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Abstract

Study on Performance Improvement Techniques
and Applications of Deep Learning

Seoung—Ho Choi

Major in Electronic Information
Engineering

Dept. of Electronic Information
Engineering

The Graduate School

Hansung University

Deep learning currently shows high performance in many real—life
applications and has been applied to various environments, and research
has been conducted. However, since deep learning is a black—box model,
it 1s difficult to interpret it, and it is difficult to understand why it is
getting better. Therefore, we will look at the research contents on the
fields of application of deep learning performance improvement
technology and deep learning to improve the performance of existing
deep learning. To improve the performance of deep learning, we
proposed the contents of the improvement of deep learning technology,
which is improved by grasping where the problem is.

Improved performance of deep learning technology, we look at seven

types of technology. First, the bi—activation function: this 1s an



enhancement activation function that is enhanced in the convolution
neural network. Second, it is the loss of a neural network that is
continuously occurring, and the continuous correction cascade loss occurs
through continuous online learning. Third, non—linear regularization: This
is an improved regularization version for the regularization method.
Fourth, it is a new auxiliary component for optimizing the deep learning
model. The fifth is ensemble normalization for stable learning. The sixth
is the similarity analysis of actual fake fingerprints and fake fingerprints
generated by DCGAN. Seventh 1s a multi—path decoder scheme with
error reduction embedding in one—hot bi—directional Seq2Seq with
adaptive regularization for music composition.

In addition, deep learning that expresses high performance will be
introduced to technology applied to real life. In technology using deep
learning, we will look at four types of technology. The first is the
importance of adaptive seeding. The second is the module comparison
study in the image captioning. Third, the visualization of outlier data.
Fourth, it is a stable and fine—grained segmentation that uses batch
normalization and focal loss and L1 regularization in the U-—Net
structure.

Through this, we will create a new deep learning theory using deep
learning to improve the performance of the deep learning model and

proceed to future research in the new research field.

[Keyword] deep learning. performance, improvement, application,

technology



Contents

L IntrOdUCtion ............................................................................................................. 1
11 Research ObjeCtiVeS ............................................................................................... 1
12 Research CONTEIIES  rrrerrereresreserrer ettt sttt sttt sttt st s ta st staaaes 2

II. Basics of Deep Learning Techniques and Application e 4
21 Techniques ............................................................................................................... 4

211 COHVO]UtiOH Neural Networks (CNN) .................................................... 4
2.1.2 Recurrent Neural Networks (RNN) e 5
213 Sequence to Sequence .............................................................................. 5
214 Generative Adversarial NetWOka (GAN) ........................................... 6
215 Conditional GAN ........................................................................................... 7
D 1.6 AULO EICOQEL  w++rererssrereessmressssesesssessssssessssssessssssesesssesesssssesssssassssssesesssnnas 7
217 TranSfer learning .......................................................................................... 8
218 Knowledge dlStlllatlon ................................................................................. 8
D.1.0 Cyele 108§ rrrmmssssessermssssssssssssissssssses s 9
2110 Reinforcement learning ............................................................................. 9
2111 Hybrld model ............................................................................................ 10
2112 Style transfer ............................................................................................ 10
9 113 ACHVALION FUNCHION  w+reressrersssremsrrsmsmemmsmsessssasssssssessssessssesssssessssesessenes 11
2114 LOSS fUnCtion ............................................................................................ 11
2115 Regularization ............................................................................................ 12
2116 Normalization ............................................................................................. 12
0 117 MEASULE  «+eersrecessresssmmessiressinsesssnesesssesssssessssessssessssesssssessssssessssessssssssnees 12
22 Application ............................................................................................................. 13
221 Visualization ................................................................................................... 13



222 Image Captioning .......................................................................................... 13

III. Performance Improvement TeChniqUeES - 14
3.1 The Bi—activation Function: an Enhanced Version of an Activation

fUnCtiOH in COHVOlUtiOH Neural NetWOka .................................................. 14

3.2 Scale Calibration Cascade Smooth Loss of Generative Adversarial

Networks with Online Continual Task Learning. e, 24

3.3 Nonlinear Exponential Regularization : An Improved Version of

Regularization for Deep Learning Model .................................................. 43
3.4 Novel Auxiliary Components to Help Optimize Deep Learning Model 53
35 Ensemble Normalization for Stable Training ................................................ 91

3.6 Similarity Analysis of Actual Fake Fingerprints and Generated Fake
Fingerprint

by DCGAN ............................................................................................................... 95

3.7 Multi Way Decoder Scheme with Error Reduction Embedding on one—hot
bi—directional Seq2Seq with Adaptive Regularization for Music

COmpOSitiOn ................................................................................................... 10’7
TV. APDlCAtion TeCHIIQUE -« ssrrrrereessssserrerrssiisiisssscssssiieissssssnisssss 129
4.1 Study on the Importance of Adaptive Seed Value Exploration -« 129
42 COmpariSOn module about Image Captioning ............................................. 133
43 ViSUaliZatiOn about Anomaly data ................................................................ 142

4.4 Stable Acquisition of Fine—Grained Segments using Batch Normalization

and Focal Loss with L1 regularization in U—Net Structure -« 150
V. CONCIUSION  rveverrrsersersemsessessesssssssssiss st 163
BiDLIOGLADRY +++tevvessssesssssssssssssssssnssssssssmmsssssssssnsissssssimsssssssssssnssssssssmnsssssssisssssssssssssssos 164
ADPDENAICES +++vrvvresssssssssmmsmssssssmmmsisssssiansss s s iae s 175
Abstract in Korean (FZE QOF) s 199



[Table

[Table

[Table

[Table

[Table

[Table

[Table

[Table

[Table

Index of Table

1] Comparison of influence according to the number of CNN model
feature maps (a) CNN-Large, (b) CNN—Middle, (¢c) CNN—Small, (d)
CNN_thtle .................................................................................................... 18
2] Train / Test accuracy and loss in CNN—Small according to Seed 999
on CNN Small. ................................................................................................ 21
3] Train / Test accuracy and loss error in CNN—Small according to
Seed 500 on CNN Small. .............................................................................. 21
4] Train / Test accuracy and loss error in CNN—Small according to
Seed 1 on CNN Small. .................................................................................. 22
5] Experimental results using two datasets on two models: top 5 values
Of PSNR and MSE .......................................................................................... 47
6] Ablation study of our proposal in two models, a) loss, b) loss with
linear combination of L1 and L2 regularization, c¢) loss with nonlinear
exponential regularization of L1 and L2 regularization, d) loss with
nonlinear exponential regularization of L1 and L2 regularization and
linear regularization of L1 and L2 regularization ««eeeeeeeeeemeemeneenne. 48
7] Comparative test for verification of nonlinear exponential average
moving in the VOC dataset. a) loss, b) loss with linear combination of
L1 and L2 regularization, c¢) loss with exponential moving average linear

combination of L1 and L2 regularization, i) FCN, ii) U—Net, iii) Deep

8] Comparative test for verification of nonlinear exponential average
moving in ATR dataset [9] using linear coefficient a) loss, b) loss with
linear combination of L1 and L2 regularization, ¢) loss with exponential
moving average linear combination of L1 and L2 regularization, i) FCN,
11) U_ Net, 111) Deep labV3 .......................................................................... 51

9] Comparative test for verification of ours experiment in an average of
ATR dataset and VOC dataset using convex coefficient a) loss, b) loss
with linear combined of L1 and L2 regularization, c¢) loss with nonlinear

exponential regularization, d) loss with exponential moving average



[Table
[Table

[Table
[Table
[Table
[Table
[Table
Table
Table

Table

[
[
[
[Table

[Table
[Table
[Table

[Table
[Table

[Table

regularization' ..................................................................................................... 52
10] Experiment index of Hybrid regularization s 65
11] Comparison of effects on Unrolled GAN training by increasing width
Of 1n1t1al 1atent Variable ................................................................................... 73
12] Experiment result of regularization using U—Net on ATR dataset
Wlth Seed 250 .................................................................................................... 83
13] Quantitative comparison of three normalization in two models using
VOC dataset ........................................................................................................ 93
14] Quantitative comparison of three normalization models using ATR
dataset .................................................................................................................. 93
15] Quantitative comparison of each normalization combination in the
ensemble method USing VOC dataset .......................................................... 94

16] Quantitative comparison of each normalization combination in the

ensemble method uSing ATR dataset ......................................................... 94
17] Data settings for verification of fake fingerprints e eeeeeresee 102
18] Analysis Of VariOUS Slmllarlty methOdS ............................................ 105

19] Comparison of one—hot encoding and whole encoding analysis 113
20] Comparison of one—hot and whole encoding analysis using total

error

21] One—hot encoding on experimental models, a) bi—directional RNN,
b) bi—directional seq2seq, c) bi—directional seq2seq using adaptive 12
0.5 TEQUIATIZATION w+rvreesrsrsssessessesssssisit sttt 114
22] Various efficient on one—hot bi—directional seq2seq2 with 12
regularization using 0.5, 0.4, 0.3, 0.25, 0.2, 0.1 and none 12
FEGUIATIZATION *reeeersrssessrsssses ettt 115
23] Comparison of ours proposal based on one—hot bi—seq2seq with
adaptive regularization using music dataset using top 1 error - 116
24] Comparison of multi way decoding scheme analysis s=«eeeeeeeeee 117
25] Evaluation of experimental performance using three seeds (1, 500,
and 999) on a SmaH CNN mOdel .............................................................. 131

26] Performance evaluation based on four input data using three CNN

_Vi_



[Table

[Table

[Table

[Table

[Table

[Table

[Table

models at seed 1 (batch sizes 128, 86, 64, and 32 «weerereeeseesneen 131
27] Comparison of sequential modules a) LSTM and b) GRU, i)
Vanilla—RNN, and ii) Bi—directional RNN weermmmiiiie, 137
28] Comparative analysis according to embedding module, a) embedding,
b) Glove, i) Vanilla—RNN, and ii) Bi—directional RNN «eeeeeseeieinene 139
29] Comparison of attention modules, a) non—attention and b) attention,
a) non—attention, b) attention, i) Vanilla—RNN, and ii) Bi—directional
RNN

30] Comparison of search methods for correlation analysis of generated
captions. a) greedy search, b) beam search, i) Vanilla—RNN, ii)
Vanilla—RNN  with attention, 1iii) Bi—directional RNN, and 1iv)
Bi_directional RNN Wlth attention ............................................................ 141

31] Comparison of both focal loss about U—Net models, a) U—Net, b)
Attention U—Net, ¢) U—Net BN, (i) L1 0.0 and L2 0.0 regularization
coefficient, (ii) L1 0.0 and L2 0.5 regularization coefficient, (iii) L1 0.5
and L2 0.0 regularization coefficient, (iv) L1 0.5 and L2 0.5
regularization Coefficient ............................................................................... 160

32] Performance evaluation of Z latent space size with L1 0.0, L2 0.0,
Adam optimzier, no weight decay using GAN e 179

33] Performance evaluation of Z latent size with L1 0.0, L2 0.0

regularization, Adam optimizer, weight decay using GAN -eeeereeeeeees 182

- vii -



[Figure
[Figure

[Figure

[Figure

[Figure
[Figure

[Figure

[Figure
[Figure

[Figure

[Figure

[Figure
[Figure

[Figure

[Figure

[Figure

Index of Figure

1] Taxonomy Of contents Of my thesis ..................................................... 2
2] Process of bi—activation function: (a) Pos—activation function, (b)
Neg—activation function, (c) bi—activation function - «eeereseneees 15

3] Experiment of activation function: (a) Existing method, (b) Proposal

method, (a)i RELU, (a)ii eLU, (b)i bi—RELU, (b)ii bi—eLU. - 16
4] Experiment of model sample: (a) CNN—Large, (b) CNN—Middle, (c)
CNN_SmaH, (d) CNN_thtle .................................................................... 17
5] EXperlment Of two layer CNN .............................................................. 19

6] Performance analysis of proposal methods. x) small of CNN, y) two
layer of CNN, a) Using MNIST dataset, b) Using Fashion MNIST, A)
Activation function of RELU, B) Activation function of eLU, C)
Activation function of bi—RELU, D) Activation function of bi—eLU, 1)
Seed 1, ii) Seed 250, iii) Seed 500, iv) Seed 750, v) Seed 999 22
7] Novel problem that explain the direction to get a descriptive on few
data learning at online continual task learning optimization ««=-=«-==- 34

8] Compare of optimization methods on verified of proposal loss60

9] Effect of ours proposal for suboptimal training path gradients, a) L1
regularization b) Nonlinear exponential regularization e eeeereeeeee: 45
10] Comparative analysis of proposed methods to help fast convergence
in training a) Vanilla—GAN, b) LSGAN, i) Cifarl0, and ii) Cifar100 47
11] Generated images by a) linearly combined regularization and b)
nonlinear exponential regularization = e 48
12] Our auxiliary COMPONENLS wewrererressesssessmsssssissiseiis s 54
13] Visualization using contour map to analyze the impact of the
PrOPOSEd METROM wreerrrresressessssss it 55
14] Visualization frequency using loss error to analyze the impact of
the proposed Method e 57
15]  Visualization scatter plot using loss error map to analyze the
impact of the proposed Method e, 59

16] Comparison of the regularization methods tested using visualization

~ viii -



[Figure
[Figure
[Figure
[Figure

[Figure

[Figure
[Figure

[Figure

[Figure

[Figure
[Figure
[Figure

17] Visualization of experiment system configure e 62
18] Relation analysis in OPHIMIZALION «+wsresseressseremsmremssermisnriissnsiinenns 69
19] EXPErimental SyStEm s s eeesseressereessesisniasisesiisesisssssssesaissessiseees 79
20] Four distribution visualizations : (a) Laplace distribution, (b)

logistic distribution, (¢) Normal distribution, and (d) Gumbel distribution

21] Mode collapse visualization of four distributions using Unrolled

GAN, 1) visualization of eight distributions during the training process,

and i) visualization of eight distributions after training --:«--eeeeees 75
22] Comparison of GAN discriminator parameters =« e 77
23] Variation of loss value analysis of vanishing gradient using four

distributions in LSGAN [3], (a) MSE loss, (b) Hinge loss, (i) Normal
distribution, (ii) logistic distribution, (iii) Laplace distribution, and (iv)
Gumbel diStribUtiOH ........................................................................................... 79

24] Stability analysis for pixel location and catastrophic forgetting
where color information can be forgotten in test images according to
random training data selection and training for GAN using size 8, a)
Normal distribution, b) logistic distribution, c¢) Laplace distribution, d)
Gumbel distribution, i) 0 epoch, ii) 250 epoch, iii) 500 epoch, iv) 750
epoch, and v) 1000 @DOCh wswersserersseremsssrsessssiesissesesssssssisessssssesesssssenes 30

25] Spatio—temporal analysis of color space mapping of latent variable
based on the relationship between batch size and distribution size for
the performance of generated images during hinge loss on GAN training,
i) static selection batch size 2, ii) static selection batch size 8, a) 100
latent variable sizes, b) 500 latent variable sizes, and c¢) 1000 latent
Variable SiZeS ...................................................................................................... 81

26] Comparison of the regularization methods tested using loss 87

27] Comparison of the regularization methods tested using IOU - 87

28] Qualitative analysis of images generated for stable training in
generator of GAN using a series of conditional GAN. i) cGAN, ii)
ACGAN, iii) semi GAN, a) Normal distribution, b) Laplace distribution,

_ix_



[Figure

[Figure
[Figure

[Figure
[Figure
[Figure
[Figure
[Figure
[Figure
[Figure
[Figure

[Figure

[Figure
[Figure

[Figure

[Figure

[Figure

[Figure

c) logistic distribution, and d) Gumbel distribution ««: e 89

29] Process of normalization method, a) Existing normalization method,

b) Ensemble normalization method .............................................................. 92
30] Overall process of proposed Method s i, 98
31] DCGAN training data by quality: (a) Q1, (b) Q2, (¢) Q3, (d) Q5
............................................................................................................................. 100
32] DCGAN training process. At the beginning of training (a), during
the middle of training (b), and the end of training = :seseeeserenens 100
33] Generated fake fingerprint data by DCGAN e, 101
34] Plot of mean and standard deviation of four data sets wee 101
35] Our proposal system about multi way decoder scheme 108
36] Analysis of our proposal. i) Embedding part seeeeeeeeeeeeneieninnns 110

37] Comparison of decoder part experiments with Seq2Seq Model110
38] Comparison of the impact on learning loss «reerererersinnn. 132
39] Evaluation of normalization performance used in experiments using
scatter DlOt and hiStOgram ........................................................................... 111

40] Comparison result using numerical analysis of training in each class

41] Analysis about OUF Proposal « s wsremsrmmmmerimisiiiiesiisssesissenes 112
42] Visualization of generated music about one—hot bi—directional
SEQ2SE( ++oresssssessssssssssssssssrusissssssnonsserssssisesssssssissossserssesssessssssssssssssasssssosisssssssiss 113
43] Comparative analysis by component of each module of image
CADLIONING w++vs+toreesssesssssssssssssnssississmsosssssmss st sas s st a1 135
44] Comparative analysis according to the feature extraction, i) Vggl6
AN 11) RESNELS() wererereesreesserssessseessesssssssessssisssisssssssssssssssisssss st 138
45] Comparison of components in seed module by the value of MSE
and loss error. a) Random, b) he, ¢) lecun, A) normal, B) Uniform, i)
Vggl6, ii) ResNet50, blue bar) CNN with Vanilla—RNN, orange bar)
CNN with Bi—directional RNN, gray bar) CNN with attention
Vanilla—RNN, and yellow bar) CNN with attention Bi—directional RNN

46] Existing visualization technique and proposed visualization



[Figure

[Figure

[Figure

[Figure

[Figure

[Figure

[Figure

[Figure
[Figure

techniques. a) UMAP, b) Combination LBP LLE SMOTE, c) Pixel
similarity visualization technique using pixel density distribution. Pixel
frequency visualization technique wusing position of pixel density
diStribUtiOl’l in EDA ........................................................................................ 146

47] Experimental verification of combination LBP LLE SMOTE. a)
Existing Method, b) Existing method with SMOTE Sampling, ¢) Apply
LBP method before applying the existing method with SMOTE sampling,
d) Apply LBP method after applying the existing method with SMOTE
SATIIPLIIG #++ereereesessersessessess ettt 147

48] Visualize pixel density frequency of data, a) Accurate analysis for
each class, b) Accurate analysis for whole class s 148

49] Visualize pixel density similarity of existing and generated data, a)
Ground truth, b) Vanilla GAN, ¢) DRAGAN, d) EBGAN :eereeereeenees 148

50] Comparative analysis of existing and generated data. a) Ground
truth MNIST, b) MNIST generated from Vanilla GAN, c) MNIST
generated frOm DRAGAN ............................................................................. 149

51] Experimental results to verify the combination LBP LLE SMOTE
from a) Ground truth data. b) Ground truth LBP smote, ¢) Ground truth
CLBP mote, d) Ground truth UCLBP smote, e) Ground truth UCLBP no

52] Comparison of changes according to the techniques applied in the
first proposed method a) Generated LBP smote, b) Generated CLBP
mote, ¢) Generated UCLBP smote, d) Generated UCLBP no smote 150
53] Comparative experiment according to K value in Smote technique.
2) K=4, b) K=16, ) KZA41, e 150

54] Proposed U—Net SLFUCLUrE, s wreessrmssssmsiisisiisisisiiies 153

55] Result of focal loss regularization model. a) FCN, b) Attention
U—Net, ¢) U—Net BN, I) Cross—entropy with L1 0.0 and L2 0.0
regularization coefficient, II) Cross—entropy with L1 0.0 and L2 0.5
regularization coefficient, III) Cross—entropy with L1 0.5 and L2 0.0
regularization coefficient, IV) Cross—entropy with L1 0.5 and L2 0.5
regularization coefficient, V) Focal loss with L1 0.0 and L2 0.0

_Xi_



[Figure

[Figure

[Figure

[Figure

[Figure
[Figure
[Figure
[Figure

regularization coefficient, VI) Focal loss with L1 0.0 and L2 0.5
regularization coefficient, VII) Focal loss with L1 0.5 and L2 0.0
regularization coefficient, VII) Focal loss with L1 0.5 and L2 0.5
regularization Coefﬁcient ............................................................................... 155

56] The proposed method is focal loss L1 0.5 regularization coefficient.
The proposed method is shown using four cases of Figure 55(a),
Figure 55(b), Figure 55(c¢), and Figure 55(d). I) FCN, II) U—Net, III)
Attention U-—Net, IV) U-Net BN on focal loss with L1 0.5
regularization coefficient for each Case, s 157

57] Comparison with or without BN about two loss function types and
various regularization coefficients in loss function within training time I)
Cross—entropy with L1 0.0 and L2 0.0 regularization coefficient, II)
Cross—entropy with L1 0.0 and L2 0.5 regularization coefficient, III)
Cross—entropy with L1 0.5 and L2 0.0 regularization coefficient, IV)
Cross—entropy with L1 0.5 and L2 0.5 regularization coefficient, V)
Focal loss with L1 0.0 and L2 0.0 regularization coefficient, VI) Focal
loss with L1 0.0 and L2 0.5 regularization coefficient, VII) Focal loss
with L1 0.5 and L2 0.0 regularization coefficient, VII) Focal loss with
L1 0.5 and L2 0.5 regularization coefficient «resmeeeserersrermneenineenneennns 157

58] Comparison of F1 score according to addition of attention gate on
segmentation model within training time, a) In the attention gate
included, b) In the attention gate non included « e, 158

59] Comparison of regularization effect using non regularization and
regularization with L1 and L2 regularization. a) Cross—entropy loss, b)

Focal loss, i) L1 0.0 and L2 0.0 regularization coefficient, ii) L1 0.5

and L2 05 regularization Coefﬁcient ........................................................ 161
60] Visualization about experiment IOSS ................................................. 176
61] FIOW Chart abOUt our proposal 1055 .................................................. 176
62] Visualization of experiment system configure e 177

63] Compare of loss on weight decay in optimization process in
Valina—GAN using MNIST dataset on Learning rate 0.0007, 16 batch
size, L1 0.25, L2 0.0, and 500 Z latent space size , a) Adam b)

- xii -



[Figure

[Figure

[Figure

[Figure

[Figure

[Figure

[Fgiure

[Figure

Adagrad i) Non decay ii) Weight decay s 178

64] Compare of Batch size on smooth loss in optimization process using
MNIST dataset on Learning rate 0.0007, L1 0.0, L2 0.75, and 1000 Z
latent space size in Adam decay. a) 16 batch size, b) 32 batch size, c)
64 batch size, i) Non Weight decay, ii) Weight decay «eeeeeeeseeeees 179

65] Comparison of 4 batch size, L1 0.0, L2 0.5, 100 Z latent size, and
in Valina—GAN model using Fashion—MNIST dataset. i) Adadelta, ii)
Adagrad, iii) Adam, a) Origin loss, b) Smooth loss, c¢) Correction loss,
i) Adadelta, ii) Adagrad, iii) Adam e 185

66] 7 latent space size on correction loss by 16 batch size, L1 0, L2
0.5, in Valina—GAN using MNIST dataset. a) 100 Z latent space size ,
b) 500 Z latent space size, ¢) 1000 Z latent space size, i) Adam , ii)
Adadelta iii) Adagrad - e 186

67] Optimization methods of proposal cascade loss that composed of 4
batch size, L1 0.0, L2 0.5, 100 Z latent space size, and in Valina—GAN
model using gray scale Fashion—MNIST dataset. i) Adadelta, ii)
Adagrad, iii) Adam, a) Origin loss, b) Smooth loss, c¢) Correction loss,
i) Adadelta, ii) Adagrad, iii) Adam e, 187

68] Compare of optimization methods on verified of proposal cascade
loss that composed of 4 batch size, L1 0.0, L2 0.5,z latent space size
100, and in Valina—GAN model using gray scale Fashion—MNIST
dataset. i) Adadelta, ii) Adagrad, iii) Adam, d) Origin correction loss,
e) Smooth correction loss, f) Correction correction loss, i) Adadelta,
11) Adagrad’ 111) Adam ................................................................................... 188

69] Compare of detail description by model loss on scale correction
term a) Origin loss, b) Smooth loss, c¢) Correction loss, i) Non
COrTection , i) COIFECLION wewrrersesssmssessiseisi st 189

70] Performance of dependency analysis at color image generation
measure PSNR of various distribution on 8 batch size. a) Smooth
method b) Smooth correction, i) Random distribution, ii) Laplace
distribution, iii) Logistic distribution iv) Gumbel distribution = 190

71] Influence analysis based on various batch sizes according to initial

- Xxiii -



[Figure

[Figure

[Figure

[Figure

[Figure

distribution for acquisition of continuous task information reflection by
smooth correction, Learning rate 0.0007, 4 batch size, L1 0.0, L2 0.0,
100 7 latent space size, Adagrad optimzier, LSGAN, and MNIST
dataset. a) Normal distribution, b) Laplace distribution, c¢) logistic
distribution, d) Gumbel distribution, i) 4 batch size, ii) 16 batch size,
111) 32 batch SiZe ............................................................................................ 191

72] Compare of the effect of test smooth calibration method on alpha
and gamma coefficients at Learning rate 0.0007, Batch size 4, L1 0.25,
L2 0.25, Z latent space size 100, Adam optimizer, Gumbel distribution
in Valina—GAN 1i.a) Alpha 0.25 i.b) Alpha 0.5 i.c) Alpha 0.75 ii.a) Beta
20 Hb) Beta 30 IIC) Beta 40 ................................................................ 192

73] Smooth correction method training process about smooth correction
at Learning rate 0.0007,4 Dbatch size, L1 0.25, L2 0.25, 100 Z latent
space size, Adam optimizer, Scale correction at scale coefficient of
Alpha 0.75, scale coefficient of Gamma 4.0 compare about i) Gumbel
distribution and ii) Random distribution a) 0 Epoch, b) 250 Epoch, c¢)
500 Epoch, d) 750 Epoch, €) 1000 Epoch e, 193

74] An indirect comparison of the initial distribution of the catastrophic
problem every time new data is learned during model training. Smooth
correction at Learning rate 0.0007, Batch size 16, L1 0.25, L2 0.25, Z
latent space size 100, Adam optimizer, Alpha 0.75, Gamma 4.0 a)
Batch size 4 , 8, 16, 32 and 64 in Cifarl0, i) Random distribution, ii)

Laplace distribution, 1iii) Logistic distribution, and iv)  Gumbel
diStI‘ibUtiOI’l ........................................................................................................ 194
75] Continuous task information reflection analysis in color image

according to various Batch size and initial distribution. Smooth
correction at Alpha 0.75, Gamma 4.0, Learning rate 0.0007, Batch size
4, L1 0.25, L2 0.25, Z latent space size 100, Adam optimizer, i)
Random distribution, ii) Laplace distribution, iii) Logistic distribution,
and 1V) Gumbel diStl"ibUtiOl’l ......................................................................... 195

76] Analysis of smooth correction from the cost function perspective

cost function about effect of various regularization methods by batch

- Xiv -



size 4, 7 latent space 100, scale correction coefficient at alpha 2.0,
gamma 0.25, Valina—GAN, cifar100 dataset, i) L1 & L2 about L1
increase, ii) L1 & L2 about L2 increase, iii) L1 & L2 about L1 &
1.2 increase. ...................................................................................................... 196
[Figure 77] Smooth correction analysis from the viewpoint of PSNR and MSE
by Batch size 4, 7 latent size 100, Adam optimizer, Fashion MNIST
dataset, Valina—GAN, i) L2 increase at L1 0.25, ii) L2 increase at L1
0.75, and iii) L1 & L2 INCrease. - e 197
[Figure 78] Exponential regularization for acquisition continuous task information
analysis according to the variation of alpha in the scale term by

Learning rate 0.0007, Batch size 2, L1 0.0, L2 0.15, Z latent space

size 500, Adam optimizer, Gumbel distribution, Scale correction
coefficient at Gamma 0.25, a) Alpha 2.0, b) Alpha 3.0, ¢) Alpha 4.0. e,
198

- XV —



Chapter 1 Introduction

1.1 Research objectives

Deep Learning currently shows high performance in many real-life applications
and has been applied to various environments and research has been conducted.
However, since deep learning is a black-box model, it is difficult to interpret it,
and it is difficult to understand why it is getting better. So, we show high
performance as an advantage of the deep learning model.

There are three ways to improve the existing deep learning performance in
terms of data. First, more data is obtained. This is due to the increase in the
amount of data information judged by the deep learning model, which improves
performance. At this time, if the quality of the acquired data is poor, rather, it
shows low performance. Therefore, it is important to augment good quality data.
Second, adjust the data scale. The process of adjusting the data scale has
three-step. The first step normalized to 0 to 1. The second step rescaled to -1 to
1. Third step standardized.

In terms of deep learning model improvement, technologies such as hyper
parameter optimization, batch size and adjustment, early stop, regularization,
dropout, and network search methods are known as ways to improve the
performance of deep learning models. However, even though many studies have
been conducted, various issues still exist that require new problems and solve
existing problems. We would like to suggest several ways to improve

performance in the deep learning model. We explain in the next section.



1.2 Research contents

Deep Learning

/\

Improve Techniques Applications
Scale calibration cascade smooth loss Adaptive Seed Value Exploration

Comparison module

Ensemble normalization

Bi-activation Visualization method

Nonlinear exponential regularization Fine-Grained Segments

Multi-way Decoder Scheme

Similarity analysis

Figure 1. Taxonomy of contents of my thesis

We intend to reduce the problems and obtain an opinion to improve the
performance of the deep learning model. Figure 1 is a taxonomy the proposed
methods. We obtain high performance using deep learning. We describe the
contents of the research conducted by the technique of improving the
performance of the existing deep learning model. The following are research on
the performance improvement techniques from the previous research.

3.1 The bi-activation function: an enhanced version of an activation function in
convolution neural network, 3.2 Scale calibration cascade smooth loss of
generative adversarial networks with online continual task learning, 3.3 Nonlinear
exponential regularization: an improved version of regularization for deep learning
model, 3.4 Novel auxiliary components to help optimize deep learning model, 3.5
Ensemble normalization for stable training, 3.6 Multi way decoder scheme with
error reduction embedding on one-hot bi-directional seq2seq with adaptive
regularization for music composition, and 3.7 Similarity analysis of actual fake
fingerprints and generated fake fingerprints by DCGAN.

To improve the performance of the existing deep learning model, we will
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describe application research using deep learning in addition to the research
conducted. The following is an application study using existing deep learning. 4.1
Study on the importance of adaptive seed value exploration, 4.2 Stable
acquisition of fine-grained segments using batch normalization and focal loss with
11 regularization in U-Net structure 4.3 Visualization techniques for outlier data,
4.4 Component-based comparative analysis of each module in image captioning
In conclusion, the contributions of this thesis will explain the limitations and
additional directions for research and existing methods related to methods for

improving the performance of the deep learning model and application research.



Chapter 2 Basics of Deep Learning Techniques and

Application

Recently, deep learning has been making achievements that have been planned
in several fields. It has been successfully applied, such as showing better results
than a person. Therefore, to understand the contents described, the background
knowledge of deep learning will be described. Deep Learning is composed of
three categories. The first is supervised learning, the second is unsupervised
learning, and the third is reinforced learning. Supervised learning is a method of
learning a model with a correct answer and a label for a correct answer.
Unsupervised learning finds input characteristics only in the input state.
Reinforcement learning is a method of updating through compensation according
to the current state. Deep learning consists of the convolution model, sequential
model, generative adversarial model, reinforcement learning, and transfer learning.
The advantage of deep learning is high performance. The disadvantage of deep
learning is that it has a large amount of calculation in the course of learning. In
addition, deep learning requires a large amount of data. Because if you enter the
wrong quality data in the deep learning model, the wrong garbage result will
occur. The existing research will be described based on the type of deep

learning.

2.1 Techniques

2.1.1 Convolution Neural Networks (CNN)

CNN uses a local filter to calculate by sharing the filter in the image. CNN is



strong in regional characteristics because it uses local filters to perform
calculations. The following are the contents studied in the convolution method to
improve music composition performance. H.-M. Sulfur et al. [1] used the
characteristics of the Mel-frequency spectrum coefficient, and the discrete Fourier
transform coefficient, and the raw PCM (Pulse Code Modulation) sample as the
CNN input. J. Lee and J. Nam [2] improved multi-level and multi-scale
functions from CNN and improved CNN performance through aggregation to

improve music composition performance.

2.1.2 Recurrent Neural Network (RNN)

RNN recursively reflects information over time. RNN is a method of receiving
data in a single direction and processing data for each state, and it is important
to include time information in the input and to maintain each state well [3-6].
The improvement of the performance research through the combination of the
existing RNN and various models is as follows. A. Huang and R. Wu [4] tried
to improve the music composition performance by using the combination of
RBM and RNN to improve memory. R. Vohra et al. [5] proposed to
successfully apply harmonic music generation by combining DBN (Deep Belief
Network) and LSTM (Long Short Term Memory) to improve memory. Q. Lyu et
al., [6] proposed a method of combining RRTBM to improve the memory of
LSTM. The combination of RBM, DBN, and RTRBM in a continuous model
was intended to improve the performance of music composition by improving the

memory ability of the existing RNN.

