distributions, so 

the curve shape shows a smoother image. Figure 24-28. As can be seen, most 

performance or generated images will improve performance depending on the 

trend of Normal distribution ≥ logistic distribution or Laplace distribution ≥ 

Gumbel distribution. The influence of the distribution width causes this 

phenomenon. The density of the distribution effect depends on the size of the 

bell-shaped region of the distribution. It can see that both tails of the distribution 

become thicker to better reflect the information. The cumulative density function 

for the fastest cumulative speed at which the Gumbel distribution rises to the 

upper left. The Gumbel distribution improves performance in most experiments. 

However, the Gumbel distribution showed the best performance, but the 

generalization performance tends to decrease somewhat. Therefore, for generalized 

power generation performance and stable training correlation, it is efficient to 
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find the distribution width adaptively for the optimal point distribution of the two 

relations about generalized and stable training.

Conclusion: We proposed new auxiliary components to help optimize deep 

learning. First, we proposed a novel hybrid regularization to reflect static and 

dynamic characteristics. For further analysis, we analyzed the relationship with 

loss. Relation analysis conducted based on seed values. As a result, it confirmed 

that the adequate reflection of static and dynamic characteristics in the 

regularization through hybrid helps the deep learning model to converge and 

optimize stably. In the process of analyzing the relationship between loss and 

regularization, it confirms that necessary to filter and pass only meaningful 

information. And when the analysis using the seed value, it confirms that the 

result obtained has a slightly larger deviation. However, hybrid regularization is 

somewhat robust to change due to the smaller standard deviation than the 

existing method.

Second, we propose a hierarchical concurrency optimization method for training 

deep learning model optimization. As a result of experimenting with the proposed 

method , we can confirm that the proposed method is stable learning. It seems 

that information applied from the hierarchical and simultaneous learning in the 

model space adequately reflects in the process of learning the model, which 

derives from the relationship between the information reflected in regularization 

and information reflected in optimization.

Third, We identified the importance of establishing the distribution using three 

problems. We performed distribution width increase analysis for stable training to 

use distribution variables in the generative adversarial network. According to the 

increase of the width of distribution has the advantage of information reliably 
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reflects in the model. To verify, we experimented with five models and two-loss 

functions. This study experimentally validates in the generative adversarial 

network but may be used as a distribution of latent variables for other image 

classifier models or reinforcement learning. To quickly and reliably reflect large 

amounts of information in a deep learning model, a broad density function 

distribution is useful as the distribution of the deep learning model. This shows 

that when the density continues to accumulate, the cumulative distribution 

function can reflect faster than other distributions. A sensitivity analysis of the 

distribution suggests that an optimal distribution can propose. We also gained a 

generalized distribution through selective removal of partial distributions and new 

inputs of partial distributions. After all, in terms of NP-hard distribution, the 

GAN can generate in real-time by approximating and reflecting the training data 

information in polynomial time effectively.

In future work, the energy functions of the loss and regularization define to 

visualize the effects of the model. It seems that research through visualization 

method to find optimal points by visualizing the possible relationship of the 

model is needed. Also, it seems to be necessary to optimize the direction of 

learning only meaningful information by visualizing the complexity between 

information from loss area and optimization area.

3.5 Ensemble Normalization for Stable Training [56]

Introduction : Deep learning model learns repeatedly to find the best point. In 

order to find the optimal point, the weights of the model are repeatedly changed 

in the deep learning model training process to move to the optimal point. 

However, if a large number of internal covariate shifts occur, it may represent a 
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distribution of weights that cannot be derived from the training data. This means 

that the distribution of untrained weights moves in different directions and 

converges in the wrong direction. Therefore, the study of normalization to correct 

and learn the internal covariate shift phenomenon is necessary. However, if 

learning by the existing single normalization can be learned in an unoptimized 

direction. To induce different features to be learned in the right direction through 

learning, we propose an ensemble normalization that learns different features 

through two normalizations.

Figure 29. Process of normalization method, a) Existing normalization method, b) 
Ensemble normalization method

Proposed Method : We propose a new normalization method that is ensemble 

normalization method. Ensemble normalization calculates the addition of batch 

normalization and existing normalization. Then apply division 2 to the preceding 

result. The above calculation sequence is shown in Figure 29. Figure 28shows 

the process that is calculated in normalization using the existing method and the 

proposed method. To have a clear understanding of the existing methods, We 

conducted the ablation study on normalization to conduct an impact analysis on 

each existing normalization method before verifying the proposed method. We 

analyzed each normalization in the learning process through Focal loss [55], 
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Hinge loss, and Cross entropy. Experimental results show average results from 

each normalization’s loss. The experimental method uses VOC and ATR datasets 

for FCN and U-Net and uses the average value of three losses and uses the 

average value through five iterative experiments. Experimental evaluation used 7 

evaluation indicators. Tables 15 and 16 indicate in bold when performance 

improves compared to single normalization on Table 13 and 14. We comparative 

analysis of group normalization application using feature maps. it is confirmed 

that the normalization affects the density of the picture rather than the change in 

the appearance of the object. 

Table 13. Quantitative comparison of three normalization in two models using V
OC dataset.

Table 14. Quantitative comparison of three normalization models using ATR data
set.

Model Model DSC F1 score IOU Loss
Mean 
Acc

Precision Recall

FCN

None 0.718 0.718 0.764 0.489 0.969 0.718 0.718
IN 0.727 0.727 0.769 0.287 0.970 0.727 0.727
BN 0.712 0.712 0.760 0.350 0.968 0.712 0.712
GN 0.723 0.723 0.767 0.332 0.969 0.723 0.723

U-Net None 0.725 0.725 0.768 0.401 0.969 0.725 0.725
IN 0.725 0.725 0.769 0.346 0.970 0.725 0.725

Model Model DSC F1 score IOU Loss
Mean 
Acc

Precision Recall

FCN

None 0.733 0.733 0.776 0.498 0.975 0.733 0.733
IN 0.735 0.735 0.777 0.277 0.975 0.735 0.735
BN 0.704 0.704 0.759 0.333 0.972 0.705 0.705
GN 0.732 0.732 0.775 0.309 0.974 0.732 0.732

U-Net

None 0.742 0.742 0.782 0.701 0.975 0.742 0.742
IN 0.738 0.738 0.78 0.546 0.975 0.738 0.738
BN 0.581 0.581 0.696 1.266 0.96 0.582 0.582
GN 0.744 0.744 0.783 0.561 0.976 0.744 0.744
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Tables 13 and 14 show the results of each normalization using the VOC and 

ATR datasets in the FCN and U-Net models. In the case of group and instance 

normalization, the result is improved when the normalization is not applied. 

Summarize the experiments from the previous ablation study. This phenomenon is 

because group normalization efficiently clusters the pixel distribution in the 

process of adjusting and learning the distribution of the pixels. In the case of 

instance normalization, each normalization is performed to obtain more precison  

pixel clustering results. 

Experimental Results : 

Table 15. Quantitative comparison of each normalization combination in the ense
mble method using VOC dataset.

Table 16. Quantitative comparison of each normalization combination in the ense
mble method using ATR dataset.

Model Model DSC F1 score IOU Loss
Mean 
Acc

Precision Recall

FCN
IN 0.735 0.735 0.777 0.320 0.975 0.735 0.735
BN 0.736 0.736 0.778 0.356 0.975 0.736 0.736
GN 0.733 0.733 0.776 0.296 0.975 0.733 0.733

U-Net
IN 0.721 0.721 0.769 0.348 0.973 0.721 0.721
BN 0.637 0.637 0.718 1.464 0.965 0.637 0.637
GN 0.711 0.711 0.763 0.317 0.972 0.711 0.711

BN 0.499 0.499 0.642 1.823 0.945 0.501 0.501
GN 0.723 0.723 0.767 0.335 0.969 0.723 0.723

Model Model DSC F1 score IOU Loss
Mean 
Acc

Precision Recall

FCN
IN 0.735 0.735 0.775 0.260 0.971 0.735 0.735
BN 0.722 0.722 0.766 0.331 0.969 0.722 0.722
GN 0.725 0.725 0.769 0.318 0.969 0.725 0.725
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Table 15 and 16 show experimental results using two datasets for the proposed 
method and overall performance is improved. It is because they learn complemen
tary to each other by catching the characteristics that cannot be captured by exist
ing normalization methods through other normalization methods. With the additio
n of instance normalization, batch normalization, and group normalization, the los
s each changes were +2.3%, +0.4%, and -4.2% for the FCN model and in the U
-Net model, there were      -42.9%, -20.3%, and  -54.2%, respectively. Howeve
r, there is a disadvantage that the performance changes depending on the type of 
normalization additionally applied. As a result, it can be seen that a study is nee
ded to generate a feature generated by the combination optimization in a directio
n having a feature that helps in changing the internal weights of the model.

Conclusion : We propose a new normalization which is an ensemble 

normalization. First, the impact of existing normalization was normalization was 

analyzed through ablation studies to determine the impact of the existing method. 

We also verified the ensemble normalization method. As a result, we confirmed 

that the proposed method is effective for stable training on semantic 

segmentation. However, this study has a limitation that experiment based on 

batch normalization. Therefore, we necessary about analysis using various 

normalization methods. In future research, we will verify the proposal method in 

generating images and classifying images.

3.6 Similarity Analysis of Actual Fake Fingerprints and Generated Fake        

      Fingerprint by DCGAN [57] 

Recently, biometrics technology with the activation of PinTech is attracting 

U-Net
IN 0.731 0.731 0.772 0.269 0.97 0.731 0.731
BN 0.628 0.628 0.708 1.203 0.959 0.628 0.628
GN 0.737 0.737 0.777 0.247 0.971 0.737 0.737
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attention as the authentication technology. Biometrics is a method for recognizing 

human biological characteristics, such as signature, iris, and fingerprint 

recognition. Although these biometric technologies are widely used in electronic 

financial transactions, financial damages are also increasing due to fake biometric 

information. In order to solve this problem, various methods for discriminating 

fake biometric information have been recently developed [59–66]. Especially, as 

the successful applications of recent deep learning are increasing, some methods 

for discriminating fake biometric information using deep learning are being 

studied [59, 63–66]. Convolution neural networks (CNN), which are major 

methods of image information processing, are mainly used for fake fingerprint 

discrimination methods using deep learning [61–64]. In these methods, about 5 to 

7 convolution layers are used for high fake discrimination performances and they 

require thousands to tens of thousands of training images. However, it takes a 

lot of time and cost to acquire real fingerprints and fake fingerprints. In addition, 

each time a fingerprint sensor is changed, a large amount of new data must be 

acquired. This situation occurs in most cases of applying to deep learning. In 

certain applications, it is very difficult to obtain data even at a lot of time and 

cost. To solve the above problem, some methods have been devised to acquire 

augmenting data using the acquired training data. One of such methods is to 

rotate, move, or scale up/down the acquired learning data. However, this method 

is a simple modification not to make a lot of additional training data, so it is 

difficult to improve the performances [63–65]. We propose a similarity 

verification method for augmenting training data between generated fake 

fingerprints by deep convolution generative adversarial networks (DCGAN) and 

actual fake fingerprints. To make augmenting data, we use the DCGAN, which 

has been applied to various fields recently. After training actual fake fingerprints 
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in DCGAN, we generate fake fingerprints using the generator of DCGAN. In 

order to use the generated fake fingerprints to augment training data, generated 

fake fingerprints made by the DCGAN must maintain the characteristics of the 

actual fake fingerprints. Otherwise, the performances of the fake fingerprint 

discriminator using generated fake fingerprints made by the DCGAN may be 

lowered. Therefore, we show through various experiments how similar the fake 

fingerprints made by DCGAN are to the actual fake fingerprints. We compare 

the distribution of the mean and standard deviation of the fake fingerprints 

generated by the DCGAN with those of the actual fake fingerprints as a first 

way to verify. In the second method, the mean Hamming distance (MHD), which 

is one method of evaluating the similarity of images, is used for measuring the 

similarity between the generated fake fingerprints and the actual fake fingerprints. 

The third method is to obtain the histograms of the generated fake fingerprints 

and the actual fake fingerprints and measure the similarity by calculating Pearson 

correlation of the two group of histograms. The fourth method is to calculate 

intersection of union (IOU) between the generated fake fingerprints and actual 

fake fingerprints. IOU is a method of evaluating the shape similarity of images. 

To evaluate the above methods, we trained DCGAN using actual fake 

fingerprints and generated fake fingerprints using the generator of trained 

DCGAN. For experiments, four data settings are provided with a combination of 

generated fake fingerprints and actual fake fingerprints that are not trained to 

DCGAN. We tested similarity between generated fake fingerprints and actual fake 

fingerprints on these four data settings with four similarity measures. 

Experimental results showed that the generated fake fingerprints made by 

DCGAN are similar to the actual fake fingerprints in most verification methods. 

This means that the generated fake fingerprints could be used to augment fake 
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fingerprint data for training deep learning.

Figure 30. Overall process of proposed method.

Proposal Method : We propose four similarity measures to verity that the 

generated data by DCGAN can be used as augmented data. Figure 30 shows the 

overall structure of the fake fingerprint generation and evaluation methods. In 

step 1 of Figure 30, fingerprint data is classified into four qualities for training 

by each quality and by all quality. Step 2 of Figure 30 shows the generation 

method of fake fingerprints data by DCGAN. In order to investigate whether 

there is a difference between two training methods, DCGAN is trained by quality 

and by all quality. Step 3 is to measure the degree of similarity between fake 

fingerprints made by DCGAN and actual fake fingerprints. It is necessary to 

verify whether the fake fingerprint data made by DCGAN is similar to the actual 

fake fingerprint data. In order to evaluate the similarity of the generated fake 

fingerprints to the actual fake fingerprints, we proposed four similarity measures. 

Firstly, the mean and standard deviation of images are calculated and compared 

between the generated fake fingerprint images and actual fake fingerprint images. 
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Comparing the similarity with the mean and the standard deviation makes it 

possible to check the overall distribution of the images but not the detailed 

comparison of the images. Secondly, similarity was measured using the MHD 

developed as a method of measuring the similarity of two images. Thirdly, for 

comparison at the image histogram level, histograms of generated fingerprints and 

actual fake fingerprints were obtained and Pearson correlation between the 

histograms of the two data were obtained. Finally, shape similarity was measured 

using the IOU developed as a method of measuring the similarity of two images. 

The method of generating fake fingerprints using DCGAN is as follows. We first 

obtain actual fake fingerprint images from the material of fake fingerprint 

generation such as silicon or clay. At this time, the quality of actual fake 

fingerprints may vary due to the state of the material or the shaking of the hand 

when the fingerprint image is acquired. That is, fake fingerprint images with bad 

quality are obtained if the material is too stiff to properly contact the 

measurement sensor. We divide the actual fake fingerprint data with four 

qualities to see if there is a difference according to the quality of fake 

fingerprints. The quality of the actual fake fingerprint is classified into four 

levels. Q1 is the best quality, clean overall. Q2 is fake fingerprints that the 

outline or part of those is whitened. Q3 is worse than Q2, and Q5 is the case 

where only a part of the fingerprint is acquired. In order to generate fake 

fingerprint images, DCGAN is trained by quality or by all quality together. After 

training the DCGAN, the generator of DCGAN generates new fake fingerprints 

images by applying random latent z to the generator of DCGAN. The DCGAN 

structure used in our experiments is the same as that proposed by Radford et al. 

[65].
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Figure 31. DCGAN training data by quality: (a) Q1, (b) Q2, (c) Q3, (d) Q5.

Figure 32. DCGAN training process. At the beginning of training (a), during 
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the middle of training (b), and the end of training.

