
박사학위논문

Structural Optimization of
Cryptographic Algorithms Based

on Embedded Processor
Characteristics

2025년

한 성 대 학 교 대 학 원
정 보 컴 퓨 터 공 학 과
정보시스템공학전공

권 혁 동

박 사 학 위 논 문지도교수 서화정

Structural Optimization of
Cryptographic Algorithms Based

on Embedded Processor
Characteristics

임베디드 프로세서 특성 기반 암호 알고리즘의

구조적 최적화

2024년 12월 일

한 성 대 학 교 대 학 원
정 보 컴 퓨 터 공 학 과
정보시스템공학전공

권 혁 동

박 사 학 위 논 문지도교수 서화정

Structural Optimization of
Cryptographic Algorithms Based

on Embedded Processor
Characteristics

임베디드 프로세서 특성 기반 암호 알고리즘의

구조적 최적화

위 논문을 공학 박사학위 논문으로 제출함

2024년 12월 일

한 성 대 학 교 대 학 원
정 보 컴 퓨 터 공 학 과
정보시스템공학전공

권 혁 동

권혁동의 공학 박사학위 논문을 인준함

2024년 12월 일

심 사 위 원
장 박 명 서 (인)

심 사 위 원 김 수 리 (인)

심 사 위 원 이 웅 희 (인)

심 사 위 원 유 지 현 (인)

심 사 위 원 서 화 정 (인)

- i -

ABSTRACT

Structural Optimization of Cryptographic
Algorithms Based on Embedded Processor

Characteristics

Kwon, HyeokDong
Major in Information System
Engineering
Dept. of Information and
Computer Engineering
The Graduate School
Hansung University

 This dissertation investigates and presents the results of an
optimized implementation technique achieved through modifications to
the internal structure of cryptographic algorithms. Among the various
aspects of optimal implementation, speed optimization is crucial in
improving inefficient computational performance by accelerating the
algorithm's processing speed. Parallel implementation is commonly
employed for optimization; however, inherent limitations exist when
relying solely on parallelizing internal operations. A method for
enhancing the performance of cryptographic algorithms is proposed
through modifications to their internal structure. These structural

- ii -

modifications may involve precomputing specific values, utilizing
precomputation tables for large-scale calculations, or leveraging
processor features to reverse original operations.
 The cryptographic algorithms targeted for implementation in this
research include the domestic lightweight block cipher CHAM, the
lightweight block cipher candidate TinyJAMBU, and the post-quantum
cryptography candidate Rainbow. The implementation platforms
selected for this study are the 8-bit AVR processor, commonly used
in low-end Internet of Things (IoT) environments, and the 64-bit
ARM processor, which, though relatively high-end compared to AVR,
has recently expanded its application from smartphones to laptops.
The proposed technique involves redesigning the internal structure of
each algorithm, considering the unique characteristics of the
algorithms and the processor environments, to enhance overall
algorithm performance.

【Keywords】Block cipher, Post Quantum Cryptography, Optimized
implementation, IoT Processor

- iii -

Table of Contents
1. Introduction ·· 1

1.1 Main Contribution ··· 1

2. Preliminaries ·· 3

2.1 Symmetric-Key Cryptography ··· 3
2.2 Public-Key Cryptography ·· 5
2.3 Post-Quantum Cryptography ·· 6
2.4 Target Cryptographic Algorithms ·· 8

2.4.1 Block Cipher CHAM ··· 8
2.4.2 Lightweight Cipher TinyJAMBU ··· 9
2.4.3 Post-Quantum Cryptography Rainbow ··································· 10

2.5 Target Processors ·· 12
2.5.1 8-bit AVR Microcontroller ·· 12
2.5.2 64-bit ARM Processor ··· 13

2.6 Previous Works ··· 13

3. Optimized Implementation of Target Cipher ···································· 16

3.1 CHAM with Precomputation ·· 16
3.1.1 Skip Rounds by Precomputation ··· 16
3.1.2 Logical Block Rotation ··· 18
3.1.3 Register Scheduling and Instructions Used ·························· 20
3.1.4 Alternative Implementation: Furious CHAM ························· 27

3.2 TinyJAMBU with Reverse Bitwise Shift ·· 29
3.2.1 Reverse Bitwise Shift(RBS) ·· 29
3.2.2 Register Scheduling and Instructions Used ·························· 36
3.2.3 Alternative Implementation: Initialization Skip ···················· 42

- iv -

3.3 Rainbow with Look-Up Table Based Multiplication ················· 43
3.3.1 Tower-Field Based Multiplication ··· 43
3.3.2 Look-Up Table Based Multiplication in Rainbow I ············· 46
3.3.3 Resolve of LUT Size Problem in Rainbow III and V ········· 50
3.3.4 Register Scheduling and Instructions Used ·························· 50
3.3.5 Alternative Implementation: Avoiding Cache Side Attack 54