2.1.3 Sequence to Sequence



Seq2Seq is composed of an encoder-decoder model, and has the feature of
reflecting information about the previous output in the decoder model section.
The advantage of Seq2Seq is that the encoder-decoder learns at the same time so
that Seq2Seq is more useful than RNN in evaluating the length problem of the
generated result and generating the continuously generated result. As a
disadvantage, only the information of a short reflection is considered, so causality
based on sequential input is not considered. The research using the existing
Seq2Seq is as follows. D. Spital [7] proposed a new data expression system to
transfer the characteristics of one composer to another composer and confirmed
that it is possible to transmit music compositions using the Seq2Seq at the

composer level.

2.1.4 Generative adversarial network (GAN)

GAN improves production performance through alternative learning. Research
using GAN consists of two types. The first subsection is the static creation of
music, and the next subsection is the creation of a music sequence.

The research on the static music creation network is as follows. A. Knower et
al. [9] proposed a GAN-based model for removing the staff line. The removal of
the staff line referred to here is an important preprocessing step in optical music
recognition. It is a difficult task to reduce noise in the existing music score
image and maintain the quality of the music symbol context at the same time.
In order to remove the staff line, GAN was used to improve music composition
performance.

The research on how to create a sequence type network is as follows. In



SeqGAN [10], there is a limit in the case of creating a discrete sequence in the
existing GAN. Because the generation model was not easy to update information
from the discriminator to the creator, the information was not updated. Therefore,
the concept of compensation was introduced by Reinforcement Learning (RL) to
the creator and applied to the continuous generation process. Through this, the
balance between the current score and the future score was obtained, and the
result that the entire sequence was generated was obtained. S.-g. Lee ef al

Proposed the application of SeqGAN to create a polyphonic music sequence [11].

2.1.5 Conditional GAN

H.-M. Liu and Y.-H. Yang [12] is a method of improving the existing musical
notation to improve the performance of music production, and to improve the
existing musical expression, by entering the instrument information into the
generator to extract information from the first stage of extraction. During the
creation process, it was confirmed that it was sufficiently reflected and generated.
In addition, we improved the performance of multi-instrument music production
by inputting it as a condition in the process of generating music as an input
condition. R. Manzelli [13] shows that the GAN model learning was generated
through more reliably reflecting information through the input of additional
conditions to address the nuances of primitive audio generation and the part that
does not understand the richness of expression. After all, conditional learning can

confirm that it reflects various information more stably.

2.1.6 Auto encoder



The study of music composition using Auto Encoder is as follows. G. Brunner
et al. [16] calculates the information of W and o0 to create a new potential space
by reflecting noise and style classification information. This improved the
performance of music composition by improving the area between different data
spaces in the potential variable space. A. Tikhonov and I. Yamshchikov [17]
calculated the average o during the process of moving from the encoder to the
decoder and used the variable Bayesian noise along with the new Bayesian noise
as input to the decoder. Through Bayesian noise, we improved the music
composition performance through more robust learning. Finally, Y.-A. Wang et
al. [18] designed the VAE(Variational Auto Encoder) model using a modular
model to model music compositions as a domain in which the modular encoder
encodes potential information and provides greater flexibility in data expression.
Through this, data performance was efficiently expressed to improve music

composition performance.

2.1.7 Transfer learning

Transfer learning is advantageous in that it efficiently reflects common
information of information. However, there is a tendency to depend on
performance according to common information. Therefore, there is a point where

important semantic information must be handed over.

2.1.8 Knowledge distillation

Knowledge Distillation is a way for the student model to learn through the

information of the existing teacher model. This method enables efficient learning



in knowledge transfer and can be effectively applied in various areas. Y.-N.
Hung [19] created more realistic and different music audio by receiving different
information through each CNN. This is an improvement in the performance of

music composition through the reflection of various music information.

2.1.9 Cycle Loss

Let's look at two methods of loss used in music composition and deep
learning. The loss function consists of a cycle loss and a triple loss method. G.
Brunner et al. [20] used the strong characteristics of domain transmission by
using the cycle loss. G. Brunner et al. [20] applied cycle loss on GAN, which
uses cycle loss for symbolic music domain transfer, in which research conducted
using VAE (Variational Autoencoder) and GAN for image style and domain
transmission. R. Lu et al. In [21], entering triple metrics is an important issue in
applications that retrieve a lot of music information. To solve this, we learned
the information extracted from metrics similar to the triple input. Triple input
shows better performance than single input or two inputs. The triple input shows
a more well-preserved result in a relatively similar part. In addition, performance
is improved by four or more generalization experiments, but if the number of

inputs increases, the cost increases.

2.1.10 Reinforcement learning

Reinforcement learning (RL) is a process in which an agent receives

compensation from the environment and updates the new state whenever the

environment has a new state. RL applied the policy gradient series algorithm of



PPO (Proximal Policy Optimization) to the continuous optimization of
information, and before showing better results in music production, L. Yu et al.
[10] proposed creating a data generator. In addition, the RL's updated update
process rewarded GAN discriminators as a single reward. In addition, N. Kotecha
[22] remembers the details of the past and solves the problem of having clear
and consistent functions, and inputs the expected values and the existing music
data from the Bi-axial LSTM that creates the music rules to enter the DQN. The
following section describes how to apply deep learning music for music

composition.

2.1.11 Hybrid model

The hybrid model has been extensively studied in the direction of
complementing the advantages and disadvantages of the existing model. H.-M.
Liu and Y.-H. Yang [14] uses the structure of the hybrid auto-encoder GAN.
The existing automatic encoder cannot generate various types, and the GAN
model generates various types of images, but the generated images do not reflect
the existing input image well. However, if you use Hybrid Autoencoder GAN,
various images are created using the characteristics that reflect the input image

well. There are many studies to supplement existing shortcomings.

2.1.12  Style transfer

In style transition, various music-related studies on style transition related to
music deep learning are being conducted because existing music information must

be properly reflected and reflected in other styles. There is also a problem of
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moving the characteristics of one composer to the song of another composer. In
order to solve these problems, the following research has been conducted in the
transmission of music styles. D. Coster and B. Mathieu [27] have traditionally
used a limited number of codes for single or polyphonic music. However,
additional research is needed on the creation of captain music through a style
transition. The following describes the latest deep learning technology and

application method.

2.1.13 Activation function

It is important for the activation of the existing deep learning model to pass
meaningful information in the course of the model training. It is also important
not to be destroyed in the process of learning it. In the existing activation
function research, the RELU function [31] uses the RELU function to alleviate

the problem that the weight is lost when the model is learned.

2.1.14 Loss function

The loss function, which is a rule for learning a deep learning model, is
important to efficiently design and learn the loss function to learn about the
information that the model does not judge correctly. In the existing loss function
study, the cross-entropy function is mainly used to minimize the difference
between the data distribution we have and the Gaussian distribution of the

model. The cross-entropy function is mainly used.

_11_



2.1.15 Regularization

Deep learning is a supplementary regularization technique that helps the deep
learning model not to fall into overfitting. In the existing regularization study, L1
regularization [32] reflects the absolute value of the size of the difference
between the prediction of the model and the actual correct answer. L2
regularization [32] is reflected as the sum of squares of the differences between

the prediction of the model and the actual correct answer.

2.1.16 Normalization

Normalization, which helps the deep learning model to learn stably, is
important to learn through the stabilization of signals so that large values do not
occur in the course of the deep learning model training. In the existing
normalization study, the batch normalization [33] is normalized by using the
variance and the mean to input the input to each layer of the model, and the

model learns stably.

2.1.17 Measure

Since the deep learning model is used to calculate the difference between the
predicted value and the actual correct answer, it is important to learn using any
measure because the deep learning model is used to update the error in the
process of learning deep learning. In the case of PSNR in the measurement
study, it has been used to discriminate the generated image at the maximum

signal-to-noise ratio. This was studied by SSIM measure to evaluate the quality
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in three aspects: Luminance, contrast, and structural.

2.2 Application

2.2.1 Visualization

Deep learning shows good performance when good data is entered as input
and low performance when bad quality data is entered. Therefore, it is necessary
to visualize and judge the training data in advance. In the existing visualization
study, the t-SNE [34] method is studied as a dimensional reduction and

visualization methodology, and t-SNE is mainly used to visualize data.

2.2.2 Image captioning

Image captioning [35] is the process of viewing an image and automatically
attaching the appropriate description. In the existing image captioning study, CNN
was used to extract the characteristics of an image, and the extracted image
feature was used as the initial hidden cell input of RNN to reflect the text
information as an input, and after calculation in the cell, the description in the

model appears as output.
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Chapter 3 Performance Improvement Technique

Existing deep learning is composed of three categories. The first is supervised
learning, the second is unsupervised learning, and the third is reinforcement
learning. Supervised learning is a method of learning a model with a correct
answer and a label for a correct answer. Unsupervised learning finds input
characteristics only in the input state. Reinforcement learning is a method of
updating through compensation according to the current state. Deep learning
consists of convolution neural networks, sequential networks, generative
adversarial networks, reinforcement learning, and transfer learning.

First, let’s take a look at the researched method to improve performance in the

method used as a basic component of deep learning.

3.1 The Bi-activation Function: an Enhanced Version of an Activation Function

in Convolution Neural Networks

This research describes the bi-activation function that has been researched
during the existing acquisition method. S.-H. Choi and K. Kim [6] description of
Bi-activation is as follows.

Introduction: RELU, a function frequently used as an activation function, can
be simply expressed : f(x)=max(0,x), when x is the input of a neuron. That is,
the output is zero when x < 0 (called a blocking area) and the output is the
same as the input when x >= 0 (called a linear output area). Those properties
indicate that the only positive part of the existing activation function is reflected

and it takes more time to train the model. In addition, it is a disadvantage that
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it does not reflect generalized characteristics in the model because it does not
reflect negative partial information.

To improve this problem, we propose a bi-activation function as an improved
version of a activation function. To verify the performance of the bi-activation
function, We extensively experimented on CNN with typical datasets such as
MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100 and compared the results
with those of RELU and eLU. As a result, the bi-activation function shows

better performance than RELU and eLU in all experiments.

y-l

ys

(a) . .

(©

(b)

Figure 2 Process of bi-activation function: (a) Pos-activation function, (b) Neg-a

ctivation function, (c¢) Bi-activation function.

Proposal Method: Bi-activation function consists of two types: pos-activation
function and neg-activation function. In terms of RELU, the pos-activation
function is the same as the existing RELU. That is, there is a blocking area
when x < 0 and a linear output area when x >= 0. Neg-activation function has

a blocking area when x >= 0 and a linear output area when x < 0. Simply
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neg-activation function is expressed: fx=max(x,0). Figure 2(c) show bi-activation
function, which consists of pos-activation function and neg-activation function.
Pos-activation function has a blocking area, when x < 0 and a linear output
area, when x >= 0 and neg-activation function has vice versa. CNN reflect the
nonlinearity of inputs and outputs of training data using the activation function

by properly selecting the linear output area.

(a
max(0,x) x=0 x x>0 .
{ 0 x<0 = { ae*—1) x<0 b=

(b)

max(0,x) x>0 s x+a(e*—1) x=0
-10
40 10

max(%,0) x<0 ( ae*—1+x x<0

@) (iii)

Figure 3 Experiment of activation function: (a) Existing method, (b) Proposal
method, (a)i RELU, (a)ii eLU, (b)i bi-RELU, (b)ii bi-eLU.

Experimental Results: We tested the novel bi-activation function. The proposed
method applied to existing functions. Figure 3 show the result of the
experiments. Firstly, Figure 3(a) show RELU, and eLU and Figure 3(c)-(d)
shows the result of applying the bi-activation function method to RELU and
eLU, respectively. The CNN model used is intended to see the effect of a
large-margin model prediction effect using Log SoftMax. When applying this log
SoftMax, NLL Loss is generally applied. However, there is a problem that a
non-convex effect causes the NLL loss. Therefore, cross-entropy is applied to

generate the convex effect of the model. This is because the convex function
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creates a unique solution and can be easily solved using the gradient method.
Therefore, studies have been conducted to apply convex after applying
cross-entropy to log SoftMax. The CNN model is defined as a validation model
to verify that the activation function experiment group presented. Figure 3 is
efficient even when there are few parameters. Four models are composed of
Figure 4(a) CNN-Large, Figure 4(b) CNN-Middle, Figure 4(c) CNN-Small, and
Figure 4(d) CNN-Little. The number of CNN-Large filter maps based. The model
was designed based on the number of filter maps with CNN-Middle 0.75 times,
the number of filter maps with CNN-Small 0.5 times, and the number of filters
with CNN-Little 0.25 times. The loss used for the CNN model uses
cross-entropy, and the optimization method is experimentally verified using the
Adam optimization. We experimented with training datasets such as MNIST,
Fashion MNIST, CIFAR-10, and CIFAR-100. When the proposed method is

better than the activation function, it is indicated in bold.

(A) CNN-Large (Larger parameter number X 1.0) (B) CNN-Middle (Large parameter number X 0.75) )

Input_features Ouput features Kernel Size Padding Stride Input_features Ouput_features Kernel Size Padding Stride

Conv2d Input_channel 128 3by3 byl 1byl Conv2d Input_channel 96 3by3 1oyl = 1byl

Activation function. Activation function.

Conv2d 128 128 3by3 byl byl Convad 96 9 3by3 byl byl

Activation function Activation function

Convad 128 128 4by4 oyl 2by2 Convad 96 96 4by4 oyl 2by2

Activation function Activation function

Conv2d 128 256 3by3 byl  1byl Convad 96 192 3by3 byl 1oyl

Activation function Activation function

Convd 256 256 3by3 byl byl Convac 192 192 3by3 oyl byl

Activation function Activation function

Conv2d 256 256 4by4 byl 2by2 Convad 192 192 4by4 byl 2by2

Activation function Activation function

FC Layer (in_features=12544, out features=512) FC Layer (in_features=9408, out_features=512)

FC Layer (in_features=512, out_features=10) FC Layer (in_features=512, out_features=10)

(C) CNN-Small (Large parameter number X 0.5) (D) CNN-Little ((Large parameter number X 0.25) i ]

Input_features Ouput_features Kernel Size Padding Stride Input features Ouput_features Kemel Size Padding Stride

Conv2d Input_channel 64 3by3 1oyl 1byl Conv2d Input_channel 32 3by3 1byl” byl

Activation function. Activation function.

Conv2d 64 64 3by3 byl 1byl Conv2d 32 32 3by3 byl 1byl

Activation function Activation function

Conv2d 64 64 aby4 byl 2by2 Conv2d 32 32 4by4 oyl 2by2

Activation function Activation function

Conv2d 64 128 3by3 byl byl Convad 32 64 3by3 byl 1oyl

Activation function Activation function

Conv2d 128 128 3by3 byl byl Comvad 64 64 3by3 oyl  1byt

Activation function Activation function

Conv2d 128 128 4bys  1byl  2by2 Conv2d 64 64 4by4 byl 2by2

Activation function Activation function

FC Layer (in_features=6272, out_features=512) FC Layer (!n_features=3136, out_features=512)

FC Layer (in_features=512, out_features=10) FC Layer (in_features=512, out_features=10)

Figure 4 Experiment of model sample: (a) CNN-Large, (b) CNN-Middle, (c) C
NN-Small, (d) CNN-Little.
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We compare the experiments using the MNIST dataset with Seed 999, 500,
and 1 to analyze the influence of each filter number. The experimental results
are to verify results obtained from Table 1. That is different depending on the
number of filters. First of all, linear activation showed a decrease in test value
when there were a large number of filters. However, eLU with nonlinear features
exhibited a performance increase and decreased as the number of filters
decreased, which confirms that the appropriate number of filters should found
when inferring through the Activation function in the model. Also, there is a
problem of finding an appropriate number of filters, even when the bi-activation
function is applied. When the bi-RELU is applied, the accuracy increases linearly
and decreases as the number of filters decreases. The bi-eLU exhibits a nonlinear
phenomenon in which the accuracy increases as the number of features decreases,
then decreases and then increases. The performance varies depending on the
number of filters and the nonlinearity of the activation function.

The proposal method receives both positive and negative information from the
activation function and outputs less error value and improved performance than
activation that seems to improve performance by making the feature a little
clearer by processing both positive and negative information at the same time.
The comparison of the same number of filters showed that most of them

improved over a activation function.

Table 1. Comparison of influence according to the number of CNN model featur
e maps (a) CNN-Large, (b) CNN-Middle, (c) CNN-Small, (d) CNN-Little.

RELU eLU bi-RELU bi-eLU
(a) Loss Acc Loss Acc Loss Acc Loss Acc
Train | 2.303 | 0.110 | 2.822 | 0.139 | 1.961 | 0.353 | 2.503 | 0.260
Test X 0.062 X 0.125 X 0.312 X 0.260
(b) Loss Acc Loss Acc Loss Acc Loss Acc
Train | 2.302 | 0.110 | 2.828 | 0.137 | 1.912 | 0.361 | 2.368 | 0.291
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Test X 0.125 X 0.031 X 0.166 X 0.078
(c) Loss Acc Loss Acc Loss Acc Loss Acc
Train | 2.303 | 0.110 | 2.826 | 0.138 | 1.897 | 0.371 | 2.548 | 0.235
Test X 0.125 X 0.0625 X 0.5 X 0.1875
(d) Loss Acc Loss Acc Loss Acc Loss Acc
Train | 2.302 | 0.110 | 2.828 | 0.137 | 1.912 | 0.361 | 2.368 | 0.291
Test X 0.125 X 0.031 X 0.166 X 0.078

We test the proposal method with the CNN-Small model and 2 layer CNN t
o verify the effect of the proposal method in Figure 5.

Input_features Ouput_features Kernel Size Padding Stride

Conv2d Input_channel 32 3by3 1by1 1by1
Activation function.
Conv2d 32 64 4by4 byl  2by2

Activation function
FC Layer (in_features=16384, out_features=512)
FC Layer (in_features=512, out_features=10)

Figure 5 Experiment of two layer CNN

To analyze the initial random influences of the proposed method, we conducted
experiments about three seed values, Seed 999, Seed 500, and Seed 1. We
perform a quantitative analysis of the experimental results using the average of
three seed test results. In Table 2, the proposed method obtained an increase of
0.305 on average in the case of Train in bi-RELU in the MNIST dataset. The
accuracy was reduced by 2.3%. The test resulted in a 4.1% improvement. In
bi-eLU, the average loss was reduced by 0.307 during the train. Accuracy
increased by 10.4%. W improved by 10.4%. The average of both methods loss
results reduces by 0.001, a 4.05% improvement in the train, and a 7.29%
accuracy increase in the test. In Fashion-MNIST, On average loss increased
0.011, accuracy increased 5.766% on the test, and the same on test in bi-RELU.
On average, bi-eLU showed a loss reduction of 0.463 in loss, Improve accuracy
14.2% in the train, and 14.58% in the test. The average of two methods reduce

loss 0.226 in the train, improves the accuracy by 10.0% in the train, and
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improves the accuracy by 7.29% in the test. In CIFAR-10, in the case of
bi-RELU, Loss shows a 0.0345 increase in a train, 6.96% accuracy improvement
in a train and a 13.9% inaccuracy reduction in the test. In bi-eLU, loss
decreases by 0.036, 1.46% on average accuracy improve, and the same in the
test. The average of the two methods is 0.023 increase in loss, 4.2% accuracy
improvement in a train, and a 6.9% accuracy reduction in the test. In the case
of CIFAR-100, bi-RELU shows an average loss 0.486 increase in accuracy,
3.23% accuracy in trains, and the same result in the test. In bi-eLU, Loss
decreases by 0.172 on average, improves accuracy by 0.67%, and is the same
when testing. The average of both methods is 0.156 increase in loss, 1.95%
increase of accuracy, and the same in the test. Finally, the average result of
improvement and reduction of the four data sets shows that the bi-activation
function method shows 0.018 reductions in train, 5.06% accuracy improves, and
1.8975% accuracy improves in test. In the case of MNIST and Fashion MNIST,
the proposed method shows the improved results in Train and Test, which shows
that the performance is improved by learning more effectively the positive
information and negative information model and obtaining a more precise
decision boundary. However, the complexity of data from CIFAR-10 increased as
the number of image sizes, and image channels increased compared to the
MNIST series. Nevertheless, the proposed method considers both positive
information and negative information at the same time so that the average
accuracy increased by classifying through clear boundaries in the train, but the
generalized boundary not found in the test accuracy due to the poor performance.
We can see that the decision boundary that led to the data found. This cause is
seen to occur as the data size and data channel increase. In the case of data of

CIFAR-100, the complexity increases as the number of classes in this model
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increases, so it inferred that the data not adequately learned. That shows that the
loss value is significantly higher than the data set result. Also, We can see that
the proposed method decreases when the performance increases when tested
with various seed values. This method is more affected by the influence of the
initial value because the proposed method reflects bi-directional information
confirm. Finally, the proposed method influenced by data and seed value, but it
confirmed that reflecting positive and negative information helps to improve

model learning and performance by maximizing the margin between model

information.

Table 2. Train / Test accuracy and loss in CNN-Small according to Seed 999 on
CNN small.

(a) MNIST Fashion MNIST Cifarl0 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 2.303 | 0.110 | 2.304 | 0.101 | 2.304 0.103 | 4.611 0.01
eLU 2.826 | 0.138 | 2.820 | 0.139 2.841  0.136 | 6.918 0.035
bi-RELU | 1.897 | 0.371 | 1.737  0.397 2431 0.161 @ 5.136 | 0.041
bi-eLU 2.548  0.235 | 2.445 | 0.256 @ 2.766 0.150 @ 6.611 @ 0.041
Test Acc Acc Acc Acc
RELU 0.125 0.1875 0.1875 0
eLU 0.0625 0.125 0 0
bi-RELU 0.5 0.3125 0.041 0
bi-eLU 0.1875 0.3125 0 0

Table 3. Train / Test accuracy and loss error in CNN-Small according to Seed 5
00 on CNN small.

(b) MNIST Fashion MNIST Cifarl0 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU[1] | 2.303 | 0.111 @ 2304 @ 0.102 | 2.304 0.102 4.610 0.009
eLU[2] 2.834  0.139 | 2.839 0.139 2.84  0.137 6902 | 0.035
bi-RELU | 1.836 0.395 1.621 @ 0.437 2407 0.164 5.071 0.044
bi-eLU 2,524  0.241  2.296 0301  2.807 0.154 6.705 0.04
Test Acc Acc Acc Acc
RELU 0.125 0.125 0.1875 0
eLU 0.0625 0.0625 0.0625 0
bi-RELU 0.3125 0.4375 0.0625 0
bi-eLU 0.1875 0.1875 0.03125 0
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Table 4. Train / Test accuracy and loss error in CNN-Small according to Seed

on CNN small.

(c) MNIST Fashion MNIST Cifarl0 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 0.142 | 0.973 0.41 0.863 ' 2.304 0.102 4.61 0.010

eLU 2.843 | 0.139 | 2.834 0.14 2.84 0.137 6.923 | 0.035
bi-RELU | 1.931 @ 0.357 1.693 0.405 @ 2407 0.164 5.109 | 0.041
bi-eLU 2,508 0.254 2.361 0.289 2.807 0.154 6.766  0.042

Test Acc Acc Acc Acc
RELU 0.875 0.875 0.1875 0

eLU 0.0625 0.125 0 0

bi-RELU 0.437 0.4375 0.0416 0
bi-eLU 0.125 0.25 0 0
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Figure 6 Performance analysis of proposal methods. x) small of CNN, y) two la

_22_




yer of CNN, a) Using MNIST dataset, b) Using Fashion MNIST, A) Activation
function of RELU, B) Activation function of eLU, C) Activation function of bi-
RELU, D) Activation function of bi-eLU, i) Seed 1, ii) Seed 250, iii) Seed 500,
iv) Seed 750, v) Seed 999

Figure 6 is composed of 2 parts. The upper scatter plot is the result of the
variance of the activation function. The lower histogram is the result of the
performance of the activation function. We include the results of experiments
with five seeds and two CNN models in Figure 6. The above experiment
calculates the average for each activation function. The notation is written as
(mu, std). mu is mean, std is the standard deviation. RELU is (0.54227,
0.2271). eLU 1is (0.543914, 0.29004). bi-RELU is performance analysis of
proposal methods in Figure 5. x) small of CNN, y) two layer of CNN, a) Using
the MNIST dataset, b) Using Fashion MNIST, A) Activation function of RELU,
B) Activation function of eLU, C) Activation function of bi-RELU, and D)
Activation function of bi-eLU. The results of Figure 5 show more clustered plots
of eLU variance compared to RELU. This is because the nonlinear characteristics
reflect more clustered results. In Figure 5, the results of experiments applied to
each activation function for each of the two models show that some variation in
performance occurs for each seed.

Conclusion: We have demonstrated an improved performance by the
Bi-activation function. Bi-activation function combines pos-activation function and
neg-activation function in a small number of parameter spaces. Compared with
the existing activation function, the Bi-activation function considers bi-directional
information to reflect generalization characteristics in the model through
bi-directional information. As this reflects the bi-directional characteristic, it can

be seen that the convergence speed is faster in the learning process than when
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reflecting on the existing single characteristic. Because reflecting the information
with the existing activation function has a high complexity in processing the
information while processing through the bi-directional information, the
complexity is somewhat lower, so the convergence speed seems to be faster. To
show the advantage of the proposed activation function, We verified the effect of
the initialization method on the input of the bi-directional information in a few
parameters that show that bi-directional information is a little bit better when it
is nonlinear. Since the weight of the model of the existing deep learning has a
value between 0 and 1, the weight information of the deep learning model
between 0 and 1 more effectively reflects the nonlinear characteristics through
the activation function having a nonlinear characteristic. This property of the
proposed transform effectively used for optimization or edge device deep
learning.

Through this, this study examined the bi-activation study. Next, we describe the

improved cascade loss in the loss function.

3.2 Scale Calibration Cascade Smooth Loss of Generative Adversarial Networks

with Online Continual Task Learning.

This research describes the cascade loss that has been researched during the
existing acquisition method. We description of cascade loss is as follows [37].

Introduction : Many deep learning models go through the process of learning
[38]. The most influential part of this learning process is the loss, which tells
how to learn. A lot of deep learning models are coming out, but most
importantly, when a deep learning model receives new data and processes it

newly, the loss formula determines how much new data is reflected and how
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much existing data is reflected.

In the deep learning model, while loss outputs the information as one
information from the last stage of the deep learning model, we found that three
problems can occur directly. And indirectly from loss's point of view, We
discovered a new problem in the process of learning deep learning models. First,
the last layer of deep learning is feature vectors with independent features. These
feature vectors have various view features. Since various feature vectors are
implied, loss assumed that the information overlapping of the feature vectors
might occur, and congestion may increase during the calculation. Also, since
deep learning only uses a single loss, it was speculated that if the character is
reflected in the wrong direction during the optimization of the single loss, the
learning is conducted in the wrong direction. And if the value from loss has a
skewed distribution to one side, it is assumed that it will be learned in the
wrong direction. The above assumption is assumed to be a phenomenon that can
occur directly in a deep learning loss. Indirectly, indirectly, it is assumed that
the deep learning model can be learned in a good direction if it is sustainable in
terms of loss, and there is a process of learning minutely by various tasks
because existing deep learning models are three types of learning. i.e.,) offline
learning, online learning, incremental learning, Offline learning is a batch-based
method that does not change the approximation of a function until the initial
training is completed. Online learning is a way to learn data by data without
waiting for the initial training to complete. Finally, incremental learning is a
method of learning incrementally. This deep learning model learning method has
studied through three categories. However, there is a problem that does not
depend on each method and is common to all three learning methods. This is a

catastrophic forgetting problem that occurs in continuous learning. Catastrophic

_25_



forgetting problem means that learned information disappears without being
maintained. We alleviate this catastrophic forgetting problem that is very
important in the direction of life long deep learning model. We have assumed
that the method of learning with precision is necessary for the deep learning
model to be sustainable. In addition, these problems can often occur in the
process of continuously learning the deep learning model when the actual deep
learning model is deployed and operated in real service. The above problems
need to be researched to improve deep learning to learn for a long time
continuously. Therefore, the contribution is as follows.
® We novel defined direct three and indirect types of problems that arise
from existing losses. We proved that the proposed direct problem could be
alleviated by the proposed loss function.
® To prove, we defined three types of direct problems, we proposed Scale
Correction Cascade Smooth Loss (SCCSL). The SCCSL consists of
three-component. The first component is based on smooth loss. The second
component is cascade component to make stronger judgment criteria by
maintaining existing judgment rules to some extent and reflecting new
judgment information on existing rules. The third component is a scale
correction for learning by making the information acquired in the process
of reflecting the information. Also, we propose the cause of the loss
problem and prove the reason for the problem to be solved.
® We defined a new indirect problem of learning to mitigate problems that
may arise indirectly. This is a learning method for continuously learning
from the model. The definition of learning is the method for fine-grained

learning on deep learning.
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Proposal Methods: We defined three direct problems and indirect problems on
the existing loss function.

Definition 1 : The overlapping information in the lost inputs occurs, and
errors occur, which prevents the deep learning model from learning properly.

Description : We have proposed a smooth component that can resolve
redundant information and errors to prove reliable learning. The final input of
the existing model consists of various feature vectors (feature maps). We tried to
prove that it is necessary to improve the error by proving that each feature map
should be mapped with minimized error in the process of mapping into one
space of the loss. For this purpose, this study proposes soft components. Details
of the soft components are described in the subsections below. We can see that
the problem defined is reduced by suggesting soft components

Definition 2 : The method of learning using a single loss in a loss causes a
problem in that the learning is not good because it leads the learning in a
direction that is inaccurate.

Description : We have proposed a cascade component to solve the problem of
learning in the wrong direction in a single loss. This is to learn information
from a single direction in the correct direction through error correction. T h e
details of the cascade component are described in the subsections below. By
suggesting the cascade component, we can reduce the problems defined.

Definition 3 : Since the error in the loss occurs in an unbalanced state or
balanced state, If there is a problem that the learning is difficult due to the
unbalance information.

We proposed a scale correction component to solve the unbalanced information
in the loss. Detailed methods for the scale correction component are described in

the subsections below. By suggesting a scale correction component, we can
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alleviate the problems defined. This is because when learning in one tilted state,
only the information inclined to one side in the model is reflected by learning
only the information, which may cause a feature that does not have a
generalized characteristic.

We propose SCCSL loss to improve the method proposed in this study
through direct problem definition that can occur in the loss. Our SCCSL is
composed of three components. First is the Smooth component, Second is the
novel cascade component. The third is the novel loss of the Scale correction

component. The novel proposal losses are as follows.

1 5
SCCSL = — oo Z a (1 — smooth component) "Yprue lOG (smooth component ) €))]

Eq. 1 is the loss proposed. The proposal loss is a basic loss based on smooth
loss. Based on the base loss, the two losses are merged through the cascade
component. It is composed of a scale correction method to unbalance information
based on two merged losses. m is the number of data. y,,,, means ground truth.
A detailed description of each method is given in the subsection below. We

explain each proposed method to analyze this.

Smooth component for reduce co-adaptive information and error information:
We propose a method using the smooth component as the basis of the loss. If
the function is smooth and the Taylor series at all points is equal to the loss

value, it has the advantage of being an analytic function.

Smooth component :=

— *,
pbos = Eytl'ue ypred
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l’leg = max (1 - ytrue )*ypred

1 m
E’ZImaX(&max(ﬂ—poerl)) @)

The analysis of the cascade component is as follows. Experiments were
conducted using three losses of smooth loss, focal loss, and cross-entropy loss.
Eq. 2 proposed as a single loss is explained. y,,,, means the ground truth
answer set for learning the GAN's discriminator. y,,.., means the value predicted
by the discriminator of the GAN. m is the value of the total iteration number
sum. We calculated the positive value and negative value separately. In this case,
the positive value denotes by pos, and the negative amount is indicated by neg.
The pos expression ¥;,,.*y,..q ftries to express common information by
multiplying. neg is reflected in y,. through 1—y,, to maximize the
non-correct answer. The reason for calculating the pos and neg divided is to
consider only positive value and to make the negative value as 0, divide it by
using sum for pos and neg as 0. Also, we wanted to set this to 0 from neg-pos
+ 1. The reason for applying neg-pos is to reflect a clear difference by
reflecting only scarce information. We applied max max at the same time to
generate a huge amount of information from max. We filter it by using a
specific value through the max function, so we set it as above to accurately
reflect the value of one category. The Smooth loss design the MAX to extract a
smooth value using the value calculated at zero. The smooth loss divides into
the front part and the rear section. For the first part, the most influential role
maximizes by pos-neg, and the most massive value extract through max through
attention. And in the second term, the value of y,, - ¥,., remains for the

difference between them, and there is much value for y,,,. here. Subtracting the
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last word in the preceding clause, we can deduce that y,,,. information in y,,.,
information is a strong part of y,.., through subtraction. This results in a large
value for y,.., which is far from the number of y,,,.. It can assume that the
value between y,,,. and y,, ., maximize.

Cascade component for calibration information: The cascade component in Eq.
3 is a method of using the result value of the existing loss as a second loss
input. This method has the advantage of learning in the right direction through
calibration if the existing loss goes to the wrong case. In the process of
correcting a certain value properly, it is better to produce a better effect, but in

case of incorrect calibration, it may have an adverse effect.