Figure 33. Generated Fake Fingerprint Data by DCGAN

Figure 34. Plot of mean and standard deviation of four data sets.

Experimental Results : The DCGAN for generating fake fingerprints was 

implemented using TensorFlow developed by Google. Figure 31 shows the actual 

fake fingerprint samples for each of the four qualities Fake fingerprints in Figure 

31(a) are very accurate because there are no cracks in the fingerprints and no 
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problem in acquiring the actual fake fingerprints. Figure 31(b) shows actual fake 

fingerprints with cracks. Fake fingerprints in Figure 31(c) are partially whitening 

fingerprints with cracks due to poor pressure on fingerprint acquisition. Figure 

31(d) shows that the fingerprint acquisition did not work properly, resulting in a 

lot of white areas.

The DCGAN generator generates fingerprints that are similar to trained fake 

fingerprints as training progresses using the characteristics of fake fingerprints. 

Figure 32 shows the fake fingerprints generated by the generator during the 

training process. Figure 32(a), 32(b), and 32(c) are generated images by the 

generator at the beginning of training, during the middle of training, and at the 

end of training, respectively. As you can see in Figure 32, the more the training 

progresses, the more and more similar fingerprints to the characteristics of the 

training fake fingerprints are created.

If DCGAN is trained enough, it will generate fingerprints that are quite similar 

to the actual fake fingerprints. Figure 33 shows the fake fingerprints generated 

by the DCGAN generator after training. As shown in the Figure 33, it can be 

seen that they are similar enough to be indistinguishable from the actual fake 

fingerprints. As shown in Figure 33(c) and 33(e), it can be seen that cracks and 

white parts occur similarly to the characteristics of the training fake fingerprints. 

As a result, the generator of DCGAN fully reflects the training data and 

generates fake fingerprints.

Table 17. Data settings for verification of fake fingerprints

Data setting DCGAN Actual TotalTrained Generated
I (Original Quality) 0 0 1000 1000
II (Each Quality) 600*4 200*4 200 1000
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We should verify the similarity of generated fake fingerprints to actual fake 

fingerprints with four measures. When the similarity is verified with four 

measures, the generated fake fingerprints by DCGAN can be used as training 

data for augmenting training data. In the verification method with four measures, 

we use four data settings to see if the similarity depends on the quality of the 

fake fingerprints. Table 17 shows four data settings for verification of the 

similarity according to generated data by DCGAN and actual data. In data 

setting I, there are no generated fake fingerprints and 1,000 actual fake 

fingerprints. In data setting II, 600 actual fake fingerprints are trained for each 

quality in DCGAN, then 200 fake fingerprints are generated by DCGAN for 

each quality, and 200 actual fake fingerprints are combined to make 1,000 total 

fake fingerprints. In data setting III, DCGAN learns 2,400 actual fake fingerprints 

without distinguishing quality and generates 800 fake fingerprints, and combined 

to 200 actual fake fingerprints. The data setting IV is the same as the third one, 

but it generates 1,000 fake fingerprints. Therefore, data setting I and IV are 

composed of only actual fake fingerprints and only generated fake fingerprints, 

respectively. In these data settings, all data sets were used after normalization 

process.

Similarity Analysis : To analyze whether the fake fingerprints generated by 

DCGAN are similar to the actual fake fingerprints, our analyzes were performed. 

In this analysis, we compared them according to the four training data sets as 

shown in Table 17. This is because that it would be more meaningful to 

compare the generated fake fingerprints according to the methods of using them 

as training data. First, the pixel value of the image was used to calculate and 

III (All Quality) 2400 800 200 1000
IV (All Quality) 2400 1000 0 1000
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compare the mean and standard deviation of the image. In other words, the 

averages and standard deviations of images of four data sets are shown on the 

two-dimensional coordinates in order to compare the similarity of four data sets. 

Figure 34(f) and 34(g) shows the results of the mean and standard deviation of 

four data sets. First, the data set II, III, and IV, which use fake fingerprints 

generated by DCGAN, are slightly larger than the data set I in average, which 

use only actual fake fingerprints. This is probably because DCGAN generates a 

crack or a white part in the actual fake fingerprints with low quality. 

In the data set II and III, since many generated fake fingerprints are included, 

we can see that the result is almost similar. It can be seen that there is almost 

no difference in terms of mean and standard deviation in the case of generating 

by quality and by all quality together. As you can see in Figure 34, data set IV 

composed of only generated fake fingerprints are overlapped to the data set I 

composed of only actual fake fingerprints. This indicates that the generated fake 

fingerprints by DCGAN are similar to the actual fake fingerprints in terms of the 

distribution of mean and standard deviations.

As a result, from the viewpoint of average and standard deviation analysis, 

they can be used to augment fake fingerprints. However, the mean and standard 

deviation represent the overall characteristics of the image and can not be used 

to measure the similarity of the image in detail. Therefore, three additional 

analyzes were performed to analyze the detailed characteristics. The MHD used 

in Sixt et al. [66] was used for the analysis of four data sets. The Hamming 

distance is increased when the reference pixel value is different from the 

comparison pixel value. All the extracted Hamming distances are added and 

divided by the number of pixels, then the total average Hamming distance is 

obtained.
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Table 18. Analysis of various similarity methods.

Table 18 shows the MHD results between two data sets based on data set I. 

Hamming distance is obtained over all data pairs in two data sets and averaged. 

The smaller the MHD is, the more similar the two sets of images are. MHD of 

data set I-I is the smallest because they calculate themselves. The next best thing 

is data set I-III made by combining all qualities and then data set I-II made by 

quality. However, the difference between the two sets is very small, so there is 

no big difference. The worst case is comparison data set I-IV, where all the fake 

fingerprints were generated by the DCGAN. Although DCGAN produces 

something that is very similar to an actual fake fingerprint, it shows that it 

produces something slightly different from the actual fake fingerprint. Finally, to 

analyze the similarity of the distribution of brightness values of images, each 

image is represented by histogram and analyzed by Pearson correlation of 

histogram for each data set. In other words, all pairs are generated from two 

sets of images and the Pearson correlation is obtained from each pair. As shown 

in Table 18, all results show positive correlation results. That is, the histogram 

of the generated fake fingerprints are similar to the histogram of the actual fake 

Dataset
I-I I-II I-III I-IV

Mean hammin
g distance

5955.69 6463.39 6446.29 6550.22

Pearson correl
ation of histo
gram

0.682 ± 0.219 0.151 ± 0.272 0.272 ± 0.245 0.180 ± 0.111

Intersection of 
union

0.50 0.45 0.55 0.53



- 106 -

fingerprints. Experimental results show similar tendency to MHD measurement 

results. These results show that DCGAN can produce similar results to the 

brightness distribution of training data. Table 18 shows the IOU results. IOU, a 

quantitative representation of overlapping parts of object detection, has been used 

as an evaluation of segmentation [67]. We used the IOU as a similarity measure 

of two data sets through the full combination of the data of each data set based 

on the data setting I. For examples, I-II column in Table 18 shows the similarity 

of data set I and II, and shows the lowest value of similarity analysis in 

comparison data set I-II. Since data set II is made by each quality, the similarity 

of generated fake fingerprints is not totally followed much of fake fingerprints. 

In the case of comparison data set I-III and I-IV, it can be confirmed that the 

methods generated by whole quality are more similar to each other than those 

made by each quality. The difference between comparison data set I-III and I-IV 

is 0.02, which appears to be a difference in the experimental method depending 

on the presence or absence of 200 actual fake fingerprints. Through the four 

similarity measurement methods, it was shown that the fake fingerprint generated 

by DCGAN is similar to the actual fake fingerprint and they can be used for 

augmenting training data.

Conclusion : We analyzed similarity of actual fake fingerprints and generated 

fake fingerprints by DCGAN with four similarity measures for augmenting 

training data. Experimental results showed that fake fingerprints generated by 

DCGAN are made by combining the features of training actual fake fingerprints 

and confirmed that the characteristics of the generated fake fingerprint are 

substantially similar to those of the actual fake fingerprints. From these results, 

we could conclude that the generated fake fingerprints by DCGAN were used for 
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augmenting training data. These results are useful in the case where training data 

is costly and time-consuming to acquire, especially in areas where acquisition of 

training data is very difficult. As a further work, we will directly test the 

performance improvements of CNN and DNN using the augmenting training data 

by DCGAN.

3.7 Multi Way Decoder Scheme with Error Reduction Embedding on one-hot    

    bi-directional Seq2Seq with adaptive regularization for Music               

    Composition[73]

In the existing research on music composition using deep learning, most of the 

composition does not reflect details such as pitch and duration [68-72]. This 

makes it impossible to compose realistic music like composers. In addition, since 

the patterns are created using various combinations using notes, beats, and 

melodies, the complexity of the combinations expressed from each element is 

very high. Finding meaningful patterns from high complexity is a difficult 

problem. In previous research, most of the deep learning does not reflect the 

details of the training data. Currently, the field of study is compressing 

information in order of signal, information, and knowledge in comparison with 

the flow of information. However, the current structure has been studied to 

change within the scope of the state of information if the current state is the 

information state. It is essential to research through improvement within the same 

perspective as the research has been conducted so far, but we thought that the 

direction of research should be seen through the new perspective from the 

scheme perspective by expanding the structure. This makes it impossible to 

compose realistic, like composers.
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To overcome this problem, we tried to propose a structure from a scheme point 

of view. In this way, the structure of deep learning is essential to understand the 

structure, explainable method, interpretable method, and structural components 

from the transparent structure perspective. Also, looking at the encoding structure 

of a structure at the schema level of the structure using scheme has the 

advantage of being able to encode by explicitly changing the internal steps. It is 

also essential to building on a structure because the structure can be made 

procedural.

• We propose a multi-way decoder module from the scheme point of view for 

the first time in determining deep learning structure internal information with 

heterogeneous normalization.

• We proposed a one-hot bi-directional Seq2Seq with the adaptive l2 

regularization.

• We propose an information error minimization for use as an input.

Figure 35. Our Proposal System about Multi-way Decoder Scheme

Our Proposal : Solving problems with new perspectives is challenging and 

stressful. Also, it is a difficult problem to efficiently optimize the process of 
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embedding in space and determining information at the same time. We will try 

to improve these difficult problems through the new method. We propose a new 

method for the embedding part and decoding part of the information in the 

process of determining the information through one decision in Figure 35. The 

embedding part proposes a three-step information processing method for encoding 

the information of the input data into one codeword (One-hot encoding) in the 

encoding process. First, integer using convert int32 reduces bit errors. Second, 

the size of the information corrects by scaling the bi-directional information. 

Third, clipping is to simplify the information. Through the above process, co- 

adaptive information of input information extract. In the decoding part, we 

propose an optimal decision- making method by optimizing the combination of 

multi-way information based on the scheme structure. The proposed structure has 

a new structure of information processing from three perspectives. This is 

because performance improved through the synergistic effect of each information 

through optimization of the combination of information generated in the process 

of transmitting the information generated from various components to a single 

target. However, it believes that this method has limited performance that judges 

according to the degree of optimization between parts.
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Figure 36. Analysis of our proposal. i) Embedding part

Figure 37. Comparison of decoder part experiments with Seq2Seq model

Figure 38. Comparison of the impact on learning loss
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Figure 39. Evaluation of normalization performance used in experiments using 

scatter plot and histogram

Figure 40. Comparison result using numerical analysis of training in each class
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Figure 41. Analysis of our proposal
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Figure 42. Visualization of generated music about one-hot bi-directional Seq2Seq

Table 19. Comparison of one-hot encoding and whole encoding analysis

Table 20. Comparison of one-hot and whole encoding analysis using total error

Duration Pitch
Convert int32 0.013 0.060
Scaling SELU to Convert int32 0.050 0.083
Scaling Bi-directional dot product SELU to Conv
ert int32

0.026 0.076

Scaling Bi-directional dot product SELU to Clip 
value to Convert int32

0.010 0.083
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Table 21. One-hot encoding on experimental models, a) bi-directional RNN, b) 

bi-directional seq2seq, c) bi-directional seq2seq using adaptive l2 0.5 

regularization

Test
Bi-directional RNN with who

le input
Bi-directional RNN with whole 

one-hot input
Duration 240 168

Pitch 10.0 9.5

Test
Bi-directional Seq2Seq with 

whole input
Bi-directional Seq2Seq with one-

hot input
Duration 224 190

Pitch 14.5 11.5

Train for 
duration

Loss of 0 Loss of 20 Loss of 60 Loss of 90

a 3.893 0.511 0.427 0.083
b 3.898 0.586 0.424 0.117
c 3.893 0.591 0.495 0.164

Test for 
duration

Total error
Cosine 

similarity
Pearson 

correlation
Numerical 
analysis

a 168 0.998 0.007
μ : 72.0 
σ: 2.965

b 190 0.998 -0.017
μ : 73.163 
σ : 1.976

c 140 0.999 0.455
μ : 72.326, 
σ : 2.717

Train for 
pitch

Loss of 0 Loss of 20 Loss of 60 Loss of 90

a 3.874 2.330 1.571 0.588
b 3.864 2.432 1.576 0.627
c 3.863 2.432 1.220 0.307

Train for 
pitch

Total error
Cosine 

similarity
Pearson 

correlation
Numerical 
analysis

a 9.5 0.851 0.067
μ : 0.628, 
σ : 0.266

b 11.5 0.825 -0.239 μ :0.581 
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Table 22. Various efficient on one-hot bi-directional seq2seq2 with l2 

regularization using 0.5, 0.4, 0.3, 0.25, 0.2, 0.1 and none l2 regularization.