4. Performance Evaluation ·· 57

4.1 Evaluation CHAM Block Cipher ··· 57
4.2 Evaluation TinyJAMBU Lightweight Cipher ································· 59
4.3 Evaluation Rainbow Post-Quantum Cryptography ····················· 63

5. Conclusion ··· 70
Appendix: Look-Up Table for Rainbow ·· 72
Appendix: Performance evaluation result for Rainbow on A13
processors ·· 80
Appendix: Performance evaluation result for Cache side attack
resistance implementation of Rainbow III and V ·································· 87
Abbreviation: Abbreviation ·· 90
Bibliography ··· 91
국문초록 ·· 95

- v -

List of Tables
[Table 2-1] List of CHAM parameters (n: block size, k: key size, ω:
word size, r: number of rounds) ·· 9
[Table 2-2] Key and signature size of Rainbow signature. (Key size
unit: KB, Signature size unit: bit) ··· 11
[Table 3-1] List of instructions used in implementation for CHAM in
alphabetical order ·· 22
[Table 3-2] Implementation code of proposed CHAM (RC: round
counter, RK: round key, X00~X31: plaintext, XT: temporary register,
Zero: zero register) ·· 22
[Table 3-3] Number of keyed permutations each step in tinyJAMBU
·· 30
[Table 3-4] Pseudocode for keyed permutation(<<n: bitwise left
shift n times, >>n: bitwise right shift n times, |: bitwise OR, &:
bitwise AND, ^: bitwise XOR, ~: bitwise NOT) ································ 30
[Table 3-5] Number of shifts for each implementation ··················· 35
[Table 3-6] List of instructions used in implementation for
TinyJAMBU in alphabetical order ·· 37
[Table 3-7] Implementation code of proposed TinyJAMBU (RC:
round counter, RK: round key, X00~X31: plaintext, XT: temporary
register, Zero: zero register) ·· 38
[Table 3-8] Pseudocode of tower-field based polynomial
multiplication for Rainbow signature (^: bitwise XOR) ···················· 43
[Table 3-9] Pseudocode of look-up table based polynomial
multiplication for Rainbow I (<<n: bitwise left shift n times, >>n:
bitwise right shift n times, &: bitwise AND, ^: bitwise XOR) ····· 46
[Table 3-10] Pseudocode of look-up table based polynomial
multiplication for Rainbow III and V(<<n: bitwise left shift n times,
>>n: bitwise right shift n times, &: bitwise AND, ^: bitwise XOR,

- vi -

A: additional) ·· 48
[Table 3-11] List of instructions used to implement Rainbow
signatures in alphabetical order ·· 52
[Table 3-12] Implementation code of proposed multiplication (x0:
output address, x1: operand address, x2(w2): constant) ·················· 53
[Table 3-13] Implementation code of cache side attack resistance
implementation. (x2(w2): constant) ·· 54
[Table Appendix-1] Precomputation look-up table of tower-field
based polynomial multiplication results on GF16 expressed in
hexadecimal (A: additional table for Rainbow III and V) ·················· 72
[Table Appendix-2] Implementation code of proposed multiplication
for Rainbow III and V (x0: output address, x1: operand address,
x2(w2): constant) ··· 73
[Table Appendix-3] Implementation code of constant-time
implementation. (x2(w2): constant) ·· 81

- vii -

List of Figures
[Figure 2-1] Symmetric-key cryptography structure ························· 3
[Figure 2-2] Block cipher framework (Encryption only) ··················· 4
[Figure 2-3] Stream cipher framework (Encryption only) ················ 5
[Figure 2-4] Public-key cryptography architecture ····························· 5
[Figure 2-5] Round function structure of CHAM ·································· 9
[Figure 2-6] NLFSR for Keyed permutation of TinyJAMBU ········· 10
[Figure 2-7] Whole structure of TinyJAMBU ····································· 10
[Figure 2-8] Structure of AVR registers ·· 12
[Figure 2-9] Controlling vector registers via arrangement specifiers
·· 13
[Figure 3-1] Flow of counter values in CHAM CTR mode of
operation ··· 17
[Figure 3-2] Optimized CHAM structure with CTR mode of operation
·· 19
[Figure 3-3] Optimized 32-bit counter CHAM-64/128 structure 20
[Figure 3-4] Register allocation plan for proposed CHAM ············· 20
[Figure 3-5] Two implementation scenarios for the variable key
model ··· 26
[Figure 3-6] Register allocation plan for furious CHAM ················· 28
[Figure 3-7] S2 state computation structure using AVR assembly
instructions ·· 31
[Figure 3-8] Proposed RBS applied to s2 state calculation ······ 32
[Figure 3-9] S3 state flow with AVR assembly implementation ·· 33
[Figure 3-10] S3 state calculation with RBS technique applied ···· 33
[Figure 3-11] Operation process with the previous s1 state block
operation and RBS applied ·· 34
[Figure 3-12] Operate s2 state block with single shift ··················· 35
[Figure 3-13] Register allocation plan for RBS TinyJAMBU ····· 36