Cascade component := Secondloss (firstloss) 3)

Scale Correction Component for Unbalance Information:

Scale Correction Component = o (1— prior,,,, )" *y,...*log (prior,,) 4)

The scale correction method proposed is as follows. Eq. 4 is a novel scale
correction for continuous acquisition information by scale interpolation. prior,,,
means an existing loss. « is the influence covariance of the scale term. And ~
is the scale term the attenuation term for general acquisition influence of the
existing loss. The impact depends on continuous task loss on the coefficients of
the two parameters. We try to confirm the influence of scale correction through
various scale index values. In the case of scale correction, in the case of the
information rarely generated in the past, the correction is large, so that the rare
information can be stably obtained. This helps to obtain fine-grained and accurate

information stably and improve the overall information acquisition amount.
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Qualitative analysis of the SCCSL: We propose an SCCSL that is composed
of three components (i.e., Smooth component, Cascade component, and Scale
correction component). We conducted a qualitative analysis by a section on the
generation of loss results for the impact of SCCSL. We analyze the SCCSL by
dividing the interval on the numerical value. First, the interval was defined by
dividing it into positive infinity, positive value, zero, a negative value, and
negative infinity. In the case of total loss at infinity, nan is generated because it
is not learned. The positive value is a case where the sum of weights is less
than one. In the above case, the pred is good. If 0, no learning is done.
Negative values do not match pred. Negative infinity does not occur. The
SCCSL does not learn when the positive value is zero. Learning is only learned
in positive and negative cases.

The smooth component means that it can be differentiated, and the derivative
is continuous, and the loss can be differentiated k times, and all of the
derivative loss is continuous. The above situation can show that there is a
continuous derivative of every order at every point x in the solid line off. For
this reason, we propose to use the smooth loss as the basis of the loss.

The cascade component is a method of using the output of an existing loss as
the input of a new loss. This method can be changed in the right direction
when the existing information is wrong by applying the new method with the
existing information partially preserved. However, there is a disadvantage that the
existing information can be changed in the wrong direction. However, the
cascade component tries to improve the effect of forgetting existing information
when learning.

The scale correction component is a method of using the information

imbalance, when data is acquired, an imbalance between types occurs according
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to the ratio of the number of data. In this case, when the model learns the
unbalanced information, it is more likely to misjudge one side. We tried to learn
effectively through the calibration about the possibility of false judgment.

Pros and cons of proposal method: The proposed method has three pros. First,
It can be confirmed that it helps to judge the information efficiently by
maximizing the margin between the characteristics of the distribution. This helps
to make a clear determination by eliminating duplicate information determined by
the model. Second, If it comes out through one characteristic, it is calibrated
using another characteristic, so it can have generalized -characteristics by
reflecting characteristics. Also, when learning in the wrong direction during the
learning process in the model, the mixture is corrected using different
characteristics, so it is in the generalized direction. Third, It can help to learn
more stably in the learning process such as overfitting or underfitting by
correcting the balanced information in the process of learning the imbalanced
data.

The proposed method has five cons. First, only the method that can be
processed in terms of signal processing in the model is described. This can show
the influence of learning performance on signal stabilization, regulation, initial
model state, and analysis based on Convex characteristics. For the proposed
method, it is necessary to conduct other influence analysis on stabilization,
regulation, the initial state of the model, and convex characteristics.

Second, The experiment was applied only to the model of Generation
Adversarial Networks. However, in order to generalize the method proposed, it is
necessary to apply the experiment to experiments such as segmentation, object
detection, classification, etc.

Third, We experimented with various losses, two models, and two small image
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data sets. It is necessary to experiment with various sizes and sizes, such as
images with large resolution, fine images, and packet data.

Fourth, To clearly show the influence of the method by the slope, it is
necessary to mathematically interpret the feature map in terms of learning flow
to find out the direction indicated by the slope of the feature map.

Fifth, It is necessary to mathematically prove the influence of each method.

Sixth, We need to confirm the impact proposed through the domain adaptation
experiment.

Seventh, It is necessary to apply it to various state of the art technologies.
However, it seems necessary to apply the experiment to the lightweight model,
the distillation model, and the distributed model. Because the lightweight model
can handle different amounts of parameters, the performance may be different.
Similarly, in the knowledge distillation model, it is necessary to experiment on
the above because learning performance affects the content according to the
quantity and quality of information. Finally, it is assumed that the method
proposed can show a better effect because it receives and processes the
characteristics of various models in distributed computing. Therefore, the above
process should be tested and verified.

Novel Online Continual Task Learming: We define online continual task
learning methods that explain how to learn at the aspect of the loss function is
more fine-grained learning on deep learning models. To clarify problems, we
define a method using the task information and continual learning. This is shown
in Figure 7 briefly and clearly for the proposed method. In the previous
researches, there have been many studies of online learning and continuous
learning. However, in previous studies is not a precise method of learning a task

about the online way. We think that the study that reflects more precisely in
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online learning and continues learning is essential for the Al life long model.
Therefore, we define a problem called online continual learning that considers
both online learning and continuous learning issues at the same time. We define
the more critical problems in the problems based on online continual learning
and propose sub-research topics of related problems through pros and cons. First,

We explain the contents based on online continual learning.

Step 1 Configuration task Step 2 - Update task method Step 3¢ Expenment result
a) Existing problem
By batch task . : DEE:p Generation task
- Group task in batch mean gradient Eﬂrl'élf'lig
Training set - raee
-
Cans
Process of raming rmodel Update the task value through average af bateh group input
using batch group in U thus, The task walue ellens apecity
update method
L
Pros
Process of training made + Update the task value through few task in batch
using few task in batch thas, a clear task wilue reflects 8 mliable resalt value
update method
k] Movel problem
5!:.' Taw tack T Generation task
o= in batch Few task in batch mean gradient Deep
Training set ™ learming
-
madel

Figure 7 Novel problem that explain the direction to get a descriptive on few da

ta learning at online continual task learning optimization

The term online continual learning is used [39]. However, looking at the
episodic gradient memory for continual learning [40], a reference to the
terminology used in [39], does not come out as online continual learning.

Therefore, we define the term online continual learning.

Definition 4 : online continual learning problem is to learn one by one in

continual learning problems about new data at continual learning.

_34_



We define this as Online continual learning in Definition 4. The problem .

Definition 5 : online continual task learning problem is to learn more
efficiently about more precise learning methods about new tasks at Online

continual learning.

We define this as online continual task learning in Definition 5. The problem
proposed explains in more detail in Figure 6.

Why the research direction design by the above method is that in the process
of learning continuous information, it is necessary to secure delicate information.
That can lead to the model falling in the wrong direction when viewed as a
whole, no matter how sensitive the information is. Therefore, the study conduct
in consideration of both micro information and the overall tendency for the
model.

The new problem explained in detail in Figure 7. Generally, to learn and
evaluate the deep learning model, data is composed, and a part of data extract
from the constructed information, and the task of the average value of the
extracted data reflect in the deep learning model. You get the result of the task
you want through the above learning process repeatedly. In the above process,
learning the average information of the layout has a problem that the value of
the task reflects unclearly. However, the new problem proposed demonstrates the
task of each little data in the course of continuous learning of the data, so the
model learns through the task that can be confirmed by the human. The method
of acquiring through the assignment, which can be confirmed by a person like
that, is advantageous in that it can reflect the task which is known by the
person. However, the newly defined problem has four difficulties.

Firstly, there is a difficulty in obtaining information by efficiently storing the
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current knowledge and reducing the vibration in the process of getting standard
information continuously. The reason why we need to converge by reducing the
vibration from the task is that there is a case where the task does not converge
when the task reflects. Next, there is a difficulty in obtaining the size of the
task unevenly in the course of collecting continuous task data. Therefore, the size
of the task becomes unbalanced, which makes it difficult to reflect a rare task,
and there is a problem that the information shifts to one side through uneven
task processing.

Also, To obtain a steady task, it is difficult to efficiently reflect and maintain
continuous task data in existing distributions for information to reflect on the
existing distribution. If the present task information disappears, it makes an
incorrect judgment about the data that you have already learned.

Finally, models that have a steep task and reflect inclination have difficulty in
storing single information and generalized information. A model that efficiently
processes only one information is not available in many fields.

We propose a sub research topic of online continual task learning, which is

inspired by segmentation that is existing computer vision deep learning studies.

Corollary: Online continual task learning is a theory for learning more
precisely, accurately, and explicitly the phenomena that occur in traditional
Online continual learning. Online continual task learning is necessary for an
explicit and accurate learning model. Therefore, Online continual task learning
discussed in three areas: e.g.) Online instance task learning, b) Online semantic

task learning, and c) Online panoptic task learning.

Online continual task learning discusses in three areas in Corollary 6. i.e.) a)
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Online instance task learning, b) Online semantic task learning, and c) Online
panoptic task learning.

Firstly, Online continual instance task learning is a method of learning per
instance task in an Online continual task learning environment. The advantage of
this method is that you can make precise decisions about each instance task. The
disadvantage is that much fluctuation occurs when a new instance task comes in.

Additionally, Online continual semantic task learning is a method of learning
by the semantic task in an Online continual task learning environment. The
advantage of the above method is that it can find semantic information quickly
and can use for real-time information processing. The disadvantage of the above
method is that the allocation of contiguous memory space is difficult when the
semantic task is massive.

Finally, Online continual panoptic task learning combines the above method —
online continual instance task learning with Online semantic task learning. An
advantage of Online continual panoptic task learning is that you can consider
both instance information and semantic information at the same time. The
disadvantage of the Online panoptic task, learning is that it takes much
computation to acquire.

Experimental result and discussion:
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Training ganloss of generator and discriminator

Figure 8. Compare of optimization methods on verified of proposal loss

Experimental verification of the proposed method performs on two image
generation models, Valina-GAN and LSGAN at a single image generation task.
The data used in the experiment verify by two datasets.

We first prove the problem due to the overlapping information in the loss; the
deep learning model is not properly trained. We first try to verify the
experimental results by using a method that can influence the successive
acquisition of the continuous task information in a single loss. The influence of
batch size on the single smooth loss was analyzed using weight decay. We can
see that the variation of the loss reduces by applying the weight decay, and the
discriminator loss and the generator loss maximize. As can be seen from this
phenomenon, weight decay is less sensitive to batch size. However, if there is
no weight decay, we can see that the batch size converges later, depending on
the larger. Adam optimizer is well used and well used, but we analyzed the
influence of three optimization methods to verify the proposed method. The

result of the AdaDelta shows that the generator loss learns the cross-entropy and
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focal loss with similar loss values. In the case of the smooth loss, it can seem
that the loss value is somewhat higher than the two methods in obtaining the
continuous task information stably. It assumes that the knowledge of the
continuous task information gathered is not varied or corrected in the correct
direction because only the max value obtains in smooth loss calculation. Smooth
and focal loss analyzed according to three optimization methods and potential
variable spaces that are to confirm the influence of generation performance
according to the impact of the Z latent space size according to the input on the
generation model. As the latent variable space increases, the convergence
phenomenon appears later when the influence of the Z latent space influenced by
the size of the potential variable area. It is essential to map and store the
optimized values in the memory space through optimized parameters of the size
of the storage space according to the data, which is necessary for model
convergence through optimization of the model.

In summary, the smooth component can obtain smooth information. Also, we
show that the model converges by acquiring knowledge reliably on a single loss,
even if only a single loss used because of the correction obtained in the case of
focal loss. However, there is some limitation in acquiring a piece of continuous
task information in a single loss. The experimental result of the cascade
component, which is a method to solve the constraint using the new
environment, is as follows.

We secondly prove the problem of the method of learning using a single loss
in a loss causes a problem in that the learning is not good because it leads the
learning in a direction that is inaccurate. To verify the cascade component, we
experimented about the proposed method when training with the Fashion MNIST

dataset. Experimental results using the Cascade component are as follows.
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We compare of optimization methods on verified of proposal cascade
component that composed of 4 batch size, L1 0.0 regularization, L2 0.5
regularization, Z latent space size 100, and in Valina-GAN model using grayscale
Fashion-MNIST dataset. i) Adadelta, ii) Adagrad, iii) Adam, a) Smooth loss, b)
Smooth correction loss, 1) Adadelta, ii) Adagrad, iii) Adam

Figure 8 1is a comparison between Smooth and Smooth correction loss
according to the optimization method. The result of applying the Cascade
component has an error range of 0.5 to 1.4 when only a single component is
applied, but the cascade component has a small error value of 0.2 to 0.4. This
can be confirmed that when the existing loss is learning in the wrong direction,
the loss reflected later is stably learned through the correction effect.

The cascade component has the advantage of being able to reuse a loss having
the same characteristics and applying a loss having different characteristics. Since
it is composed of a pipeline, it can be applied to parallelization, It is a way to
apply multiple loss rather than apply. By applying a lot of loss, it is possible to
make a loss that can be performed more precisely and to shorten learning time
through loss. Cascade component has advantages such as performance
enhancement, parallelism, reflection of characteristics, but there is a disadvantage
that loss increases.

Third, it is assumed that the learning is difficult due to the imbalance of
information because the error occurring in the loss occurs in an imbalanced state.
A scale correction method is proposed. Experiments verifying the proposed
method for scale correction are as follows. Adopted cascade component is the
results of applying the scale correction component, correction correction
component is a strong influence of Scale calibration, and showed only one

learning or no learning at the time of confrontational learning. However, the
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results of the smooth correction component show that it is possible to improve
the existing learning by calibration through scale -calibration. Scale correction
shows better learning results. We prove this cascade component by applying
scale calibration. To achieve stable acquisition for continuous task information
through size calibration to obtain continuous task information, the result of
verifying the novel scale correction method is as follows. To analyze the
influence on the scale correction was explained in particular by the importance
of the value of gamma and alpha in the scaling. We compare of the effect of
test smooth calibration method on alpha and gamma coefficients at Learning rate
0.0007, Batch size 4, L1 0.25 regularization, L2 0.25 regularization, Z latent
space size 100, Adam optimizer, Gumbel distribution in Valina-GAN (alpha 0.25,
alpha 0.5, alpha 0.75, beta 2.0, beta 3.0, and beta 4.0). When the smooth
calibration method, alpha was changed from 0.25 to 0.75 through 0.25
increments, and beta was changed from 1 to 4 through 1 increase. Experimental
results show that the influence of attention on the impact of alpha and gamma
does not affect the generation of the generated image. Scale term, the effect of
the parameter in the scale is influential in creating the image in the Valina-GAN.
These results show that, when the scale term enters, it is corrected for the
acquisition of the continuous task information so that results obtained. However,
it confirmed that the influence on the steady of the continuous task information
acquisition is independent of the impact on gamma and alpha. Supplementary

data were presented as a detailed basis for the proposed method.

Conclusion: We propose three direct problems and indirection problems that

can occur in a loss and verify them through three new methods about three

directions problem. In addition, we have defined a new learning method that can
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alleviate problems that may occur indirectly in the loss. The new learning
method is called online continual task learning. In our newly proposed loss, we
confirmed that we could alleviate three problems that can occur in the existing
loss that the novel smooth component, novel cascade component, novel scale
correction component proposed to reflect task information.

First, the smooth component is smoothly displayed by maximizing the margin
between feature information while various feature vectors reflect duplicate
information through input, thereby reducing errors from various feature vectors. It
is confirmed that the performance is improved.

Second, it shows the characteristic of the loss of parallelism from the cascade
component and shows that it can apply the loss of features. The continuous task
information synthesis by cascade component plays an essential role in the
formation of new information. Also, the effect of regularization of the continuous
task information may suppress the long term potentiation. However, the formation
of memory through the continuous task information stored in the parameters of
the model can withstand a massive amount of continuous task information
stabilize inhibitor. Thus, it has shown that the synthesis of a continuous task
may not be necessary for model parameter enhancement. It can see that the
continuous task information synthesis using the cascade component of the
required continuous task information synthesis is not unconditional.

Third, it can confirm that the Ilearning is good by reflecting the task
information stably through the scale interpolation. The scale of obtained the
continuous task information has a distribution of scales, and it can confirm that
the information between the continuous task information is obtained stably by
balancing the continuous task information through the calibration of the scale of

the continuous task information.
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Finally, in order to continuously and precisely learn from the loss function,
this study proposed a new online continual task learning method. This seems to
allow us to move toward research where we can correct fine-grained information
in the wrong part of the model through learning.

In the future, we will conduct research that can analyze and correct problems
that can occur in deep learning models through fine-grained and precise learning
methods. We will study the process of stably learning through the process of
making a new loss using Bayesian theory.

Through this, this study examined the cascade loss with online learning study.

Next, we describe the nonlinear exponential regularization [40]

3.3 Nonlinear Exponential Regularization : An Improved Version of

Regularization for Deep Learning Model

Introduction : Deep learning models try to train the lowest points of cost
functions. In the process of learning to the lowest target points, the direction
should be given to go to the direction. To direction, the cost function, which
tells how to learn, must be carefully devised with proper regularization. However,
most existing regularizations of the linear combination of L1 and L2
regularization is a supplementary role to assist the loss. This regularization is
responsible for driving the model in the right direction for learning. In the case
of simple linear combinations, the simple linear combination of L1 and L2
regularization causes a problem that the characteristics of L1 and L2
regularization are not reflected well. We studied how to efficiently reach the
target point by reflecting the influence of characteristics of L1 and L2
regularization efficiently. From extensive experiments, we can find that the

nonlinear exponential combination of important loss in regularization considerably
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reflects the characteristics of L1 and L2 regularization. Well-known regularization
methods in deep learning models are L1 and L2 regularization [32]. LI
regularization is the absolute value of the error between the actual and predicted
values, and L2 regularization [32] is defined as the sum of squares of errors. L1
regularization is more robust for outlier than L2 regularization because L2
regularization is calculated by the square of the error [2]. L2 regularization
always gives a unique value for each vector [32]. This keeps low features and
finds better predictions. In some cases, L1 regularization can output the same
value. This makes it possible for the L1 regularization to be used as feature
selection. As a result, this L1 regularization is suitable for sparse coding.
However, there is a non-differentiation point. We want to well regulate the
model through each of these L1 and L2 regularization. We can experiment by
applying each regulation in various ways. For example, We generally use linear
addition for regularization. The performance of the two regulatory methods is not
reflected effectively because this linear combination of two regularizations is
reflected symmetrically. From this observation, we propose a new method of
regularization through nonlinear exponential regularization for better regulation

performance by reflecting each performance efficiently.
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OUR PROPOSAL : Eq. 5 is the nonlinear exponential regularization to find
optimal solution and fast convergence. In Eq. 5, n is the class number, m is the
total sum of n, ., is the result of the ground truth, and y,, ., :is the model
prediction result. We use two terms for regularization. One is the average of

absolute of the difference between the model predictions and the model ground
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truth to make robustness to the outliers of the predicted values. The other is the
average of the square of the difference between the model predictions and the
model ground truth. We combined each regularization term through the
exponential function. We used L1 regularization as a scaling term and L2
regularization as a phase term of the exponential function. We can also use L2
regularization as the scale term and L1 regularization as the phase term of the
exponential function. However, we did not experiment with L2 regularization as
the scale term because we only wanted to reflect the magnitude through the
absolute value. Consequently, we conduct the nonlinear combinations of
regularization and apply the exponential operation to combinations of existing
regularization such as L1 and L2 regularization. The experimental method to
verify the proposed regularization is as follows: a) L1 regularization, b) L2
regularization, c) linear combination of L1 and L2 regularization, d) nonlinear
exponential combination of L1 and L2 regularization. To verify regularization
effect, we experiment with four regularization coefficients, e.g.) 0.0, 0.25, 0.5,
and 0.75. Also, we experimented on three-loss (Cross entropy, Focal loss, and
Hinge loss) using Adam with Vanilla-GAN and LSGAN [41].
X3 3
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Figure 9. Effect of ours proposal for suboptimal training path gradients, a) L1

regularization b) Nonlinear exponential regularization (Our proposal)
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Figure 9 shows the visualization of the effect of nonlinear exponential
regularization on the L1 in terms of weight. Nonlinear exponential regularization
results reduce the complexity of the weight by giving the scaling effect of L1
regularization. By lowering the complexity of the weights, the gradient in model
moves efficiently to suboptimal optimization.

We conducted experiments based on the type, e.g.) Normal, Laplace, logistic,
Gumbel, and size, e.g.) 100, 500, 1000 of latent variables. We checked the
performance of the methods using MSE (Mean Square Error) and PSNR (Peak
Signal to Noise Ratio).

Experimental image generation task results: We used three losses of focal,
hinge, and cross-entropy to compare the images generated by Vanilla-GAN and
LSGAN. As a result, the images created by the GAN with the hinge loss are
clearer than those created by the GAN with the other loss. In the training
process, the Vanilla-GAN using hinge loss with a smooth slop was found to be
stable to generate images. Figure 10 shows the comparative analysis of proposed
nonlinear exponential regularization and linear regularization. As a result,
nonlinear exponential regularization generally has fewer errors than linearly

combinational regularization on two datasets and two models.
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Figure 10. Comparative analysis of proposed methods to help fast convergence

training a) Vanilla-GAN, b) LSGAN, i) Cifarl0, and ii) Cifar100

Table 5 Experimental results using two datasets on two models: top 5 values
PSNR and MSE

in

of

Measure Model Dataset Existing Proposed
. Cifar 10 51.47+1.50 | 50.33+0.78

MSE Vaniila-GAN =20 00 57.15+3.01 | 56.81+2.88

LSGAN Cifar 10 51.12+134 | 50.13+0.61

Cifar 100 56314295 | 55.94+2.91

. Cifar 10 50.87+0.13 | 50.96+0.06

PSNR Vanilla-GAN =~ =00 50.52+033 | 50.44+0.22

LSGAN Cifar 10 5090+ 0.11 | 50.97+0.05

Cifar 100 50.48+023 | 50.51+0.23

We extracted the top 5 values from the experimental results as the 5 lowest valu
es in the MSE and the highest values in the PSNR in Table 5. Our nonlinear e

xponential regularization (proposed in table) shows lower MSE of 0.71 and better
PSNR of 0.0275 than the linearly combined regularization of L1 and L2 (existin

g in a table).
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Figure 11 Generated images by a) linearly combined regularization and

b) nonlinear exponential regularization

Figure 11 shows generated images by linearly combined regularization and

nonlinear exponential regularization. Proposed regularization generates better
images than the linearly combined regularization. This may be because proposed
exponential regularization finds more optimal of gradients by focusing more
important loss. The effects of nonlinear exponential regularization are applied to

semantic segmentation and verified.

Table 6. Ablation study of our proposal in two models, a) loss, b) loss with

linear combination of L1 and L2 regularization, c¢) loss with nonlinear

exponential regularization of L1 and L2 regularization, d) loss with nonlinear
exponential regularization of L1 and L2 regularization and linear regularization of

L1 and L2 regularization

DSC F1 Score 10U Precision Recall
0.7275 0.7275 0.7715 0.7275 0.7275
0.7255 0.7255 0.77 0.7255 0.7255

0.728 0.728 0.7715 0.728 0.728
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Table 6 shows the experimental results by applying batch 2, learning rate 0.07,
early stop, and seed 777 in Semantic Segmentation. Experiments using FCN [42]
and U-Net [43] averaged five experiments. Percentages are expressed through the
result of the division reference value after 100 times the difference between the
reference value and the comparison value. To verify the regularization effect,
Table 6(a) shows only cross-entropy. Table 6(b) shows the linear combination of
L1 and L2 regularization in addition to cross-entropy, Table 6(c) shows the
nonlinear exponential regularization in addition to cross-entropy, and Table 6(d)
shows the ensemble regularization that is composed of linear combination of LI
and L2 regularization and nonlinear exponential regularization in addition to
cross-entropy. Nonlinear exponential regularization improved DSC 0.06%, FI
score 0.06%, IOU 0%, Precision 0.06%, and Recall 0.06% than origin. Nonlinear
exponential regularization improved DSC 0.34%, F1 score 0.34%, IOU 0.19%,
Precision 0.34%, and Recall 0.34% than linear combination of L1 and L2
regularization. Nonlinear exponential regularization improved DSC 0.535%, Fl1
score 0.549%, IOU 0.337%, Precision 0.549%, and Recall 0.549% than ensemble
regularization.

We conducted for further improvement. However, the performance did not
improve. We experimented with an EMA (Exponential Moving Average)
regularization. EMA is a first-order infinite impulse response filter that applies
weighting factors which decrease exponentially. The weighting for each older
datum decreases exponentially, never reaching zero. The graph at right shows an

example of the weight decrease. The equation of EMA can be expressed as
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Exponential Moving Average : =

Step 1. A X L1 regularization — (1 — A) X L1 regularization — B < L2 reg
ularization

Step 2. A X Stepl + B or (1 — A) X L2 regularization (6)

Eq 6 is the exponential moving average. A is a coefficient of L1 regularization.
B is a coefficient of L2 regularization. For verifying the performance of our pro
posal, we experimented based on cross-entropy using Adam optimization with FC
N, U-Net, Deep Lab v3 [44] using VOC, ATRdataset. We checked the performa
nce of the method using DSC, F1 Score, IOU, Loss, Precision, Recall for the qu
antitative analysis. Note that these results come out with 5 iterations of the exper
iment, batch size 2, seed 777, and early stopping used. Our experiment occurred
in a desktop with GTX-1080ti as GPU and Ubuntu 18.04 as the operating syste

m.

Table 7. Comparative test for verification of nonlinear exponential average movin
g in the VOC dataset. a) loss, b) loss with linear combination of L1 and L2 reg
ularization, c) loss with exponential moving average linear combination of L1 an
d L2 regularization, i) FCN, ii) U-Net, iii) Deep lab v3

Model | Methods | DSC | F1 Score | 10U Loss | Precision | Recall
a 0.733 0.733 0.776 | 1.125 0.733 0.733

i b 0.727 0.727 0.772 | 1.096 0.727 0.727

c 0.730 0.730 0.774 | 1.254 0.730 0.730

a 0.735 0.735 0.777 | 1.610 0.735 0.735

il b 0.733 0.733 0.776 | 2.742 0.733 0.733

c 0.739 0.739 0.780 | 2.387 0.739 0.739

a 0.706 0.706 0.759 | 2.516 0.706 0.706

iii b 0.710 0.710 0.761 1.963 0.710 0.710

c 0.698 0.698 0.754 | 1.740 0.698 0.698

a 0.724 0.724 0.767 1.75 0.724 0.724

average b 0.723 0.723 0.769 | 1.933 0.723 0.723
c 0.723 0.723 0.769 | 1.793 0.722 0.722

Table 7 shows the result of the comparative test for verification of nonlinear exp
onential average moving in the VOC dataset. In this experiment, three regularizat

ion methods are tested: no regularization, linear combination, and exponential mo
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ving average (EMA) with linear combination. Exponential moving average has lo
wer performance among all methods when comparing the average of indexes. Co
mpared with no regularization from our proposal, it has a 0.14% decrease in bot
h DSC and F1 score, 0.28% decrease in precision, and recall. On the other han
d, EMA has an increase in IOU and loss, with 0.26% and 2.40%, respectively.
When compared with linear combination, the proposed method has the same valu
e as linear on DSC, F1 score, an IOU, and less value on loss, precision, recall,

which decrease rate is 7.81%, 0.14%, and 0.14% respectively.

Table 8. Comparative test for verification of nonlinear exponential average movin
g in ATR dataset using linear coefficient a) loss, b) loss with linear combination
of L1 and L2 regularization, c¢) loss with exponential moving average linear com
bination of L1 and L2 regularization, i) FCN, ii) U- Net, iii) Deep labv3

Model | Methods DSC F1Score 10U Loss Precision | Recall
a 0.718 0.718 0.764 1.054 0.721 0.721

i b 0.719 0.719 0.764 1.046 0.719 0.719

c 0.717 0.717 0.763 1.203 0.717 0.717

a 0.726 0.726 0.769 1.087 0.726 0.726

il b 0.723 0.723 0.767 1.113 0.723 0.723

c 0.721 0.721 0.766 1.097 0.721 0.721

a 0.767 0.767 0.797 0.773 0.767 0.767

il b 0.763 0.763 0.795 0.839 0.763 0.763

c 0.766 0.766 0.797 0.933 0.766 0.766

a 0.737 0.737 0.776 0.971 0.738 0.738

average b 0.735 0.735 0.775 1.085 0.735 0.735
c 0.734 0.734 0.775 1.077 0.734 0.734

Table 8 shows the results of the comparative test for verification of nonlinear ex
ponential average moving in the ATR dataset. Three regularization methods are a
Iso tested: no regularization, linear combination of L1 and L2 regularization, and
exponential moving average (EMA) with a linear combination of L1 and L2 regu
larization. In general, EMA has low performance among all methods when comp
aring the average of indexes. Compared with no regularization, EMA has a 0.4
1% decrease in both DSC and F1 score, 0.54% decrease in precision and recall,

and 0.13% decrease in IOU. On the other hand, EMA has an increase in loss w
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ith 9.84%. When compared with linear combination, EMA has the same value as
linear on IOU, and less value on DSC, F1 score, loss, precision, recall, which d
ecrease rate is 0.14%, 0.14%, 0.74%, 0.14%, and 0.14% respectively

We experiment with the exponential moving average combination of L1 and L2 r
egularization functions for regularization. We can see that nonlinear exponential
moving average combination lower the performance. Reflecting exponential movin
g average through recurrent method efficiently move them to optimal in the mod
el. The experimental method implanted the experiment in batch size 2 because th
e larger batch size is limited to work on due to the out of memory in our deskt
op device. Some cases turned out to get better performance but normally get low

er performance because of the smaller batch size.

Table 9. Comparative test for verification of ours experiment in an average of A
TR dataset and VOC dataset using convex coefficient a) loss, b) loss with linear
combined of L1 and L2 regularization, c) loss with nonlinear exponential regulari

zation, d) loss with exponential moving average regularization.

Methods DSC F1 Score 10U Loss Precision Recall
a 0.727 0.727 0.77 1.394 0.727 0.727
b 0.725 0.725 0.77 1.499 0.725 0.725
c 0.728 0.728 0.77 1.618 0.728 0.728
d 0.727 0.727 0.77 1.357 0.729 0.729

The results in Table 9 show that EMA may improve, but nonlinear exponential r

egularization, which can be easily applied, performs better.

Conclusion : We propose the nonlinear exponential regularization of L1 and L2 f
or termed exponential regularization. Also, an exponential moving average regular
ization experiment was conducted. We can see that a nonlinear combination impr
oves performance. Because it was confirmed that the nonlinear features helped th
e model to go to the optimal that the model has efficiently. We experimented wi
th nonlinear exponential regularization with fixed reflection and exponential avera

ge moving regularization with dynamic reflection with dynamic reflection in the
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process of making regularization.

In the future, we want to make sure that the hybrid regularization process is effe
ctively reflected in the optimization process rather than the fixed and dynamic re
gularization process. Also we will be conducted to the optimal in consideration o
f general characteristics.

Through this, this study examined the nonlinear regularization study. Next, we
describe the novel auxiliary components to help optimize deep learning model

[45].

3.4 Novel Auxiliary Components to Help Optimize Deep Learning Model

Introduction : GAN has been widely applied in various fields. However, mode c
ollapsing, vanishing gradient, and catastrophic forgetting are occurring in the train
ing process in GAN. First, mode collapsing does not yield general results for un
expected inputs because models trained with insufficient data only consider certai
n characteristics. Secondly, the vanishing gradient problem occurs while the gener
ative adversarial network is training through the distribution of latent variable inp
ut. Thirdly, catastrophic forgetting forgets the information of existing data in the
process of reflecting new data information.

® We propose three subsidiary component to solve the problems that can occur
in this GAN. The three auxiliary components are illustrated in Figure 12.

The first component is the hybrid regularization method.

The second component is the hierarchical clustering method.

The third method is to increase width of the distribution.

Through the above three factors, it was confirmed that problems and perform

ances in GAN can be improved.
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Auxiliary components

Hybrid Regularization
:= Suggest a way to reflect different heterogeneous features in regularization

Hierarchical Clustering Optimization
:= Loss with L1 and L2 regularization using Adam with weight decay

Width of increase of distribution
:= increasing the width of distribution of latent variable.

Figure 12. Our Auxiliary Components

Proposal Method: We propose hybrid regularization to reflect heterogeneous featu
res. The hybrid regularization concept is shown below. We definition of hybrid r
egularization that can reflect the heterogencous features proposed. We tested usin
g two cases. i.e.) a combination of nonlinear and linear chrematistic, the combina
tion of nonlinear static and nonlinear dynamic chrematistic. We are learning thro
ugh the regularization of single characteristic proceeds with model optimization w
ith limited scope for model optimization. We have defined the cause of the probl
em. Through this, we intend to improve the proposed problem through heterogen
eous features. This may not be the best point for the model. Therefore, it is nec
essary to find the optimal point of the model by expanding the range that expres
ses by reflecting various characteristics. To verify this, we propose a novel hybri
d regularization that can reflect characteristics. We intend to verify the reason for

reflecting heterogeneous characteristics using three analyzes.
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Figure 13. Visualization using contour map to analyze the impact of the propose
d method

First, the analysis using contour lines is as follows. Figure 13 shows result that t

he generated value is analyzed using the formula np.sin(x) >} >*}10 + np.cos(10

+ y X x) X np.cos(x). First, in the case of generating an unbalanced value, x
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generated 40 values up 0 to 5, and y was analyzed using 40 values up 0 to 5.
The result represents the top six of the Figure 2. Second, in the case of generati
ng a balanced value, x generated 40 values up -5 to 5, and y was analyzed usin
g 40 values up 0 to 5. The results represent in the bottom six of Figure 13
Figure 13(a) expresses the frequency of occurrence of the value in the existing e
xperimental equation as a contour line. Figure 13(b) expresses the frequency of o
ccurrence of the value as a contour line when applied to the experi- mental form
ula using the L1 and L2 regularization addition formulas. Figure 13(c) expresses
the frequency of occurrence of the value as a contour line when Nonlinear expo
nential regularization applies to the experimental formula. Figure 13(d) expresses
the frequency of occurrence of the value as a contour line when Nonlinear expo
nential regularization and linear combination L1 and L2 regularization applies to
the experimental formula. Figure 13(e) expresses the frequency of occurrence of t
he value as a contour line when Exponential average moving regularization is ap
plied to the experimental formula. Figure 13(d) expresses the frequency of occurr
ence of the value as a contour line when Exponential average moving regularizat
ion and nonlinear exponential regularization are applied.