σ : 0.214

c 7.5 0.901 0.255
μ : 0.501, 
σ : 0.185

Train of durat
ion

Loss of 0 Loss of 20 Loss of 60 Loss of 90

None 3.898 0.586 0.424 0.117
l2 0.1 3.898 0.661 0.325 0.082
l2 0.2 3.898 0.633 0.364 0.147

l2 0.25 3.893 0.591 0.495 0.164
l2 0.3 3.899 0.651 0.363 0.092
l2 0.4 3.898 0.612 0.371 0.093
l2 0.5 3.897 0.562 0.499 0.126

Test of durati
on

Total error
Cosine 

similarity
Pearson 

correlation
Numerical
 analysis

None 190 0.998 -0.017
μ : 73.163 , 

σ : 1.976

l2 0.1 151 0.998 -0.094
μ : 71.558 , 

σ : 2.038

l2 0.2 214 0.997 -0.479
μ :72.233, 
σ : 2.752

l2 0.25 140 0.999 0.455
μ:72.326,

 σ : 2.717

l2 0.3 181 0.998 0.47
μ :72.907,
 σ : 2.568

l2 0.4 172 0.998 -0.059
μ: 71.860,
 σ : 2.707

l2 0.5 171 0.998 -0.073
μ : 71.6,
 σ :2.596

Train of pitch Loss of 0 Loss of 20 Loss of 60 Loss of 90
None 3.864 2.432 1.576 0.627
l2 0.1 3.827 2.493 1.220 0.573
l2 0.2 3.868 2.476 1.365 0.350

l2 0.25 3.863 2.432 1.220 0.307
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Table 23. Comparison of our proposal based on one-hot bi-seq2seq with adaptive 

regularization using music dataset using top 1 error

l2 0.3 3.864 2.488 1.835 0.648
l2 0.4 3.873 2.306 1.09 0.241
l2 0.5 3.874 2.436 1.140 0.222

Test of pitch Total error
Cosine 

similarity
Pearson 

correlation
Numerical 
analysis

None 11.5 0.825 -0.239
μ :0.581,

 σ : 0.214

l2 0.1 14.0 0.805 -0.097
μ :0.709,

 σ : 0.345

l2 0.2 5.0 0.910 0.314
μ : 0.570,
 σ : 0.173

l2 0.25 7.5 0.901 0.255
μ : 0.501,
 σ : 0.185

l2 0.3 11.0 0.834 -0.108
μ : 0.570,
 σ : 0.224

l2 0.4 9.0 0.885 -0.139
μ : 0.523,
 σ :0.105

l2 0.5 12.25 0.828 -0.001
μ : 0.657,
 σ :0.305

Train Loss of Duration Loss of Pitch
Bi-directional RNN using 

LSTM Cell
0.040 0.077

Bi-directional RNN using 
SRU Cell with Double A
LL Group Normalization

0.052 0.124

Bi-directional RNN using 
SRU Cell with Double A
LL Group Normalization 

with 0.7 Dropout

0.056 0.128

Change NAS Cell 0.045 0.108
Change 0.75 Dropout 0.038 0.087

Both Bi-directional RNN 0.020 0.102
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Table 24. Comparison of multi-way decoding scheme analysis

We analyzed a new method for embedding method and decoder module. Figure 

36 shows an analysis of the proposed method for the embedding part. Figure 36 

consists of five parts. Figure 36(a) shows how to apply one-hot encoding on 

existing float data. Figure 36(b) shows how to apply one-hot encoding after 

changing integer 32 from existing float data. Figure 36(c) shows how to apply a 

one-hot encoding after applying to scale after changing integer 32 from existing 

Float data. Figure 36(d) is a method of applying one-hot encoding after changing 

to integer 32 from existing Float data, dividing it into Bi-direction, applying to 

scale. Figure 36(e) shows how to apply one-hot encoding after clipping to reflect 

and Vanilla RNN using 
GRU Cell with Double A
ll Group Normalization w

ith 0.7 Dropout
Change NAS Cell 0.024 0.067

Duration Pitch
Our scheme + Our embe
dding

0.015 0.054

Only adopted encoding m
odule that composed of 
Our scheme + Our embe
dding

0.006 0.063

Only adopted encoding a
nd decode module that c
omposed of Our scheme 
+ Our embedding

0.027 0.080

Only adopted one module 
that composed of Our sc
heme + Our embedding

0.020 0.058
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only important information after changing the existing float data to integer 32 

and dividing it in Bi-direction. In the process of clipping, we set various ranges 

and experimented to find the optimal point and clipped it using the value of the 

category. During the experiment to find the clipping coefficient, a large variation 

in performance occurred depending on the degree of clipping. Therefore, it 

confirms that it is important to find a range of meaningful information.

In Table 19, in the first step, results show a decreased error in music duration 

and pitch. This is because the method applies after changing to an integer type 

to minimize bit error during the embedding process. In the second step, the 

result is increased compared to the first step. It seems that the error is improved 

because of the result of correcting the information by applying scaling before 

changing to an integer type, not cluster. In the third step, The Top 1 error is 

reduced compared to the ninth method. In the scaling process, information 

scaling is performed by dividing into bidirectional information and applying it to 

scale. In the fourth step, the Top 1 error shows the smallest error value in the 

pitch information. It seems that the lowest error obtains by extracting only the 

common information from the extracted information. The positive SELU and the 

negative SELU use despite the increased error in the process of inserting new 

elements. It intends to use only information generated in the process of merging 

through bidirectional information. Sparse information generates. Such sparse 

information is an important key point in judging an image. Using these key 

points to judge the information of the model was judged efficiently and 

considered to be the correct judgment. On the contrary, common information is 

not a significant difference in actual judgment, so confusion arises in the process 

of model judgment.

We compare of decoder part experiments with the Seq2Seq Model in Figure 37. 
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Firstly, we compared the cases where Vanilla RNN, Bi-directional RNN, Vanilla 

RNN, and Bi-directional RNN, Vanilla RNN, and Bi-directional RNN, and 

Bi-directional RNN use when using NAS Cell. This was to check whether it is 

more efficient in the decoding process to reflect various features in the decoding 

process. Through this experiment, it confirms that reflecting various features 

showed faster convergence speed and lower error. This confirms that learning by 

using various ways rather than using one way converges to the shortest point of 

the model. Secondly, we tried to find a robust internal cell inside the RNN used 

in this experiment using LSTM Cell, GRU Cell, SRU Cell, and NAS Cell. It 

also shows a faster convergence rate than other cells. Cell, which shows the 

lowest error value when using NAS It confirms that the structure to find the 

internal cell through the search method could acquire the lowest error of the 

model. We analyzed different features in the decoding process. It intends to use 

bidirectional and single features simultaneously. It was important to reconstruct it 

by reflecting on various features. Therefore, to reflect different features, the 

experiment was conducted by applying an RNN to extract a single characteristic 

and a bi-directional RNN to extract a bidirectional characteristic to the decoder 

model part. Reflecting by using different features is considered to show a better 

synergistic effect than reflecting a single characteristic when synergistic effects 

occur.

We show the results of experimenting on how to learn all the classes and how 

to learn each class to see the impact of learning in each class. Figure 38 shows  

a comparison of the impact on learning loss for each class learning. In the case 

of learning in each class, nine loss values were expressed as the centerline of 

averaged values, and the change amount was expressed using the standard 

deviation. Figure 38(a) shows how to learn with the whole class. Figure 38(b) 
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shows how to learn with each class. The learning of each class results in lower 

loss errors than the learning of the entire data, which results in a lower error 

because the overall complexity of the data set is lower. In the case of learning 

by each class, we try to compare the effect of learning by each class by 

changing the cell of Vanilla RNN. Figure 38(c) shows the results of experiments 

with GRU cells. In the case of learning each class as a GRU cells, it confirms 

that the spark spacing in the loss is wider and higher in size than the LSTM 

Cell. These results seem to be caused by the lack of one memory gate in GRU 

Cell than LSTM.

In the process of training heterogeneous features in the process of training 

different features, the training may conduct in the right direction or the wrong 

direction. Therefore, there is a need for a combination optimization that can 

stably training heterogeneous features. We are analysis of interactive associate 

feature calibration at ensemble normalization using association relation analysis. 

We are an experiment with four normalization methods (i.e., batch normalization, 

instance normalization, group normalization, and layer normalization). Through 

observation, we could confirm that group normalization and instance 

normalization showed the best performance by combining normalization 

experimented in Figure 39. Also, when the performance improved compared to 

the existing one. This visualizes using a bar graph. We use instance 

normalization and group normalization in an ensemble normalization. It confirms 

that the combination of group normalization and instance normalization has 

improved through more stable acquisition.

For more realistic music composition, we propose a new music composition 

using a one-hot bi-directional Seq2Seq structure with a new adaptive l2 

regularization to reflect the detailed characteristics of music in the new music 
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composition in Figure 35. We adopted a method of class training. Training as a 

class reflects the information in the data more efficiently than reflecting the 

entire data. Applying one-hot encoding allows us to extract and learn only 

important features, so we can evaluate performance through the principal 

components of data. Also, we adopted the bi-directional Seq2Seq. Because we 

can learn more about the training data through bi-directional training, but 

bi-directional training can also increase the trained information on trained music. 

We propose a new adaptive l2 regularization during training. Adaptive l2 

regularization helps the Seq2Seq to train more detailed information by clustering 

the training music. Also, we use one-hot encoding for pitch and bits in both 

encoding and decoding models, because one-hot encoding allows us to learn 

trained songs more carefully and accurately. To check the composition results, 

we train the bi-directional Seq2Seq model with 420 songs. When learning 

different genres of music, we found it difficult to learn more because of the mix 

of musical characteristics of each genre. So, we experimented with only one 

genre to compose a more realistic song. We showed that a model trained with 

only one genre song produced a more realistic song.

The composition of the experiment environment is as follows. The music dataset 

is consisting of nine genres that include 420 songs. The experiment was 

performed by configuring the output with 48 melodies and 48 melody inputs in 

the experimental model. The music also consists of two pieces of information 

about duration and pitch. We apply the proposed method to duration and pitch. 

We were experimented with Adam optimizer, epoch 100, a learning rate of 0.01, 

and Seed is 77. We experimented with the effect of music composition on the 

proposed method through the average of the duration and pitch results for 

quantitative analysis. The improved values are shown in bold.
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We first show the results of experimenting on how to learn all the classes and 

how to learn each class to see the impact of learning in each class. We compare 

the impact on learning loss for each class learning. In the case of learning in 

each class, nine loss values express as the centerline of averaged values, and the 

change amount expresses using the standard deviation. The learning of each class 

results in lower loss errors than the learning of the entire data, which results in 

a lower error because the overall complexity of the dataset is low. In the case 

of learning by each class, we tried to compare the effect of learning by each 

class by changing the cell of Vanilla RNN. In the case of learning each class as 

a GRU cell, it can confirm that the spark spacing in the loss is wider and 

higher in size than the LSTM Cell. These results seem to be caused by the lack 

of one memory gate in GRU Cell than LSTM.

Figure 40 shows a comparison of the effects of music generation on the ground 

truth for each class training. Figure 40(a) is a case of training using the LSTM 

cell, Figure 40(b) is a case of learning using GRU cell, and Figure 40(i) is a 

case of training using whole ground truth. In this case, the ground truth 

represented in Figure 40 is the result of visualizing the ground truth using the 

mean and standard deviation. Also, the generated music data visualize by 

calculating the mean and standard deviation. As a result of numerical analysis in 

Figure 40, we found that the case of using GRU Cell is more similar to the 

actual data distribution than the case of using LSTM Cell. The LSTM cell has 

one memory gate larger than that of the GRU cell. Training in each class 

confirms that the model is trained reliably and produces a better representation of 

the actual data. We compared and analyzed the case of training in one direction 

and both directions using Vanilla RNN and bi-directional RNN in Figure 40. 

Figure 40 shows a comparison result using numerical analysis of training with 
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bi-directional in each class. Figure 40(b) is the result of training all classes. 

Figure 40(c) is the result of training by each class. Figure 40(i) is the result of 

training with Vanilla RNN using GRU Cell. Figure 40(ii) is the result of training 

with Bi-directional RNN using GRU Cell. In the case of learning by 

Bi-directional RNN in the learning method of each class, information from 

bi-directional learn. It can be seen that the result generated above is similar to 

the shape of the existing important data distribution of the data than the results 

learned with the existing Vanilla RNN. These results seem to generate by 

reflecting the main component characteristics, which are important characteristics 

of existing data characteristics.

From the above results, we can see that bi-directional training generates 

distribution similar to real data in single class learning. Therefore, this study 

compared and analyzed Bi-directional RNN and Bi-directional Seq2Seq. Also, we 

apply the adaptive l2 regularization proposed in Table 21. Table 21 analyze of 

duration total error and pitch total error using bi-directional RNN and 

bi-directional Seq2Seq for one-hot encoding and whole encoding input. In the 

case of the bi- directional Seq2Seq with whole one-hot encoding, the total error 

is reduced by 72, and the pitch error is reduced by 0.5. Bi-directional Seq2Seq 

reduced duration total error 34, and pitch error decreased to 3.0. The above 

results show that most of the methods reduce when one-hot encoding is applied. 

These results seem to be because the model can learn as it reflects discrete 

information. Reflecting discrete information is similar to learning only important 

features of the data. After all, reflecting only important input features shows that 

deep learning models can train efficiently.

The errors in loss of 90 during train for music duration in Table 22. Table 22 

shows that the error values are slightly higher when comparing bi-directional 
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seq2seq and bi-directional Seq2Seq with adaptive l2 0.25 regularization using 

bi-directional RNN. However, the bi-directional Seq2Seq with an adaptive l2 0.25 

regularization shows a 28 error reduction in Table 22. Pearson’s correlation 

showed an improvement of 0.448 in Table 22. We improved cosine similarity 

0.050 and improvement of Pearson correlation 0.188 in Table 22. Table 22 show 

that the overall performance of adaptive l2 regularization improves by 

composition. It is explained in terms of Duration and Pitch. Pitch is the degree 

of highness or lowness of a tone. Duration is the length of time a note lasts for. 

Because the model used in the experiment is robust to time continuity, it shows 

a better similarity than the pitch in terms of duration measurement. However, in 

terms of pitch, it seems to generate a rather high error in hierarchical sound 

generation.

The results of train and test for music duration in Table 24 show that the 

performance of l2 regularization is generally improved compared to l2 

regularization. Table 24 shows that regulation has improved the performance by 

looking for generalization features. However, in the case of strong regulations, 

the performance fell somewhat. Therefore, it is important to find generalized 

functions through adaptive regulation. Finally, to verify the effectiveness of the 

adaptive l2 regularization, quantitative analyses are performed for the duration in 

the pitch in Table 24. We also compare the duration and pitch improvements to 

the mean values for averaging the adaptive l2 regularization. In the result of 

train and test for music pitch Table 24 can be seen that the result of applying 

l2 regularization is mostly improved compared with the result before application. 

Also, Table 24 shows the performance improvement/reduction according to the 

scale value of l2 regularization. These results confirm the need for adaptive l2 

regularization to apply regularization. In the regularization experiment, similarly, 
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it shows better similarity than the pitch in relation to the duration measurement. 

However, in terms of pitch, it seems to generate a rather high error in 

hierarchical sound generation.

Figure 39 shows an analysis of the decoding method. The analysis was 

conducted to confirm the impact on each component of the proposed method. 

Figure 39(a) shows how to experiment with LSTM cell on the existing 

bi-directional RNN. Figure 39(b) shows how to experiment with SRU cell on the 

existing bi-directional RNN. Figure 39(c) shows how to increase existing 

bi-directional RNNs to two, apply Group Normalization, and merge them. Figure 

39(d) extends the existing bi-directional RNN to two, applies the same Group 

Normalization, and extracts the features through Drop before applying 

normalization to one path, and two information extracted through Drop after 

applying normalization to one path. Use as one information and combine it with 

another. Figure 39(e) is based on Figure 39(d) to experiment using NAS Cell 

instead of SRU Cell. Figure 39(f) experiments after changing the probability 

value from 0.7 to 0.75 in Figure 39(e). Figure 39(g) creates one path using 

Bi-directional RNN and other Vanilla RNN based on GRU Cell, applies Instance 

normalization, extracts the feature, and applies it to the last part of Figure 39(f). 

Figure 39(h) experiment based on Figure 39(g) based on NAS Cell.

Table 23 shows the results of the Top 1 loss error learned through the method 

proposed. The performance was improved through experimental verification 

through the introduction of new methods one by one. We proposed a new 

decoding module based on the proposed encoding and decoding scheme. 

Therefore, we experimented based on the encoding and decoding structure to 

generate music. The proposed structure consists of one-hot bi-directional Seq2Seq 

with adaptive L2 regularization. Table 23 summarizes the tendency to loss. Loss 
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results tend to increase and then decrease. It was motivated to improve 

performance over the existing method by reflecting the synergy effect by 

reflecting the characteristics of heterogeneous models. Therefore, to create 

different features, we tried to apply the method of randomly removing one 

feature and using the feature that not apply to the other. Through this, we tried 

to extract different features. However, if you design as above, it seems that the 

model is optimized, but a higher error occurs because it did not go to a better 

optimization point than before. Since this is a less-optimized state, we tried to 

find the optimal state by using a NAS cell inside to find the optimized state. 

Through this, optimized results obtain through NAS Cell. Nevertheless, since it 

shows a higher error than the previous one, the optimal extraction was found 

through the adaptive coefficients in the probability extraction. To improve than 

the previous one, reflecting various features can be reflected in a more optimized 

state, so we experimented with a method of combining and applying various 

RNNs to reflect various features to find a better optimization model. This seems 

to be improved as it reflects the various features to help optimize further.

Experimental Results about Music Composition: numerical analysis, cosine 

similarity, Pearson correlation, and total error [57] to compare the similarity 

between training music and generated music.