Figure 13, when the regularization is applied, we can see that a lot of values of
0 were generated compared to the existing one. In the case of the picture, Figur
e 13(b), values other than O are gathered to the upper left and lower right. This
seems to be a phenomenon that maximizes the margin of 0 as values other than
0 widen at both ends. Also, in the case of the picture Figure 13(c)(d)(f), these ¢
ontour lines appear, which can be viewed as a local minimum in the hyperplane
space of the neural network model. In a situation where a value of 0 occurs a |
ot, expanding the range (the size of the contour line) where the local minimum
can be seen or finding a range that can be optimized by the model increases the
amount of information the model can learn, resulting in better optimization. It se
ems that we can go to the branch.

In Figure 13, it was analyzed by generating balanced data and unbalanced data. I
n the case of balanced data, it can be seen that the value near 0 is more cluster
ed than the contour line. If we explain this in an analogy to the hyperplane in a
neural network, it can also be seen that a lot of minimum local areas are genera

ted. In addition, when generating positive and negative values, it can be confirme
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d that the shape of the contour line is seen as a straight line. This confirmed th
at the occurrence of the extreme value was generated as a stronger straight line t

han creating a soft boundary line.
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Figure 14. Visualization frequency using loss error to analyze the impact of the

proposed method

Second, analysis using frequency of occurrence is as follows. In the Figure 14, e

ach regularization method is applied to the cross-entropy. When an unbalanced v
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alue generated as input, x generated 40 values up 0 to 5, and y analyzes using
40 values up 0 to 5. In the case of generating a balanced value, x generated 40
values up to -5 to 5, and y was analyzed using 40 values up to -5 to 5. The re
sult value output using the above experiment method is as follows. In the case o
f the picture in Figure 14, the upper part is the case of using unbalanced data. I
t can be seen that the result value generated is between 0 and 1, but 9 specific
values generate it. In addition, in the case of Figure 14(c),(d),(f), the frequency o
f occurrence largely gather at the value of 0. In the case of Figure 14(a), (e), it
was confirmed that the generated value is symmetrically generated based on 0.5
on the x-axis through the opposite sign. The bottom is the case that occurred usi
ng balance data. The results show that four results generated on the x-axis. In th
e case of Figure 14(a), (e), it appears that the generated value is symmetrical ab
out the y-axis. In the case of Figure 14(c), (d), (f), it appears that the value is
gathered to the bottom right.

Eventually, the results from the experimental formula can be checked by gatherin
g specific result values. This can be confirmed by the phenomenon that the deep
learning model constantly learns, and the uniform value constantly learns. Therefo
re, it seems that research should be conducted in the future by optimizing genera
lization by reflecting various values rather than constantly reflecting specific valu

€s.
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Figure 15. Visualization scatter plot using loss error map to analyze the impact o

f the proposed method

Third, the analysis using the LogisticGroupLasso model is as follows. Figure 15
analyzes the results generated using the LogisticGroupLasso model. We tried to a
nalyze the model and sparsity values generated through this. The generated x-axis
is noisy probabilities, and the y-axis is noise-free probabilities. It was confirmed
that the overall generated shape create as the shape of the convex function. It w
as confirmed that the degree of clustering of the results generated by applying ca
ch regularization method was different. Depending on the regularization method,
a variety of non-clustered values generate, but the value of the frequency that is
not clustered can be determined as an outlier in the process of learning the mod
el, causing learning in the wrong direction. Therefore, it can be confirmed that it
is important to design the regularization method efficiently so that sparse values

are less likely to occur.
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Algorithm 1 Hybridregularizationcasel

Loss « Crossentropyloss

while Epoch # 0 do

Optimization model using loss error

end while

Algorithm 2 Hybridregularizationcase2

Loss « Crossentropy

while Epoch # 0 do

Optimization model using loss error

end while

The pseudo-code that applies the hybrid regularization proposed to two cases is a

s follows. Pseudo-code 1 and Pseudo-code 2 show how the proposed method is

applied to a deep learning model training.

Figure 16. Comparison of the regularization methods tested using visualization



Qualitative analysis of our proposal: When the weight visualization of the nonline
ar exponential regularization effect for each regularization is performed, a differen
t decision boundary is expressed for each regularization. Depending on the shape
of the decision boundary, the deep learning model helps to optimize it stably. W
e showed the result of alleviating the optimization problem slightly in the case o
f hybrid regularization, which reflects both fixed and dynamic features simultaneo
usly. However, when using the hybrid feature, it was confirmed that this model
has features that correlate with each other and that the model helps optimize. W
hen the features of different features have a shape of features that did not help i
n learning the model, the model was less optimized, and the performance deterio
rated. In the end, it was confirmed through experiments with various regularizatio
ns that it is important to find an adaptive regularization suitable for the model.

In Figure 16, the regularization methods tested are analyzed by using the formula
of z*+4x+y*—6y. This can be thought of as the hyperplane shape of deep lear
ning models. Figure 16(a) shows no normalization experiment, Figure 15(b) show
s L1 and L2 regularization, Figure 16(c) shows Nonlinear exponential regularizati
on, Figure 16(d) shows nonlinear exponential regularization. L1 and L2 when reg
ularization is applied, Figure 16(e) is when Exponential average moving regulariz
ation is applied, and Figure 16(f) is when exponential average moving regularizat
ion and nonlinear regularization is applied. Through the above results, according
to the regularization, the hyperplane space that the model can have a narrow vall
ey shape. If it has such a narrow valley shape, it seems that the model can quic

kly converge to learn to the optimal point.

Relation analysis: We use five functions to analyze the relationship between the 1
oss and the regularization function. e.g.) Sqrt, relu function, eLU, bi-relu [36], an
d bi-eLU [36]. We experimented with four methods. e.g.) sqrt, relu, eLU, bi-relu,
bi-eLU. We adopt five functions on four regularization methods. e.g.) Exponential
moving average with linear coefficient, exponential moving average with convex
coefficient, hybridv2 with linear coefficient, and hybridv2 with the convex coeffic
ient. We tried to confirm that it is effective for deep learning models to reflect

meaningful information through analysis of the relationship between the loss and
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regularization.

Seed analysis: We analyzed the regularization performance using five seed values.
We analysis the experimented using five seed values. e.g.) 1, 250, 500, 777, and
999. We tried to confirm by using a regularization that the quality expressed in

the model is changed by the seed value.

Step 0 Stap 1 Step 2 Hep 3 Step 4
Relation
. . e Evaluation
Seed - Seed Generator + Deep learning - Loss function  Regularization -« of Model prediction
1 Mol Sart
q L1 regularization and L2 regularization
250 FCN RELLI Monlinear Exporential Regularization
Exponential Moving
500 Ll-Met el Awerage Regularization
Bi-RELL Exponential Moving
i gi-elU Mwerage Regularization Hybrid
935

Figure 17. Visualization of experiment system configure

Hybrid regularization experiment system Figure 17 shows the system configuratio
n tested. The experiment consists of five stages. Step 0 is an experimental metho
d of impact analysis on seed values. Step 1 takes seed values and generates initi
al values for the model. The second stage is the FCN and U-Net used in the ex
periment. Step 3 is to analyze the association between loss and the regularizatio
n. Step 4 is to evaluate the prediction results of the model. To improve the abo
ve problems, we propose a hybrid regularization to reflect static and dynamic fea
tures.

First, we analyze the relationship between the loss function and the regularizatio
n. This is because reflecting

meaningful information on the regularization is a process of optimizing the mode
I, and it confirms that it converges quickly through learning with the shortest pat
h. It can also prevent going in the wrong direction.

Second, to analyze the relationship between the covariate of regularization, two a
nalyzes were used: convex and linear coefficient. Deep learning models generally
have hyperplanes with convex characteristics. At this time, the learning position v

ibrates while the learned position vibrates during the optimization of the model.
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This is to check whether the characteristics of the regularization should have con
vex characteristics or whether the model is reflected, including the linear characte
ristics, to help optimize the model.

Third, the analysis conduct by setting five seed values using regularization. Beca
use the deep learning model train with the initial distribution of the model chang
ed according to the initial seed value. Finally, we try to confirm whether the mo
del is trained stably by analyzing the regularization according to the initial state
of the model.

Hybrid regularization experiment setting : The experiment apply to U-Net and FC
N of the semantic segmentation task. We experimented with our proposal with K
eras in an Ubuntu environment. We recorded the average value through 5 experi
ment iterations. Experiments apply to FCN and U-Net using VOC and ATR data
sets in the image segmentation task. Cross entropy loss use for experiments. The
applied results evaluate using DSC, F1 Score, 10U, Loss, Precision, and Recall.
We analysis the experimented using five seed values. E.g.) 1, 250, 500, 777, and
999. The equation for our hybrid regularization method is as follows. A and B a

re the covariates of the regularization.
combination L1 and L2 regularization
with convex coefficient := (1)
AXLI+(1—A)XL2

combination L1 and L2 regularization
with linear coefficient := (2)

A X L1 +B X L2

Nonlinear exponential regularization
with linear coefficient (static):= (3) A * Lle(1—A)XL2

Exponential moving average with linear coefficient (dynamic) :=
Stepl:=A>XL1—(1—A)*XL1—BXL2 (4) Step2 := A X Stepl + B X L2

Exponential moving average with convex coefficient (dynamic) := Stepl:=AXL1—(1—A)
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¥L1—B*L2 Step2 := A * Stepl + (I — A) * L2)
(%)

Hybridv2 regularization with convex coefficient

(static and dynamic) := Stepl = A X L1 — (1 — A) X L1 — B x L2
O

Step2:= Ak Stepl+((1—A)*kL2) +A ) Lle(l—A)XL2

Hybridv2 regularization with linear coefficient
(static and dynamic) Stepl = A X LI — B * L1 — B * L2 Step2 = A X Stepl
+ (B X L2) +A *k LleBXL2

Hybridv2 regularization with linear coefficient adopted relu
(relation analysis using linear filtering) := Stepl := A X L1 — B * L1 — B X L2 S
tep2 := Relu(A X Stepl + (B * L2)) +A X LleB*L2

Hybridv2regularization with linear coefficient adopted Bi—eLU

(relation analysis using bi-ploar filtering) = Stepl = A X L1 — B * L1 — B * L2
Step2 = eLU(A * Stepl + (B X L2) —eLU(A X Stepl + (B >k L2)) +A X LleB
X L2

Formula of regularization method used in experiment: The equation used in the ¢
xperiment is as follows. Equation 1 is the convex combination of L1 and L2 reg
ularization. Equation 2 is a linear combination of L1 and L2 regularization. This
is to confirm the effect of convex and linear on the relationship between L1 and
L2 regularization in Equation 1 and 2. Equation 3 is nonlinear exponential regula
rization. This is to confirm the static effect of the nonlinear exponential regulariz
ation function. Equation 4 is an exponential moving average with the linear coeff
icient. Equation 5 is an exponential moving average with the con- vex coefficien
t. Equation 4 and 5 are nonlinear exponential regularization. This is to confirm t
he dynamic effect of the convex and linear relationship on the nonlinear exponen
tial regularization. Equation 6 is an exponential moving average and nonlinear ex
ponential regularization with the convex coefficient. Equation 7 is an exponential
moving average and nonlinear exponential regularization with the linear coefficien

t. Equation 6 and 7 is an exponential moving average and nonlinear exponential
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regularization. This is to confirm the static and dynamic effect of the convex an
d linear relationship on the nonlinear exponential regularization. Equation 8 is an
exponential moving average, and nonlinear exponential regularization with the line
ar coefficient adopts relu. Equation 9 is Exponential moving average with linear
coefficient hybrid adopt Bi-eLU. Equation 8 and 9 is the exponential moving ave
rage. This is to confirm the static and dynamic characteristic effect of filtering a
bout a single filter (6) and bi filter relationship on the nonlinear exponential regu
larization. The results obtained from the experiments are as follows. A combinati
on of exponential moving average and a combination of L1 and L2 regularizatio
n is called hybrid regularization. Combination exponential moving average and no

nlinear exponential regularization is called hybrid v2 regularization.

Table 10. Experiment index of Hybrid regularization

Name Index A
None Experiment 1
Combination L1 and L2 regularization

. ) Experiment 2
with convex coefficient

Combination L1 and L2 regularization

o ) Experiment 3
with linear coefficient

Nonlinear exponential regularization

) . Experiment 4
with convex coefficient

Nonlinear exponential regularization

o i Experiment 5
with linear coefficient

Exponential hybrid regularization with

) Experiment 6
convex coefficient

Exponential hybrid regularization with

) . Experiment 7
linear coefficient

Exponential moving average regulariza

tion with convex coefficient adopted Experiment 8

no filter
Exponential moving average regulariza

tion with convex coefficient Experiment 9

adopted relu
Exponential moving average regulariza

. ) ) Experiment 10
tion with convex coefficient
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adopted eLU

Exponential moving average regulariza
tion with convex coefficient

adopted bi-relu

Experiment

11

Exponential moving average regulariza
tion with convex coefficient
adopted bi-eLU

Experiment

12

Exponential moving average regulariza
tion with linear coefficient

adopted no filter

Experiment

13

Exponential moving average regulariza
tion with linear coefficient

adopted relu

Experiment

14

Exponential moving average regulariza
tion with linear coefficient
adopted eLU

Experiment

15

Exponential moving average regulariza
tion with linear coefficient

adopted bi-relu

Experiment

16

Exponential moving average regulariza
tion with linear coefficient
adopted bi-eLU

Experiment

17

Exponential hybridv2 regularization wi

th convex coefficient adopted no filter

Experiment

18

Exponential hybridv2 regularization wi

th convex coefficient adopted relu

Experiment

19

Exponential hybridv2 regularization wi

th convex coefficient adopted elu

Experiment

20

Exponential hybridv2 regularization wi

th convex coefficient adopted bi-relu

Experiment

Exponential hybridv2 regularization wi

th convex coefficient adopted bi-elu

Experiment

Exponential hybridv2 regularization wi

th convex coefficient adopted no filter

Experiment

Exponential hybridv2 regularization wi

Experiment
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th convex coefficient adopted relu
Exponential hybridv2 regularization wi

) Experiment 25
th convex coefficient adopted eLU

Exponential hybridv2 regularization wi

. . Experiment 26
th convex coefficient adopted bi-relu

Exponential hybridv2 regularization wi

Experiment 27

th convex coefficient adopted bi-eLU

Table 10 summarizes the index of the experiment used. We tested using 27 regu

larization equations.

Algorithm 3 Hierarchical Concurrency Optimization
while Epoch # 0 do
Loss + loss
+ L1 regularization + L2 regularization
Optimization with weight decay
end while

Hierarchical concurrency optimization Concurrency control has been applied to im
prove the performance of models. However, there was no hierarchical simultaneo
us optimization in the process of optimizing the model. Therefore, we propose a
new hierarchical concurrency optimization for training deep learning model optimi
zation. Hierarchical concurrency optimization is composed of two-component. The
first component is loss with regularization. The second component is optimization
with weight decay. The two-component are applied simultaneously to different m
odel positions. The proposed method express in pseudo-code. It applied weight d
ecay to optimization in the process of optimizing the model hierarchically with L
1 regularization and L2 regularization. Algorithm 3 is the pseudo-code of hierarc
hical optimization proposed. The advantages of this hierarchical concurrency opti
mization method are as follows. Firstly, it can be reconfigured in a simpler, smal
ler step in the optimization phase. It is easy to understand deep learning models
and to design and implement models. Second, it provides a standard interface tha
t each method can work with. The independence of each method simplifies the
method of the whole method. Third, when you need to correct or improve the f
unctional errors of each method, you can complete it by replacing only that met

hod without having to rewrite the entire deep learning model. There is an advant
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age that the internal change of one method does not affect the operation of anot
her method.

It is necessary to provide hierarchical concurrency optimization in a situation whe
re multiple data accesses the model simultaneously while the deep learning model
learns multiple data. This should make it possible to consistently reference the in
formation inside the model in the process of updating the values in the model.
Because, in the process of requiring precise calculation using deep learning mode
1, two problems can occur. First, when different transactions perform update oper
ations continuously in a situation where loss and optimization execute simultaneo
usly, a phenomenon in which the previously executed loss operation is overwritte
n may occur. Second, optimization may be executed while loss is being execute
d, and information inside the model may be broken. Therefore, we propose a hie
rarchical concurrency optimization that can alleviate these problems and verify it
with performance evaluation for image generation. When the method proposed is
applied, in the process of updating the weight of the model, it is possible to gen
erate an image with high resolution through precise calculation by simultaneously
controlling the updating statement inside the model. Also, it is possible to acquir
e a phenomenon in which the learning error of the model is reduced compared t
o the existing one. The proposed method is not only applicable to GAN, but we

can be applied to all deep learning models.

Effect of model optimization We will divide and explain two cases of informatio
n in the process of model optimization. e.g.) if they have the same characteristic
s or if they have different characteristics.

First, the case has the same characteristics will be described. Here, the same cha
racteristic means information that is semantically similar and can be viewed as th
e same characteristic. At this time, the characteristics produced through a similar
degree can be viewed as a group or as a single information. When information
generated in the model is similar, the overlap may occur between the informatio
n, and convergence may occur more quickly. In contrast, when the information g
enerated in the model is not similar, the margin between the two pieces of infor
mation is maximized to obtain a criterion for maximizing the information.

Second, the case of having different characteristics will be described. Here, the d
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ifferent characteristics are cases where they have completely different characteristi
cs, such as examples of fixed characteristics and dynamic characteristics. In the ¢
ase of reflecting the fixed and dynamic characteristics of the example in the mod
el at the same time, by reflecting the heterogeneous characteristics, the model ac

quires robust generalization to various features.

Deep Learning Model Optimization

Relation representation mean

Optimizer ) )
Optimization area - . Weak relation := dotted line
Weight decay
Strong relation := Solid line
L1 Regular
Loss area Loss < ‘
L2 Regular

Figure 18. Relation analysis in optimization

We will explain the relationship between the components used by the deep learni
ng model for optimization through two examples. Figure 18 is expressed by divi
ding the components used to optimize the model into two regions. In the optimiz
ation area, there are components of the optimizer and weigh decay method. In th
e Loss area, there are components of loss and L1 and L2 regularization. For eac
h component, the relationship was expressed in two ways. When there is a direct
relationship, it is expressed as a solid line as a strong relationship. And if there
is an indirect relationship, it is expressed as a dotted line as a weak relationship.
The components used in the experiment were expressed in a form similar to a g
raph network or tree. After confirming the influence on each component through
visualizing the relationship between each component helps the actual model to op
timize. However, if the model is not a component that does not help to optimiz
e, you need to insert other components to fix the model’s components so that th
e model can optimize. It is important to extract the maximum performance throu
gh the optimization of the model through the correlation analysis for each of the

s¢ components.
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Effect of image generation The environment for generating images has been studi
ed a lot in the field of existing graphics research. Many studies have been cond
ucted to make images realistic in the process of generating images in the above
research field. Also, in recent deep learning, the field of graphics research using
deep learning has been actively researched to make the image similar to the real
thing [46]. It argues that the creation of an image in real life should be applied
to the generator to accurately determine the real image and real data in the Gene
rative adversarial network. In the process of generating an image using deep lear
ning, the hypothesis was that by removing the noise by analyzing the noise gene
rating part in terms of temporal information reflected in the generator, the image
could be generated as a real image with high resolution. In this study, we first t
ry to explain this using the graph coloring example, which is well known in exi
sting algorithms.

First, the image is composed of objects, cases of similar things grouped based o
n low-level information. The information in the image can be visualized using th
e form of a tree. If you visualize using the tree form, you can do an overall to
pic about the image [47]. Through this, it is possible to understand the image. A
Iso, to create semantic images, associations are created through pre-defined infor
mation. Therefore, the relationship between the image information and the tree or
graph network is expressed. This is compared to the generator of the Generative
Adversarial Network (GAN) experiment. This was visualized in the picture 8. Fir
st, the hyper parameter setting consists of the potential variable space and the ba
tch size. Second, the image generator consists of the generator of the GAN. Thir
d, the image created from the constructor is displayed. Fourth, the generated ima
ge is measured using PSNR. Three problems can occur in the process of creatin
g an existing image. First, if particle noise or the like is not removed, blurring
of the image may occur. Second, in the image rendering process, information nee
ds to be created semantically and graphically. If it is not created correctly, strang
e pictures may be created. Third, as the number of batch sizes and the informati
on on the grid generated in the latent variable space increase, complexity increas
es. This increases the complexity of the information and the amount of informati
on that must be reflected from the viewpoint of the generator. Since the amount

of information increases, if the amount of information is not optimized, a proble
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m that the image generation performance of the model is low may occur.

In addition to the previous problems, to create a realistic image during the image
generation process, a sophisticated generator was designed in the generator during
the image generation process [48]. It is essential to increase the performance by
making the generator complex, but we thought it was essential to select the opti
mal performance of the model through simple ideas like the proposed method. T
herefore, it was thought that problems generated in the model could be reduced
even if the hyper parameter tunning is efficiently performed in the GAN using a
generator. Therefore, the analysis of the impact on image creation through hyper
parameter tunning of the model is as follows.

Effect of hyper parameter fine tuning In the initial learning process, the hyper pa
rameter setting is essential for deep learning [49]. In the initial setting, in the pr
ocess of model learning, the simulated annealing process of the model by the hy
per parameter occurs gradually and precisely. When the information of the existin
g learning data reflect in this way, the information generates in the model, and t
he adaptation of the new data is more stably generated, thereby reducing the cat
astrophic problem, which is an effect of forgetting the existing data [50]. Therefo
re, it can learn more stably than the conventional learning method. As a disadva
ntage, it seems that the learning process may take longer than the existing learni
ng method at the optimal point of the model. However, for the deep learning m
odel to go in the direction of the life long model, it seems to be important to a
daptively modify the hyper parameter whenever an input event occurs so that the
model can stably reflect new information. Through this, the process of fine- tuni
ng the hyper parameters of the model is essential in the process of learning the
pre-trained model that has already trained, but in the initial learning process, the
deep-learning model fine-tuning the hyper parameters of the model to learn as a

sustainable model. We can see the possibility that the process is essential.

Hierarchical concurrency optimization experimental setting: We conducted experim
ents using MNIST and Fashion MNIST. The results of the model evaluate using
two PSNR and MSE. We experimented with four losses (i.e., Cross entropy, Lea
st-squares loss, Smooth loss, and Focal loss) using Vanilla GAN and LSGAN r

esults using two generative adversarial networks. The average value of the experi
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ment describes two times.

Figure 19 is the experimental configuration system. Step 0 is to set the number
of batch sizes of learning data. Step 1 is the initial potential variable size setting
of the Generative adversarial network. Step 2 is LSGAN and Vanilla GAN, whic
h are the models used in the experiment. Step 3 is the loss setting, the rule for
training the model. Here, origin loss means cross-entropy for Vanilla GAN and
Least square loss for LSGAN. Step 4 is two evaluation indicators for evaluating
the generated image and model error. PSNR is an index for evaluating the resolu
tion by applying to the generated image. Also, MSE (Mean Square Error) is an
evaluation index for measuring errors in the difference between the predicted val

ue and the actual value of the model.

Step O Step 1 Step 2 Step 3 Step 4
Batch size Z latent size Model Loss Evaluation
- 4 - 100 - LSGAN - Orgin loss - PSNR
- 8 - 500 - Vanilla GAN - Focal loss - MSE
- 16 - 1000 - Smooth loss
- 32
- 64

Figure 19. Experimental System

Width of distribution of latent variable : We observed that the effect of the distr
ibution of latent variable on the GAN is related to three existing problems. Ther
efore, To confirm the effect of the distribution of latent variable on the GAN thr
ough the setting of distribution of a latent variable, the experimental method was
first performed by increasing the width of the distribution of the latent variable.
In the analysis method, according to the increasing width of the distribution. The
refore, the experiment carries out by increasing the width of the distribution of t
he latent variable. Since changing the distribution of the latent variable directly t
o find the cause can identify the problem, it is essential to change the distributio

n of the latent variable directly.
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Figure 20 Four distribution visualizations : (a) Laplace distribution, (b) logistic di

stribution, (c¢) Normal distribution, and (d) Gumbel distribution

Figure 20 shows the visualization of four distributions. Figure 20(a) shows the L
aplace distribution, Figure 20(b) shows the logistic distribution, Figure 20(c) sho
ws the normal distribution, and Figure 20(d) shows the Gumbel distribution.

In Table 11, x is the distribution input, m is the mean of the distribution input,

L in the Gumbel distribution of Table 11

s is the standard deviation, and

(d), B is the scale parameter. The distribution shown in Figure 20 is the distribu
tion used in the experiment with increasing the width of distribution of latent var
iable to show three problems. It was confirmed through experiments with increasi
ng distribution width that the effects of the setting of distribution of latent variab
les were related to three existing problems. First, mode collapsing use to show t
he effect of increasing the width of the distribution of the latent variable. To ver
ify, we experimented with Unrolled GAN [51], which can visualize mode collaps

ing.

Table 11. Comparison of effects on Unrolled GAN training by increasing width

of initial latent variable

Discriminator for real | Discriminator loss for fake
. . Loss of Generator
image images
a) Laplace
T 0.682 0.687 0.715
distribution
b) logistic
o 0.682 0.694 0.711
distribution
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¢) Normal
o 0.676 0.689 0.714
distribution
d) Gumbel
o 0.669 0.697 0.741
distribution

The reason for using mode collapsing in the analysis is that it can intuitively
check the effect of training on the setting of distribution of the latent variable
while tracking the degree of reflection on the distribution. Also, the shape of the
distribution of the latent variable can be interpreted.

The results of verifying the effect on the training of Unrolled GAN by

increasing the width of the distribution of the latent variable shown in Figure 21.
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Figure 21. Mode collapse visualization of four distributions using Unrolled
GAN, i) visualization of eight distributions during the training process, and ii)

visualization of eight distributions after training

The discriminator loss for the real image is the loss value when the real data
is judged. The discriminator loss for a fake image is the loss value when
judging the data produced by the generator. The loss of the generator is the loss
value when the generator creates a new image with a variable as input. As the
width of distribution increases, the loss value of the generator increases, and the
discriminator loss for the real image decreases. This means that as the width of

the distribution increases, it becomes possible to distinguish between real and
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fake images more accurately. The distributions in Figure 21(i)(a)-(c) show the
concentration of the distribution 1in the lower-left corner. However, the
distribution in Figure 21(i)(d) shows the density of distribution concentrated on
the bottom right and top. This means that the training tendency changes when
the width of the distribution exceeds a certain width. The red line in Figure
21(i1) is a visualization of the weight distribution of the Unrolled GAN. As the
width of the distribution gets wide, the distribution of weights in the Unrolled
GAN tends to be softer. The tendency to soften is that the gradient information
reflected in the existing distribution is reflected by the change of the smooth
gradient information. In Figure 21(ii)(d), we can see a lot of blue dots gathered
in the lower right corner. This is because when the width of the distribution
exceeds a certain width, the training tendency is changed to reflect the
information of the inclination of the distribution as the information of the
constant inclination. When the width of the distribution goes beyond a certain
level, the information of the gradient is gathered into a certain space, so it is
confirmed that the GAN is stable in training. The experiment of increasing the
width of the distribution means that the existing training can be used as a way
to go stably by changing the direction. We confirmed that the GAN model has
an important influence on training according to the influence of the setting of
the distribution of the latent variable.

In measuring the effect on the GAN according to the setting of distribution of
a latent variable, it inspires that the interior of the model interprets in terms of
generalization by inputting the distribution with generalization characteristics.
Information that can interpret the model information is expressed differently
according to the expressive power that interprets according to the number of

parameters of the discriminator of the GAN model. This is because the
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expression of the trained feature is trained in various ways according to the
discriminator’s performance. Therefore, the result of the image generated by
reducing the influence on the distribution through the averaging and making the
generalized distribution is to check the shape of the pattern according to the
clustering degree of pixels. Analyze the shape of the pattern and analyze the
effect of the pattern to show the possibility of being used as a way to interpret
the model. Since the process of selecting the distribution is necessary, we tried
to identify the generation pattern that responds to the generalization aspect by
inputting the distribution having the generalization characteristic in the

distribution.

iii)

a) b) )

Figure 22. Comparison of GAN discriminator parameters

In Figure 22(i), we experimented with a discriminator consisting of dropouts

on three layers 1024, 512, and 256 to the existing distribution. In Figure 22(ii),
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we applied the log method to the existing distribution and the discriminator
consisting of dropouts on three layers 512, 512, and 256. In Figure 22(iii), we
experimented with the logarithmic and 0.1 scale multiplying method of the
existing distribution and the discriminator consisting of three layers (512, 512,
and 256). Figure 22(a)-(c) shows the experimental results of increasing the
distribution width using GAN. The GAN model was used to identify the
generation pattern. GAN not well trained. Therefore, the experiment conducts
using GAN because the effect of distribution change clearly shows. The
distributions used to increase the distribution width shows in Figure 22(a)
Normal distribution, Figure 22(b) logistic distribution, and Figure 22(c) Gumbel
distribution. The log applied for the experiment shows that when the input value
is 0 1, the smaller the input value, the smaller the output value. It shows the
effect of separating and discarding rarely generated values from the training data.
Also, as the input value increases, the output value does not increase in
proportion but increases slightly. This phenomenon has the effect of averaging
the input data. By averaging and reducing the impact on the distribution of the
latent variable and creating a generalized distribution, the results of the generated
images attempted to confirm the pattern shape according to the degree of
clustering. We also want to confirm that the characteristics of the main
components reflect through the characteristics of the log. We experimented with
the effect of maintaining the pixel color information and the clustering of the
pixel distribution according to the distribution of latent variable change by
reducing the number of parameters of the GAN discriminator. In Figure 22(i),
the discriminator consists of three layers 1024, 512, and 512. Figure 22(i)(b)
Logistics and Figure 22(i)(c) Gumbel distribution, the pattern produced by the

experiment, does not have a human-understandable pattern. However, the pattern
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is important to interpret from the standpoint of the model. The above results
show that as the width of the distribution of the latent variable increases, a
pattern is created through the combinatorial optimization of information that
reflects the characteristics of the existing data. In addition, when the number of
discriminator parameters is analyzed by reducing the weight, it is confirmed that
the principal component characteristics of the generated image are represented
and generated. Second, the effect of increasing the width of the distribution of
the latent variable is shown by using a vanishing gradient. The loss of the
trained model use to confirm the importance of the setting of the distribution of

the latent variable.
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Figure 23. Variation of loss value analysis of vanishing gradient using four
distributions in LSGAN, (a) MSE loss, (b) Hinge loss, (i) Normal distribution,

(i1) logistic distribution, (iii) Laplace distribution, and (iv) Gumbel distribution

We are applying these four distributions to the LSGAN, the loss results of the

model shown in Figure 23. Figure 23 shows the results of the loss change
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analysis of vanishing gradient using four distributions in LSGAN. As shown in
Figure 23(a), the loss variation in the Gumbel distribution is very similar to the
Normal distribution. Also, the results in Figure 23(b) show that the Gumbel
distribution has the smallest loss variation. The small fluctuations in the loss
width of the generator are shown by maintaining a constant interval through the

information of the gradient that does not disappear as the model is repeatedly

trained.
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Figure 24. Stability analysis for pixel location and catastrophic forgetting where
color information can be forgotten in test images according to random training
data selection and training for GAN wusing size 8, a) Normal distribution, b)
logistic distribution, ¢) Laplace distribution, d) Gumbel distribution, i) 0 epoch,

ii) 250 epoch, iii) 500 epoch, iv) 750 epoch, and v) 1000 epoch

Third, the effect of increasing the width of the distribution of the latent

variable shown by catastrophic forgetting. The importance of the distribution is
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verified by sampling the generated results of the trained model at equal intervals
as the width of the distribution of latent variable increases. Figure 24 shows an
equally spaced image of a training procedure using randomly selected eight batch
sizes from GAN with hinge loss. As the width of the distribution of the latent
variable increases, it confirms that better performance maintains without forgetting
the color information trained in the same parameter space. In particular, it sees
that the result of the Gumbel distribution is well maintained without forgetting
the color information acquired in the same parameter space. Figure 24 shows an
equally space an equally spaced image of a training procedure using randomly
selected 8 batch sizes from GAN with hinge loss. As the width of distribution
increases, it is confirmed that better performance is maintained without forgetting
the color information trained in the same parameter space. In particular, it can
be seen that the result of the Gumbel distribution is well maintained without
forgetting the color information trained in the same parameter space. This

confirms that catastrophic forgetting can be reduced by distribution selection.
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Figure 25. Spatio-temporal analysis of color space mapping of latent variable
based on the relationship between batch size and distribution size for the
performance of generated images during hinge loss on GAN training, i) static
selection batch size 2, ii) static selection batch size 8, a) 100 latent variable

sizes, b) 500 latent variable sizes, and c) 1000 latent variable sizes

Figure 25 shows the spatio temporal analysis of color information mapping in
the GAN. Spatio-temporal analysis of color information in each distribution was
performed with cifarl10 data for each batch size and potential variable size.
Gradually decreasing the size of the latent variable tends to gather and train
important information from the data. Given the change over time, the general
characteristics of the latent variable of the input tend to remain large. However,
in the case of color information, it can be seen that the smaller the latent
variable, the smaller the change in color information. As a result of spatial
analysis over time, it has been found that general features are more resistant to
size changes. However, as the batch size changes, the color information feature
changes more often. In other words, catastrophic forgetting of existing deep
training models often occurs when the distribution space is small.

Experimental Setting: We examined the importance of the distribution using
three problems of experiments with increasing the width of the distribution. By
confirming and observing the importance of the distribution, we propose a
distribution in which the Gumbel distribution helps the GAN image generation
performance. To verify this, we experiment with four distribution and
five-generative adversarial networks: LSGAN, GAN, cGAN [52], ACGAN [53],
and semiGAN [54]. The CIFAR-10 and CIFAR-100 data sets were also used to

test for loss of MSE and loss of hinge.
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Experiment Result: First, the experimental results of the first component, hybrid
regularization, are as follows. The order of the results of the bar graph listed in
the order of index in Table 10. Also, the standard deviation was drawn on a bar
graph to express the degree of dispersion of each method. The loss showed the
most stable error performance when convex coefficients were used in hybrid v2,
reflecting nonlinear fixed and nonlinear dynamic information. And in terms of
performance, hybrid vl combining exponential moving average and combination
L1 and L2 regularization showed the best performance. Through this, it
confirmed that the deep learning model was stably trained or showed the high
performance to reflect the hybrid characteristics.

It was confirmed that the deep learning model could learn most stably by
reflecting the non-linear dynamic and fixed features. We confirmed that reflecting
the non-linear dynamics and linear fixed features is higher than other

regularization methods in terms of performance.

Table 12. Experiment result of regularization using U-Net on ATR dataset with

Seed 250
Regularization | DSC | F1 Score 10U Loss Precision | Recall
Experiment1 0.724 | 0.724 0.768 1.072 0.724 0.724
Experiment2 0.723 | 0.723 0.767 1.525 0.723 0.723
Experiment3 0.724 | 0.724 0.768 1.398 0.724 0.724
Experiment4 0.724 | 0.724 0.768 1.364 0.724 0.724
Experiment5 0.724 | 0.724 0.767 1.287 0.724 0.724
Experiment6 0.723 | 0.723 0.767 1.222 0.723 0.723
Experiment7 0.724 | 0.724 0.768 1.278 0.724 0.724
Experimen8 0.724 | 0.724 0.768 1.255 0.724 0.724
Experiment9 0.724 | 0.724 0.768 1.228 0.724 0.724
Experiment10 | 0.724 | 0.724 0.768 1.237 0.724 0.724
Experimentl1 | 0.724 | 0.724 0.768 1.195 0.724 0.724
Experiment12 | 0.724 | 0.724 0.768 1.164 0.724 0.724
Experiment13 | 0.724 | 0.724 0.768 1.136 0.724 0.724
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Experiment14 | 0.724 | 0.724 0.768 1.112 0.724 0.724
Experiment15 | 0.724 | 0.724 0.768 1.115 0.724 0.724
Experiment16 | 0.724 | 0.724 0.768 1.095 0.724 0.724
Experiment17 | 0.724 | 0.724 0.768 1.08 0.724 0.724
Experiment18 | 0.725 | 0.724 0.768 1.075 0.724 0.724
Experiment19 | 0.725 | 0.725 0.768 1.09 0.725 0.725
Experiment20 | 0.725 | 0.725 0.768 1.077 0.725 0.725
Experiment21 | 0.725 | 0.725 0.768 1.069 0.725 0.725
Experiment22 | 0.725 | 0.725 0.768 1.07 0.725 0.725
Experiment23 | 0.725 | 0.725 0.768 1.077 0.725 0.725
Experiment24 | 0.725 | 0.725 0.768 1.07 0.725 0.725
Experiment25 | 0.725 | 0.725 0.768 1.052 0.725 0.725
Experiment26 | 0.725 | 0.725 0.768 1.044 0.725 0.725
Experiment27 | 0.725 | 0.725 0.768 1.042 0.725 0.725

Table 12 shows the performance of the experiments to verify the proposed
method tested. As a result of Table 11, it was confirmed that the hybrid
regularization proposed improved 0.1 % in terms of segmentation performance. In
terms of loss, the best experiment, compared to the previous one, showed an
error reduction of 3 % or more. At this time, the hybrid regularization v2
showed the lowest performance through non-linear fixed features and dynamic
features through bi-directional non-linear filtering. This seems to be that the
non-linear features adequately reflected in the model learning process in the same
non-linear environment.

As a result of analyzing the relationship between the loss and the
regularization function in Table 12, it was confirmed that the loss value is
slightly higher when simple addition performed. What reflected through addition
is that the complexity of information is somewhat improved through the
superposition of information, so the loss value seems to be rather high. However,
as a result of using RELU, eLU, Bi-relu, and Bi-eLU to reflect the degree of

normalization, filtering using RELU reflects the linear characteristics, so the loss
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is reduced compared to the conventional addition. Also, as a result of filtering
using eLU, it can be seen that non-linear features reflected more stably than
linear features. And bi-activation was applied to learn by extracting essential
features by reflecting the information of bi-polar. The bi-relu linearly filtered
effect shows a learning loss value similar to a single non-linear filtering result.
Also, it confirmed that bi-eLU shows a simple linear effect when the
non-linearly filtered effect is not right in both directions but shows a lower error
value when finding an essential feature through non-linear filtering.

Additionally, the regularization performance, according to the change of seed
value, was analyzed. The results of the regularization analysis through the change
of the seed value were included in the supplementary. As a result of analyzing
the performance of regularization by changing the seed value, it shows the effect
that the performance of regularization changes somewhat depending on the initial
seed occurrence. Because the learning of the deep learning model changes with
probability by the initial state of the deep learning model, it shows a
non-uniform trend. Through this, it can be confirmed that it is essential for the
deep learning model to create an initial state that can stably reflect information.
Also, it seems necessary to study the robust regularization even in this initial
state.

Hybrid test results show better results when the features that dynamically
reflected, and the features that dynamically reflected are effectively mixed and
reflected. But in all cases, it does not improve. To further develop the hybrid
regularization, it seems necessary to make an optimal combination of static and
dynamic features. In the case of Bi-eLU, It confirms that the deletion of shared
information that can be reflected in the loss and non-linear sparse information

reflected in the model optimization. Hybrid regularization finds a lower error and
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slightly improved performance as a result of the seed value experiment. Seed test
results show that the performance varies greatly depending on the initial state of
the model. This confirms the need for a study of robust regularization in the
initial model state.

The experimental result of the second component, Hybrid concurrency
optimization, is as follows. The results of the experiment for hierarchical
concurrency optimization described the average values of Vanilla GAN and
LSGAN. We show the result when weight decay and L1 and L2 regularization
are not applied.

We show the result when only weight decay is applied. When only weight
decay is applied, it can be seen that the overall image generation performance is
slightly improved. This is because Adam optimization learns as the optimization
shift reduces by zooming in on the weight decay value, so it seems that the
performance improves by optimizing the generator during the image generation
process.

This was compared not only by using image generation performance, but also
by using error values. This was a comparative analysis of discriminator errors.
We show the result when weight decay and L1 and L2 regularization are not
applied. When this applies to weight decay, the performance is similar to the
previous result. When weight decay and L1 and L2 regularization are applied
simultaneously, the error value reduces. However, if the coefficients of L1 and
L2 regularization strongly enter according to the potential variable space size,
data type, and batch size number. It confirms that the error performance slightly
improved. Therefore, it was confirmed that it is important to find the
regularization coefficient adaptively according to the hyperparameters. Also, to

check the influence of weight decay when there is regularization, weight decay,
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and no weight decay were tested and compared in the case of L1 0.25 and L2
0.25 regularization. When comparing all the results of the experiment, there was
no change. This seems to have obtained a similar error value because it has
been reached through regularization on a similar optimization point. Therefore,
the hierarchical concurrency optimization method seems to have a difference in

performance depending on the characteristics of the regularization coefficient.
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Figure 26. Comparison of the regularization methods tested using loss
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Figure 27. Comparison of the regularization methods tested using 10U

Third, the experimental results of the third component, the width of the
distribution of a latent variable, are as follows. We tested the mean values of
PSNR (Peak Signal-to-Noise Ratio) and MSE (Mean Square Error) of five
experiments for LSGAN and GAN using cross-entropy and hinge loss based on
four batch sizes with CIFAR-10 and 100 datasets. (Batch size 256, batch size
128, batch size 64, and batch size 32). The other results of the other three
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distributions are similar to the Gumbel distribution. The difference of the
reference distribution values was obtained from the experimental distribution
values when calculating the improvement values. We then divided by the
difference and used the improvement using the product of 100. The reference
distribution used as a reference is the Normal distribution. Experimental
distribution values are Laplace, logistic, and Gumbel. For the quantitative analysis
of the generated image, we use the mean pixel value of the generated image and
the standard deviation of the pixels. The PSNR and MSE of the Normal
distribution are p= 47.923, o = 0.7442 and p = 103.4947, o = 14.152,
respectively. The PSNR and MSE of the logistic distribution are p = 47.938, o=
0.760 and p = 103.152, o = 14.460, respectively. The PSNR and MSE of the
Laplace distribution are p = 47.923, ¢ = 0.716 and p = 103.412, ¢ = 13.755,
respectively. The PSNR and MSE of the Gumbel distribution are p= 47.959, ¢ =
0.750 and p = 102.651, ¢ = 14.108, respectively. Gumbel distribution performs
better than others. The distribution does not have a significant impact on
performance, but this performance difference indicates that the Gumbel
distribution certainly helps to ensure stable training. We also visualized the mean
and standard deviation to confirm the variance of each method and found similar
variances in all four distributions. In our experiments, we often experience
catastrophic forgetting in discriminator parameters when the width of the
distribution is small. Also, the results of images obtained from cGAN, ACGAN,
and semiGAN without qualitative influences of the discriminator parameters

proposed to provide qualitative analysis of the four distributions in Figure 28.
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Figures 28. Qualitative analysis of images generated for stable training in
generator of GAN using a series of conditional GAN. i) cGAN, ii) ACGAN, iii)
semi GAN, a) Normal distribution, b) Laplace distribution, c¢) logistic distribution,

and d) Gumbel distribution

We can see that the image generated as a result of the Gumbel distribution in
Figure 28 creates a smooth shape. This is because the curve shape of the
Gumbel distribution has a smooth elliptic curve shape than other distributions, so
the curve shape shows a smoother image. Figure 24-28. As can be seen, most
performance or generated images will improve performance depending on the
trend of Normal distribution > logistic distribution or Laplace distribution >
Gumbel distribution. The influence of the distribution width causes this
phenomenon. The density of the distribution effect depends on the size of the
bell-shaped region of the distribution. It can see that both tails of the distribution
become thicker to better reflect the information. The cumulative density function
for the fastest cumulative speed at which the Gumbel distribution rises to the
upper left. The Gumbel distribution improves performance in most experiments.
However, the Gumbel distribution showed the best performance, but the

generalization performance tends to decrease somewhat. Therefore, for generalized

power generation performance and stable training correlation, it is efficient to
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find the distribution width adaptively for the optimal point distribution of the two

relations about generalized and stable training.

Conclusion: We proposed new auxiliary components to help optimize deep
learning. First, we proposed a novel hybrid regularization to reflect static and
dynamic characteristics. For further analysis, we analyzed the relationship with
loss. Relation analysis conducted based on seed values. As a result, it confirmed
that the adequate reflection of static and dynamic characteristics in the
regularization through hybrid helps the deep learning model to converge and
optimize stably. In the process of analyzing the relationship between loss and
regularization, it confirms that necessary to filter and pass only meaningful
information. And when the analysis using the seed value, it confirms that the
result obtained has a slightly larger deviation. However, hybrid regularization is
somewhat robust to change due to the smaller standard deviation than the
existing method.

Second, we propose a hierarchical concurrency optimization method for training
deep learning model optimization. As a result of experimenting with the proposed
method , we can confirm that the proposed method is stable learning. It seems
that information applied from the hierarchical and simultaneous learning in the
model space adequately reflects in the process of learning the model, which
derives from the relationship between the information reflected in regularization
and information reflected in optimization.

Third, We identified the importance of establishing the distribution using three
problems. We performed distribution width increase analysis for stable training to
use distribution variables in the generative adversarial network. According to the

increase of the width of distribution has the advantage of information reliably
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reflects in the model. To verify, we experimented with five models and two-loss
functions. This study experimentally validates in the generative adversarial
network but may be used as a distribution of latent variables for other image
classifier models or reinforcement learning. To quickly and reliably reflect large
amounts of information in a deep learning model, a broad density function
distribution is useful as the distribution of the deep learning model. This shows
that when the density continues to accumulate, the cumulative distribution
function can reflect faster than other distributions. A sensitivity analysis of the
distribution suggests that an optimal distribution can propose. We also gained a
generalized distribution through selective removal of partial distributions and new
inputs of partial distributions. After all, in terms of NP-hard distribution, the
GAN can generate in real-time by approximating and reflecting the training data
information in polynomial time effectively.

In future work, the energy functions of the loss and regularization define to
visualize the effects of the model. It seems that research through visualization
method to find optimal points by visualizing the possible relationship of the
model is needed. Also, it seems to be necessary to optimize the direction of
learning only meaningful information by visualizing the complexity between

information from loss area and optimization area.

3.5 Ensemble Normalization for Stable Training [56]

Introduction : Deep learning model learns repeatedly to find the best point. In

order to find the optimal point, the weights of the model are repeatedly changed

in the deep learning model training process to move to the optimal point.

However, if a large number of internal covariate shifts occur, it may represent a
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distribution of weights that cannot be derived from the training data. This means
that the distribution of untrained weights moves in different directions and
converges in the wrong direction. Therefore, the study of normalization to correct
and learn the internal covariate shift phenomenon is necessary. However, if
learning by the existing single normalization can be learned in an unoptimized
direction. To induce different features to be learned in the right direction through
learning, we propose an ensemble normalization that learns different features

through two normalizations.
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Figure 29. Process of normalization method, a) Existing normalization method, b)

Ensemble normalization method

Proposed Method : We propose a new normalization method that is ensemble
normalization method. Ensemble normalization calculates the addition of batch
normalization and existing normalization. Then apply division 2 to the preceding
result. The above calculation sequence is shown in Figure 29. Figure 28shows
the process that is calculated in normalization using the existing method and the
proposed method. To have a clear understanding of the existing methods, We
conducted the ablation study on normalization to conduct an impact analysis on
each existing normalization method before verifying the proposed method. We

analyzed each normalization in the learning process through Focal loss [55],
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Hinge loss, and Cross entropy. Experimental results show average results from
each normalization’s loss. The experimental method uses VOC and ATR datasets
for FCN and U-Net and uses the average value of three losses and uses the
average value through five iterative experiments. Experimental evaluation used 7
evaluation indicators. Tables 15 and 16 indicate in bold when performance
improves compared to single normalization on Table 13 and 14. We comparative
analysis of group normalization application using feature maps. it is confirmed
that the normalization affects the density of the picture rather than the change in

the appearance of the object.

Table 13. Quantitative comparison of three normalization in two models using V
OC dataset.

Mean
Model | Model | DSC | F1 score | IOU | Loss A Precision | Recall
cc

None | 0.733 0.733 0.776 | 0.498 | 0.975 0.733 0.733
IN 0.735 0.735 0.777 1 0.277 | 0.975 0.735 0.735

FCN BN |0.704 | 0.704 | 0.759 | 0.333 | 0.972 0.705 0.705
GN 0732 ] 0732 ] 0.775 | 0.309 | 0.974 0.732 0.732
None | 0.742 | 0.742 | 0.782 | 0.701 | 0.975 0.742 0.742
U-Net IN 0.738 | 0.738 0.78 | 0.546 | 0.975 0.738 0.738

BN | 0.581 0.581 0.696 | 1.266 | 0.96 0.582 0.582
GN 10744 | 0.744 | 0.783 | 0.561 | 0.976 0.744 0.744

Table 14. Quantitative comparison of three normalization models using ATR data

set.
Mean
Model | Model | DSC | F1 score | IOU | Loss A Precision | Recall
cc
None | 0.718 0.718 0.764 | 0.489 | 0.969 0.718 0.718
FCN IN 0.727 0.727 0.769 | 0.287 | 0.970 0.727 0.727
BN 0.712 0.712 0.760 | 0.350 | 0.968 0.712 0.712
GN | 0.723 0.723 0.767 | 0.332 | 0.969 0.723 0.723
U-Net None | 0.725 0.725 0.768 | 0.401 | 0.969 0.725 0.725
IN 0.725 0.725 0.769 | 0.346 | 0.970 0.725 0.725
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BN

0.499

0.499

0.642

1.823

0.945

0.501

0.501

GN

0.723

0.723

0.767

0.335

0.969

0.723

0.723

Tables 13 and 14 show the results of each normalization using the VOC and

ATR datasets in the FCN and U-Net models. In the case of group and instance

normalization, the result is improved when the normalization is not applied.

Summarize the experiments from the previous ablation study. This phenomenon is

because group normalization efficiently clusters the pixel distribution in the

process of adjusting and learning the distribution of the pixels. In the case of

instance normalization, each normalization is performed to obtain more precison

pixel clustering results.

Experimental Results :

Table 15. Quantitative comparison of each normalization combination in the ense
mble method using VOC dataset.

Model | Model | DSC | F1 score | IOU | Loss l\iin Precision | Recall
IN 0.735 0.735 0.777 | 0.320 | 0.975 0.735 0.735
FCN BN 0.736 0.736 0.778 | 0.356 | 0.975 0.736 0.736
GN 0.733 0.733 0.776 | 0.296 | 0.975 0.733 0.733
IN 0.721 0.721 0.769 | 0.348 | 0.973 0.721 0.721
U-Net BN 0.637 0.637 0.718 | 1.464 | 0.965 0.637 0.637
GN 0.711 0.711 0.763 | 0.317 | 0.972 0.711 0.711

Table 16. Quantitative comparison of each normalization combination in the ense

mble method using ATR dataset.

Mean
Model | Model | DSC | F1 score | IOU Loss A Precision | Recall
cc
IN 0.735 0.735 0.775 | 0.260 | 0.971 0.735 0.735
FCN BN 0.722 0.722 0.766 | 0.331 | 0.969 0.722 0.722
GN 0.725 0.725 0.769 | 0.318 | 0.969 0.725 0.725
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IN 0.731 0.731 0.772 | 0.269 | 0.97 0.731 0.731
U-Net BN 0.628 0.628 | 0.708 | 1.203 | 0.959 | 0.628 0.628
GN 0.737 0.737 | 0.777 | 0.247 | 0.971 0.737 0.737

Table 15 and 16 show experimental results using two datasets for the proposed
method and overall performance is improved. It is because they learn complemen
tary to each other by catching the characteristics that cannot be captured by exist
ing normalization methods through other normalization methods. With the additio
n of instance normalization, batch normalization, and group normalization, the los
s each changes were +2.3%, +0.4%, and -4.2% for the FCN model and in the U
-Net model, there were -42.9%, -20.3%, and -54.2%, respectively. Howeve
r, there is a disadvantage that the performance changes depending on the type of
normalization additionally applied. As a result, it can be seen that a study is nee
ded to generate a feature generated by the combination optimization in a directio

n having a feature that helps in changing the internal weights of the model.

Conclusion : We propose a new normalization which is an ensemble
normalization. First, the impact of existing normalization was normalization was
analyzed through ablation studies to determine the impact of the existing method.
We also verified the ensemble normalization method. As a result, we confirmed
that the proposed method is effective for stable training on semantic
segmentation. However, this study has a limitation that experiment based on
batch normalization. Therefore, we necessary about analysis using various
normalization methods. In future research, we will verify the proposal method in

generating images and classifying images.

3.6 Similarity Analysis of Actual Fake Fingerprints and Generated Fake
Fingerprint by DCGAN [57]

Recently, biometrics technology with the activation of PinTech is attracting
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attention as the authentication technology. Biometrics is a method for recognizing
human biological characteristics, such as signature, iris, and fingerprint
recognition. Although these biometric technologies are widely used in electronic
financial transactions, financial damages are also increasing due to fake biometric
information. In order to solve this problem, various methods for discriminating
fake biometric information have been recently developed [59-66]. Especially, as
the successful applications of recent deep learning are increasing, some methods
for discriminating fake biometric information using deep learning are being
studied [59, 63-66]. Convolution neural networks (CNN), which are major
methods of image information processing, are mainly used for fake fingerprint
discrimination methods using deep learning [61-64]. In these methods, about 5 to
7 convolution layers are used for high fake discrimination performances and they
require thousands to tens of thousands of training images. However, it takes a
lot of time and cost to acquire real fingerprints and fake fingerprints. In addition,
each time a fingerprint sensor is changed, a large amount of new data must be
acquired. This situation occurs in most cases of applying to deep learning. In
certain applications, it is very difficult to obtain data even at a lot of time and
cost. To solve the above problem, some methods have been devised to acquire
augmenting data using the acquired training data. One of such methods is to
rotate, move, or scale up/down the acquired learning data. However, this method
is a simple modification not to make a lot of additional training data, so it is
difficult to improve the performances [63-65]. We propose a similarity
verification method for augmenting training data between generated fake
fingerprints by deep convolution generative adversarial networks (DCGAN) and
actual fake fingerprints. To make augmenting data, we use the DCGAN, which

has been applied to various fields recently. After training actual fake fingerprints
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in DCGAN, we generate fake fingerprints using the generator of DCGAN. In
order to use the generated fake fingerprints to augment training data, generated
fake fingerprints made by the DCGAN must maintain the characteristics of the
actual fake fingerprints. Otherwise, the performances of the fake fingerprint
discriminator using generated fake fingerprints made by the DCGAN may be
lowered. Therefore, we show through various experiments how similar the fake
fingerprints made by DCGAN are to the actual fake fingerprints. We compare
the distribution of the mean and standard deviation of the fake fingerprints
generated by the DCGAN with those of the actual fake fingerprints as a first
way to verify. In the second method, the mean Hamming distance (MHD), which
is one method of evaluating the similarity of images, is used for measuring the
similarity between the generated fake fingerprints and the actual fake fingerprints.
The third method is to obtain the histograms of the generated fake fingerprints
and the actual fake fingerprints and measure the similarity by calculating Pearson
correlation of the two group of histograms. The fourth method is to calculate
intersection of union (IOU) between the generated fake fingerprints and actual
fake fingerprints. IOU is a method of evaluating the shape similarity of images.
To evaluate the above methods, we trained DCGAN using actual fake
fingerprints and generated fake fingerprints using the generator of trained
DCGAN. For experiments, four data settings are provided with a combination of
generated fake fingerprints and actual fake fingerprints that are not trained to
DCGAN. We tested similarity between generated fake fingerprints and actual fake
fingerprints on these four data settings with four similarity measures.
Experimental results showed that the generated fake fingerprints made by
DCGAN are similar to the actual fake fingerprints in most verification methods.

This means that the generated fake fingerprints could be used to augment fake
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fingerprint data for training deep learning.

Step 1 Step 2 Step 3
How to generate data

Training Data

Quality Q1 7
Quality Q2 § AL
Quality Q3 W '

Quality Q5

(b) Mean hamming distance

(c) Intersection of union

(d) Nurr a
an

Generated 200 results
Generated Data

Generated 1000 results

Figure 30. Overall process of proposed method.

Proposal Method : We propose four similarity measures to verity that the
generated data by DCGAN can be used as augmented data. Figure 30 shows the
overall structure of the fake fingerprint generation and evaluation methods. In
step 1 of Figure 30, fingerprint data is classified into four qualities for training
by each quality and by all quality. Step 2 of Figure 30 shows the generation
method of fake fingerprints data by DCGAN. In order to investigate whether
there is a difference between two training methods, DCGAN is trained by quality
and by all quality. Step 3 is to measure the degree of similarity between fake
fingerprints made by DCGAN and actual fake fingerprints. It is necessary to
verify whether the fake fingerprint data made by DCGAN is similar to the actual
fake fingerprint data. In order to evaluate the similarity of the generated fake
fingerprints to the actual fake fingerprints, we proposed four similarity measures.
Firstly, the mean and standard deviation of images are calculated and compared

between the generated fake fingerprint images and actual fake fingerprint images.
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Comparing the similarity with the mean and the standard deviation makes it
possible to check the overall distribution of the images but not the detailed
comparison of the images. Secondly, similarity was measured using the MHD
developed as a method of measuring the similarity of two images. Thirdly, for
comparison at the image histogram level, histograms of generated fingerprints and
actual fake fingerprints were obtained and Pearson correlation between the
histograms of the two data were obtained. Finally, shape similarity was measured
using the IOU developed as a method of measuring the similarity of two images.
The method of generating fake fingerprints using DCGAN is as follows. We first
obtain actual fake fingerprint images from the material of fake fingerprint
generation such as silicon or clay. At this time, the quality of actual fake
fingerprints may vary due to the state of the material or the shaking of the hand
when the fingerprint image is acquired. That is, fake fingerprint images with bad
quality are obtained if the material is too stiff to properly contact the
measurement sensor. We divide the actual fake fingerprint data with four
qualities to see if there is a difference according to the quality of fake
fingerprints. The quality of the actual fake fingerprint is classified into four
levels. Q1 is the best quality, clean overall. Q2 is fake fingerprints that the
outline or part of those is whitened. Q3 is worse than Q2, and Q5 is the case
where only a part of the fingerprint is acquired. In order to generate fake
fingerprint images, DCGAN is trained by quality or by all quality together. After
training the DCGAN, the generator of DCGAN generates new fake fingerprints
images by applying random latent z to the generator of DCGAN. The DCGAN
structure used in our experiments is the same as that proposed by Radford et al.

[65].
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the middle of training (b), and the end of training.

Figure 33. Generated Fake Fingerprint Data by DCGAN
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Figure 34. Plot of mean and standard deviation of four data sets.

Experimental Results : The DCGAN for generating fake fingerprints was
implemented using TensorFlow developed by Google. Figure 31 shows the actual
fake fingerprint samples for each of the four qualities Fake fingerprints in Figure

31(a) are very accurate because there are no cracks in the fingerprints and no
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problem in acquiring the actual fake fingerprints. Figure 31(b) shows actual fake
fingerprints with cracks. Fake fingerprints in Figure 31(c) are partially whitening
fingerprints with cracks due to poor pressure on fingerprint acquisition. Figure
31(d) shows that the fingerprint acquisition did not work properly, resulting in a
lot of white areas.

The DCGAN generator generates fingerprints that are similar to trained fake
fingerprints as training progresses using the characteristics of fake fingerprints.
Figure 32 shows the fake fingerprints generated by the generator during the
training process. Figure 32(a), 32(b), and 32(c) are generated images by the
generator at the beginning of training, during the middle of training, and at the
end of training, respectively. As you can see in Figure 32, the more the training
progresses, the more and more similar fingerprints to the characteristics of the
training fake fingerprints are created.

If DCGAN is trained enough, it will generate fingerprints that are quite similar
to the actual fake fingerprints. Figure 33 shows the fake fingerprints generated
by the DCGAN generator after training. As shown in the Figure 33, it can be
seen that they are similar enough to be indistinguishable from the actual fake
fingerprints. As shown in Figure 33(c) and 33(e), it can be seen that cracks and
white parts occur similarly to the characteristics of the training fake fingerprints.
As a result, the generator of DCGAN fully reflects the training data and

generates fake fingerprints.

Table 17. Data settings for verification of fake fingerprints

. DCGAN
Data setting Trained | Generated Actual Total
I (Original Quality) 0 0 1000 1000
IT (Each Quality) 600*4 200*4 200 1000
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11 (All Quality) 2400 800 200 1000
IV (All Quality) 2400 1000 0 1000

We should verify the similarity of generated fake fingerprints to actual fake
fingerprints with four measures. When the similarity is verified with four
measures, the generated fake fingerprints by DCGAN can be used as training
data for augmenting training data. In the verification method with four measures,
we use four data settings to see if the similarity depends on the quality of the
fake fingerprints. Table 17 shows four data settings for verification of the
similarity according to generated data by DCGAN and actual data. In data
setting I, there are no generated fake fingerprints and 1,000 actual fake
fingerprints. In data setting II, 600 actual fake fingerprints are trained for each
quality in DCGAN, then 200 fake fingerprints are generated by DCGAN for
each quality, and 200 actual fake fingerprints are combined to make 1,000 total
fake fingerprints. In data setting III, DCGAN learns 2,400 actual fake fingerprints
without distinguishing quality and generates 800 fake fingerprints, and combined
to 200 actual fake fingerprints. The data setting IV is the same as the third one,
but it generates 1,000 fake fingerprints. Therefore, data setting I and IV are
composed of only actual fake fingerprints and only generated fake fingerprints,
respectively. In these data settings, all data sets were used after normalization
process.

Similarity Analysis : To analyze whether the fake fingerprints generated by
DCGAN are similar to the actual fake fingerprints, our analyzes were performed.
In this analysis, we compared them according to the four training data sets as
shown in Table 17. This is because that it would be more meaningful to
compare the generated fake fingerprints according to the methods of using them

as training data. First, the pixel value of the image was used to calculate and
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compare the mean and standard deviation of the image. In other words, the
averages and standard deviations of images of four data sets are shown on the
two-dimensional coordinates in order to compare the similarity of four data sets.
Figure 34(f) and 34(g) shows the results of the mean and standard deviation of
four data sets. First, the data set II, III, and IV, which use fake fingerprints
generated by DCGAN, are slightly larger than the data set 1 in average, which
use only actual fake fingerprints. This is probably because DCGAN generates a
crack or a white part in the actual fake fingerprints with low quality.

In the data set II and III, since many generated fake fingerprints are included,
we can see that the result is almost similar. It can be seen that there is almost
no difference in terms of mean and standard deviation in the case of generating
by quality and by all quality together. As you can see in Figure 34, data set IV
composed of only generated fake fingerprints are overlapped to the data set I
composed of only actual fake fingerprints. This indicates that the generated fake
fingerprints by DCGAN are similar to the actual fake fingerprints in terms of the
distribution of mean and standard deviations.

As a result, from the viewpoint of average and standard deviation analysis,
they can be used to augment fake fingerprints. However, the mean and standard
deviation represent the overall characteristics of the image and can not be used
to measure the similarity of the image in detail. Therefore, three additional
analyzes were performed to analyze the detailed characteristics. The MHD used
in Sixt et al. [66] was used for the analysis of four data sets. The Hamming
distance is increased when the reference pixel value is different from the
comparison pixel value. All the extracted Hamming distances are added and
divided by the number of pixels, then the total average Hamming distance is

obtained.
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Table 18. Analysis of various similarity methods.

Dataset
I-1 I-11 I-1IT -1V

Mean hammin
) 5955.69 6463.39 6446.29 6550.22
g distance

Pearson correl
ation of histo | 0.682 + 0.219 | 0.151 £ 0.272 | 0.272 £ 0.245 | 0.180 + 0.111

gram
Intersection of

0.50 0.45 0.55 0.53

union

Table 18 shows the MHD results between two data sets based on data set I
Hamming distance is obtained over all data pairs in two data sets and averaged.
The smaller the MHD is, the more similar the two sets of images are. MHD of
data set I-I is the smallest because they calculate themselves. The next best thing
is data set I-IIl made by combining all qualities and then data set I-Il made by
quality. However, the difference between the two sets is very small, so there is
no big difference. The worst case is comparison data set I-IV, where all the fake
fingerprints were generated by the DCGAN. Although DCGAN produces
something that is very similar to an actual fake fingerprint, it shows that it
produces something slightly different from the actual fake fingerprint. Finally, to
analyze the similarity of the distribution of brightness values of images, each
image is represented by histogram and analyzed by Pearson correlation of
histogram for each data set. In other words, all pairs are generated from two
sets of images and the Pearson correlation is obtained from each pair. As shown
in Table 18, all results show positive correlation results. That is, the histogram

of the generated fake fingerprints are similar to the histogram of the actual fake

- 105 -



fingerprints. Experimental results show similar tendency to MHD measurement
results. These results show that DCGAN can produce similar results to the
brightness distribution of training data. Table 18 shows the IOU results. 10U, a
quantitative representation of overlapping parts of object detection, has been used
as an evaluation of segmentation [67]. We used the IOU as a similarity measure
of two data sets through the full combination of the data of each data set based
on the data setting I. For examples, I-II column in Table 18 shows the similarity
of data set 1 and II, and shows the lowest value of similarity analysis in
comparison data set I-II. Since data set I is made by each quality, the similarity
of generated fake fingerprints is not totally followed much of fake fingerprints.
In the case of comparison data set I-III and I-IV, it can be confirmed that the
methods generated by whole quality are more similar to each other than those
made by each quality. The difference between comparison data set I-III and I-IV
is 0.02, which appears to be a difference in the experimental method depending
on the presence or absence of 200 actual fake fingerprints. Through the four
similarity measurement methods, it was shown that the fake fingerprint generated
by DCGAN is similar to the actual fake fingerprint and they can be used for

augmenting training data.