Figure 42 shows the results of the qualitative analysis on the generation score of 

the one-hot bi-directional Seq2Seq. Figure 42 is composed of six experimental 

results. Figure 42(a) is the result of whole input RNN, Figure 42(b) is the result 

of whole input bi-directional RNN, Figure 42(c) is the result of whole input 

bi-directional Seq2Seq, Figure 42(d) is the result of one-hot bi-directional RNN, 

Figure 42(e) is the result of one-hot bi-directional Seq2Seq, Figure 42(f) is the 

result of one-hot bi-directional Seq2Seq with adaptive l2 regularization. Figure 
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42(a) whole input RNN shows that it produces a monotonous pattern. Figure 

42(b) whole bi-directional RNNs generate more diverse scores by reflecting more 

and more order information in the encoding and decoding process than whole 

input RNNs. Figure 42(c) whole input bi-directional Seq2Seq creates more 

diverse flow configurations and reflects information trends about the previous 

state. Figure 42(d) It is a one-hot bi-directional RNN, showing that it generates 

clearer content information than whole bi-directional RNN. These results seem to 

be because the model learns its input through one-hot encoding. Figure 42(e) It 

is a one-hot bi-directional Seq2Seq, which generates by reflecting only clearer 

information about the previous state. Also, two-way reflects the two-way flow, 

creating more diverse music. Figure 42(f) one-hot bi-directional Seq2Seq with an 

adaptive l2 regularization shows not only clear information but also diversity 

through forward and reverse information. Also, the results obtained through 

adaptive l2 regularization show that some variation occurs for bits. This adjusts 

the regulation of existing information as much as possible, but it can confirm 

that various music is generated by adaptively applying it to the space that needs 

to be adjusted. We can also upload the generated music to the homepage and 

listen to the samples at the author’s blog.

In Table 24, In the first step, the proposed scheme is applied to the encoder of 

the encoder-decoder structure. After applying the experimental method, the 

experiment performs to confirm the use of the existing model for the decoder 

part. The Top 1 error is reduced by 0.025 in duration and 0.013 in pitch 

compared to the first method. This seems to be due to minimizing bit errors in 

embedding and optimizing the information extracted through various information 

in decoding. In the second step, we applied the existing model to the encoder of 

the encoder-decoder structure, applied the proposed scheme structure to the 



- 128 -

decoder part, and then experimented with applying the experimental method. The 

Top 1 error is reduced by 0.034 in duration and 0.014 in pitch compared to the 

first method. This can confirm that it is essential to extract information about the 

data efficiently. In the third step, the proposed method is applied and verified to 

the encoder-decoder structure. The Top 1 error is reduced compared to the first 

method, but the error is increased compared to the application of encoding and 

decoding, respectively. This seems to increase the top 1 error as the complexity 

increases during encoding and decoding. In the fourth step, the experiment was 

performed after applying the experimental method to verify using only the 

method proposed without using the encoder-decoder structure. We show that the 

Top 1 error reduces the fourth step. In the process of judging the information, it 

finds that having a model structure that is not too complicated can help to make 

an efficient decision.

Conclusion: First, we propose a new multi-way decoder module using the scheme 

perspective in determining information. Second, we propose a one-hot 

bi-directional Seq2Seq with adaptive l2 regularization. Third, we propose to use 

instance and group normalization in an ensemble normalization. Fourth, we 

propose a new embedding method that minimizes information during embedding 

to use as an input. We confirmed that the performance improves by suggesting a 

module with a scheme point of view that minimizes information errors in the 

process of embedding information and learns by reflecting mutual features in the 

process of determining information. We have room to increase performance by 

the combination optimization that each component place efficiently.
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Chapter 4.  Application Technique

4.1 Study on the Importance of Adaptive Seed Value Exploration [74]

Introduction: Initial seed values are set during training, relearning, and 

deployment of the deep learning model [75-81]. In the existing deep learning 

model, and initial random probability value is generated according to the initial 

seed value. The generated probabilities have a great influence on the initial 

position of the data preprocessing process or the learning process of deep 

learning. Therefore, it is necessary to train the deep learning model through seed 

values that are not significantly changed from the initial seed values. Because the 

seed value is set, it has an important initial influence on the training of the deep 

learning model, which affects the overall learning of the model. Therefore, 

setting the initial seed value is important for setting the direction of learning 

deep learning.

We propose a study to train the deep learning model by setting the seed value 

by searching for the adaptive seed value.

Proposal Method : We propose that it is important to search the seed value 

(key) adaptively to help the training of a deep learning model. The reason why 

setting the key (seed) is important is explained in three ways. In addition, the 

limitations of adaptively searching the seed value (key) are also described.

Firstly, we explain why it is important for search the seed value (key) 

adaptively to help the training of deep learning model. The seed (key) value is 

used to learn, relearn, or deploy. The seed value is the key that is open to the 

developer. In the process of distributing a model to a server using a key and 

inferring using new data, the key can be inferred from a key that has not been 
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trained at all. Through this, the result of the misclassified model can be 

obtained. Therefore, the process of deploying and inferring the model on the 

server by setting the same key is necessary. Also, it is necessary to encrypt the 

key so that only the developer can see it and reuse it.

Secondly, We explain why it is important to search the seed value (key) 

adaptively to help the training of a deep learning model. Generating seed values 

occurs using a random function. However, what happens by using a random 

function is that reverse engineering using a lot of supercomputing can search the 

random value that is generated. That is, generating a seed value using a Qubit is 

much more secure in terms of security than generating a seed by a real value, 

so a study of generating a seed value using a random quantization function is 

necessary.

Thirdly, the limitations of this study are described. The first thing that a 

developer can see by creating a seed value is to see only the results of the 

model. It is difficult to search the rules of the pattern of values generated by 

randomness. To search a pattern from such randomness, we need to experiment 

with various seed values and random number generator based on a 

supercomputer. As a result, it is necessary to search formula to search the seed 

(key) value that can be adaptively used by searching the characteristics of the 

pattern through statistical inference.

However, in this study, two experiments were used to confirm through a 

simple toy sample. First, we compare each CNN model using three seed values. 

Second, we compare the performance after training two models according to the 

data size of the four inputs. The experiment described the average result value 

through five experiments. This experimented with four datasets. The model used 

for the experiment was conducted using three CNN models with different CNN 
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layers.

Table 25. Evaluation of experimental performance using three seeds 
(1, 500, and 999) on a small CNN model 

Table 26. Performance evaluation based on four input data using three CNN mod
els at seed 1 (batch sizes 128, 86, 64, and 32) 

(a) MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 2.303 0.110 2.304 0.101 2.304 0.103 4.611 0.01
eLU 2.826 0.138 2.820 0.139 2.841 0.136 6.918 0.035
Test Acc Acc Acc Acc
RELU 0.125 0.1875 0.1875 0
eLU 0.0625 0.125 0 0
(b) MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 2.303 0.111 2.304 0.102 2.304 0.102 4.610 0.009
eLU 2.834 0.139 2.839 0.139 2.84 0.137 6.902 0.315
Test Acc Acc Acc Acc
RELU 0.125 0.125 0.1875 0
eLU 0.0625 0.0625 0.0625 0
0(c) MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 0.142 0.973 0.41 0.863 2.304 0.102 4.61 0.010
eLU 2.843 0.139 2.834 0.14 2.84 0.137 6.923 0.035
Test Acc Acc Acc Acc
RELU 0.875 0.875 0.1875 0
eLU 0.0625 0.125 0 0

B a t c h 
128

MNIST Fashion MNIST Cifar10 Cifar100

Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 1.412 0.437 0.316 0.95 2.303 0.0626 4.610 0
eLU 2.82 0.125 2.82 0.125 2.82 0.0625 6.93 0
Test Acc Acc Acc Acc
RELU 0.125 0.125 0.0625 0
eLU 0.125 0.125 0.0625 0
B a t c h 
86

MNIST Fashion MNIST Cifar10 Cifar100
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Experimental Result: As shown in the results of Table 25, the results show 

that the variation of the final training performance occurs somewhat according to 

the initial seed setting. Table 26 analyzes the effect of the input data size with 

the same seed value. A similar performance was observed compared to the 

amount of change in the size of the input data. This confirms that the change 

caused by the change in the size of the input data according to the seed value 

is robust.

Conclusion: In training the deep learning model, it is important to set the 

initial seed value efficiently. In order to confirm the importance, this study 

explained for three reasons. Two experiments have shown that setting initial seed 

values is an important issue. Through this, it is necessary to study the security 

Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 2.302 0.125 0.735 0.725 2.303 0.1875 4.610 0
eLU 2.854 0.0625 2.831 0.125 2.837 0.125 6.912 0
Test Acc Acc Acc Acc
RELU 0.125 0.775 0.1875 0
eLU 0.0625 0.125 0.125 0
B a t c h 
64

MNIST Fashion MNIST Cifar10 Cifar100

Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 2.30 0.125 0.272 0.9625 2.303 0.1875 4.610 0
eLU 2.837 0.125 2.699 0.212 2.844 0.187 6.914 0
Test Acc Acc Acc Acc
RELU 0.125 0.9625 0.1875 0
eLU 0.125 0.212 0.187 0
B a t c h 
32

MNIST Fashion MNIST Cifar10 Cifar100

Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 1.424 0.437 0.322 0.925 2.304 0 4.610 0
eLU 2.816 0.125 2.305 0.55 2.847 0.125 6.897 0.125
Test Acc Acc Acc Acc
RELU 0.437 0.925 0 0
eLU 0.125 0.55 0.125 0.125
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of initial seed value and key generation using a quantum random number 

generator.

4.2 Comparison module about image captioning [82]

Introduction: Image captioning [83], such as sports commentary [85], video 

storytelling [87], and video captioning [86] is a method of training the model 

using image and caption data describing the images [83-87]. Image captioning is 

a relatively difficult problem because it needs multi-modal processing with two 

different data types, natural language processing for caption data and computer 

vision for efficient information extraction from images [84]. It is important to 

analyze the impact of each module in image captioning. However, none of the 

existing researches have dealt with the comparative analysis of each module in 

image captioning. Moreover, most of the existing researches does not help to 

analyze which module of image captioning can improve the whole performance 

[85-87]. From observation, we think that it is inevitable to analyze the influence 

of each module using quantitative and qualitative analysis. Here, we analyze the 

influence of five modules, sequential module, word embedding module, initial 

seed module, attention module, and search module, through quantitative and 

qualitative analysis on the modules.

The components of each module are as follows. The sequential module consists 

of three components, feature extraction to create feature vectors of the input 

image, model structure of the sequential module, and internal cell types of the 

sequential module. We took Resnet50 [89] and Vgg16 [88] for feature extraction, 

Vanilla-RNN [90] and Bi-directional RNN [91] as the model structure, and GRU 

[93] and LSTM [92] as internal cell types of the sequential module. To see the 

effect of attention [94], we analyzed the effects of using and not using attention 
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in the attention module. Embedding module has two components, Keras 

embedding and Glove [97]. In the search module, we used a beam and greedy 

search as components. In general, weights initialization of RNN is known to 

have a significant performance impact. Thus we analyzed the effects of the three 

weights initialization methods with normal and uniform distribution in the seed 

module.

We performed the comparative analysis by a component of each module using 

the Flicker 8K dataset and analyzed which components had an effect on image 

captioning with five measures. Comparative analysis by a component of each 

module can provide a basis for image captioning research by an understanding of 

the effects of each module.

Proposed Methods: Image captioning has been proposed and studied as a 

method of generating text by inputting visual information through a combination 

of CNN and RNN [83]. In image captioning, it is necessary to accurately 

recognize semantic relationships between image objects and the properties of 

objects and to generate semantically accurate text.
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Figure 43. Comparative analysis by a component of each module of image 

captioning

Figure 43 shows the location of applying the comparative analysis by a 

component of each module. The green, yellow, gray, red, and blue boxes in 

Figure 42 indicate the sequential module, word embedding module, attention 

module, search module, and initial seed module, respectively. Image captioning 

combines CNN for encoding features of image and LSTM for generating caption 

of the input image in the sequential module.

We took Vgg16  and ResNet50  for feature extraction and Vanilla-RNN and 

Bi-directional RNN  in the sequential module. Bi-directional RNN is reflecting 

two pieces of information by extracting forward and backward information in 

receiving the input information. To more reflect input information in sequence 

module, LSTM  or GRU cells were used instead of basic RNN cells in our 

experiments.

The attention mechanism in image captioning has been studied in various 

ways. The advantage of attention can be seen as focusing on the input. 

However, the performance of image captioning may be lower if attention is 

incorrectly focused on image captioning. After attention, a search module is 

necessary for the associated related analysis of the generated caption.

Evaluation of generated sentences relationships through parsing from the 

generated caption is used in the field of natural language processing. We can use 

the beam [95] and a greedy search for the search module. Beam search  

improves efficiency by limiting the number of nodes to be remembered based on 

the best-first search technique. Greedy search [96] calculates the highest priority 

using the tree structure. The advantage of the search algorithm is to find the 
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relationship between the consecutive inputs and analyze the relationship between 

words.

The word embedding module is used to convert textual information into vector 

values so that the textual information can be reflected in the model and 

computed by the computer. Glove [97] is the dot product of two embedded 

vectors that are the probabilities of the simultaneous appearance of the whole 

corpus.

The initial seed module has been studied to compare and analyze the initial 

seed value of the sequential model of image captioning [98]. This is because the 

learning of the sequential model from a good starting position can predict 

convergence reliably.

Based on the above description of components of each module, comparative 

analysis by a component of each module was described as follows. We analyze 

the sequential module by three methods. In the first method, we tested whether 

two models, Vanilla-RNN with ResNet50 and Bi-directional RNN with ResNet50, 

can stably train the sequential information in the viewpoint of effects of RNN. 

We analyzed the effects of feature extraction of two models, Vanilla-RNN with 

ResNet50 and Vanilla-RNN with Vgg16 in the second method. In the third 

method, we tested the effects of the long time dependency of LSTM and GRU 

cells of the sequence model.

We analyze the embedding module for measuring embedding performance of 

textual information. We tested on the embedding through Glove and Keras 

embedding. To reliable convergence on the training of the sequential model, we 

analyzed the initial seed module of the sequential module. The initial seed is 

tested using normal, uniform, he, and lecun initialization methods. We attempt to 

analyze the attention module on the sequential module. A comparative analysis 
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was conducted with and without attention. To analyze the evaluation of each 

relation of the generated sentence, we tested on generated caption using the 

search module through the beam search and greedy search.

Experiments were carried out using Keras and python3 in Ubuntu 18.04. The 

experimental results of the impact of each module were obtained on epoch 5, 

and the evaluation measures are BLEU-1, 2, 3, 4, and accuracy.

Table 27. Comparison of sequential modules a) LSTM and b) GRU, i) 

Vanilla-RNN, and  ii) Bi-directional RNN

Experimental Results: Table 27 shows the experimental results of the sequential 

module. Table 27 shows that Vanilla-RNN increased the BLEU mean score of 

10.1% when using GRU cells than when using LSTM cells. On the contrary, the 

Bi-directional RNN dropped about 58.6% when using the GRU cell than when 

using the LSTM cell. In addition, when using the LSTM cell, Bi-directional 

RNN showed a better performance of about 12.8% than Vanilla-RNN. In 

contrast, Vanilla-RNN showed about 57.5% higher performance when using GRU 

cells. From the above results, GRU with fewer memory gates shows better 

performance for Vanilla-RNN than LSTM. And for Bi-directional RNNs, LSTMs 

with larger memory gates perform better than GRU. We think that GRU is 

advantageous when processing in a single direction like Vanilla-RNN. This is 

because GRU extracts relatively important information than LSTM. However, 

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Acc
a i 0.5872 0.3626 0.1939 0.1041 0.8109
b ii 0.6343 0.4029 0.2277 0.1082 0.8129
a i 0.6461 0.4096 0.2349 0.1176 0.8163
b ii 0.2921 0.17 0.0839 0.0369 0.791
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when processing in both directions like Bi-directional RNN, LSTM shows better 

results because more detailed information is extracted.