Conclusion : We analyzed similarity of actual fake fingerprints and generated
fake fingerprints by DCGAN with four similarity measures for augmenting
training data. Experimental results showed that fake fingerprints generated by
DCGAN are made by combining the features of training actual fake fingerprints
and confirmed that the characteristics of the generated fake fingerprint are
substantially similar to those of the actual fake fingerprints. From these results,

we could conclude that the generated fake fingerprints by DCGAN were used for
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augmenting training data. These results are useful in the case where training data
is costly and time-consuming to acquire, especially in areas where acquisition of
training data is very difficult. As a further work, we will directly test the
performance improvements of CNN and DNN using the augmenting training data

by DCGAN.

3.7 Multi Way Decoder Scheme with Error Reduction Embedding on one-hot
bi-directional ~ Seq2Seq  with  adaptive  regularization = for = Music

Composition[73]

In the existing research on music composition using deep learning, most of the
composition does not reflect details such as pitch and duration [68-72]. This
makes it impossible to compose realistic music like composers. In addition, since
the patterns are created using various combinations using notes, beats, and
melodies, the complexity of the combinations expressed from each element is
very high. Finding meaningful patterns from high complexity is a difficult
problem. In previous research, most of the deep learning does not reflect the
details of the training data. Currently, the field of study is compressing
information in order of signal, information, and knowledge in comparison with
the flow of information. However, the current structure has been studied to
change within the scope of the state of information if the current state is the
information state. It is essential to research through improvement within the same
perspective as the research has been conducted so far, but we thought that the
direction of research should be seen through the new perspective from the
scheme perspective by expanding the structure. This makes it impossible to

compose realistic, like composers.
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To overcome this problem, we tried to propose a structure from a scheme point
of view. In this way, the structure of deep learning is essential to understand the
structure, explainable method, interpretable method, and structural components
from the transparent structure perspective. Also, looking at the encoding structure
of a structure at the schema level of the structure using scheme has the
advantage of being able to encode by explicitly changing the internal steps. It is
also essential to building on a structure because the structure can be made
procedural.

® We propose a multi-way decoder module from the scheme point of view for
the first time in determining deep learning structure internal information with
heterogeneous normalization.

e We proposed a one-hot bi-directional Seq2Seq with the adaptive 12
regularization.

® We propose an information error minimization for use as an input.

Architecture of one-hot bi-directional Seq2Seq with adaptive scaling |12 regularization

Decoder of multi way scheme ~ Output
Adap!‘wn L2 regularization Measure
N a) Numerical analysis
b) Cosine similarity
c) Pearson correlation

Heterogeneous
Normalization

d) Total error
il o a O -
5‘“’;@‘ L J..' { _ )'M" Model learning method
Forward e \‘. P Z&md\,/ - Cell - Training by Class

Initialization - ing———*

Error reduction
One-hot encoding

M, My o 00 M M,
<Encoder> Float input

Figure 35. Our Proposal System about Multi-way Decoder Scheme

Our Proposal : Solving problems with new perspectives is challenging and

stressful. Also, it is a difficult problem to efficiently optimize the process of
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embedding in space and determining information at the same time. We will try
to improve these difficult problems through the new method. We propose a new
method for the embedding part and decoding part of the information in the
process of determining the information through one decision in Figure 35. The
embedding part proposes a three-step information processing method for encoding
the information of the input data into one codeword (One-hot encoding) in the
encoding process. First, integer using convert int32 reduces bit errors. Second,
the size of the information corrects by scaling the bi-directional information.
Third, clipping is to simplify the information. Through the above process, co-
adaptive information of input information extract. In the decoding part, we
propose an optimal decision- making method by optimizing the combination of
multi-way information based on the scheme structure. The proposed structure has
a new structure of information processing from three perspectives. This is
because performance improved through the synergistic effect of each information
through optimization of the combination of information generated in the process
of transmitting the information generated from various components to a single
target. However, it believes that this method has limited performance that judges

according to the degree of optimization between parts.

- 109 -



a)
i) Embedding
Part

b)

c)

d)

e)

» One hot encoding

One hot encoding

» One hot encoding

Float input
Float input —— Convertint32
Float input —— Convert int32 SELU
Positive SELU
Float input —— Convert int32 <
Negative SELU
Positive SELU
Float input —— Convert int32 <

Negative SELU

One hot encoding

Clip value. ——————— One hot encoding

Figure 36. Analysis of our proposal. i) Embedding part
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Loss

Vanilla RNN by using NAS cell
Bi-directional RNN by using NAS cell
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Figure 37. Comparison of decoder
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38. Comparison of the impact on learning loss
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Figure 39. Evaluation of normalization performance used in experiments using

scatter plot and histogram
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Figure 40. Comparison result using numerical analysis of training in each class
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Figure 42. Visualization of generated music about one-hot bi-directional Seq2Seq

Table 19. Comparison of one-hot encoding and whole encoding analysis

Duration Pitch
Convert int32 0.013 0.060
Scaling SELU to Convert int32 0.050 0.083
Scaling Bi-directional dot product SELU to Conv
_ 0.026 0.076
ert int32
Scaling Bi-directional dot product SELU to Clip
0.010 0.083
value to Convert int32

Table 20. Comparison of one-hot and whole encoding analysis using total error
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Bi-directional RNN with who

Bi-directional RNN with whole

Test
le input one-hot input
Duration 240 168
Pitch 10.0 9.5
T Bi-directional Seq2Seq with | Bi-directional Seq2Seq with one-
et whole input hot input
Duration 224 190
Pitch 14.5 11.5

Table 21. One-hot encoding on experimental models, a) bi-directional RNN, b)

bi-directional seq2seq, c¢) bi-directional seq2seq using adaptive 12 0.5
regularization
Train for
) Loss of 0 Loss of 20 Loss of 60 Loss of 90
duration
a 3.893 0.511 0.427 0.083
b 3.898 0.586 0.424 0.117
C 3.893 0.591 0.495 0.164
Test for Cosine Pearson Numerical
) Total error o ) )
duration similarity correlation analysis
p: 72.0
a 168 0.998 0.007
c: 2.965
p o 73.163
b 190 0.998 -0.017
c: 1976
p o 72.326,
c 140 0.999 0.455
c : 2717
Train for
) Loss of 0 Loss of 20 Loss of 60 Loss of 90
pitch
a 3.874 2.330 1.571 0.588
b 3.864 2432 1.576 0.627
c 3.863 2.432 1.220 0.307
Train for Cosine Pearson Numerical
. Total error o ) )
pitch similarity correlation analysis
p o 0.628,
a 9.5 0.851 0.067
c : 0.266
b 11.5 0.825 -0.239 p :0.581
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o : 0214

p o 0.501,
c 7.5 0.901 0.255
c : 0.185
Table 22. Various efficient on one-hot bi-directional seq2seq2 with 12

regularization using 0.5, 0.4, 0.3, 0.25, 0.2, 0.1 and none 12 regularization.

Train of durat
) Loss of 0 Loss of 20 Loss of 60 Loss of 90
ion
None 3.898 0.586 0.424 0.117
12 0.1 3.898 0.661 0.325 0.082
12 0.2 3.898 0.633 0.364 0.147
12 0.25 3.893 0.591 0.495 0.164
12 0.3 3.899 0.651 0.363 0.092
12 0.4 3.898 0.612 0.371 0.093
12 0.5 3.897 0.562 0.499 0.126
Test of durati Cosine Pearson Numerical
Total error R . .
on similarity correlation analysis
o 73.163
None 190 0.998 -0.017
c: 1976
po: 71.558
12 0.1 151 0.998 -0.094
c : 2.038
p :72.233,
12 0.2 214 0.997 -0.479
c : 2.752
n:72.326,
12 0.25 140 0.999 0.455
c : 2717
p :72.907,
12 0.3 181 0.998 0.47
o : 2.568
p: 71.860,
12 0.4 172 0.998 -0.059
c : 2.707
o 71.6,
12 0.5 171 0.998 -0.073
c :2.596
Train of pitch Loss of 0 Loss of 20 Loss of 60 Loss of 90
None 3.864 2.432 1.576 0.627
12 0.1 3.827 2.493 1.220 0.573
12 0.2 3.868 2.476 1.365 0.350
12 0.25 3.863 2.432 1.220 0.307
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12 0.3 3.864 2.488 1.835 0.648
12 0.4 3.873 2.306 1.09 0.241
12 0.5 3.874 2.436 1.140 0.222
. Cosine Pearson Numerical
Test of pitch Total error o ) )
similarity correlation analysis
p :0.581,
None 11.5 0.825 -0.239
c: 0214
p :0.709,
12 0.1 14.0 0.805 -0.097
c : 0.345
p o 0.570,
12 0.2 5.0 0.910 0314
c:0.173
p o 0.501,
12 0.25 7.5 0.901 0.255
c : 0.185
p : 0.570,
12 0.3 11.0 0.834 -0.108
c : 0.224
p o 0.523,
12 0.4 9.0 0.885 -0.139
c :0.105
p o 0.657,
12 0.5 12.25 0.828 -0.001
c :0.305

Table 23. Comparison of our proposal based on one-hot bi-seq2seq with adaptive

regularization using music dataset using top 1 error

Train Loss of Duration Loss of Pitch
Bi-directional RNN using
0.040 0.077
LSTM Cell
Bi-directional RNN using
SRU Cell with Double A 0.052 0.124

LL Group Normalization
Bi-directional RNN using

SRU Cell with Double A

0.056 0.128
LL Group Normalization
with 0.7 Dropout
Change NAS Cell 0.045 0.108
Change 0.75 Dropout 0.038 0.087
Both Bi-directional RNN 0.020 0.102
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and Vanilla RNN using
GRU Cell with Double A
Il Group Normalization w

ith 0.7 Dropout
Change NAS Cell 0.024 0.067

Table 24. Comparison of multi-way decoding scheme analysis

Duration Pitch

Our scheme + Our embe
dding
Only adopted encoding m

0.015 0.054

odule that composed of
0.006 0.063
Our scheme + Our embe

dding
Only adopted encoding a

nd decode module that c
0.027 0.080
omposed of Our scheme

+ Our embedding
Only adopted one module

that composed of Our sc 0.020 0.058
heme + Our embedding

We analyzed a new method for embedding method and decoder module. Figure
36 shows an analysis of the proposed method for the embedding part. Figure 36
consists of five parts. Figure 36(a) shows how to apply one-hot encoding on
existing float data. Figure 36(b) shows how to apply one-hot encoding after
changing integer 32 from existing float data. Figure 36(c) shows how to apply a
one-hot encoding after applying to scale after changing integer 32 from existing
Float data. Figure 36(d) is a method of applying one-hot encoding after changing
to integer 32 from existing Float data, dividing it into Bi-direction, applying to

scale. Figure 36(e) shows how to apply one-hot encoding after clipping to reflect
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only important information after changing the existing float data to integer 32
and dividing it in Bi-direction. In the process of clipping, we set various ranges
and experimented to find the optimal point and clipped it using the value of the
category. During the experiment to find the clipping coefficient, a large variation
in performance occurred depending on the degree of clipping. Therefore, it
confirms that it is important to find a range of meaningful information.

In Table 19, in the first step, results show a decreased error in music duration
and pitch. This is because the method applies after changing to an integer type
to minimize bit error during the embedding process. In the second step, the
result is increased compared to the first step. It seems that the error is improved
because of the result of correcting the information by applying scaling before
changing to an integer type, not cluster. In the third step, The Top 1 error is
reduced compared to the ninth method. In the scaling process, information
scaling is performed by dividing into bidirectional information and applying it to
scale. In the fourth step, the Top 1 error shows the smallest error value in the
pitch information. It seems that the lowest error obtains by extracting only the
common information from the extracted information. The positive SELU and the
negative SELU use despite the increased error in the process of inserting new
elements. It intends to use only information generated in the process of merging
through bidirectional information. Sparse information generates. Such sparse
information is an important key point in judging an image. Using these key
points to judge the information of the model was judged efficiently and
considered to be the correct judgment. On the contrary, common information is
not a significant difference in actual judgment, so confusion arises in the process
of model judgment.

We compare of decoder part experiments with the Seq2Seq Model in Figure 37.
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Firstly, we compared the cases where Vanilla RNN, Bi-directional RNN, Vanilla
RNN, and Bi-directional RNN, Vanilla RNN, and Bi-directional RNN, and
Bi-directional RNN use when using NAS Cell. This was to check whether it is
more efficient in the decoding process to reflect various features in the decoding
process. Through this experiment, it confirms that reflecting various features
showed faster convergence speed and lower error. This confirms that learning by
using various ways rather than using one way converges to the shortest point of
the model. Secondly, we tried to find a robust internal cell inside the RNN used
in this experiment using LSTM Cell, GRU Cell, SRU Cell, and NAS Cell. It
also shows a faster convergence rate than other cells. Cell, which shows the
lowest error value when using NAS It confirms that the structure to find the
internal cell through the search method could acquire the lowest error of the
model. We analyzed different features in the decoding process. It intends to use
bidirectional and single features simultaneously. It was important to reconstruct it
by reflecting on various features. Therefore, to reflect different features, the
experiment was conducted by applying an RNN to extract a single characteristic
and a bi-directional RNN to extract a bidirectional characteristic to the decoder
model part. Reflecting by using different features is considered to show a better
synergistic effect than reflecting a single characteristic when synergistic effects
occur.

We show the results of experimenting on how to learn all the classes and how
to learn each class to see the impact of learning in each class. Figure 38 shows
a comparison of the impact on learning loss for each class learning. In the case
of learning in each class, nine loss values were expressed as the centerline of
averaged values, and the change amount was expressed using the standard

deviation. Figure 38(a) shows how to learn with the whole class. Figure 38(b)
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shows how to learn with each class. The learning of each class results in lower
loss errors than the learning of the entire data, which results in a lower error
because the overall complexity of the data set is lower. In the case of learning
by each class, we try to compare the effect of learning by each class by
changing the cell of Vanilla RNN. Figure 38(c) shows the results of experiments
with GRU cells. In the case of learning each class as a GRU cells, it confirms
that the spark spacing in the loss is wider and higher in size than the LSTM
Cell. These results seem to be caused by the lack of one memory gate in GRU
Cell than LSTM.

In the process of training heterogeneous features in the process of training
different features, the training may conduct in the right direction or the wrong
direction. Therefore, there is a need for a combination optimization that can
stably training heterogeneous features. We are analysis of interactive associate
feature calibration at ensemble normalization using association relation analysis.
We are an experiment with four normalization methods (i.e., batch normalization,
instance normalization, group normalization, and layer normalization). Through
observation, we could confirm that group normalization and instance
normalization showed the best performance by combining normalization
experimented in Figure 39. Also, when the performance improved compared to
the existing one. This visualizes using a bar graph. We use instance
normalization and group normalization in an ensemble normalization. It confirms
that the combination of group normalization and instance normalization has
improved through more stable acquisition.

For more realistic music composition, we propose a new music composition
using a one-hot bi-directional Seq2Seq structure with a new adaptive 12

regularization to reflect the detailed characteristics of music in the new music
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composition in Figure 35. We adopted a method of class training. Training as a
class reflects the information in the data more efficiently than reflecting the
entire data. Applying one-hot encoding allows us to extract and learn only
important features, so we can evaluate performance through the principal
components of data. Also, we adopted the bi-directional Seq2Seq. Because we
can learn more about the training data through bi-directional training, but
bi-directional training can also increase the trained information on trained music.
We propose a new adaptive 12 regularization during training. Adaptive 12
regularization helps the Seq2Seq to train more detailed information by clustering
the training music. Also, we use one-hot encoding for pitch and bits in both
encoding and decoding models, because one-hot encoding allows us to learn
trained songs more carefully and accurately. To check the composition results,
we train the bi-directional Seq2Seq model with 420 songs. When learning
different genres of music, we found it difficult to learn more because of the mix
of musical characteristics of each genre. So, we experimented with only one
genre to compose a more realistic song. We showed that a model trained with
only one genre song produced a more realistic song.

The composition of the experiment environment is as follows. The music dataset
is consisting of nine genres that include 420 songs. The experiment was
performed by configuring the output with 48 melodies and 48 melody inputs in
the experimental model. The music also consists of two pieces of information
about duration and pitch. We apply the proposed method to duration and pitch.
We were experimented with Adam optimizer, epoch 100, a learning rate of 0.01,
and Seed is 77. We experimented with the effect of music composition on the
proposed method through the average of the duration and pitch results for

quantitative analysis. The improved values are shown in bold.
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We first show the results of experimenting on how to learn all the classes and
how to learn each class to see the impact of learning in each class. We compare
the impact on learning loss for each class learning. In the case of learning in
each class, nine loss values express as the centerline of averaged values, and the
change amount expresses using the standard deviation. The learning of each class
results in lower loss errors than the learning of the entire data, which results in
a lower error because the overall complexity of the dataset is low. In the case
of learning by each class, we tried to compare the effect of learning by each
class by changing the cell of Vanilla RNN. In the case of learning each class as
a GRU cell, it can confirm that the spark spacing in the loss is wider and
higher in size than the LSTM Cell. These results seem to be caused by the lack
of one memory gate in GRU Cell than LSTM.

Figure 40 shows a comparison of the effects of music generation on the ground
truth for each class training. Figure 40(a) is a case of training using the LSTM
cell, Figure 40(b) is a case of learning using GRU cell, and Figure 40(i) is a
case of training using whole ground truth. In this case, the ground truth
represented in Figure 40 is the result of visualizing the ground truth using the
mean and standard deviation. Also, the generated music data visualize by
calculating the mean and standard deviation. As a result of numerical analysis in
Figure 40, we found that the case of using GRU Cell is more similar to the
actual data distribution than the case of using LSTM Cell. The LSTM cell has
one memory gate larger than that of the GRU cell. Training in each class
confirms that the model is trained reliably and produces a better representation of
the actual data. We compared and analyzed the case of training in one direction
and both directions using Vanilla RNN and bi-directional RNN in Figure 40.

Figure 40 shows a comparison result using numerical analysis of training with
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bi-directional in each class. Figure 40(b) is the result of training all classes.
Figure 40(c) is the result of training by each class. Figure 40(i) is the result of
training with Vanilla RNN using GRU Cell. Figure 40(ii) is the result of training
with Bi-directional RNN using GRU Cell. In the case of Ilearning by
Bi-directional RNN in the learning method of each class, information from
bi-directional learn. It can be seen that the result generated above is similar to
the shape of the existing important data distribution of the data than the results
learned with the existing Vanilla RNN. These results seem to generate by
reflecting the main component characteristics, which are important characteristics
of existing data characteristics.

From the above results, we can see that bi-directional training generates
distribution similar to real data in single class learning. Therefore, this study
compared and analyzed Bi-directional RNN and Bi-directional Seq2Seq. Also, we
apply the adaptive 12 regularization proposed in Table 21. Table 21 analyze of
duration total error and pitch total error using bi-directional RNN and
bi-directional Seq2Seq for one-hot encoding and whole encoding input. In the
case of the bi- directional Seq2Seq with whole one-hot encoding, the total error
is reduced by 72, and the pitch error is reduced by 0.5. Bi-directional Seq2Seq
reduced duration total error 34, and pitch error decreased to 3.0. The above
results show that most of the methods reduce when one-hot encoding is applied.
These results seem to be because the model can learn as it reflects discrete
information. Reflecting discrete information is similar to learning only important
features of the data. After all, reflecting only important input features shows that
deep learning models can train efficiently.

The errors in loss of 90 during train for music duration in Table 22. Table 22

shows that the error values are slightly higher when comparing bi-directional
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seq2seq and bi-directional Seq2Seq with adaptive 12 0.25 regularization using
bi-directional RNN. However, the bi-directional Seq2Seq with an adaptive 12 0.25
regularization shows a 28 error reduction in Table 22. Pearson’s correlation
showed an improvement of 0.448 in Table 22. We improved cosine similarity
0.050 and improvement of Pearson correlation 0.188 in Table 22. Table 22 show
that the overall performance of adaptive 12 regularization improves by
composition. It is explained in terms of Duration and Pitch. Pitch is the degree
of highness or lowness of a tone. Duration is the length of time a note lasts for.
Because the model used in the experiment is robust to time continuity, it shows
a better similarity than the pitch in terms of duration measurement. However, in
terms of pitch, it seems to generate a rather high error in hierarchical sound
generation.

The results of train and test for music duration in Table 24 show that the
performance of 12 regularization is generally improved compared to 12
regularization. Table 24 shows that regulation has improved the performance by
looking for generalization features. However, in the case of strong regulations,
the performance fell somewhat. Therefore, it is important to find generalized
functions through adaptive regulation. Finally, to verify the effectiveness of the
adaptive 12 regularization, quantitative analyses are performed for the duration in
the pitch in Table 24. We also compare the duration and pitch improvements to
the mean values for averaging the adaptive 12 regularization. In the result of
train and test for music pitch Table 24 can be seen that the result of applying
12 regularization is mostly improved compared with the result before application.
Also, Table 24 shows the performance improvement/reduction according to the
scale value of 12 regularization. These results confirm the need for adaptive 12

regularization to apply regularization. In the regularization experiment, similarly,
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it shows better similarity than the pitch in relation to the duration measurement.
However, in terms of pitch, it seems to generate a rather high error in
hierarchical sound generation.

Figure 39 shows an analysis of the decoding method. The analysis was
conducted to confirm the impact on each component of the proposed method.
Figure 39(a) shows how to experiment with LSTM cell on the existing
bi-directional RNN. Figure 39(b) shows how to experiment with SRU cell on the
existing bi-directional RNN. Figure 39(c) shows how to increase existing
bi-directional RNNs to two, apply Group Normalization, and merge them. Figure
39(d) extends the existing bi-directional RNN to two, applies the same Group
Normalization, and extracts the features through Drop before applying
normalization to one path, and two information extracted through Drop after
applying normalization to one path. Use as one information and combine it with
another. Figure 39(e) is based on Figure 39(d) to experiment using NAS Cell
instead of SRU Cell. Figure 39(f) experiments after changing the probability
value from 0.7 to 0.75 in Figure 39(e). Figure 39(g) creates one path using
Bi-directional RNN and other Vanilla RNN based on GRU Cell, applies Instance
normalization, extracts the feature, and applies it to the last part of Figure 39(%).
Figure 39(h) experiment based on Figure 39(g) based on NAS Cell.

Table 23 shows the results of the Top 1 loss error learned through the method
proposed. The performance was improved through experimental verification
through the introduction of new methods one by one. We proposed a new
decoding module based on the proposed encoding and decoding scheme.
Therefore, we experimented based on the encoding and decoding structure to
generate music. The proposed structure consists of one-hot bi-directional Seq2Seq

with adaptive L2 regularization. Table 23 summarizes the tendency to loss. Loss
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results tend to increase and then decrease. It was motivated to improve
performance over the existing method by reflecting the synergy effect by
reflecting the characteristics of heterogeneous models. Therefore, to create
different features, we tried to apply the method of randomly removing one
feature and using the feature that not apply to the other. Through this, we tried
to extract different features. However, if you design as above, it seems that the
model is optimized, but a higher error occurs because it did not go to a better
optimization point than before. Since this is a less-optimized state, we tried to
find the optimal state by using a NAS cell inside to find the optimized state.
Through this, optimized results obtain through NAS Cell. Nevertheless, since it
shows a higher error than the previous one, the optimal extraction was found
through the adaptive coefficients in the probability extraction. To improve than
the previous one, reflecting various features can be reflected in a more optimized
state, so we experimented with a method of combining and applying various
RNNs to reflect various features to find a better optimization model. This seems
to be improved as it reflects the various features to help optimize further.
Experimental Results about Music Composition: numerical analysis, cosine
similarity, Pearson correlation, and total error [57] to compare the similarity
between training music and generated music.

Figure 42 shows the results of the qualitative analysis on the generation score of
the one-hot bi-directional Seq2Seq. Figure 42 is composed of six experimental
results. Figure 42(a) is the result of whole input RNN, Figure 42(b) is the result
of whole input bi-directional RNN, Figure 42(c) is the result of whole input
bi-directional Seq2Seq, Figure 42(d) is the result of one-hot bi-directional RNN,
Figure 42(e) is the result of one-hot bi-directional Seq2Seq, Figure 42(f) is the

result of one-hot bi-directional Seq2Seq with adaptive 12 regularization. Figure
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42(a) whole input RNN shows that it produces a monotonous pattern. Figure
42(b) whole bi-directional RNNs generate more diverse scores by reflecting more
and more order information in the encoding and decoding process than whole
input RNNs. Figure 42(c) whole input bi-directional Seq2Seq creates more
diverse flow configurations and reflects information trends about the previous
state. Figure 42(d) It is a one-hot bi-directional RNN, showing that it generates
clearer content information than whole bi-directional RNN. These results seem to
be because the model learns its input through one-hot encoding. Figure 42(e) It
is a one-hot bi-directional Seq2Seq, which generates by reflecting only clearer
information about the previous state. Also, two-way reflects the two-way flow,
creating more diverse music. Figure 42(f) one-hot bi-directional Seq2Seq with an
adaptive 12 regularization shows not only clear information but also diversity
through forward and reverse information. Also, the results obtained through
adaptive 12 regularization show that some variation occurs for bits. This adjusts
the regulation of existing information as much as possible, but it can confirm
that various music is generated by adaptively applying it to the space that needs
to be adjusted. We can also upload the generated music to the homepage and
listen to the samples at the author’s blog.

In Table 24, In the first step, the proposed scheme is applied to the encoder of
the encoder-decoder structure. After applying the experimental method, the
experiment performs to confirm the use of the existing model for the decoder
part. The Top 1 error is reduced by 0.025 in duration and 0.013 in pitch
compared to the first method. This seems to be due to minimizing bit errors in
embedding and optimizing the information extracted through various information
in decoding. In the second step, we applied the existing model to the encoder of

the encoder-decoder structure, applied the proposed scheme structure to the
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decoder part, and then experimented with applying the experimental method. The
Top 1 error is reduced by 0.034 in duration and 0.014 in pitch compared to the
first method. This can confirm that it is essential to extract information about the
data efficiently. In the third step, the proposed method is applied and verified to
the encoder-decoder structure. The Top 1 error is reduced compared to the first
method, but the error is increased compared to the application of encoding and
decoding, respectively. This seems to increase the top 1 error as the complexity
increases during encoding and decoding. In the fourth step, the experiment was
performed after applying the experimental method to verify using only the
method proposed without using the encoder-decoder structure. We show that the
Top 1 error reduces the fourth step. In the process of judging the information, it
finds that having a model structure that is not too complicated can help to make
an efficient decision.

Conclusion: First, we propose a new multi-way decoder module using the scheme
perspective in determining information. Second, we propose a one-hot
bi-directional Seq2Seq with adaptive 12 regularization. Third, we propose to use
instance and group normalization in an ensemble normalization. Fourth, we
propose a new embedding method that minimizes information during embedding
to use as an input. We confirmed that the performance improves by suggesting a
module with a scheme point of view that minimizes information errors in the
process of embedding information and learns by reflecting mutual features in the
process of determining information. We have room to increase performance by

the combination optimization that each component place efficiently.
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Chapter 4. Application Technique

4.1 Study on the Importance of Adaptive Seed Value Exploration [74]

Introduction: Initial seed values are set during training, relearning, and
deployment of the deep learning model [75-81]. In the existing deep learning
model, and initial random probability value is generated according to the initial
seed value. The generated probabilities have a great influence on the initial
position of the data preprocessing process or the learning process of deep
learning. Therefore, it is necessary to train the deep learning model through seed
values that are not significantly changed from the initial seed values. Because the
seed value is set, it has an important initial influence on the training of the deep
learning model, which affects the overall learning of the model. Therefore,
setting the initial seed value is important for setting the direction of learning
deep learning.

We propose a study to train the deep learning model by setting the seed value
by searching for the adaptive seed value.

Proposal Method : We propose that it is important to search the seed value
(key) adaptively to help the training of a deep learning model. The reason why
setting the key (seed) is important is explained in three ways. In addition, the
limitations of adaptively searching the seed value (key) are also described.

Firstly, we explain why it is important for search the seed value (key)
adaptively to help the training of deep learning model. The seed (key) value is
used to learn, relearn, or deploy. The seed value is the key that is open to the
developer. In the process of distributing a model to a server using a key and

inferring using new data, the key can be inferred from a key that has not been
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trained at all. Through this, the result of the misclassified model can be
obtained. Therefore, the process of deploying and inferring the model on the
server by setting the same key is necessary. Also, it is necessary to encrypt the
key so that only the developer can see it and reuse it.

Secondly, We explain why it is important to search the seed value (key)
adaptively to help the training of a deep learning model. Generating seed values
occurs using a random function. However, what happens by using a random
function is that reverse engineering using a lot of supercomputing can search the
random value that is generated. That is, generating a seed value using a Qubit is
much more secure in terms of security than generating a seed by a real value,
so a study of generating a seed value using a random quantization function is
necessary.

Thirdly, the limitations of this study are described. The first thing that a
developer can see by creating a seed value is to see only the results of the
model. It is difficult to search the rules of the pattern of values generated by
randomness. To search a pattern from such randomness, we need to experiment
with various seed values and random number generator based on a
supercomputer. As a result, it is necessary to search formula to search the seed
(key) value that can be adaptively used by searching the characteristics of the
pattern through statistical inference.

However, in this study, two experiments were used to confirm through a
simple toy sample. First, we compare each CNN model using three seed values.
Second, we compare the performance after training two models according to the
data size of the four inputs. The experiment described the average result value
through five experiments. This experimented with four datasets. The model used

for the experiment was conducted using three CNN models with different CNN
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layers.

Table 25. Evaluation of experimental performance using three seeds
(1, 500, and 999) on a small CNN model

(a) MNIST Fashion MNIST | Cifarl0 |  Cifar100

Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 2.303 | 0.110 | 2.304 | 0.101 | 2.304 | 0.103 | 4.611 0.01
eLU 2.826 | 0.138 | 2.820 | 0.139 | 2.841 | 0.136 | 6.918 | 0.035

Test Acc Acc Acc Acc
RELU 0.125 0.1875 0.1875 0

eLU 0.0625 0.125 0 0

(b) MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc

RELU 2303 | 0.111 | 2304 | 0.102 | 2.304 | 0.102 | 4.610 | 0.009
eLU 2.834 | 0.139 | 2.839 | 0.139 2.84 0.137 | 6.902 | 0.315

Test Acc Acc Acc Acc
RELU 0.125 0.125 0.1875 0

eLU 0.0625 0.0625 0.0625 0

0(c) MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc

RELU 0.142 | 0.973 0.41 0.863 | 2.304 | 0.102 4.61 0.010
eLU 2.843 | 0.139 | 2.834 0.14 2.84 0.137 | 6.923 | 0.035

Test Acc Acc Acc Acc
RELU 0.875 0.875 0.1875 0
eLU 0.0625 0.125 0 0

Table 26. Performance evaluation based on four input data using three CNN mod
els at seed 1 (batch sizes 128, 86, 64, and 32)

Batch . . )

18 MNIST Fashion MNIST Cifarl0 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 1.412 | 0.437 | 0.316 0.95 2.303 | 0.0626 | 4.610 0
eLU 2.82 0.125 2.82 0.125 2.82 | 0.0625 | 6.93 0
Test Acc Acc Acc Acc
RELU 0.125 0.125 0.0625 0

eLU 0.125 0.125 0.0625 0
Batch ) ) )

%6 MNIST Fashion MNIST Cifar10 Cifar100
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Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 2.302 | 0.125 | 0.735 | 0.725 | 2.303 | 0.1875 | 4.610 0
eLU 2.854 | 0.0625 | 2.831 0.125 | 2.837 | 0.125 | 6912 0
Test Acc Acc Acc Acc
RELU 0.125 0.775 0.1875 0

eLU 0.0625 0.125 0.125 0
Batch

64 MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 2.30 0.125 | 0.272 | 0.9625 | 2.303 | 0.1875 | 4.610 0
eLU 2.837 | 0.125 | 2.699 | 0212 | 2.844 | 0.187 | 6914 0
Test Acc Acc Acc Acc
RELU 0.125 0.9625 0.1875 0

eLU 0.125 0.212 0.187 0
Batch

- MNIST Fashion MNIST Cifar10 Cifar100
Train Loss Acc Loss Acc Loss Acc Loss Acc
RELU 1.424 | 0437 | 0322 | 0925 | 2.304 0 4610 0
eLU 2.816 | 0.125 | 2.305 0.55 2.847 | 0.125 | 6.897 | 0.125
Test Acc Acc Acc Acc
RELU 0.437 0.925 0 0

eLU 0.125 0.55 0.125 0.125

Experimental Result: As shown in the results of Table 25, the results show
that the variation of the final training performance occurs somewhat according to
the initial seed setting. Table 26 analyzes the effect of the input data size with
the same seed value. A similar performance was observed compared to the
amount of change in the size of the input data. This confirms that the change
caused by the change in the size of the input data according to the seed value
is robust.

Conclusion: In training the deep learning model, it is important to set the
initial seed value efficiently. In order to confirm the importance, this study
explained for three reasons. Two experiments have shown that setting initial seed

values is an important issue. Through this, it is necessary to study the security
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of initial seed value and key generation using a quantum random number

generator.

4.2 Comparison module about image captioning [82]

Introduction: Image captioning [83], such as sports commentary [85], video
storytelling [87], and video captioning [86] is a method of training the model
using image and caption data describing the images [83-87]. Image captioning is
a relatively difficult problem because it needs multi-modal processing with two
different data types, natural language processing for caption data and computer
vision for efficient information extraction from images [84]. It is important to
analyze the impact of each module in image captioning. However, none of the
existing researches have dealt with the comparative analysis of each module in
image captioning. Moreover, most of the existing researches does not help to
analyze which module of image captioning can improve the whole performance
[85-87]. From observation, we think that it is inevitable to analyze the influence
of each module using quantitative and qualitative analysis. Here, we analyze the
influence of five modules, sequential module, word embedding module, initial
seed module, attention module, and search module, through quantitative and
qualitative analysis on the modules.