Figure 44. Comparative analysis according to the feature extraction, i) Vgg
16 and ii) ResNet50

Figure 44 shows experimental results for the qualitative analysis of the caption 

generated. As shown in Figure 44, ResNet50 shows better performance than 

Vgg16. This is because ResNet50 obtains features more efficiently using batch 
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normalization. In both cases of Vanilla-RNN and Bi-directional RNN, using 

attention is almost the same as improving performance and deteriorating 

performance. When using bi-direction in Vanilla-RNN, performance is improved 

except in one case of c)-ii). Bi-directional RNN with attention has both better 

and worse performance compared to Vanilla-RNN. Vanilla-RNN with bi-direction 

has better performance than Bi-directional RNN except for one case of b)-ii). 

From these results, we can conclude that the combination of Vanilla-RNN with 

bi-direction and ResNet50 is the best for the sequential module.

Table 28. Comparative analysis according to embedding module, a) embedding, 

b) Glove, i) Vanilla-RNN, and ii) Bi-directional RNN

In Table 28, Keras embedding is superior to the pre-trained Glove. Keras 

embedding has 70.2% and 83.9% increase in performance over the Glove at 

Vanilla-RNN and Bi-directional RNN, respectively. This demonstrates that training 

embedding is better than pre-trained embedding for large data sets. It seems that 

the information learned in the pre-trained embedding causes confusion, resulting 

in a rather low performance. However, when the caption data is similar to the 

data actually learned in pre-trained Glove, it can be confirmed that the model 

can be trained quickly.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Acc
a i 0.5872 0.3626 0.1939 0.1041 0.8109
b ii 0.2621 0.0991 0.0105 0 0.7447
a i 0.6461 0.4096 0.2349 0.1176 0.8163
b ii 0.1263 0.0651 0.0263 0.0081 0.7395
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Figure 45. Comparison of components in seed module by the value of MSE a
nd loss error. a) Random, b) he, c) lecun, A) normal, B) Uniform, i) Vgg16, 
ii) ResNet50, blue bar) CNN with Vanilla-RNN, orange bar) CNN with Bi-dir
ectional RNN, gray bar) CNN with attention Vanilla-RNN, and yellow bar) C
NN with attention Bi-directional RNN

   Figure 45 shows the effects according to the components of initial seed modu
le, which are composed of three methods, Random, he, and lecun with normal a
nd uniform distribution. That is, Random normal, Random uniform, he normal, h
e uniform, lecun normal, and lecun uniform. The analysis was conducted using t
wo models, Vgg16 and ResNet50. The graph of Figure 45 showed the accuracy 
of six methods on four models, i.e., CNN with Vanilla-RNN, CNN with Bi-direc
tional RNN, CNN with attention Vanilla-RNN, and CNN with attention Bi-directi
onal RNN. As shown in Figure 45, it is con- firmed that the performance is the 
best when the uniform and random are applied at the same time.
   When using Vgg16, there is no significant difference in performance dependin
g on the seed method. On the other hand, it can be seen that the performance d
ifference is large according to the seed method in ResNet50. In particular, CNN 
with Vanilla-RNN and CNN with attention Bi-directional RNN using a seed meth
od of Random and uniform show excellent performance. Also, it is better to use 
Random rather than he or lecun generally.
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Table 29. Comparison of attention modules, a) non-attention and b) attention, a) 
non-attention, b) attention, i) Vanilla-RNN, and ii) Bi-directional RNN

   We show the performance of the attention module in Table 29 by averaging 
results of Vgg16 and ResNet50. The attention Vanilla-RNN improved by about 
8.6% compared to the non-attention Vanilla-RNN. The Bi-directional RNN fell ab
out 4.6% compared to Vanilla-RNN. As you can see from the experimental resul
ts, the effect of attention is unclear because it improves or deteriorates depending 
on the method.

Table 30. Comparison of search methods for correlation analysis of generated cap
tions. a) greedy search, b) beam search, i) Vanilla-RNN, ii) Vanilla-RNN with at
tention, iii) Bi-directional RNN, and iv) Bi-directional RNN with attention.

Table 30 shows the comparison of search methods in the search module. On ave
rage, the beam search shows slightly better results than the greedy search, but it 
is not large. This seems to be because the beam search reflects the overall trend. 
However, when reflecting on some features, the greedy search may be better.
The quantitative comparative analysis of each module was conducted. First, most 
LSTM with bi-direction is improved performance in the sequential module. The 
Bi-directional RNN with attention is improved when compared to non-attention. 

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Acc
a i 0.5872 0.3626 0.1939 0.1041 0.8109
b ii 0.6318 0.4007 0.2172 0.106 0.8143
a i 0.6461 0.4096 0.2349 0.1176 0.8163
b ii 0.6203 0.3911 0.2162 0.1153 0.8145

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4
a i 0.6123 0.3774 0.1884 0.0911
b ii 0.6305 0.393 0.2017 0.0935
a i 0.5872 0.3626 0.1939 0.1041
b ii 0.6318 0.4007 0.2172 0.106
a iii 0.64 0.3999 0.2151 0.1054
b iii 0.6461 0.4096 0.2349 0.1176
a iv 0.6016 0.3684 0.1919 0.0977
b iv 0.6203 0.3911 0.2162 0.1153
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ResNet50 in feature extraction shows higher performances than Vgg16 in most c
ases. Secondly, at the seed module, the Bi-directional RNN with Random unifor
m shows the best performance. Third, Keras embedding in the embedding modul
e greatly improves the performance of Bi-directional RNN when compared to Gl
ove. Fourth, attention with Vanilla-RNN in attention module improved the perfor
mance than that with Bi-directional RNN. Fifth, bi-direction in beam search and 
greedy search improved the performance in the search module. Through this, it s
eems important to find an efficient method at each location. And optimal structur
e through the combination of the good component in each module seems to be i
mportant. From our analysis, a new model can be created by adjusting the combi
nation of good components to create the optimal structure. However, the perform
ance analysis of the new model must be conducted through work to obtain gener
alized performance because the combination does not guarantee the overall perfor
mance of the model.
Conclusion: We analyzed the effect of the modules of image captioning. Analysis 
of the effects on the sequential model showed that the Bi-directional RNN was s
lightly better than the Vanilla-RNN. This is because the interactive reflection of s
ubtitle information is well trained in context. Impact analysis of the attention sho
ws that the attention Vanilla-RNN is beneficial for performance because it focuse
s on the part of the input word relative to the word to be predicted. It is a sear
ch module for evaluating the correlation between the generated results, the beam 
search module performs better than the greedy search module. In analyzing the i
mpact on embedding, Keras embedding showed better performance than pre-traine
d Glove. The comparative analysis of the feature extraction showed that the Res
Net50 is higher than the Vgg16 in terms of image captioning and features. In th
e case of the seed methods of the sequential model, it can be seen that the seed 
value of the Random uniform efficiently reflects the sequential information. From 
this analysis, we can design more effective models for image captioning.

4.3 Visualization about anomaly data [99]

Introduction: It is essential to detect outlier detection inside the deep learning mo
del. When the deep learning model detects outlier data, much variation occurs in 



- 143 -

the model's parameters because the model's parameters tend not to have or contai
n information about the outlier data. This transformation of the model with nume
rous parameter information results in many misclassifications as the model infers 
new data. As a result, it is essential to visualize and classify these outlier data i
n advance so that the model's parameters do not vary much. We studied a new 
visualization method to detect outliers efficiently. Contributions are as follows. W
e propose a visualization technique that combined LBP LLE with Smote for outli
er data detection. Second, we propose a confusion visualization method using sim
ilarity of pixel density distribution. Third, we propose a histogram visualization u
sing the frequency of position of pixel distribution in EDA (Exploratory Data An
alysis). 

Proposed Method : We show three visualization techniques with existing method
s. First, we propose a combined LBP [101] LLE with SMOTE [102]. Second, w
e propose the pixel similarity visualization technique. Third, we propose a pixel f
requency visualization technique. Figure 46(a) shows the UMAP [100] method, w
hich is the existing visualization method. Figure 46(b) shows the combined LBP 
LLE with Smote sampling proposed. The existing UMAP method is a visualizati
on method that is not suitable for outlier detection. The reason for this is that th
e clustering and visualization of outlier data are uniformly represented in one clu
ster. However, in case of Figure 46(b) proposed, the information having similar 
data clustering degree is tilted, so the data that having similar characteristics has 
the advantage of being expressed outside clustering. Through this, we can see tha
t the proposed method is efficient in determining outlier data. Figure 46(c) shows 
the proposed method for visualizing outlier detection data using the density of th
e value distribution. The difference in pixel value density compares outlier data 
with that of existing data, allowing for more precise comparisons. Figure 46(d) s
hows that histogram visualization using frequency of position of pixel distribution 
in EDA compares the similarity of the location of pixel distribution. Each techni
que has been described in detail. Figure 47 shows four methods for experimental 
verification of the proposed method. Figure 47(a) is the existing method. Figure 
47(b) is applied to LLE and SMOTE [102]. This is to observe the effect of corr
ection when the amount of information in the feature map is unbalanced through 
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linear sampling. Figure 47(c) is the method of applying Sampling and Linear Co
mbination after applying LBP (Local Binary Pattern) [101]. This is to see the eff
ect of linearly correcting the imbalance of the sampling result when converting t
o a binary feature before sampling. 
Firstly, combined LBP LLE SMOTE is a method to efficiently show the characte
ristics of the relations between data through information imbalance and binary pr
ocessing. 
Secondly, we propose a method of visualizing the characteristics of data using th
e frequency of pixels. The number of pixels of a pixel held by r, g, and b in t
he existing image is available. The frequency of these pixels is more robust to t
he two types mentioned above because the frequency of occurrence of the pixel 
is checked regardless of the change in value or the change of position. 
Finally, Figure 48 is a visual analysis of the similarity analysis of pixel density. 
Figure 48 is to check the existing values of the image and the accuracy of the c
orrect rendering. This method is a visualization method using a confusion matrix 
generated by representing each pixel position according to the position value of t
he pixel and expressing the similarity as a confusion matrix. The similarity was 
calculated using Pearson's correlation coefficient. This has the advantage of expre
ssing the accuracy according to the position value of the pixel better. The heat 
map expressed above is the result of fitting the x and y axes to the size of the 
pixel data. 
We compare existing MNIST data with images generated in GAN for a new vis
ualization method. The generated image was generated using three GAN models 
of Vanilla GAN, DRAGAN [103], and EBGAN [104]. Fig 51 shows the existing 
image and the generated image. Figure 51(a) shows some samples of existing M
NIST. Figure 51(b) is the result of Vanilla GAN. Figure 51(c) shows the result 
from DRAGAN. Visualization analysis was performed using the generated image 
and actual data as above. 
We first compared the experiments with combination LBP LLE SMOTE on actua
l data. Fig 52 shows the results of each experiment described. 
To verify the effects of the first method proposed, we use 5 steps. Fig 52(a) sh
ows the actual data, Fig 52(b) shows Smote applied to LLE after the LBP appli
cation. Figure 52(c) shows the case of circular convolution [106] in convolution 
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when Smote applied to LBP. Figure 52(d) shows the initial case when Smote is 
applied to LBP and Uniform [105] when Figure 52(e) consists of the initial case 
where Uniform  is applied when Smote not applied to LBP. In Figure 52(b), the 
result of Smote was 
corrected in sparse areas compared to Figure 52(a) and Figure 52(c) includes the 
circular convolution, so that the more accurate corrected result confirmed by redu
cing the error. Figure 52(d) makes uniform zeros by applying uniform to zero. F
igure 52(e) shows the effect of reducing the complexity of the visualization distri
bution representation of the data as Smote is applied compared to Figure 52(d). 
Fig 53. compares and analyzes the results for the generated images, which is diff
erent from the method shown. above. When look at the generated visualization i
mage, we can see that the distribution tendency of the generated image overlaid 
near the zero value. That is because the generated image is generated based on t
he normal distribution between 0 and 1. In the previous experimental analysis res
ults of Figure 52., similar results are shown as each method is applied. However, 
in the case of Figure 53., it is the result of the generated data. The process of 
visualizing and determining the fake image shown than the actual data. We can 
see that it is a visualization method. 
Analysis of existing smote methods about spatial information data distribution. Fi
g 8. analyzes the impact of visual representations on changes in K values. The l
arger the K value, the more compressed the image to be expressed can be seen. 
Such compressed images may not adequately show the representation of the data. 
We found that finding an appropriate K value for visualization can represent an 
efficient feature. Therefore, we found that finding an appropriate K value is an i
mportant issue. 
Conclusion : We proposed three visualization techniques. Combined LBP LLE S
MOTE the advantages of generalized data visualization by correcting unbalanced 
data characteristics through sparse data correction. Through this, we can check th
at it is efficient in fake image discrimination. Also, the Visualization of pixel de
nsity similarity has an advantage of efficiently detecting when pixel position infor
mation is wrongly generated through similarity analysis of pixel positions and sh
owing correlation information of pixel information. Visualization of pixel density 
frequency shows the advantage of extracting fake pixels through the frequency of 
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pixel values generated through density distribution analysis. The proposed  metho
d can be used as a method for the detection of real-world images. Through this, 
we can confirm that the visualization method that analyzes outlier data should be 
studied to discriminate data similar to actual data. 

Figure 46. Existing visualization technique and proposed visualization 

techniques. a) UMAP [100], b) Combination LBP LLE SMOTE, c) Pixel 

similarity visualization technique using pixel density distribution. Pixel frequency 

visualization technique using position of pixel density distribution in EDA. 
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Figure 47 Experimental verification of combination LBP LLE SMOTE. a) 

Existing method, b) Existing method with SMOTE sampling, c) Apply LBP 

method before applying the existing method with SMOTE sampling, d) Apply 

LBP method after applying the existing method with SMOTE sampling
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Figure 48 Visualize pixel density frequency of data, a) Accurate analysis for 

each class, b) Accurate analysis for whole class.

Figure 49 Visualize pixel density similarity of existing and generated data, a) 

Ground truth, b) Vanilla GAN, c) DRAGAN, d) EBGAN
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Figure 50 Comparative analysis of existing and generated data. a) Ground truth 

MNIST, b) MNIST generated from Vanilla GAN, c) MNIST generated from 

DRAGAN.

Figure 51 Experimental results to verify the combination LBP LLE SMOTE from 
a) Ground truth data. b) Ground truth LBP smote, c) Ground truth CLBP mote, 
d) Ground truth UCLBP smote, e) Ground truth UCLBP no smote.
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Figure 52 Comparison of changes according to the techniques applied in the 

first proposed method a) Generated LBP smote, b) Generated CLBP mote, c) 

Generated UCLBP smote, d) Generated UCLBP no smote

Figure 53 Comparative experiment according to K value in Smote technique. a) 

K=4, b) K=16, c) K=41.

4.4 Stable Acquisition of Fine-Grained Segments using Batch Normalization    

      and Focal Loss with L1 regularization in U-Net Structure [107]

Introduction : Most images consist of various sizes, shapes, and textures. Therefo
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re, it is necessary for specific image processing to operate appropriately under im
ages with various characteristics. Since the textures of clothing images are very f
ine-grained and diverse, acquisition of fine-grained segments is particularly import
ant. Finally, obtaining accurate semantic segments of images is an important goal 
to achieve in semantic segmentation researches [108]. 
However, there are not many studies that explore the acquisition of fine-grained 
segments of semantic segmentation in images. Most existing researches on image 
semantic segmentation has adopted fully convolution network (FCN) [109]. Howe
ver, their segmentation results were not good at finding fine-grained segments, se
mantic segments because the convolution of FCN didn’t maintain spatial informat
ion. Even though there were related works on fully convolution network-condition
al random field (FCN-CRF) [109], FCN using atrous convolution, and FCN using 
the skip diagram in the FCN up sampling process to improve the performances o
f FCN, most of FCN showed poor results. In the methods, obtaining various size
s of segments are not reflected in model training. Therefore, obtaining various si
zes of fine-grained segments is a crucial factor in processing segmentation for th
e acquisition of fine-grained segments in images.
 To overcome the problem, we adopt two additional components on a U-Net bas
ed structure for acquisition of fine- grained segments of semantic segmentation. T
he first additional component is the use of normalization at all layers in the train
ing process. Normalization alleviates the variation of multi-scale information, espe
cially in the multi-scale processing of U-Net. We took the well-known batch nor
malization (BN) in all U-Net layers. As second additional component, we take th
e model prediction correction using focal loss with L1 regularization in training. 
Existing loss of cross-entropy does not reflect the fine-grained segments because 
it does not balance the model prediction space. From observation, we consider th
e model prediction correction for fine-grained segments and propose a novel loss 
composed of focal loss with L1 regularization. As a result, we introduce a novel 
structure based on U-Net that trained with BN and a devised novel loss. 
To measure performances of our method and previous meth- ods, we experimente
d with three models such as U-Net, Attention U-Net [1100], and U-Net BN incl
uding the existing FCN models on the ATR dataset [111]. U-Net BN refers to a 
model that applies BN to all layers of the existing U-Net. We also tested our m
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ethod with various combinations of loss and provided their results with some me
asures such as intersection over union (IOU), precision, and recall. From extensiv
e experiments, we find that our method with two additional components have ge
nerated correct fine-grained segments, especially in small and complex textures su
ch as hands, feet, and glasses. Also, the overall performances of our method wer
e considerably better than those of the existing methods based on FCN in terms 
of accuracy using IOU, precision, and recall measures. 

Proposed Method : We propose a U-Net based semantic segmentation method for 
acquisition of multi-scale fine-grained segments in semantic segmentation with tw
o additional components. U-Net is a well-known model that can find fine-grained 
information through efficient reflection of multi-scale information. However, sema
ntic segmentation using only U-Net does not find fine-grained segments, especiall
y for the images composed of various shapes and textures. To overcome the limi
tation, we adopt two additional components, BN to efficiently learn stabilized mu
lti-scale fine-grained segments and model prediction correction using focal loss wi
th L1 regularization. We found from our extensive experiments that BN was a cr
ucial process in finding multi-scale fine-grained segments because the normalizati
on of data was more important to precisely calculate fine-grained segments for m
ulti-scale data in all layers. Also, we use a combining method of focal loss and 
L1 regularization to balance the model prediction correction that enables the seg
mentation to stabilize acquired fine-grained segments in multi-scale data. We conf
irmed the results through extensive experimentation in Section 4 



- 153 -

Figure 54 Proposed U-Net structure. 

Figure 54 shows the structure of our U-Net based semantic segmentation. The ov
erall structure is nearly the same as the original U-Net except for the BN of all 
layers, depicted as yel- low arrows and model prediction correction using focal l
oss with L1 regularization. s2 , where s = 16, 64, 128, and 256 represents the 
width x height of filter maps. The number written above the blue block is the n
umber of filter maps for the block. The gray arrow represents a skip diagram, in 
which the information of an existing block translated and transformed into a whit
e block in the blue frame. The green, orange, and yellow arrows represent the u
p-sampling convolution, the 3x3 max pooling, and the 3x3 convolution, respective
ly. The proposed focal loss with L1 regularization is applied to the outputs of U
-Net, and the loss is used to train our sturcture. As mentioned before, the BN in 
all layers and the focal loss with L1 regularization enable our structure to acquir
e multi-scale fine-grained segments. Acquisition of fine-grained segments through 
BN on all layers can be calculated more precisely because the same size can be 
calculated in all spaces. To show the performances of our method with combinati



- 154 -

on of regularization coefficient parame- ters, we extensively experimented and co
mpared the results in Section 4 

Experiment Environment :  The experimental environments are as follows. We co
nducted our experiments with a learning rate of 0.001 and a batch size of 4. We 
chose an ATR dataset of clothing images because they are composed of various 
sizes, shapes, and textures and are therefore adequate to get fine-grained segment
s. Background images excluded during the evaluation. In order to evaluate the pe
rformances with various measures, we used recall, precision, F1 score, and IOU. 
In all experiments, we used zero-padding to make all the im- ages the same size 
as the long side of the image. We compared our method with the existing metho
d of FCN and experimented on three U-Net models: U-Net without BN and foca
l loss with L1 regularization, U-Net BN and focal loss with L1 regulariza- tion, 
and attention U-Net using focal loss with L1 regularization. Attention U-Net has 
an U-Net structure with an attention gate. To verify focal loss with L1 regulariza
tion for optimization using regularization, we compared the performance of existi
ng cross-entropy and proposed method, that is, focal loss with L1 regularization. 
In experiments, we tested proposed focal loss with L1 regularization, focal loss 
with L2 regularization, and focal loss with L1 and L2 to compare the regularizat
ion. L1 and L2 regularization coefficient are added at a ratio of 0.5. 



- 155 -

Figure 55. Result of focal loss regularization model. a) FCN, b) Attention U-Net, 
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c) U-Net BN, I) Cross-entropy with L1 0.0 and L2 0.0 regularization coefficient, 
II) Cross-entropy with L1 0.0 and L2 0.5 regularization coefficient, III) Cross-ent
ropy with L1 0.5 and L2 0.0 regularization coefficient, IV) Cross-entropy with L
1 0.5 and L2 0.5 regularization coefficient, V) Focal loss with L1 0.0 and L2 0.
0 regularization coefficient, VI) Focal loss with L1 0.0 and L2 0.5 regularization 
coefficient, VII) Focal loss with L1 0.5 and L2 0.0 regularization coefficient, VI
I) Focal loss with L1 0.5 and L2 0.5 regularization coefficient

Experimental Results and Discussion: We tested the performances of acquisition o
f a fine-grained segment of semantic segmentation using previous cross-entropy l
oss and proposed focal loss with L1 regularization on three semantic segmentatio
n models such as FCN, Attention U-Net, and U-Net BN on the clothing images. 
Figure 54 shows the experimental results of the three models on four combinatio
ns of regularization coefficient parameters. As mentioned before, we choose the t
he regularization coefficient parameters combining 0 and 0, 0 and 0.5, 0.5 and 0, 
0.5 and 0.5. In Figure 54, the blue and red circles are incorrect predictions, and 
red circles are the best among incorrect predictions. As you can see, the most re
sults using focal loss with L1 regularization are better than those using the cross
-entropy loss, especially on fine-grained segments shapes such as hands, foods, s
hoes, and neck. 
The best result of all experiments is shown in panel (VII) of Figure 55, which u
ses focal loss with L1 regularization. That is, the L2 regularization is not helpful 
for the acquisition of fine-grained segments of semantic segmentation. L1 regulari
zation was more robust than L2 regularization concerning the outlier. Many fine-
grained segments in the images with various sizes, shapes, and textures are outlie
rs. Therefore, L1 regularization is better than L2 regularization for the acquisition 
of fine-grained segments of semantic segmentation. 
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Figure 56. The proposed method is focal loss L1 0.5 regularization coefficient. T
he proposed method is shown using four cases of figure 56.a, figure 56.b, figure 
56.c, and figure 56.d. I) FCN, II) U-Net, III) Attention U-Net, IV) U-Net BN on 
focal loss with L1 0.5 regularization coefficient for each case.

Figure 57. Comparison with or without BN about two loss function types and va
rious regularization coefficients in loss function within training time I) Cross-entr
opy with L1 0.0 and L2 0.0 regularization coefficient, II) Cross-entropy with L1 
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0.0 and L2 0.5 regularization coefficient, III) Cross-entropy with L1 0.5 and L2 
0.0 regularization coefficient, IV) Cross-entropy with L1 0.5 and L2 0.5 regulariz
ation coefficient, V) Focal loss with L1 0.0 and L2 0.0 regularization coefficient, 
VI) Focal loss with L1 0.0 and L2 0.5 regularization coefficient, VII) Focal loss 
with L1 0.5 and L2 0.0 regularization coefficient, VII) Focal loss with L1 0.5 a
nd L2 0.5 regularization coefficient

The attention U-Net and U-Net BN are better than the FCN. Because the U-Net 
stably acquires multi-scale fine-grained segments. Of the three methods, the U-Ne
t BN shows the best results of all experiments because the normalization of all l
ayers helps find fine-grained segments. From these results, we can ascertain that 
the focal loss with L1 regularization and the normalization is useful for the acqu
isition of fine-grained segmentation. In our experiments, we tested the intrinsic U
-Net structure with cross-entropy loss, but the training loss does not decrease, as 
shown in the result Figures 56 and 57. As a result, the U-Net BN using focal l
oss with L1 regularization shows excellent results. 

Figure 58. Comparison of F1 score according to addition of attention gate on se
gmentation model within training time, a) In the attention gate included, b) In th
e attention gate non included
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To ensure whether the U-Net BN shows the best result for various clothes image
s, we tested four methods on four clothing images, as shown in Figure 58. In th
ese experiments, we added the results of U-Net using focal loss with L1 0.5 reg
ularization. Figure 58 shows the experimental results of four methods on four im
ages. As shown in Figure 58, U-Net BN using focal loss with L1 0.5 and L2 0.
0 regularization shows the best results for the leg, skirt, and neck. The results of 
Figure 58(a) are the worst because the colors in the background are similar to th
e colors wrong by the women. Even the U-Net BN using focal loss with L1 0.5 
and L2 0.0 generates the best quality because the localization effect of normaliza
tion makes it possible for the method to better distinguish the colors in the back
ground from those of the women. In Figure 58(c), the U-Net BN using focal los
s with L1 0.5 and L2 0.0 regularization show the best results, especially on the 
small parts of the shoes, when compared to the other methods. The U-Net BN u
sing focal loss with L1 0.5 and L2 0.0 regularization in Figure 58(d) generates 
more precise fine-grained segments in the area of the sunglasses than the other 
methods and even better than the ground-truth mask. 
To more specifically analyze the effects of BN with two loss and two loss with 
some regularization coefficients on the ATR dataset, we showed the loss for the 
four models in Figure 56. Orange line indicates loss of U-Net structure. As you 
can see, the loss of the U-Net structure showed inferior results and nearly did n
ot decrease. The intrinsic U-Net with cross- entropy and without normalization d
oes not work well for fine- grained segments of semantic segmentation. The vari
ation of loss of intrinsic U-Net is not very large in the cases of cross- entropy l
oss but is quite large in the focal loss because the model prediction correction o
f focal loss is sometimes successful in training the intrinsic U-Net. 
FCN showed poor performances in the case of L1 0.5 regularization. In the proc
ess of obtaining the segments in the FCN, the calculated difference between the 
predicted value and the correct value is not reflected in the process of reflecting 
the difference value. The variation of loss of U-Net BN becomes too large when 
L1 0.5 and L2 regularization. The L1 regularization reflects the differences that h
ave diverse values according to experiments. Therefore, it is crucial to reflect the 
difference value efficiently. Overall, the methods with focal loss showed better re
sults than those with cross-entropy loss. As shown in panel (VII) of Figure 56, t
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he methods using both L1 and L2 regularization showed the worst performances. 
Because too much regularization provides a reverse effect. 
We analyzed the influence of the attention gate in terms of an F1 score. Figure 
57 showed the results of experiments: Figure 57(a) is with attention gate and Fig
ure 57(b) is without attention gate. The result of U-Net without the attention gat
e was higher than U-Net with the attention gate as shown in Figure 57. Because 
the attention gate in the initial steps of training tries to find the strongest charact
eristics in the images, but it find erroneous characteristics. 

Table 31. Comparison of both focal loss about U-Net models, a) U-Net, b) Atten
tion U-Net, c) U-Net BN, (i) L1 0.0 and L2 0.0 regularization coefficient, (ii) L
1 0.0 and L2 0.5 regularization coefficient, (iii) L1 0.5 and L2 0.0 regularization 
coefficient, (iv) L1 0.5 and L2 0.5 regularization coefficient

Table 31 shows the impact of four regularization methods along with IOU, preci
sion, and recall measurements for three models: U-Net, attention U-Net, and U-N
et BN. The values shown in Table 31 are the mean and standard deviation of th
e results obtained three times on the same model. As shown in Table 31, the ov
erall performance of U-Net is worse than those of the other models. However, th
e U-Net with L1 0.5 and L2 0.0 regularization Table 31, which showed about 2
3% improvement over U-Net with other regularization methods. We think that th
e regularization with L1 0.5 and L2 0.0 coefficient is effective in the attention o

IOU Precision Recall

a)

i 0.496 ± 0.0 0.001 ± 0.0 0.0 ± 0.0
ii 0.496 ± 0.0 0.001 ± 0.001 0.0 ± 0.0
iii 0.632 ± 0.011 0.344 ± 0.029 0.333 ± 0.004
iv 0.496 ± 0.0 0.003 ± 0.002 0.0 ± 0.0

b)

i 0.715 ± 0.008 0.536 ± 0.002 0.420 ± 0.002
ii 0.724 ± 0.005 0.555 ± 0.005 0.444 ± 0.013
iii 0.723 ± 0.002 0.554 ± 0.006 0.441 ± 0.004
iv 0.723 ± 0.005 0.548 ± 0.012 0.437 ± 0.013

c)

i 0.731 ± 0.002 0.565 ± 0.007 0.464 ± 0.005
ii 0.728 ± 0.004 0.564 ± 0.004 0.458 ± 0.004
iii 0.729 ± 0.003 0.567 ± 0.003 0.459 ± 0.007
iv 0.730 ± 0.001 0.564 ± 0.006 0.461 ± 0.001
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f U-Net. From the results, the attention is not helpful, and the performance of U
-Net BN is improved by about 22% over those of U-Net. Therefore we can be 
deduced that attention gate in the process of learning induces learning in the wro
ng direction. From these results, it is confirmed that a focal loss with L1 0.5 an
d L2 0.0 regularization proves useful for the acquisition of fine-grained segments 
in semantic segmentation. 