The components of each module are as follows. The sequential module consists
of three components, feature extraction to create feature vectors of the input
image, model structure of the sequential module, and internal cell types of the
sequential module. We took Resnet50 [89] and Vggl6 [88] for feature extraction,
Vanilla-RNN [90] and Bi-directional RNN [91] as the model structure, and GRU
[93] and LSTM [92] as internal cell types of the sequential module. To see the

effect of attention [94], we analyzed the effects of using and not using attention
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in the attention module. Embedding module has two components, Keras
embedding and Glove [97]. In the search module, we used a beam and greedy
search as components. In general, weights initialization of RNN is known to
have a significant performance impact. Thus we analyzed the effects of the three
weights initialization methods with normal and uniform distribution in the seed
module.

We performed the comparative analysis by a component of each module using
the Flicker 8K dataset and analyzed which components had an effect on image
captioning with five measures. Comparative analysis by a component of each
module can provide a basis for image captioning research by an understanding of
the effects of each module.

Proposed Methods: Image captioning has been proposed and studied as a
method of generating text by inputting visual information through a combination
of CNN and RNN [83]. In image captioning, it is necessary to accurately
recognize semantic relationships between image objects and the properties of

objects and to generate semantically accurate text.

initial seed module  search module [ Yer Yt Yis1 ]
Sequential
Structure ISOftmaXl ISOftmaXI
Initialization t t attention module $
| Attention |
] \ 1 1 1
P P P
CNN on-» — z’ » Z coommp E
Input image = — 1 t t
(224,2243) sequential module eqtyre Map [Embedding " Embedding |
word embedding module f 1
J s ¥ Kiea

- 134 -



Figure 43. Comparative analysis by a component of each module of image

captioning

Figure 43 shows the location of applying the comparative analysis by a
component of each module. The green, yellow, gray, red, and blue boxes in
Figure 42 indicate the sequential module, word embedding module, attention
module, search module, and initial seed module, respectively. Image captioning
combines CNN for encoding features of image and LSTM for generating caption
of the input image in the sequential module.

We took Vgglé and ResNet50 for feature extraction and Vanilla-RNN and
Bi-directional RNN in the sequential module. Bi-directional RNN is reflecting
two pieces of information by extracting forward and backward information in
receiving the input information. To more reflect input information in sequence
module, LSTM or GRU cells were used instead of basic RNN cells in our
experiments.

The attention mechanism in image captioning has been studied in various
ways. The advantage of attention can be seen as focusing on the input.
However, the performance of image captioning may be lower if attention is
incorrectly focused on image captioning. After attention, a search module is
necessary for the associated related analysis of the generated caption.

Evaluation of generated sentences relationships through parsing from the
generated caption is used in the field of natural language processing. We can use
the beam [95] and a greedy search for the search module. Beam search
improves efficiency by limiting the number of nodes to be remembered based on
the best-first search technique. Greedy search [96] calculates the highest priority

using the tree structure. The advantage of the search algorithm is to find the
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relationship between the consecutive inputs and analyze the relationship between
words.

The word embedding module is used to convert textual information into vector
values so that the textual information can be reflected in the model and
computed by the computer. Glove [97] is the dot product of two embedded
vectors that are the probabilities of the simultaneous appearance of the whole
corpus.

The initial seed module has been studied to compare and analyze the initial
seed value of the sequential model of image captioning [98]. This is because the
learning of the sequential model from a good starting position can predict
convergence reliably.

Based on the above description of components of each module, comparative
analysis by a component of each module was described as follows. We analyze
the sequential module by three methods. In the first method, we tested whether
two models, Vanilla-RNN with ResNet50 and Bi-directional RNN with ResNet50,
can stably train the sequential information in the viewpoint of effects of RNN.
We analyzed the effects of feature extraction of two models, Vanilla-RNN with
ResNet50 and Vanilla-RNN with Vggl6 in the second method. In the third
method, we tested the effects of the long time dependency of LSTM and GRU
cells of the sequence model.

We analyze the embedding module for measuring embedding performance of
textual information. We tested on the embedding through Glove and Keras
embedding. To reliable convergence on the training of the sequential model, we
analyzed the initial seed module of the sequential module. The initial seed is
tested using normal, uniform, he, and lecun initialization methods. We attempt to

analyze the attention module on the sequential module. A comparative analysis
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was conducted with and without attention. To analyze the evaluation of each
relation of the generated sentence, we tested on generated caption using the
search module through the beam search and greedy search.

Experiments were carried out using Keras and python3 in Ubuntu 18.04. The
experimental results of the impact of each module were obtained on epoch 5,

and the evaluation measures are BLEU-1, 2, 3, 4, and accuracy.

Table 27. Comparison of sequential modules a) LSTM and b) GRU, i)

Vanilla-RNN, and

ii) Bi-directional RNN

Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 Acc
a 1 0.5872 0.3626 0.1939 0.1041 0.8109
b i 0.6343 0.4029 0.2277 0.1082 0.8129
a i 0.6461 0.4096 0.2349 0.1176 0.8163
b i 0.2921 0.17 0.0839 0.0369 0.791

Experimental Results: Table 27 shows the experimental results of the sequential
module. Table 27 shows that Vanilla-RNN increased the BLEU mean score of
10.1% when using GRU cells than when using LSTM cells. On the contrary, the
Bi-directional RNN dropped about 58.6% when using the GRU cell than when
using the LSTM cell. In addition, when using the LSTM cell, Bi-directional
RNN showed a better performance of about 12.8% than Vanilla-RNN. In
contrast, Vanilla-RNN showed about 57.5% higher performance when using GRU
cells. From the above results, GRU with fewer memory gates shows better
performance for Vanilla-RNN than LSTM. And for Bi-directional RNNs, LSTMs
with larger memory gates perform better than GRU. We think that GRU is
advantageous when processing in a single direction like Vanilla-RNN. This is

because GRU extracts relatively important information than LSTM. However,
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Figure 44 shows experimental results for the qualitative analysis of the caption

generated. As shown in Figure 44, ResNet50 shows better performance than

Vggl6. This is because ResNet50 obtains features more efficiently using batch
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normalization. In both cases of Vanilla-RNN and Bi-directional RNN, using

attention is almost the same as improving performance and deteriorating
performance. When using bi-direction in Vanilla-RNN, performance is improved
except in one case of c)-ii). Bi-directional RNN with attention has both better
and worse performance compared to Vanilla-RNN. Vanilla-RNN with bi-direction
has better performance than Bi-directional RNN except for one case of b)-ii).
From these results, we can conclude that the combination of Vanilla-RNN with

bi-direction and ResNet50 is the best for the sequential module.

Table 28. Comparative analysis according to embedding module, a) embedding,

b) Glove, i) Vanilla-RNN, and ii) Bi-directional RNN

Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 Acc
a i 0.5872 0.3626 0.1939 0.1041 0.8109
b il 0.2621 0.0991 0.0105 0 0.7447
a i 0.6461 0.4096 0.2349 0.1176 0.8163
b i 0.1263 0.0651 0.0263 0.0081 0.7395

In Table 28, Keras embedding is superior to the pre-trained Glove. Keras
embedding has 70.2% and 83.9% increase in performance over the Glove at
Vanilla-RNN and Bi-directional RNN, respectively. This demonstrates that training
embedding is better than pre-trained embedding for large data sets. It seems that
the information learned in the pre-trained embedding causes confusion, resulting
in a rather low performance. However, when the caption data is similar to the
data actually learned in pre-trained Glove, it can be confirmed that the model

can be trained quickly.
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Figure 45. Comparison of components in seed module by the value of MSE a
nd loss error. a) Random, b) he, ¢) lecun, A) normal, B) Uniform, i) Vggl6,
ii) ResNet50, blue bar) CNN with Vanilla-RNN, orange bar) CNN with Bi-dir
ectional RNN, gray bar) CNN with attention Vanilla-RNN, and yellow bar) C
NN with attention Bi-directional RNN

Figure 45 shows the effects according to the components of initial seed modu
le, which are composed of three methods, Random, he, and lecun with normal a
nd uniform distribution. That is, Random normal, Random uniform, he normal, h
e uniform, lecun normal, and lecun uniform. The analysis was conducted using t
wo models, Vggl6 and ResNet50. The graph of Figure 45 showed the accuracy
of six methods on four models, i.e., CNN with Vanilla-RNN, CNN with Bi-direc
tional RNN, CNN with attention Vanilla-RNN, and CNN with attention Bi-directi
onal RNN. As shown in Figure 45, it is con- firmed that the performance is the
best when the uniform and random are applied at the same time.

When using Vggl6, there is no significant difference in performance dependin
g on the seed method. On the other hand, it can be seen that the performance d
ifference is large according to the seed method in ResNet50. In particular, CNN
with Vanilla-RNN and CNN with attention Bi-directional RNN using a seed meth
od of Random and uniform show excellent performance. Also, it is better to use

Random rather than he or lecun generally.
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Table 29. Comparison of attention modules, a) non-attention and b) attention, a)
non-attention, b) attention, i) Vanilla-RNN, and ii) Bi-directional RNN

Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 Acc
a i 0.5872 0.3626 0.1939 0.1041 0.8109
b i 0.6318 0.4007 0.2172 0.106 0.8143
a i 0.6461 0.4096 0.2349 0.1176 0.8163
b ii 0.6203 0.3911 0.2162 0.1153 0.8145

We show the performance of the attention module in Table 29 by averaging
results of Vggl6é and ResNet50. The attention Vanilla-RNN improved by about
8.6% compared to the non-attention Vanilla-RNN. The Bi-directional RNN fell ab
out 4.6% compared to Vanilla-RNN. As you can see from the experimental resul
ts, the effect of attention is unclear because it improves or deteriorates depending

on the method.

Table 30. Comparison of search methods for correlation analysis of generated cap
tions. a) greedy search, b) beam search, i) Vanilla-RNN, ii) Vanilla-RNN with at
tention, iii) Bi-directional RNN, and iv) Bi-directional RNN with attention.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4
a 1 0.6123 0.3774 0.1884 0.0911
b i 0.6305 0.393 0.2017 0.0935
a 1 0.5872 0.3626 0.1939 0.1041
b il 0.6318 0.4007 0.2172 0.106
a il 0.64 0.3999 0.2151 0.1054
b il 0.6461 0.4096 0.2349 0.1176
a v 0.6016 0.3684 0.1919 0.0977
b v 0.6203 0.3911 0.2162 0.1153

Table 30 shows the comparison of search methods in the search module. On ave
rage, the beam search shows slightly better results than the greedy search, but it
is not large. This seems to be because the beam search reflects the overall trend.
However, when reflecting on some features, the greedy search may be better.

The quantitative comparative analysis of each module was conducted. First, most
LSTM with bi-direction is improved performance in the sequential module. The

Bi-directional RNN with attention is improved when compared to non-attention.
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ResNet50 in feature extraction shows higher performances than Vggl6 in most ¢
ases. Secondly, at the seed module, the Bi-directional RNN with Random unifor
m shows the best performance. Third, Keras embedding in the embedding modul
e greatly improves the performance of Bi-directional RNN when compared to Gl
ove. Fourth, attention with Vanilla-RNN in attention module improved the perfor
mance than that with Bi-directional RNN. Fifth, bi-direction in beam search and
greedy search improved the performance in the search module. Through this, it s
eems important to find an efficient method at each location. And optimal structur
e through the combination of the good component in each module seems to be i
mportant. From our analysis, a new model can be created by adjusting the combi
nation of good components to create the optimal structure. However, the perform
ance analysis of the new model must be conducted through work to obtain gener
alized performance because the combination does not guarantee the overall perfor
mance of the model.

Conclusion: We analyzed the effect of the modules of image captioning. Analysis
of the effects on the sequential model showed that the Bi-directional RNN was s
lightly better than the Vanilla-RNN. This is because the interactive reflection of s
ubtitle information is well trained in context. Impact analysis of the attention sho
ws that the attention Vanilla-RNN is beneficial for performance because it focuse
s on the part of the input word relative to the word to be predicted. It is a sear
ch module for evaluating the correlation between the generated results, the beam
search module performs better than the greedy search module. In analyzing the i
mpact on embedding, Keras embedding showed better performance than pre-traine
d Glove. The comparative analysis of the feature extraction showed that the Res
Net50 is higher than the Vggl6 in terms of image captioning and features. In th
e case of the seed methods of the sequential model, it can be seen that the seed
value of the Random uniform efficiently reflects the sequential information. From

this analysis, we can design more effective models for image captioning.

4.3 Visualization about anomaly data [99]

Introduction: It is essential to detect outlier detection inside the deep learning mo

del. When the deep learning model detects outlier data, much variation occurs in
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the model's parameters because the model's parameters tend not to have or contai
n information about the outlier data. This transformation of the model with nume
rous parameter information results in many misclassifications as the model infers
new data. As a result, it is essential to visualize and classify these outlier data i
n advance so that the model's parameters do not vary much. We studied a new
visualization method to detect outliers efficiently. Contributions are as follows. W
e propose a visualization technique that combined LBP LLE with Smote for outli
er data detection. Second, we propose a confusion visualization method using sim
ilarity of pixel density distribution. Third, we propose a histogram visualization u
sing the frequency of position of pixel distribution in EDA (Exploratory Data An
alysis).

Proposed Method : We show three visualization techniques with existing method
s. First, we propose a combined LBP [101] LLE with SMOTE [102]. Second, w
e propose the pixel similarity visualization technique. Third, we propose a pixel f
requency visualization technique. Figure 46(a) shows the UMAP [100] method, w
hich is the existing visualization method. Figure 46(b) shows the combined LBP
LLE with Smote sampling proposed. The existing UMAP method is a visualizati
on method that is not suitable for outlier detection. The reason for this is that th
e clustering and visualization of outlier data are uniformly represented in one clu
ster. However, in case of Figure 46(b) proposed, the information having similar
data clustering degree is tilted, so the data that having similar characteristics has
the advantage of being expressed outside clustering. Through this, we can see tha
t the proposed method is efficient in determining outlier data. Figure 46(c) shows
the proposed method for visualizing outlier detection data using the density of th
e value distribution. The difference in pixel value density compares outlier data
with that of existing data, allowing for more precise comparisons. Figure 46(d) s
hows that histogram visualization using frequency of position of pixel distribution
in EDA compares the similarity of the location of pixel distribution. Each techni
que has been described in detail. Figure 47 shows four methods for experimental
verification of the proposed method. Figure 47(a) is the existing method. Figure
47(b) is applied to LLE and SMOTE [102]. This is to observe the effect of corr

ection when the amount of information in the feature map is unbalanced through
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linear sampling. Figure 47(c) is the method of applying Sampling and Linear Co
mbination after applying LBP (Local Binary Pattern) [101]. This is to see the eff
ect of linearly correcting the imbalance of the sampling result when converting t
o a binary feature before sampling.

Firstly, combined LBP LLE SMOTE is a method to efficiently show the characte
ristics of the relations between data through information imbalance and binary pr
ocessing.

Secondly, we propose a method of visualizing the characteristics of data using th
e frequency of pixels. The number of pixels of a pixel held by r, g, and b in t
he existing image is available. The frequency of these pixels is more robust to t
he two types mentioned above because the frequency of occurrence of the pixel
is checked regardless of the change in value or the change of position.

Finally, Figure 48 is a visual analysis of the similarity analysis of pixel density.
Figure 48 is to check the existing values of the image and the accuracy of the c
orrect rendering. This method is a visualization method using a confusion matrix
generated by representing each pixel position according to the position value of t
he pixel and expressing the similarity as a confusion matrix. The similarity was
calculated using Pearson's correlation coefficient. This has the advantage of expre
ssing the accuracy according to the position value of the pixel better. The heat
map expressed above is the result of fitting the x and y axes to the size of the
pixel data.

We compare existing MNIST data with images generated in GAN for a new vis
ualization method. The generated image was generated using three GAN models
of Vanilla GAN, DRAGAN [103], and EBGAN [104]. Fig 51 shows the existing
image and the generated image. Figure 51(a) shows some samples of existing M
NIST. Figure 51(b) is the result of Vanilla GAN. Figure 51(c) shows the result
from DRAGAN. Visualization analysis was performed using the generated image
and actual data as above.

We first compared the experiments with combination LBP LLE SMOTE on actua
1 data. Fig 52 shows the results of each experiment described.

To verify the effects of the first method proposed, we use 5 steps. Fig 52(a) sh
ows the actual data, Fig 52(b) shows Smote applied to LLE after the LBP appli

cation. Figure 52(c) shows the case of circular convolution [106] in convolution
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when Smote applied to LBP. Figure 52(d) shows the initial case when Smote is
applied to LBP and Uniform [105] when Figure 52(e) consists of the initial case
where Uniform is applied when Smote not applied to LBP. In Figure 52(b), the
result of Smote was

corrected in sparse areas compared to Figure 52(a) and Figure 52(c) includes the
circular convolution, so that the more accurate corrected result confirmed by redu
cing the error. Figure 52(d) makes uniform zeros by applying uniform to zero. F
igure 52(e) shows the effect of reducing the complexity of the visualization distri
bution representation of the data as Smote is applied compared to Figure 52(d).
Fig 53. compares and analyzes the results for the generated images, which is diff
erent from the method shown. above. When look at the generated visualization i
mage, we can see that the distribution tendency of the generated image overlaid
near the zero value. That is because the generated image is generated based on t
he normal distribution between 0 and 1. In the previous experimental analysis res
ults of Figure 52., similar results are shown as each method is applied. However,
in the case of Figure 53., it is the result of the generated data. The process of
visualizing and determining the fake image shown than the actual data. We can
see that it is a visualization method.

Analysis of existing smote methods about spatial information data distribution. Fi
g 8. analyzes the impact of visual representations on changes in K values. The 1
arger the K value, the more compressed the image to be expressed can be seen.
Such compressed images may not adequately show the representation of the data.
We found that finding an appropriate K value for visualization can represent an
efficient feature. Therefore, we found that finding an appropriate K value is an i
mportant issue.

Conclusion : We proposed three visualization techniques. Combined LBP LLE S
MOTE the advantages of generalized data visualization by correcting unbalanced
data characteristics through sparse data correction. Through this, we can check th
at it is efficient in fake image discrimination. Also, the Visualization of pixel de
nsity similarity has an advantage of efficiently detecting when pixel position infor
mation is wrongly generated through similarity analysis of pixel positions and sh
owing correlation information of pixel information. Visualization of pixel density

frequency shows the advantage of extracting fake pixels through the frequency of
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pixel values generated through density distribution analysis. The proposed metho
d can be used as a method for the detection of real-world images. Through this,
we can confirm that the visualization method that analyzes outlier data should be

studied to discriminate data similar to actual data.
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Figure 46. Existing visualization technique and proposed visualization
techniques. a) UMAP [100], b) Combination LBP LLE SMOTE, c) Pixel
similarity visualization technique using pixel density distribution. Pixel frequency

visualization technique using position of pixel density distribution in EDA.

- 146 -



Novel Sumpling and Linear

( ‘ombination '
LLE and SM()TE

Previous Data Distribution Next Data Distribution Previous Data Distribution Next Data Distribution
a) b)

Novel Sampling and Linear

Combination

Adopted LBP

Previous Data Distribution Next Data Distribution

c)

Figure 47 Experimental verification of combination LBP LLE SMOTE. a)
Existing method, b) Existing method with SMOTE sampling, c¢) Apply LBP
method before applying the existing method with SMOTE sampling, d) Apply
LBP method after applying the existing method with SMOTE sampling
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Figure 49 Visualize pixel density similarity of existing and generated data, a)
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Figure 50 Comparative analysis of existing and generated data. a) Ground truth

MNIST, b) MNIST generated from Vanilla GAN, c¢) MNIST generated from

DRAGAN.
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Figure 51 Experimental results to verify the combination LBP LLE SMOTE from
a) Ground truth data. b) Ground truth LBP smote, ¢) Ground truth CLBP mote,
d) Ground truth UCLBP smote, ¢) Ground truth UCLBP no smote.
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Figure 52 Comparison of changes according to the techniques applied in the
first proposed method a) Generated LBP smote, b) Generated CLBP mote, c)
Generated UCLBP smote, d) Generated UCLBP no smote
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Figure 53 Comparative experiment according to K value in Smote technique. a)

K=4, b) K=16, ¢) K=41.

4.4 Stable Acquisition of Fine-Grained Segments using Batch Normalization

and Focal Loss with L1 regularization in U-Net Structure [107]

Introduction : Most images consist of various sizes, shapes, and textures. Therefo
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re, it is necessary for specific image processing to operate appropriately under im
ages with various characteristics. Since the textures of clothing images are very f
ine-grained and diverse, acquisition of fine-grained segments is particularly import
ant. Finally, obtaining accurate semantic segments of images is an important goal
to achieve in semantic segmentation researches [108].

However, there are not many studies that explore the acquisition of fine-grained
segments of semantic segmentation in images. Most existing researches on image
semantic segmentation has adopted fully convolution network (FCN) [109]. Howe
ver, their segmentation results were not good at finding fine-grained segments, se
mantic segments because the convolution of FCN didn’t maintain spatial informat
ion. Even though there were related works on fully convolution network-condition
al random field (FCN-CRF) [109], FCN using atrous convolution, and FCN using
the skip diagram in the FCN up sampling process to improve the performances o
f FCN, most of FCN showed poor results. In the methods, obtaining various size
s of segments are not reflected in model training. Therefore, obtaining various si
zes of fine-grained segments is a crucial factor in processing segmentation for th
e acquisition of fine-grained segments in images.

To overcome the problem, we adopt two additional components on a U-Net bas
ed structure for acquisition of fine- grained segments of semantic segmentation. T
he first additional component is the use of normalization at all layers in the train
ing process. Normalization alleviates the variation of multi-scale information, espe
cially in the multi-scale processing of U-Net. We took the well-known batch nor
malization (BN) in all U-Net layers. As second additional component, we take th
e model prediction correction using focal loss with L1 regularization in training.
Existing loss of cross-entropy does not reflect the fine-grained segments because
it does not balance the model prediction space. From observation, we consider th
¢ model prediction correction for fine-grained segments and propose a novel loss
composed of focal loss with L1 regularization. As a result, we introduce a novel
structure based on U-Net that trained with BN and a devised novel loss.

To measure performances of our method and previous meth- ods, we experimente
d with three models such as U-Net, Attention U-Net [1100], and U-Net BN incl
uding the existing FCN models on the ATR dataset [111]. U-Net BN refers to a
model that applies BN to all layers of the existing U-Net. We also tested our m

- 151 -



ethod with various combinations of loss and provided their results with some me
asures such as intersection over union (IOU), precision, and recall. From extensiv
e experiments, we find that our method with two additional components have ge
nerated correct fine-grained segments, especially in small and complex textures su
ch as hands, feet, and glasses. Also, the overall performances of our method wer
e considerably better than those of the existing methods based on FCN in terms

of accuracy using IOU, precision, and recall measures.

Proposed Method : We propose a U-Net based semantic segmentation method for
acquisition of multi-scale fine-grained segments in semantic segmentation with tw
o additional components. U-Net is a well-known model that can find fine-grained
information through efficient reflection of multi-scale information. However, sema
ntic segmentation using only U-Net does not find fine-grained segments, especiall
y for the images composed of various shapes and textures. To overcome the limi
tation, we adopt two additional components, BN to efficiently learn stabilized mu
Iti-scale fine-grained segments and model prediction correction using focal loss wi
th L1 regularization. We found from our extensive experiments that BN was a cr
ucial process in finding multi-scale fine-grained segments because the normalizati
on of data was more important to precisely calculate fine-grained segments for m
ulti-scale data in all layers. Also, we use a combining method of focal loss and
L1 regularization to balance the model prediction correction that enables the seg
mentation to stabilize acquired fine-grained segments in multi-scale data. We conf

irmed the results through extensive experimentation in Section 4
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Figure 54 Proposed U-Net structure.

Figure 54 shows the structure of our U-Net based semantic segmentation. The ov
erall structure is nearly the same as the original U-Net except for the BN of all
layers, depicted as yel- low arrows and model prediction correction using focal 1
oss with L1 regularization. s2 , where s = 16, 64, 128, and 256 represents the
width x height of filter maps. The number written above the blue block is the n
umber of filter maps for the block. The gray arrow represents a skip diagram, in
which the information of an existing block translated and transformed into a whit
e block in the blue frame. The green, orange, and yellow arrows represent the u
p-sampling convolution, the 3x3 max pooling, and the 3x3 convolution, respective
ly. The proposed focal loss with L1 regularization is applied to the outputs of U
-Net, and the loss is used to train our sturcture. As mentioned before, the BN in
all layers and the focal loss with L1 regularization enable our structure to acquir
e multi-scale fine-grained segments. Acquisition of fine-grained segments through
BN on all layers can be calculated more precisely because the same size can be

calculated in all spaces. To show the performances of our method with combinati
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on of regularization coefficient parame- ters, we extensively experimented and co

mpared the results in Section 4

Experiment Environment : The experimental environments are as follows. We co
nducted our experiments with a learning rate of 0.001 and a batch size of 4. We
chose an ATR dataset of clothing images because they are composed of various
sizes, shapes, and textures and are therefore adequate to get fine-grained segment
s. Background images excluded during the evaluation. In order to evaluate the pe
rformances with various measures, we used recall, precision, F1 score, and 10U.

In all experiments, we used zero-padding to make all the im- ages the same size
as the long side of the image. We compared our method with the existing metho
d of FCN and experimented on three U-Net models: U-Net without BN and foca
1 loss with L1 regularization, U-Net BN and focal loss with L1 regulariza- tion,
and attention U-Net using focal loss with L1 regularization. Attention U-Net has
an U-Net structure with an attention gate. To verify focal loss with L1 regulariza
tion for optimization using regularization, we compared the performance of existi
ng cross-entropy and proposed method, that is, focal loss with L1 regularization.
In experiments, we tested proposed focal loss with L1 regularization, focal loss
with L2 regularization, and focal loss with L1 and L2 to compare the regularizat

ion. L1 and L2 regularization coefficient are added at a ratio of 0.5.
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Figure 55. Result of focal loss regularization model. a) FCN, b) Attention U-Net,
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c) U-Net BN, I) Cross-entropy with L1 0.0 and L2 0.0 regularization coefficient,
II) Cross-entropy with L1 0.0 and L2 0.5 regularization coefficient, III) Cross-ent
ropy with L1 0.5 and L2 0.0 regularization coefficient, IV) Cross-entropy with L
1 0.5 and L2 0.5 regularization coefficient, V) Focal loss with L1 0.0 and L2 0.
0 regularization coefficient, VI) Focal loss with L1 0.0 and L2 0.5 regularization
coefficient, VII) Focal loss with L1 0.5 and L2 0.0 regularization coefficient, VI
I) Focal loss with L1 0.5 and L2 0.5 regularization coefficient

Experimental Results and Discussion: We tested the performances of acquisition o
f a fine-grained segment of semantic segmentation using previous cross-entropy I
oss and proposed focal loss with L1 regularization on three semantic segmentatio
n models such as FCN, Attention U-Net, and U-Net BN on the clothing images.
Figure 54 shows the experimental results of the three models on four combinatio
ns of regularization coefficient parameters. As mentioned before, we choose the t
he regularization coefficient parameters combining 0 and 0, 0 and 0.5, 0.5 and 0,
0.5 and 0.5. In Figure 54, the blue and red circles are incorrect predictions, and
red circles are the best among incorrect predictions. As you can see, the most re
sults using focal loss with L1 regularization are better than those using the cross
-entropy loss, especially on fine-grained segments shapes such as hands, foods, s
hoes, and neck.

The best result of all experiments is shown in panel (VII) of Figure 55, which u
ses focal loss with L1 regularization. That is, the L2 regularization is not helpful
for the acquisition of fine-grained segments of semantic segmentation. L1 regulari
zation was more robust than L2 regularization concerning the outlier. Many fine-
grained segments in the images with various sizes, shapes, and textures are outlie
rs. Therefore, L1 regularization is better than L2 regularization for the acquisition

of fine-grained segments of semantic segmentation.
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Figure 56. The proposed method is focal loss L1 0.5 regularization coefficient. T

he proposed method is shown using four cases of figure 56.a,

figure 56.b, figure

56.c, and figure 56.d. I) FCN, II) U-Net, III) Attention U-Net, IV) U-Net BN on

focal loss with L1 0.5 regularization coefficient for each case.
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0.0 and L2 0.5 regularization coefficient, III) Cross-entropy with L1 0.5 and L2
0.0 regularization coefficient, IV) Cross-entropy with L1 0.5 and L2 0.5 regulariz
ation coefficient, V) Focal loss with L1 0.0 and L2 0.0 regularization coefficient,
VI) Focal loss with L1 0.0 and L2 0.5 regularization coefficient, VII) Focal loss
with L1 0.5 and L2 0.0 regularization coefficient, VII) Focal loss with L1 0.5 a

nd L2 0.5 regularization coefficient

The attention U-Net and U-Net BN are better than the FCN. Because the U-Net
stably acquires multi-scale fine-grained segments. Of the three methods, the U-Ne
t BN shows the best results of all experiments because the normalization of all 1
ayers helps find fine-grained segments. From these results, we can ascertain that
the focal loss with L1 regularization and the normalization is useful for the acqu
isition of fine-grained segmentation. In our experiments, we tested the intrinsic U
-Net structure with cross-entropy loss, but the training loss does not decrease, as
shown in the result Figures 56 and 57. As a result, the U-Net BN using focal 1

oss with L1 regularization shows excellent results.

F1 score on cross entropy with regularization F1 score on cross entropy with regularization
A
) '] —
i ¥ * s —
— =
4+ ; i
¥ ”/: . A
F1 . ~ 1 & P
score * ;3 score | i
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Figure 58. Comparison of F1 score according to addition of attention gate on se
gmentation model within training time, a) In the attention gate included, b) In th

e attention gate non included
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To ensure whether the U-Net BN shows the best result for various clothes image
s, we tested four methods on four clothing images, as shown in Figure 58. In th
ese experiments, we added the results of U-Net using focal loss with L1 0.5 reg
ularization. Figure 58 shows the experimental results of four methods on four im
ages. As shown in Figure 58, U-Net BN using focal loss with L1 0.5 and L2 0.
0 regularization shows the best results for the leg, skirt, and neck. The results of
Figure 58(a) are the worst because the colors in the background are similar to th
e colors wrong by the women. Even the U-Net BN using focal loss with L1 0.5
and L2 0.0 generates the best quality because the localization effect of normaliza
tion makes it possible for the method to better distinguish the colors in the back
ground from those of the women. In Figure 58(c), the U-Net BN using focal los
s with L1 0.5 and L2 0.0 regularization show the best results, especially on the
small parts of the shoes, when compared to the other methods. The U-Net BN u
sing focal loss with L1 0.5 and L2 0.0 regularization in Figure 58(d) generates
more precise fine-grained segments in the area of the sunglasses than the other
methods and even better than the ground-truth mask.

To more specifically analyze the effects of BN with two loss and two loss with
some regularization coefficients on the ATR dataset, we showed the loss for the
four models in Figure 56. Orange line indicates loss of U-Net structure. As you
can see, the loss of the U-Net structure showed inferior results and nearly did n
ot decrease. The intrinsic U-Net with cross- entropy and without normalization d
oes not work well for fine- grained segments of semantic segmentation. The vari
ation of loss of intrinsic U-Net is not very large in the cases of cross- entropy I
oss but is quite large in the focal loss because the model prediction correction o
f focal loss is sometimes successful in training the intrinsic U-Net.

FCN showed poor performances in the case of L1 0.5 regularization. In the proc
ess of obtaining the segments in the FCN, the calculated difference between the
predicted value and the correct value is not reflected in the process of reflecting
the difference value. The variation of loss of U-Net BN becomes too large when
L1 0.5 and L2 regularization. The L1 regularization reflects the differences that h
ave diverse values according to experiments. Therefore, it is crucial to reflect the
difference value efficiently. Overall, the methods with focal loss showed better re

sults than those with cross-entropy loss. As shown in panel (VII) of Figure 56, t
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he methods using both L1 and L2 regularization showed the worst performances.
Because too much regularization provides a reverse effect.

We analyzed the influence of the attention gate in terms of an F1 score. Figure
57 showed the results of experiments: Figure 57(a) is with attention gate and Fig
ure 57(b) is without attention gate. The result of U-Net without the attention gat
e was higher than U-Net with the attention gate as shown in Figure 57. Because
the attention gate in the initial steps of training tries to find the strongest charact

eristics in the images, but it find erroneous characteristics.