Figure 59. Comparison of regularization effect using non regularization and regul
arization with L1 and L2 regularization. a) Cross-entropy loss, b) Focal loss, i) 
L1 0.0 and L2 0.0 regularization coefficient, ii) L1 0.5 and L2 0.5 regularization 
coefficient

Figure 59 shows the regularization effects of cross-entropy and focal loss using n
on-regularization and regularization with L1 and L2. This confirms that regulariza
tion does not significantly affect on cross-entropy results of U-Net. However, the 
performance of the acquisition of fine-grained segments of semantic segmentation 
is improved when the regularization is combined with focal loss. The focal loss 
has a term that reflects the reverse of the probability from the model prediction. 
That means that model correction prediction is more affected by the focal loss, u
nlike the existing cross-entropy. 
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Conclusion: We proposed a method based on the U-Net structure with two additi
onal components to the acquisition of fine-grained segments. For the acquisition 
of fine-grained segments, we added normalization to all layers of the U-Net struc
ture and proposed a combined component composed of focal loss with L1 regula
rization. We experimented with proposed methods on an ATR dataset and analyz
ed their results. Experimental results showed that the proposed methods were bett
er than the previous FCN and intrinsic U-Net. These results allowed us to know 
that the U-Net was a structure for semantic segmentation, adopted normalization 
about all layers on the U-Net, was beneficial for semantic segmentation, and the 
model prediction correction using focal loss with L1 regularization was good at a
cquiring the fine-grained segments in semantic segmentation. In the future, we wi
ll proceed with the semantic segmentation structure using the generative model to 
obtain a more robust acquisition of fine-grained segment of semantic segmentatio
n. 
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Chapter 5.  Conclusion

   We studied new technology and the application of deep learning to improve t
he performance of deep learning. There are 7 types of research—first, the Bi-acti
vation function: an enhanced version of an Activation function in Convolution N
eural Networks. Second, Scale calibration cascade the smooth loss of generative a
dversarial networks with online continual task learning. Third, Nonlinear Exponen
tial Regularization: An Improved Version of Regularization for Deep Learning M
odel. Fourth, Novel Auxiliary Components to Help Optimize Deep Learning Mod
el. Fifth, Ensemble Normalization for Stable Training. Sixth, Similarity Analysis 
of Actual Fake Fingerprints and Generated Fake Fingerprint by DCGAN.
Seventh, it is a Multi-Way Decoder Scheme with Error Reduction Embedding on 
one-hot bi-directional Seq2Seq with Adaptive Regularization for Music Compositi
on.
 The contents of research to apply deep learning in real life are composed of fo
ur types—first, Study on the importance of adaptive seed value exploration. Seco
nd, a comparison module about image captioning, Third, visualization about anom
aly data. Fourth, stable acquisition of fine-grained segments using batch normaliza
tion and focal loss with l1 regularization in the U-Net structure.
Through the above, new technologies and application fields studied in deep learni
ng were studied.
   In the future, we would like to study the following as a future study of deep 
learning. First, deep learning research using system biology, second deep learning 
research using parameter control, third deep learning research using complexity th
eory, fourth, we would like to proceed with a study on the understanding of dee
p learning.
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Appendices
Part I. Supplementary Materials of Scale Calibration Cascade Smooth 
Loss of Generative Adversarial Networks with Online Continual Task 
Learning
Visualization of the proposed method (Section 1)
Analysis result using the flow chart of the proposed method (Section 2)
Visualization of the proposed and existing method (Section 3)
Experimental setting about proposal method (Section 4)
Proposal analysis after applying weight decay to optimization method 
(Section 5)
Single loss analysis (Section 6)
Z latent size analysis about correction loss (Section 7)
Optimization analysis about correction loss (Section 8)
Optimization analysis of our cascade component (Section 9)
Optimization analysis about our scale calibration component (Section 10)
Analysis of single on bias component (Section 11)
Analysis experiment initial distribution about our proposal (Section 12)
Stable acquisition information analysis at smooth correction (Section 13)
Stable acquisition information analysis using parameter analysis at 
smooth correction (Section 14)
Problem analysis at smooth correction (Section 15)
Parameter analysis using L1 and L2 regularization at smooth correction 
(Section 16)
Regularization characteristic analysis using L1 and L2 regularization at 
smooth correction (Section 17)
Nonlinear regularization characteristic analysis using parameter changing 
at smooth correction (Section 18)
Analysis of qualitative proposal method (Section 19)
1) Visualization of the proposed method
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Figure 60 Visualization about experiment loss
 The visualization result of the proposed loss shown in Figure 60. 
Figure 60(a) is the result of using the same value.  Figure 60(i) is the 
result of using the x and y axes. Figure 60(ii) is the result of using the 
x, y, and z axes. To analyze the influence of the formula of the 
proposed method, we tried to explain the loss through a brief model 
with a distribution from -1 to 1. Also, we analyze the results of the 
analysis using the same size value and the equal size value. In Figure 
60, the proposed loss is the Smooth calibration loss, which has the 
following effects when learning values with unequal size. It is composed 
of thicker both and values than the boundary due to the other loss, and 
a smaller value representing the boundary value.
2) Analysis results using a flow chart of the proposed method

Figure 61 Flow chart about our proposal loss
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Figure 61 is the method proposed. The proposed method is first divided 
into positive and negative to reflect two pieces of information. The 
second step is to smoothly reflect negative and positive information 
simultaneously. And thirdly, apply the cascade component and scale 
calibration component. Thirdly, the error value is output after applying.
3) Experimental system setting about proposal method

Figure 62 Visualization of experiment system configure.
 
Figure 62 is a visualization of the experiment system configures. The 
red letter in Figure 62 is the contribution. And the orange circle means 
the intersection point. And the orange plus sign implies a combination of 
three optimizer learning and Weight decay. The Z latent space is the 
initial distribution of the generation model in Step 1. Step 2 is composed 
of the generation model used in the experiment model. Step 3 describes 
the new loss of the cascade scale calibration. Step 4 and 5 are three 
optimizer learning and regularization for verification of proposal losses - 
finally, Step 6 measure by the performance of image generation.
 
4) Proposal analysis after applying weight decay to the optimization 
method
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Figure 63 Compare of loss on weight decay in optimization process in 
Valina-GAN using MNIST dataset on Learning rate 0.0007, 16 batch 
size, L1 0.25, L2 0.0, and 500 Z latent space size, a) Adam b) Adagrad 
i) Nondecay ii) Weight decay
 
 
First, we tried to confirm the effect of Weight decay. And secondly, we 
verify to check the impact on Batch size. Finally, we analyze the 
influence of the Z latent space size. In Figure 63, We evaluated the 
performance evaluation and loss results with and without Weight decay 
through optimization methods Adagrad Adam, Adam delta, and Adam. As 
shown in Figure 63.ii, if the Weight decay is included, it can be seen 
that the interval between the generator loss and the discriminator loss 
widens as the epoch repeats. This shows that the Weight decay is 
learned by learning the continuous task information in the correct 
convergence direction while Learning with the interval between generator 
loss and discriminator loss. However, when the Weight decay is 
performed, the Learning is changed from the unstable state to the stable 
state. However, the result of measuring the actual generation 
performance is as follows. 
 
Table 32 shows the top 1 and top 5 average PSNR when Weight decay 
is not applied. Table 32 shows the top 1 and top 5 average generation 
image performance when Weight decay is applied. We show that the 
performance of image generation is improved when Weight decay is not 
applied by when the performance comparison is performed with or 
without weight decay. This shows that Learning is performed stably 
when the Weight decay is applied. However, when the actual 
performance improvement is discriminated, it is seen that the 
performance image generation of improvement is reduced when the 
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generated image is discriminated more accurately by Learning stably. 
The smooth loss and the focal loss tend to be better than the existing 
loss when the measured performance is measured by the single loss 
state.

Figure 64 Compare of Batch size on smooth loss in optimization process 
using MNIST dataset on Learning rate 0.0007, L1 0.0, L2 0.75, and  
1000 Z latent space size in Adam decay. a) 16 batch size, b) 32 batch 
size, c) 64 batch size, i) Non Weight decay, ii) Weight decay
The influence of Batch size on the single smooth loss was analyzed 
using Weight decay. As shown in Figure 64(a), we can see that the 
variation of the loss reduces by applying the weight decay, and the 
discriminator loss and the generator loss maximize. 

Table 32 Performance evaluation of Z latent space size with L1 0.0, L2 
0.0, Adam optimizer, no weight decay using GAN

Accurac
y metho
ds data 
type

Fashion MNIST /MNIST

Origin 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size
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100 Z l
atent siz
e

Top 1 s
core PS
NR

49.168/
47.255

48.521 / 
47.144

48.287/
47.060

48.122 / 
46.997

47.966 / 
46.947

Top 5 a
v e r a g e 
PSNR

47.213/
46.370

47.520/
46.599

47.697/
46.774

47.641/
46.608

47.666/
46.818

Focal 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.168/
47.255

48.521/
47.144

48.287/
47.060

48.122/
46.997

47.966/
46.947

Top 5 a
v e r a g e 
PSNR

47.213/
46.370

47.520/
46.599

47.697/
46.774

47.641/
46.808

47.666/
46.818

Smooth 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.245/
29.516

48.842/
50.370

48.386/
50.921

48.346/
49.547

47.753/
49.864

Top 5 a
v e r a g e 
PSNR

47.185/
46.354

47.508/
46.591

47.678/
46.742

47.619/
46.789

47.648/
46.783

500 Z l
atent siz
e

Origin 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

48.888/
47.230

48.768/
47.147

48.286/
47.062

48.066/
46.987

47.967/
46.941

Top 5 a
v e r a g e 
PSNR

46.918/
46.193

47.570/
46.631

47.625/
46.738

47.689/
46.828

47.663/
46.828

Focal 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

48.888/
47.230

48.768/
47.147

48.286/
47.062

48.066/
46.987

47.967/
46.941
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Top 5 a
v e r a g e 
PSNR

49.918/
46.193

47.570/
46.631

47.625/
46.738

47.689/
46.828

47.663/
46.828

Smooth 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.365/
48.597

49.092/
51.323

48.510/
50.186

47.681/
46.825

47.827/
47.823

Top 5 a
v e r a g e 
PSNR

46.912/
16.190

47.566/
46.623

47.618/
46.719

47.681/
46.825

47.656/
46.806

1000 Z 
latent si
ze

Origin
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

48.888/
47.230

48.495/
47.108

48.171/
47.055

48.066/
47.023

47.968/
46.944

Top 5 a
v e r a g e 
PSNR

46.918/
46.913

47.582/
46.664

47.539/
46.733

47.724/
46.832

47.672/
46.823

Focal
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

48.985/
47.318

48.495/
47.108

48.171/
47.055

48.066/
47.023

47.968/
46.944

Top 5 a
v e r a g e 
PSNR

47.090/
46.285

47.582/
46.664

47.539/
46.733

47.724/
26.832

47.672/
46.823

Smooth 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.344/
50.863

48.678/
49.819

48.571/
51.271

48.064/
50.411

47.953/
49.551

Top 5 a
v e r a g e 
PSNR

47.076/
46.261

47.577/
46.663

47.525/
46.724

47.719/
46.828

47.622/
46.810
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Table 33 Performance evaluation of Z latent size with L1 0.0, L2 0.0 
regularization, Adam optimizer, weight decay using GAN

Accurac
y metho
ds data 
type

Fashion MNIST /MNIST

Origin 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

100 Z
latent si
ze

Top 1 s
core PS
NR

49.168/
47.255

48.521/
46.599

48.287/
47.060

48.131/
46.997

48.122/
46.947

Top 5 a
v e r a g e 
PSNR

48.744/
46.370

48.409/
46.599

48.178/
46.774

48.075/
46.808

48.064/
46.818

Focal
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.168/
47.255

48.521/
46.599

48.287/
47.060

48.122/
46.997

47.966/
46.947

Top 5 a
v e r a g e 
PSNR

48.775/
46.370

48.409/
46.599

48.178/
46.774

48.064/
46.808

47.950/
46.818

Smooth 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.162/
47.286

48.522/
46599

48.287/
47.094

48.131/
47010

47.974./ 
46..984

Top 5 a
v e r a g e 
PSNR

48.782/
46.370

48.415/
47.177

48.194/
46.772

48.075/
46.808

47.952/
46.817

500 Z 
latent si
ze

Origin
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.168/
47.230

48.521/
47.147

48.287/
47.062

48.131/
46.987

48.122/
46.941
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Top 5 a
v e r a g e 
PSNR

48.744/
46.193

47.201/
46.631

48.178/
46.738

48.075/
46.828

48.064/
46.828

Focal 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.168/
47.230

48.521/
47.147

48.287/
47.062

48.122/
46.987

47.956/
46.941

Top 5 a
v e r a g e 
PSNR

48.775/
46.193

48.409/
46.631

48.178/
46.737

48.064/
46.828

47.950/
46.828

Smooth 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.162/
47.252

48.522/
47.177

48.287/
47.078

48.131/
47.024

47.974/
46.986

Top 5 a
v e r a g e 
PSNR

48.782/
46.193

48.415/
46.631

48.194/
46.739

48.075/
46.828

47.952/
46.828

1000 Z 
latent si
ze

Origin l
oss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.168/
47.138

48.521/
47.108

48.287/
47.055

48.131/
47.023

48.122/
46.944

Top 5 a
v e r a g e 
PSNR

48.744/
46.285

47.201/
46.664

48.178/
46.733

48.075/
46.832

48.054/
46.823

Focal 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.168/
47.318

48.521/
47.108

48.287/
47.055

48.122/
47.023

47.966/
46.944

Top 5 a
v e r a g e 
PSNR

48.775/
46.285

48.409/
46.664

48.178/
46.733

48.064/
46.832

47.950/
46.823
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In Figure 64, We evaluated the performance evaluation and loss results 
with and without Weight decay through optimization methods Adagrad 
Adam, Adam delta, and Adam. The result of measuring the actual 
generation performance is as follows. Table 32 shows the top 1 and top 
5 average PSNR when Weight decay is not applied. Table 33 shows the 
top 1 and high five average generation image performance when Weight 
decay used. We show that the performance of image generation is 
improved when Weight decay is not used by when the performance 
comparison performed with or without Weight decay that indicates that 
learning is performed stably when the Weight decay is applied. However, 
when the actual performance improvement discriminated against, it is 
seen that the performance image generation of development reduces 
when the generated image is discriminated more accurately by Learning 
stably. The smooth loss and the focal loss tend to be better than the 
existing loss when the single loss state measures the measured 
performance.
 
5) Single loss analysis

Smooth 
loss

4 batch 
size

8 batch 
size

16 batc
h size

32 batc
h size

64 batc
h size

Top 1 s
core PS
NR

49.162/
47.320

48.522/
47.132

48.287/
47.078

48.131/
47.052

47.974/
46.969

Top 5 a
v e r a g e 
PSNR

48.782/
46.283

48.415/
46.665

48.194/
46.731

48.075/
46.832

47.952/
46.822
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Figure 65 Comparison of 4 batch size, L1 0.0, L2 0.5, 100 Z Latent 
size, and in Valina-GAN model using Fashion-MNIST dataset. i) 
Adadelta, ii) Adagrad, iii) Adam, a) Origin loss, b) Smooth loss, c) 
Correction loss, i) Adadelta, ii) Adagrad, iii) Adam
 
If there is no Weight decay, we can see that the Batch size converges 
later depending on the larger. In Figure 65, Adam optimizer is well used 
and well used, but we analyzed the influence of three optimization 
methods to verify the proposed method. In Figure 65(i), the result of 
the adaDelta shows that the generator loss learns the original method 
and focal loss with similar loss values. In the case of the smooth loss, 
it can seem that the loss value is somewhat higher than the two 
methods in obtaining the continuous task information stably.
 
6) Z latent size analysis about correction loss
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Figure 66 Z latent space size on correction loss by 16 batch size, L1 0, 
L2 0.5, in Valina-GAN using MNIST dataset.  a) 100 Z latent space 
size , b) 500 Z latent space size, c) 1000 Z latent space size, i) Adam 
, ii) Adadelta iii) Adagrad
Smooth and focal loss analyzed according to three optimization methods 
and potential variable spaces that is to confirm the influence of 
generation performance according to the impact of the Z latent space 
size according to the input on the generation model in Figure 65, . As 
the latent variable space increases, the convergence phenomenon appears 
later when the influence of the Z latent space influenced by the size of 
the potential variable area.
7) Optimization analysis about our cascade component
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Figure 67 Optimization methods of Proposal Cascade Loss that composed 
of 4 batch size, L1 0.0, L2 0.5, 100 Z latent space size, and in 
Valina-GAN model using grayscale Fashion-MNIST dataset. i) Adadelta, 
ii) Adagrad, iii) Adam, a) Origin loss, b) Smooth loss, c) Correction 
loss, i) Adadelta, ii) Adagrad, iii) Adam
 
The proposed method in Figure 67 shows the best results when using 
Adam Optimizer as a result of experimenting with three optimization 
methods. In particular, the proposed method shows that the initial loss 
is better than the existing loss when the correction loss is corrected. In 
the case of correction loss and origin loss, a sharp convergence 
phenomenon is observed, which confirms that the slope from the 
correction and origin loss converges in the correct direction and is 
quickly learned. In the smooth loss, the derivative with the slope has a 
smooth slope, so it gradually converges.
 