Table 31. Comparison of both focal loss about U-Net models, a) U-Net, b) Atten
tion U-Net, ¢) U-Net BN, (i) L1 0.0 and L2 0.0 regularization coefficient, (ii) L
1 0.0 and L2 0.5 regularization coefficient, (iii) L1 0.5 and L2 0.0 regularization

coefficient, (iv) L1 0.5 and L2 0.5 regularization coefficient

10U Precision Recall

i 0.496 + 0.0 0.001 £ 0.0 0.0 £ 0.0

ii 0.496 £+ 0.0 0.001 + 0.001 0.0 £ 0.0
2) 1 0.632 + 0.011 0.344 £ 0.029 0.333 + 0.004

iv 0.496 + 0.0 0.003 + 0.002 0.0 £ 0.0

1 0.715 £ 0.008 0.536 + 0.002 0.420 + 0.002
b) ii 0.724 + 0.005 0.555 £+ 0.005 0.444 + 0.013

1ii 0.723 + 0.002 0.554 £ 0.006 0.441 + 0.004

iv 0.723 + 0.005 0.548 + 0.012 0.437 + 0.013

1 0.731 + 0.002 0.565 £ 0.007 0.464 + 0.005
0 i 0.728 + 0.004 0.564 £+ 0.004 0.458 + 0.004

iii 0.729 + 0.003 0.567 + 0.003 0.459 + 0.007

v 0.730 + 0.001 0.564 £+ 0.006 0.461 £+ 0.001

Table 31 shows the impact of four regularization methods along with IOU, preci
sion, and recall measurements for three models: U-Net, attention U-Net, and U-N
et BN. The values shown in Table 31 are the mean and standard deviation of th
e results obtained three times on the same model. As shown in Table 31, the ov
erall performance of U-Net is worse than those of the other models. However, th
e U-Net with L1 0.5 and L2 0.0 regularization Table 31, which showed about 2
3% improvement over U-Net with other regularization methods. We think that th

e regularization with L1 0.5 and L2 0.0 coefficient is effective in the attention o
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f U-Net. From the results, the attention is not helpful, and the performance of U
-Net BN is improved by about 22% over those of U-Net. Therefore we can be
deduced that attention gate in the process of learning induces learning in the wro
ng direction. From these results, it is confirmed that a focal loss with L1 0.5 an
d L2 0.0 regularization proves useful for the acquisition of fine-grained segments

in semantic segmentation.

S
- n

Precision (focal)

Figure 59. Comparison of regularization effect using non regularization and regul
arization with L1 and L2 regularization. a) Cross-entropy loss, b) Focal loss, 1)
L1 0.0 and L2 0.0 regularization coefficient, ii)) L1 0.5 and L2 0.5 regularization

coefficient

Figure 59 shows the regularization effects of cross-entropy and focal loss using n
on-regularization and regularization with L1 and L2. This confirms that regulariza
tion does not significantly affect on cross-entropy results of U-Net. However, the
performance of the acquisition of fine-grained segments of semantic segmentation
is improved when the regularization is combined with focal loss. The focal loss
has a term that reflects the reverse of the probability from the model prediction.
That means that model correction prediction is more affected by the focal loss, u

nlike the existing cross-entropy.
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Conclusion: We proposed a method based on the U-Net structure with two additi
onal components to the acquisition of fine-grained segments. For the acquisition
of fine-grained segments, we added normalization to all layers of the U-Net struc
ture and proposed a combined component composed of focal loss with L1 regula
rization. We experimented with proposed methods on an ATR dataset and analyz
ed their results. Experimental results showed that the proposed methods were bett
er than the previous FCN and intrinsic U-Net. These results allowed us to know
that the U-Net was a structure for semantic segmentation, adopted normalization
about all layers on the U-Net, was beneficial for semantic segmentation, and the
model prediction correction using focal loss with L1 regularization was good at a
cquiring the fine-grained segments in semantic segmentation. In the future, we wi
Il proceed with the semantic segmentation structure using the generative model to
obtain a more robust acquisition of fine-grained segment of semantic segmentatio

n.
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Chapter 5. Conclusion

We studied new technology and the application of deep learning to improve t
he performance of deep learning. There are 7 types of research—first, the Bi-acti
vation function: an enhanced version of an Activation function in Convolution N
eural Networks. Second, Scale calibration cascade the smooth loss of generative a
dversarial networks with online continual task learning. Third, Nonlinear Exponen
tial Regularization: An Improved Version of Regularization for Deep Learning M
odel. Fourth, Novel Auxiliary Components to Help Optimize Deep Learning Mod
el. Fifth, Ensemble Normalization for Stable Training. Sixth, Similarity Analysis
of Actual Fake Fingerprints and Generated Fake Fingerprint by DCGAN.

Seventh, it is a Multi-Way Decoder Scheme with Error Reduction Embedding on
one-hot bi-directional Seq2Seq with Adaptive Regularization for Music Compositi
on.

The contents of research to apply deep learning in real life are composed of fo
ur types—first, Study on the importance of adaptive seed value exploration. Seco
nd, a comparison module about image captioning, Third, visualization about anom
aly data. Fourth, stable acquisition of fine-grained segments using batch normaliza
tion and focal loss with 11 regularization in the U-Net structure.

Through the above, new technologies and application fields studied in deep learni
ng were studied.

In the future, we would like to study the following as a future study of deep
learning. First, deep learning research using system biology, second deep learning
research using parameter control, third deep learning research using complexity th
eory, fourth, we would like to proceed with a study on the understanding of dee

p learning.
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Appendices

Part I. Supplementary Materials of Scale Calibration Cascade Smooth
Loss of Generative Adversarial Networks with Online Continual Task
Learning

Visualization of the proposed method (Section 1)

Analysis result using the flow chart of the proposed method (Section 2)
Visualization of the proposed and existing method (Section 3)
Experimental setting about proposal method (Section 4)

Proposal analysis after applying weight decay to optimization method
(Section 5)

Single loss analysis (Section 6)

7 latent size analysis about correction loss (Section 7)

Optimization analysis about correction loss (Section 8)

Optimization analysis of our cascade component (Section 9)

Optimization analysis about our scale calibration component (Section 10)
Analysis of single on bias component (Section 11)

Analysis experiment initial distribution about our proposal (Section 12)
Stable acquisition information analysis at smooth correction (Section 13)
Stable acquisition information analysis using parameter analysis at
smooth correction (Section 14)

Problem analysis at smooth correction (Section 15)

Parameter analysis using L1 and L2 regularization at smooth correction
(Section 16)

Regularization characteristic analysis using L1 and L2 regularization at
smooth correction (Section 17)

Nonlinear regularization characteristic analysis using parameter changing
at smooth correction (Section 18)

Analysis of qualitative proposal method (Section 19)

1) Visualization of the proposed method

- 175 -



on ropy . . Caredtion 20, FOSSenopy 134, 10OmoOM 20, UOTecuOn

o
y axis

10
s

0 0

05 o 05 v 05 0 05 1 o 95 0 05 1 'hc 50 100 [ 50 100 0 50 100

i x axis x axis x axis x axis x axis
g0, Crossentropy comection , 5.+ 10" Smooth corraction L, Comaction comction i(omnlrmy Correction , Smedth Corection Gormection Comection
50 2
P 019
>18
10 1.7

— 18 10

s Xws x axis x axis x axis

Figure 60 Visualization about experiment loss

The visualization result of the proposed loss shown in Figure 60.
Figure 60(a) is the result of using the same value. Figure 60(i) is the
result of using the x and y axes. Figure 60(ii) is the result of using the
X, y, and z axes. To analyze the influence of the formula of the
proposed method, we tried to explain the loss through a brief model
with a distribution from —1 to 1. Also, we analyze the results of the
analysis using the same size value and the equal size value. In Figure
60, the proposed loss is the Smooth calibration loss, which has the
following effects when learning values with unequal size. It is composed
of thicker both and values than the boundary due to the other loss, and
a smaller value representing the boundary value.

2) Analysis results using a flow chart of the proposed method
Deep learning model last layer

sum(ytrue ¥ ypred) neg = max((l - ytrue) ¥ ypred)

1 m
EZ max(0, max(negative value — positive value + 1))
m=1

1 m
_EZ 0 * (1 - (smooth loss)") * yye * log(smooth loss))
m=1

Error value

Figure 61 Flow chart about our proposal loss
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Figure 61 is the method proposed. The proposed method is first divided
into positive and negative to reflect two pieces of information. The
second step i1s to smoothly reflect negative and positive information
simultaneously. And thirdly, apply the cascade component and scale
calibration component. Thirdly, the error value is output after applying.

3) Experimental system setting about proposal method

Step 1 Step 2 Step 3 Step 4 Step 6
Init distribution Generative model Loss Regularization Measure
Random distribution © * GAN Cross entropy O L1 regularization —© PSNR
LSGAN Smooth L2 regularization MSE
Correction L1 and L2 regularization
Training Cascade
Clase: Scale correction
MNIST Step 5
Fashion MNIST o
Cifar 10 Optimizer
Cifar 100 Adam l=[lmWeigh decay
Adagrad “ Non weight decay
Adadelta

Figure 62 Visualization of experiment system configure.

Figure 62 is a visualization of the experiment system configures. The
red letter in Figure 62 is the contribution. And the orange circle means
the intersection point. And the orange plus sign implies a combination of
three optimizer learning and Weight decay. The Z latent space is the
initial distribution of the generation model in Step 1. Step 2 is composed
of the generation model used in the experiment model. Step 3 describes
the new loss of the cascade scale calibration. Step 4 and 5 are three
optimizer learning and regularization for verification of proposal losses —
finally, Step 6 measure by the performance of image generation.

4) Proposal analysis after applying weight decay to the optimization
method
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Figure 63 Compare of loss on weight decay in optimization process In
Valina—GAN using MNIST dataset on Learning rate 0.0007, 16 batch
size, L1 0.25, L2 0.0, and 500 Z latent space size, a) Adam b) Adagrad
1) Nondecay ii) Weight decay

First, we tried to confirm the effect of Weight decay. And secondly, we
verify to check the impact on Batch size. Finally, we analyze the
influence of the Z latent space size. In Figure 63, We evaluated the
performance evaluation and loss results with and without Weight decay
through optimization methods Adagrad Adam, Adam delta, and Adam. As
shown in Figure 63.1, if the Weight decay is included, it can be seen
that the interval between the generator loss and the discriminator loss
widens as the epoch repeats. This shows that the Weight decay is
learned by learning the continuous task information in the correct
convergence direction while Learning with the interval between generator
loss and discriminator loss. However, when the Weight decay is
performed, the Learning is changed from the unstable state to the stable
state. However, the result of measuring the actual generation
performance is as follows.

Table 32 shows the top 1 and top 5 average PSNR when Weight decay
1s not applied. Table 32 shows the top 1 and top 5 average generation
image performance when Weight decay is applied. We show that the
performance of image generation is improved when Weight decay is not
applied by when the performance comparison is performed with or
without weight decay. This shows that Learning is performed stably
when the Weight decay 1is applied. However, when the actual
performance improvement is discriminated, it is seen that the
performance 1mage generation of improvement is reduced when the
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generated image is discriminated more accurately by Learning stably.
The smooth loss and the focal loss tend to be better than the existing
loss when the measured performance is measured by the single loss
state.
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Figure 64 Compare of Batch size on smooth loss in optimization process
using MNIST dataset on Learning rate 0.0007, L1 0.0, L2 0.75, and
1000 Z latent space size in Adam decay. a) 16 batch size, b) 32 batch
size, ¢) 64 batch size, i) Non Weight decay, ii) Weight decay

The influence of Batch size on the single smooth loss was analyzed
using Weight decay. As shown in Figure 64(a), we can see that the
variation of the loss reduces by applying the weight decay, and the
discriminator loss and the generator loss maximize.

Table 32 Performance evaluation of Z latent space size with L1 0.0, L2
0.0, Adam optimizer, no weight decay using GAN

Accurac
y metho .
Fashion MNIST /MNIST
ds data
type
Origin 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
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Top 1 s

po | 49-168/ | 48.521 /| 48.287/ | 48.122 / | 47.966 /
;Ee 47.255 | 47.144 | 47.060 |46.997 |46.947
Top 5 a
47.213/|47.520/ | 47.697/ | 47.641/| 47.666/
VETAEC | 16370 |46.599 | 46.774 | 46.608 | 46.818
PSNR
Focal 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
P 19.168/|48.521/ | 48.287/|48.122/ | 47.966/
core PS
100 Z 1) 47255 | 47.144 | 47.060 |46.997 | 46.947
atent siz
Top 5 a
. 47.213/|47.520/ | 47.697/ | 47.641/| 47.666/
Verasel 6370 |46.599 | 46.774 | 46.808 | 46.818
PSNR
Smooth | 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
po | 49-245/ | 48.842/ | 48.386/ | 48.346/ | 47.753/
;Ee 29.516 |50.370 |50.921 |49.547 |49.864
Top 5 a
47.185/|47.508/|47.678/|47.619/|47.648/
r
VETA8C ! 6354 |46.591 | 46.742 | 46.789 | 46.783
PSNR
Origin 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
oo | 48.888/ | 48.768/ | 48.286/ | 48.066/ | 47.967/
;ge 47.230 |47.147 | 47.062 |46.987 |46.941
500 Z 1| Top 5 a
_ P 16.918/|47.570/ | 47.625/ | 47.689/ | 47.663/
atent siz |verage
16.193 | 46.631 | 46.738 |46.828 | 46.828
e PSNR
Focal 4 batch | 8 batch| 16 batc |32 batc| 64 batc
loss size size h size h size h size
Top 1 s
po | 48.888/ | 48.768/ | 48.286/ | 48.066/ | 47.967/
;Ee 47.230 |47.147 | 47.062 |46.987 |46.941
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Top 5 a

49.918/ | 47.570/ | 47.625/ | 47.689/ | 47.663/
r
VETASCl 16103 | 46.631 | 46.738 | 46.828 | 46.828
PSNR
Smooth | 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
b | 40.365/ | 49.002/ | 48510/ | 47.681/ | 47.827/
;O; 48.597 | 51.323 | 50.186 | 46.825 | 47.823
Top 5 a
46.912/ | 47.566/ | 47.618/ | 47.681/ | 47.656/
VETASE 16100 | 46.623 | 46.719 | 46.825 | 46.806
PSNR
Origin 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
b | 48888/ | 48.495/ | 48.171/ | 48.066/ | 47.968/
r
;ﬁ: 47.230 | 47.108 | 47.055 | 47.023 | 46.944
Top 5 a
46.918/ | 47.582/ | 47.539/ | 47.724/ | 47.672/
VETASE ] 16913 | 46.664 | 46.733 | 46.832 | 46.823
PSNR
Focal 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
1000 Z b | 48.085/ | 48.495/ | 48.171/ | 48.066/ | 47.968/
latent si Ic\fée 47.318 | 47.108 | 47.055 | 47.023 | 46.944
z€ Top 5 a
47.090/ | 47.582/ | 47.539/ | 47.724/ | 47.672/
VETABC | 16985 | 46.664 | 46.733 | 26.832 | 46.823
PSNR
Smooth | 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
oo | 40.344/ | 48678/ | 48.571/ | 48.064/ | 47.053/
r
IC\T()RG 50.863 | 49.819 | 51.271 | 50.411 | 49.551
Top 5 a
47.076/ | 47.577/ | 47.525/ | 47.719/ | 47.622/
r
VETASE ! 16961 | 46.663 | 46.724 | 46.828 | 46.810
PSNR
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Table 33 Performance evaluation of Z latent size with L1 0.0, L2 0.0
regularization, Adam optimizer, weight decay using GAN

Accurac
y metho .
Fashion MNIST /MNIST
ds data
type
Origin 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
pS 49.168/ | 48.521/ | 48.287/ | 48.131/ | 48.122/
r
f\;e 47.255 | 46.599 | 47.060 | 46.997 | 46.947
Top 5 a
48.744/ | 48.409/ | 48.178/ | 48.075/ | 48.064/
verage
g 46.370 46.599 46.774 46.808 46.818
PSNR
Focal 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
P 49.168/ | 48.521/ | 48.287/ | 48.122/ | 47.966/
core PS
100 Z 47.255 46.599 47.060 46.997 46.947
. | NR
latent si
Top 5 a
ze 48.775/ | 48.409/ | 48.178/ | 48.064/ | 47.950/
erage
v & 46.370 46.599 46.774 46.808 46.818
PSNR
Smooth | 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
pS 49.162/ | 48.522/ | 48.287/ | 48.131/ | 47.974./
core
NR 47.286 46599 47.094 47010 46..984
Top 5 a
48.782/ | 48.415/ | 48.194/ | 48.075/ | 47.952/
verage
& 46.370 47177 46.772 46.808 46.817
PSNR
Origin 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
500 Z loss size size h size h size h size
i1 Top 1 s
latent si | 10P 49.168/ | 48.521/ | 48.287/ | 48.131/ | 48.122/
ze core PS
\R 47.230 47.147 47.062 46.987 46.941
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Top 5 a

48.744/ | 47.201/ | 48.178/ | 48.075/ | 48.064/
r
VETASCl 16103 | 46.631 | 46.738 | 46.828 | 46.828
PSNR
Focal 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
oo | 40168/ | 48.521/ | 48.287/ | 48.122/ | 47.956/
;O; 47.230 | 47.147 | 47.062 | 46.987 | 46.941
Top 5 a
48.775/ | 48.409/ | 48.178/ | 48.064/ | 47.950/
VETASE 16103 | 46.631 | 46.737 | 46.828 | 46.828
PSNR
Smooth | 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
loss size size h size h size h size
Top 1 s
bq | 40162/ | 48.522/ | 48.287/ | 48.131/ | 47.974/
r
;ﬁ: 47.252 | 47177 | 47.078 | 47.024 | 46.986
Top 5 a
48.782/ | 48.415/ | 48.194/ | 48.075/ | 47.952/
VETASE ] 16103 | 46.631 | 46.739 | 46.828 | 46.828
PSNR
Origin 1| 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
0SS size size h size h size h size
Top 1 s
P b | 49168/ | 48.521/ | 48.287/ | 48131/ | 48122/
Ic\fée 47.138 | 47.108 | 47.055 | 47.023 | 46.944
Top 5 a
48.744/ | 47.201/ | 48.178/ | 48.075/ | 48.054/
verage
1000 Z 46.285 | 46.664 | 46.733 | 46.832 | 46.823
latent si PSNR
Focal 4 batch | 8 batch | 16 batc | 32 batc | 64 batc
ze . . . . .
loss size size h size h size h size
Top 1 s
oo | 40.168/ | 48521/ | 48.287/ | 48.122/ | 47.966/
r
IC\TORG 47.318 | 47.108 | 47.055 | 47.023 | 46.944
Top 5 a
48.775/ | 48.409/ | 48.178/ | 48.064/ | 47.950/
r
VETABC ! 16985 | 46.664 | 46.733 | 46.832 | 46.823
PSNR
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Smooth | 4 batch | 8 batch | 16 batc | 32 batc | 64 batc

loss size size h size h size h size
Top 1 s
P b | 49162/ | 48.522/ | 48.287/ | 48131/ | 47.974/
Ic\fée 47.320 | 47.132 | 47.078 | 47.052 | 46.969
Top 5 a
48.782/ | 48.415/ | 48.194/ | 48.075/ | 47.952/
VETA8Cel 16983 | 46.665 | 46.731 | 46.832 | 46.822
PSNR

In Figure 64, We evaluated the performance evaluation and loss results
with and without Weight decay through optimization methods Adagrad
Adam, Adam delta, and Adam. The result of measuring the actual
generation performance is as follows. Table 32 shows the top 1 and top
5 average PSNR when Weight decay is not applied. Table 33 shows the
top 1 and high five average generation image performance when Weight
decay used. We show that the performance of image generation is
improved when Weight decay is not used by when the performance
comparison performed with or without Weight decay that indicates that
learning is performed stably when the Weight decay is applied. However,
when the actual performance improvement discriminated against, it is
seen that the performance image generation of development reduces
when the generated image is discriminated more accurately by Learning
stably. The smooth loss and the focal loss tend to be better than the
existing loss when the single loss state measures the measured
performance.

5) Single loss analysis
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Figure 65 Comparison of 4 batch size, L1 0.0, L2 0.5, 100 Z Latent
size, and in Valina—GAN model using Fashion—MNIST dataset. i)
Adadelta, ii) Adagrad, iii) Adam, a) Origin loss, b) Smooth loss, c¢)
Correction loss, 1) Adadelta, ii) Adagrad, iii) Adam

If there is no Weight decay, we can see that the Batch size converges
later depending on the larger. In Figure 65, Adam optimizer is well used
and well used, but we analyzed the influence of three optimization
methods to verify the proposed method. In Figure 65(i), the result of
the adaDelta shows that the generator loss learns the original method
and focal loss with similar loss values. In the case of the smooth loss,
it can seem that the loss value is somewhat higher than the two
methods in obtaining the continuous task information stably.

6) 7 latent size analysis about correction loss
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Figure 66 Z latent space size on correction loss by 16 batch size, L1 0,
L2 0.5, in Valina—GAN using MNIST dataset. a) 100 Z latent space
size , b) 500 Z latent space size, ¢) 1000 Z latent space size, i) Adam
, i) Adadelta iii) Adagrad

Smooth and focal loss analyzed according to three optimization methods
and potential variable spaces that is to confirm the influence of
generation performance according to the impact of the Z latent space
size according to the input on the generation model in Figure 65, . As
the latent variable space increases, the convergence phenomenon appears
later when the influence of the Z latent space influenced by the size of
the potential variable area.

7) Optimization analysis about our cascade component
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Figure 67 Optimization methods of Proposal Cascade Loss that composed
of 4 batch size, L1 0.0, L2 0.5, 100 Z latent space size, and In
Valina—GAN model using grayscale Fashion—MNIST dataset. i) Adadelta,
ii) Adagrad, iii) Adam, a) Origin loss, b) Smooth loss, c¢) Correction
loss, i) Adadelta, ii) Adagrad, iii) Adam

0.025

The proposed method in Figure 67 shows the best results when using
Adam Optimizer as a result of experimenting with three optimization
methods. In particular, the proposed method shows that the initial loss
1s better than the existing loss when the correction loss is corrected. In
the case of correction loss and origin loss, a sharp convergence
phenomenon is observed, which confirms that the slope from the
correction and origin loss converges in the correct direction and is
quickly learned. In the smooth loss, the derivative with the slope has a
smooth slope, so it gradually converges.

8) Optimization analysis about our scale calibration component
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Figure 68 Compare of optimization methods on verified of Proposal
Cascade Loss that composed of 4 batch size, L1 0.0, L2 0.5, Z latent
space size 100, and in Valina—GAN model using grayscale
Fashion—MNIST dataset. i) Adadelta, ii) Adagrad, iii) Adam, d) Origin
correction loss, e) Smooth correction loss, f) Correction correction loss,
1) Adadelta, ii) Adagrad, iii) Adam

The proposed method in Figure 68 is the result of an experiment
comparing the optimization when applying scale calibration. If the scale
calibration 1s correctly calibrated, learn to maximize the loss distance
between the generator and the discriminator. However, if it 1is
incorrectly corrected, one piece of information may collapse, and only
one piece of information may appear. In the case of Correction
Correction, it is a case of correcting the model again. At this time, the
strong correction is entered rather than shows a phenomenon that can
not learn.

9) Analysis of single on bias component
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To verify the proposed Cascade method in Figure 69, we experimented
with a single loss and Cascade method when learning with the Fashion
MNIST dataset. The Cascade method proposed is in the case of a single
loss of Figure 69(a) to Figure 69(c) Figure 69(d) to Figure 69(f) is
the result of applying the Cascade method proposed. Figure 69(d) and
Figure 69(f) are the results of applying the Scale calibration method,
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Figure 69(f) is a strong influence of Scale calibration, and showed only
one learning or no learning at the time of confrontational learning.
However, the results of Figure 69(e) show that it is possible to
improve the existing learning by calibration through Scale calibration. As
shown in Figure 69(iii), Scale calibration shows better learning results.

10) Analysis experiment initial distribution about our proposal

Effect Analysis of Various Distribution on Smooth

Series Loss
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Figure 70 Performance of dependency analysis at color image generation
measure PSNR of various distribution on 8 batch size. a) Smooth
method b) Smooth correction, 1) Random distribution, ii) Laplace
distribution, iii) Logistic distribution iv) Gumbel distribution

Figure 70 has been carried out through various distributions for the two
methods of the Smooth method and the smooth correction method
proposed. The experimental results show that the average PSNR
decreases with the Random distribution and Laplace distribution for the
Smooth Correction method proposed. If the Random distribution
constructs the Random distribution, the continuous task information will
remain for a long time.

11) Stable acquisition information analysis at smooth correction
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Effects of various distributions and various batch
sizes on smooth correction loss
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Figure 71 Influence analysis based on various batch sizes according to
initial distribution for the acquisition of continuous task information
reflection by smooth correction, Learning rate 0.0007, 4 batch size, L1
0.0, L2 0.0, 100 Z latent space size, Adagrad optimizer, LSGAN, and
MNIST dataset. a) The normal distribution, b) Laplace distribution, c)
logistic distribution, d) Gumbel distribution, i) 4 batch size, ii) 16 batch
size, iii) 32 batch size

Figure 71 is a Scale correction method based on various Batch sizes
according to initial distribution. In the case of Batch sizes 4 and 16, the
training process Gumbel distribution shows that the average PSNR
performance is more stable than the other distributions. 32 batch size
and Batch size 64 indicate that Logistic distribution reflects information
reliably. When the Batch size is small, and the vibration of the model is
large in the parameter space, we show that the proposed Gumbel
distribution is efficient that shows that the width of Gumbel distribution
and the wvalues of the tail of both stably reflect the continuous task
information with thicker than the other distributions. However, when the
Batch size is larger than a certain level, the influence of many changes
in the parameter space of the model shows that the width of the
distribution and the sharpness of the tail is more sharpened to reflect
the continuous task information stably that shows that it is necessary to
reflect more clear data from the data as the number of data increases.
We show a concrete result of applying Gumbel distribution to the initial
distribution to stably obtain the continuous task information when the
parameter space of the model fluctuates much. Generating an image
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through stably reflecting the continues task information 1s strongly
influenced by the initial distribution of the latent space. As a result, it
confirms that continuous task information could be obtained stably
according to the initial distribution. Therefore, the analysis is carried out
through various distributions to further analyze the proposed distribution
as the initial distribution. To confirm of the Z latent space is robust to
the generation performance through the generalized distribution and the
production through the analytical distribution, the initial distribution is a)
Random distribution, b) Gumbel distribution, c¢) Laplace distribution d)
Logistic distribution.

12) Stable acquisition information analysis using parameter analysis at
smooth correction
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Figure 72 Compare of the effect of test smooth calibration method on
alpha and gamma coefficients at Learning rate 0.0007, Batch size 4, L1
0.25, L2 0.25, Z latent space size 100, Adam optimizer, Gumbel
distribution in Valina—GAN i.a) Alpha 0.25 ib) Alpha 0.5 i.c) Alpha
0.75 ii.a) Beta 2.0 ii.b) Beta 3.0 ii.c) Beta 4.0

In Figure 72, when the smooth calibration method, alpha was changed
from 0.25 to 0.75 through 0.25 increments, and beta was changed from
1 to 4 through 1 increase. Experimental results show that the influence
of attention on the impact of alpha and Gamma does not affect the
generation of the generated image. Scale term, the effect of the
parameter in the Scale, is less influential in creating the image in the
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Valina—GAN. These results show that, when the scale term enters, it is
corrected for the acquisition of the continuous task information so that
results obtained. However, it confirmed that the influence on the steady
of the continuous task information acquisition is independent of the
impact on Gamma and Alpha. It can be confirmed that continuous task
information is obtained stably through the scale term.

13) Problem analysis at smooth correction
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Figure 73 Smooth correction method training process about smooth
correction at Learning rate 0.0007,4 Dbatch size, L1 0.25, L2 0.25, 100
Z latent space size, Adam optimizer, Scale correction at scale coefficient
of Alpha 0.75, scale coefficient of Gamma 4.0 compare about i) Gumbel
distribution and ii) Random distribution a) O Epoch, b) 250 Epoch, c¢)
500 Epoch, d) 750 Epoch, e) 1000 Epoch.

In Figure 73., we show the effect of acquiring images generated by
epoch 250. Figure 73(c¢c) and Figure 73(d), which are similar to the two
segments where the fluctuation occurs now, show that the images
generated vary greatly compared to the previous step.

In other words, the state showing the variation in the loss expects to
reflect the new value, so that the new image learn and the wvariation
occurs. A more precise definition of the variety of the loss graph can
help to interpret the loss trend of the model by comparing the loss
shapes defined by spike neurons.
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Figure 74 An indirect comparison of the initial distribution of the
catastrophic problem every time new data is learned during model
training. Smooth correction at Learning rate 0.0007, Batch size 16, L1
0.25, L2 0.25, Z latent space size 100, Adam optimizer, Alpha 0.75,
Gamma 4.0 a) Batch size 4 , 8, 16, 32 and 64 in Cifarl0, i) Random
distribution, ii) Laplace distribution, iii) Logistic distribution, and iv)
Gumbel distribution

This was verified by batch to verify the effect of continuous task
information acquisition according to the number of data inputs In
distribution.

Figure 74 shows the results of the model learning run when the Batch
size differs according to each distribution. It seems that the convergence
positions of epochs are different from each other, depending on the type
of each distribution.

The convergence of the converged position to the fast covariance seems
to be because the distribution reflects the convergence speed of the
model increases as the continuous task information of the model.

Also, most of the loss graphs seem to be fluctuating between epoch
400 to 600 and 600 to 800.

As shown in Figure 75, each bbyb image is a Random different sample.

However, all 25 generated shapes show similar shapes. It knows that
the Valina—GAN model has a problem with mode collapsing. The mode
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collapsing phenomenon is a phenomenon that memorizes only one image
in the course of learning. Therefore, it assumes that this cause by the
mode collapsing occurring in the GAN series, not by the effect caused
by the loss.

And the distribution of Gumbel shows a tendency to be slightly wider in
white that allows the Laplace distribution to help interpret the effect of
the generated image. Image acquisition from such a Laplace distribution
does not have a tail width and distribution range that can reliably reflect
the tilt and thus tends to fail to acquire tilt. However, we can verify
that the Gumbel distribution to be used as an initial distribution has a
thicker tail than other distributions and has an advantage in generating
an image by acquiring the continuous task information of the distribution
width stably.
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Figure 75 Continuous task information reflection analysis in the color
image according to various Batch size and initial distribution. Smooth
correction at Alpha 0.75, Gamma 4.0, Learning rate 0.0007, Batch size
4, L1 0.25, L2 0.25, Z latent space size 100, Adam optimizer, i)
Random distribution, ii) Laplace distribution, iii) Logistic distribution, and
iv) Gumbel distribution

When you look at the picture shown in Figure 75, you can see that it
cluster with similar color values. This clustered distribution shows that
the width varies. It confirms that the generated image is affected by the
width of the existing distribution. 16 Batch, the Laplace distribution, and
Gumbel distribution show that the white part of the Laplace sharper.

14) Parameter analysis using L1 and L2 regularization at smooth
correction
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Figure 76 Analysis of smooth correction from the cost function
perspective cost function about the effect of various regularization
methods by Batch size 4, Z latent space 100, Scale correction
coefficient at Alpha 2.0, Gamma 0.25, Valina—GAN, Cifar100 dataset, i)
L1 & L2 about the L1 increase, ii) L1 & L2 about L2 increase, iii) L1
& L2 about L1 & L2 increase.
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Figure 76 From the viewpoint of 1is the cost function, various
regularization methods analyze according to the smooth correction cost
function. Figure 76(i) shows the result as the L1 coefficient value
increases. As L1 increases, it sees that vibration frequently occurs as
Epoch increases. However, Figure 76 (ii) shows the result according to
the increase of the L2 coefficient value. In the case of L2, the vibration
tends to increase with increasing epoch. Also, it shows that the cost
function of the concatenated part of the initial, middle part maximizes
each other and learns. Figure 76(iii) shows the tendency of cost
function when L1 and L2 increase at the same time. At this time, the
magnitude of the vibration width increases as the value increases. It
also shows that the number of oscillations increases and then decreases
in Figure 76(ii)

From these results, it seems that the normalization effect produced by
the linear combination of L1 and L2 is dependent on the size and the
particular methods.
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Figure 77 Smooth correction analysis from the viewpoint of PSNR and
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MSE by Batch size 4, Z latent size 100, Adam optimizer, Fashion
MNIST dataset, Valina—GAN, i) L2 increase at L1 0.25, ii) L2 increase
at L1 0.75, and iii) L1 & L2 increase.

To analyze the influence of size value, we compare the performance of
PSNR and MSE in Figure 77. First, we measure performance according
to the increase of L2 value when L1 fixe to 0.25, When the value of
0.75 fixes, the influence of the increase of the L2 value and the third of
the increase of the L1 and L2 values were analyzed. The first result
shows that the amplitude of the MSE decreases as the L2 value
increases. The second result shows that the variation of the MSE value
1s not as large as the L2 value increases. As the final result increases,
the result of MSE decreases. Based on these results, if the L1 value is
too large, the variation of L2 has an irrelevant effect, and the MSE
value is shown to be reduced stably when the linear combination of L1
and L2 is equal. As a result, it seems that the performance varies
depending on the conditions of the linear combination of L1 and L2
regularization.

15) Regularization analysis using parameter changing at smooth
correction
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Figure 78 Exponential regularization for acquisition continuous task
information analysis according to the variation of alpha in the scale term
by Learning rate 0.0007, Batch size 2, L1 0.0, L2 0.15, Z latent space
size 500, Adam optimizer, Gumbel distribution, Scale correction
coefficient at Gamma 0.25, a) Alpha 2.0, b) Alpha 3.0, ¢) Alpha 4.0.

Figure 78 is the result of various Scale correction coefficients on the
generated image by Valina—GAN. Thus, the Exponential regularization
method show by acquiring the continuous task information independently
of the cost function.
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