8) Optimization analysis about our scale calibration component
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Figure 68 Compare of optimization methods on verified of Proposal 
Cascade Loss that composed of 4 batch size, L1 0.0, L2 0.5, Z latent 
space size 100, and in Valina-GAN model using grayscale 
Fashion-MNIST dataset. i) Adadelta, ii) Adagrad, iii) Adam, d) Origin 
correction loss, e) Smooth correction loss, f) Correction correction loss, 
i) Adadelta, ii) Adagrad, iii) Adam
 
The proposed method in Figure 68 is the result of an experiment 
comparing the optimization when applying scale calibration. If the scale 
calibration is correctly calibrated, learn to maximize the loss distance 
between the generator and the discriminator. However, if it is 
incorrectly corrected, one piece of information may collapse, and only 
one piece of information may appear. In the case of Correction 
Correction, it is a case of correcting the model again. At this time, the 
strong correction is entered rather than shows a phenomenon that can 
not learn.
 
9) Analysis of single on bias component
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Figure 69 Compare of detail description by model loss on Scale 
correction term a) Origin loss, b) Smooth loss, c) Correction loss, i) 
Noncorrection, ii) Correction.
 
To verify the proposed Cascade method in Figure 69, we experimented 
with a single loss and Cascade method when learning with the Fashion 
MNIST dataset. The Cascade method proposed is in the case of a single 
loss of Figure 69(a) to Figure 69(c) Figure 69(d) to Figure 69(f) is 
the result of applying the Cascade method proposed. Figure 69(d) and 
Figure 69(f) are the results of applying the Scale calibration method, 
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Figure 69(f) is a strong influence of Scale calibration, and showed only 
one learning or no learning at the time of confrontational learning. 
However, the results of Figure 69(e) show that it is possible to 
improve the existing learning by calibration through Scale calibration. As 
shown in Figure 69(iii), Scale calibration shows better learning results.
 
10) Analysis experiment initial distribution about our proposal

Figure 70 Performance of dependency analysis at color image generation 
measure PSNR of various distribution on 8 batch size. a) Smooth 
method b) Smooth correction, i) Random distribution, ii) Laplace 
distribution, iii) Logistic distribution iv) Gumbel distribution
 
Figure 70 has been carried out through various distributions for the two 
methods of the Smooth method and the smooth correction method 
proposed. The experimental results show that the average PSNR 
decreases with the Random distribution and Laplace distribution for the 
Smooth Correction method proposed. If the Random distribution 
constructs the Random distribution, the continuous task information will 
remain for a long time. 
 
11) Stable acquisition information analysis at smooth correction



- 191 -

Figure 71 Influence analysis based on various batch sizes according to 
initial distribution for the acquisition of continuous task information 
reflection by smooth correction, Learning rate 0.0007, 4 batch size, L1 
0.0, L2 0.0, 100 Z latent space size, Adagrad optimizer, LSGAN, and 
MNIST dataset. a) The normal distribution, b) Laplace distribution, c) 
logistic distribution, d) Gumbel distribution, i) 4 batch size, ii) 16 batch 
size, iii) 32 batch size
 
Figure 71 is a Scale correction method based on various Batch sizes 
according to initial distribution. In the case of Batch sizes 4 and 16, the 
training process Gumbel distribution shows that the average PSNR 
performance is more stable than the other distributions. 32 batch size 
and Batch size 64 indicate that Logistic distribution reflects information 
reliably. When the Batch size is small, and the vibration of the model is 
large in the parameter space, we show that the proposed Gumbel 
distribution is efficient that shows that the width of Gumbel distribution 
and the values ​​of the tail of both stably reflect the continuous task 
information with thicker than the other distributions. However, when the 
Batch size is larger than a certain level, the influence of many changes 
in the parameter space of the model shows that the width of the 
distribution and the sharpness of the tail is more sharpened to reflect 
the continuous task information stably that shows that it is necessary to 
reflect more clear data from the data as the number of data increases. 
We show a concrete result of applying Gumbel distribution to the initial 
distribution to stably obtain the continuous task information when the 
parameter space of the model fluctuates much. Generating an image 
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through stably reflecting the continues task information is strongly 
influenced by the initial distribution of the latent space.  As a result, it 
confirms that continuous task information could be obtained stably 
according to the initial distribution. Therefore, the analysis is carried out 
through various distributions to further analyze the proposed distribution 
as the initial distribution.  To confirm of the Z latent space is robust to 
the generation performance through the generalized distribution and the 
production through the analytical distribution, the initial distribution is a) 
Random distribution, b) Gumbel distribution, c) Laplace distribution d) 
Logistic distribution.
12) Stable acquisition information analysis using parameter analysis at 
smooth correction

Figure 72 Compare of the effect of test smooth calibration method on 
alpha and gamma coefficients at Learning rate 0.0007, Batch size 4, L1 
0.25, L2 0.25, Z latent space size 100, Adam optimizer, Gumbel 
distribution in Valina-GAN i.a) Alpha 0.25 i.b) Alpha 0.5 i.c) Alpha 
0.75 ii.a) Beta 2.0 ii.b) Beta 3.0 ii.c) Beta 4.0
 
In Figure 72, when the smooth calibration method, alpha was changed 
from 0.25 to 0.75 through 0.25 increments, and beta was changed from 
1 to 4 through 1 increase. Experimental results show that the influence 
of attention on the impact of alpha and Gamma does not affect the 
generation of the generated image. Scale term, the effect of the 
parameter in the Scale, is less influential in creating the image in the 
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Valina-GAN. These results show that, when the scale term enters, it is 
corrected for the acquisition of the continuous task information so that 
results obtained. However, it confirmed that the influence on the steady 
of the continuous task information acquisition is independent of the 
impact on Gamma and Alpha. It can be confirmed that continuous task 
information is obtained stably through the scale term. 
 
13) Problem analysis at smooth correction

Figure 73 Smooth correction method training process about smooth 
correction at Learning rate 0.0007,4  batch size, L1 0.25, L2 0.25, 100 
Z latent space size, Adam optimizer, Scale correction at scale coefficient 
of Alpha 0.75, scale coefficient of Gamma 4.0 compare about i) Gumbel 
distribution and ii) Random distribution a) 0 Epoch, b) 250 Epoch, c) 
500 Epoch, d) 750 Epoch, e) 1000 Epoch.
In Figure 73., we show the effect of acquiring images generated by 
epoch 250. Figure 73(c) and Figure 73(d), which are similar to the two 
segments where the fluctuation occurs now, show that the images 
generated vary greatly compared to the previous step. 
In other words, the state showing the variation in the loss expects to 
reflect the new value, so that the new image learn and the variation 
occurs. A more precise definition of the variety of the loss graph can 
help to interpret the loss trend of the model by comparing the loss 
shapes defined by spike neurons.
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Figure 74 An indirect comparison of the initial distribution of the 
catastrophic problem every time new data is learned during model 
training. Smooth correction at Learning rate 0.0007, Batch size 16, L1 
0.25, L2 0.25, Z latent space size 100, Adam optimizer, Alpha 0.75, 
Gamma 4.0 a) Batch size 4 , 8, 16, 32 and 64 in Cifar10, i) Random 
distribution, ii) Laplace distribution, iii) Logistic distribution, and iv) 
Gumbel distribution
 
This was verified by batch to verify the effect of continuous task 
information acquisition according to the number of data inputs in 
distribution.
 Figure 74 shows the results of the model learning run when the Batch 
size differs according to each distribution. It seems that the convergence 
positions of epochs are different from each other, depending on the type 
of each distribution. 
The convergence of the converged position to the fast covariance seems 
to be because the distribution reflects the convergence speed of the 
model increases as the continuous task information of the model. 
 Also, most of the loss graphs seem to be fluctuating between epoch 
400 to 600 and 600 to 800.
 
As shown in Figure 75, each 5by5 image is a Random different sample. 
However, all 25 generated shapes show similar shapes. It knows that 
the Valina-GAN model has a problem with mode collapsing. The mode 
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collapsing phenomenon is a phenomenon that memorizes only one image 
in the course of learning. Therefore, it assumes that this cause by the 
mode collapsing occurring in the GAN series, not by the effect caused 
by the loss. 
 
 
And the distribution of Gumbel shows a tendency to be slightly wider in 
white that allows the Laplace distribution to help interpret the effect of 
the generated image. Image acquisition from such a Laplace distribution 
does not have a tail width and distribution range that can reliably reflect 
the tilt and thus tends to fail to acquire tilt. However, we can verify 
that the Gumbel distribution to be used as an initial distribution has a 
thicker tail than other distributions and has an advantage in generating 
an image by acquiring the continuous task information of the distribution 
width stably.
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Figure 75 Continuous task information reflection analysis in the color 
image according to various Batch size and initial distribution. Smooth 
correction at Alpha 0.75, Gamma 4.0, Learning rate 0.0007, Batch size 
4, L1 0.25, L2 0.25, Z latent space size 100, Adam optimizer, i) 
Random distribution, ii) Laplace distribution, iii) Logistic distribution, and 
iv) Gumbel distribution
 
When you look at the picture shown in Figure 75, you can see that it 
cluster with similar color values. This clustered distribution shows that 
the width varies. It confirms that the generated image is affected by the 
width of the existing distribution. 16 Batch, the Laplace distribution, and 
Gumbel distribution show that the white part of the Laplace sharper.
14) Parameter analysis using L1 and L2 regularization at smooth 
correction

Figure 76 Analysis of smooth correction from the cost function 
perspective cost function about the effect of various regularization 
methods by Batch size 4, Z latent space 100, Scale correction 
coefficient at Alpha 2.0, Gamma 0.25, Valina-GAN, Cifar100 dataset, i) 
L1 & L2 about the L1 increase, ii) L1 & L2 about L2 increase, iii) L1 
& L2 about L1 & L2 increase.
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Figure 76 From the viewpoint of is the cost function, various 
regularization methods analyze according to the smooth correction cost 
function. Figure 76(i) shows the result as the L1 coefficient value 
increases. As L1 increases, it sees that vibration frequently occurs as 
Epoch increases. However, Figure 76 (ii) shows the result according to 
the increase of the L2 coefficient value. In the case of L2, the vibration 
tends to increase with increasing epoch. Also, it shows that the cost 
function of the concatenated part of the initial, middle part maximizes 
each other and learns. Figure 76(iii) shows the tendency of cost 
function when L1 and L2 increase at the same time. At this time, the 
magnitude of the vibration width increases as the value increases. It 
also shows that the number of oscillations increases and then decreases 
in Figure 76(ii)
From these results, it seems that the normalization effect produced by 
the linear combination of L1 and L2 is dependent on the size and the 
particular methods.

Figure 77 Smooth correction analysis from the viewpoint of PSNR and 
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MSE by Batch size 4, Z latent size 100, Adam optimizer, Fashion 
MNIST dataset, Valina-GAN, i) L2 increase at L1 0.25, ii) L2 increase 
at L1 0.75, and iii) L1 & L2 increase.
 
To analyze the influence of size value, we compare the performance of 
PSNR and MSE in Figure 77. First, we measure performance according 
to the increase of L2 value when L1 fixe to 0.25, When the value of 
0.75 fixes, the influence of the increase of the L2 value and the third of 
the increase of the L1 and L2 values ​​were analyzed. The first result 
shows that the amplitude of the MSE decreases as the L2 value 
increases. The second result shows that the variation of the MSE value 
is not as large as the L2 value increases. As the final result increases, 
the result of MSE decreases. Based on these results, if the L1 value is 
too large, the variation of L2 has an irrelevant effect, and the MSE 
value is shown to be reduced stably when the linear combination of L1 
and L2 is equal. As a result, it seems that the performance varies 
depending on the conditions of the linear combination of L1 and L2 
regularization.
 
15) Regularization analysis using parameter changing at smooth 
correction

Figure 78 Exponential regularization for acquisition continuous task 
information analysis according to the variation of alpha in the scale term 
by Learning rate 0.0007, Batch size 2, L1 0.0, L2 0.15, Z latent space 
size 500, Adam optimizer,  Gumbel distribution, Scale correction 
coefficient at Gamma 0.25, a) Alpha 2.0, b) Alpha 3.0, c) Alpha 4.0.
Figure 78 is the result of various Scale correction coefficients on the 
generated image by Valina-GAN. Thus, the Exponential regularization 
method show by acquiring the continuous task information independently 
of the cost function.



- 199 -

국 문 초 록  

딥 러닝의 성능 향상 기법 및 응용에 관한 연구

한성대학교 대학원
전자정보공학과
전자정보공학전공
최 승 호

     딥러닝은 현재 많은 실생활에서 높은 성능을 보여 다양한 환경에 적용
되어 연구가 진행되어 오고 있다. 그러나 딥러닝은 블랙박스 모델이라 해석
하기가 어렵고 또한 왜 좋아지는지 이해하기가 어렵다. 따라서 본 논문에서
는 기존 딥러닝의 성능 향상을 위해서 딥러닝 성능 향상 기술 및 딥러닝을 
이용한 응용 분야에 대해서 연구된 내용을 살펴본다. 딥러닝의 성능을 향상
시키기위해서는 어떠한 부분에 문제점이 있는 지를 파악해서 개선한 딥러닝 
기술 향상 관련 내용에 대해서 소개한다. 
  딥러닝 성능 향상에서는 7가지의 기술에 대해서 살펴본다. 첫번째로 양방
향 활성화 기능 : 컨볼루션 신경망에서 향상된 활성화 기능이다. 두번째로 
온라인 지속적인 작업 학습을 통해 규모적 보정 캐스케이드 연속 발생 적대 
네트워크의 손실이다. 세번째로 비선형 지수 정규화 : 딥러닝 모델을 위한 
개선된 정규화 버전이다. 네번째로 딥러닝 모델 최적화를 위한 새로운 보조 
구성 요소이다. 다섯번째로 안정적인 학습을 위한 앙상블 노말라이제이션이
다. 여섯번째로 실제 가짜 지문과 DCGAN에 의해 생성된 가짜 지문의 유사
성 분석이다. 일곱번째로 음악 작곡을 위한 적응 적 정규화를 갖는 원-핫 
양방향 Seq2Seq에 에러 감소 임베딩을 갖는 다중 경로 디코더 스킴이다. 
  그리고 높은성능 표현하는 딥러닝을 실제 생활에 응용한 기술에 대해서 소
개한다. 딥러닝을 응용한 기술에서는 4가지의 기술에 대해서 살펴본다. 첫번
째로 적응적 시드의 중요성 연구이다. 두번째로 이미지 캡셔닝에서 모듈 비
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교연구이다. 세번째로, 이상치데이터에 대해서 시각화이다. 네번째로 U-Net 
구조에서 배치 노말라이제이션 그리고 포컬 로스 와 L1 규제화을 이용한 안
정적인 미세정밀한 세그멘트 획득이다.
   이를 통해서 딥러닝을 이용한 새로운 딥러닝 이론을 만들어 딥러닝 모델
의 성능 향상 및 새로운 연구 분야에 대해서 미래 연구로 진행하고자 한다.