- viii -

[Figure 3-14] Table loading process in proposed Rainbow signature ···· 46
[Figure 3-15] Register allocation plan for Look-up table based
Rainbow signature ··· 52
[Figure 4-1] Performance Measurement Results for CHAM (Unit:
clock cycles per byte, 32-bit: 32-bit counter of CHAM-64/128) ··· 57
[Figure 4-2] Performance Measurement Results for Furious
CHAM-64/128 (Unit: clock cycles per byte) ··· 59
[Figure 4-3] Performance Measurement Results for Keyed
permutation of TinyJAMBU (Unit: clock cycles) ··································· 60
[Figure 4-4] Performance Measurement Results for TinyJAMBU
(Unit: clock cycles, I: Initialization skip implementation) ··················· 62
[Figure 4-5] Performance Measurement Results for table based
multiplier of proposed Rainbow signature in log scale (Unit: clock
cycles) ·· 64
[Figure 4-6] Performance Measurement Results for Rainbow I on Apple
M1 processors expressed in log scale (Unit: 106 clock cycles) ··········· 65
[Figure 4-7] Performance Measurement Results for Rainbow III on Apple
M1 processors expressed in log scale (Unit: 106 clock cycles) ··············· 66
[Figure 4-8] Performance Measurement Results for Rainbow V on Apple
M1 processors expressed in log scale (Unit: 106 clock cycles) ············ 67
[Figure 4-9] Performance Measurement Results for Rainbow I cache
side attack resistance implementation and constant-time
implementation on Apple M1 processors expressed in log scale (Unit:
106 clock cycles) ··· 68
[Figure Appendix-1] Performance Measurement Results for Rainbow
I on Apple A13 processors expressed in log scale (Unit: 106 clock
cycles) ·· 80
[Figure Appendix-2] Performance Measurement Results for Rainbow
III on Apple A13 processors expressed in log scale (Unit: 106 clock

- vi -

cycles) ·· 81
[Figure Appendix-3] Performance Measurement Results for Rainbow
V on Apple A13 processors expressed in log scale (Unit: 106 clock
cycles) ·· 82
[Figure Appendix-4] Performance Measurement Results for Rainbow
I on BCM2711 processors expressed in log scale (Unit: 106 clock
cycles) ·· 83
[Figure Appendix-5] Performance Measurement Results for Rainbow
III on BCM2711 processors expressed in log scale (Unit: 106 clock
cycles) ·· 84
[Figure Appendix-6] Performance Measurement Results for Rainbow
V on BCM2711 processors expressed in log scale (Unit: 106 clock
cycles) ·· 85
[Figure Appendix-7] Performance Measurement Results for Rainbow
III cache side attack resistance implementation on Apple M1
processors (Unit: 106 clock cycles) ··· 87
[Figure Appendix-8] Performance Measurement Results for Rainbow
V cache side attack resistance implementation on Apple M1
processors (Unit: 106 clock cycles) ··· 88

- 1 -

1. Introduction

1.1 Main Contribution

Cryptographic algorithms, which provide security based on complex
mathematical principles, typically require significant computational
resources. With recent advancements in hardware, performing
cryptographic operations is no longer a major challenge. However, for
small electronic devices such as sensor nodes, available resources are
limited, and executing cryptographic algorithms can consume
considerable time. This dissertation presents optimal implementation
methods to efficiently execute cryptographic algorithms. Although
there are various perspectives on optimal implementation, the focus is
primarily on speed optimization, which aims to enhance processing
speed. The main contributions of this dissertation are as follows.

1. Proposal of optimized implementation through modifications to the
internal operational structure of the algorithm. Parallel
implementation is one of the most powerful methods used in
optimization; however, it is limited to environments that support
parallel instructions. Moreover, parallel implementation is applicable
only to algorithms that benefit from parallel operations. Therefore,
various methods for modifying the internal structure of algorithms
are proposed. By utilizing the unique characteristics of each
algorithm, the computational process is redesigned, and a more
advanced design is proposed by taking into account the
characteristics of the processor.

- 2 -

2. Presentation of additional implementations for special purposes.
The proposed optimized implementations are designed based on
general use cases. In addition, specialized implementations tailored
to specific scenarios are presented. While these additional
implementations may require certain assumptions not present in the
general implementations, they offer more optimized performance or
exhibit resistance to certain attacks, thereby possessing distinctive
features compared to the general optimal implementations.

The remainder of this dissertation is organized as follows. Chapter
2 introduces various cryptographic algorithm structures and examines
the algorithms selected for optimal implementation, along with an
introduction to the target processors for optimization. Additionally,
prior research on optimal implementations is reviewed. Chapter 3
discusses the redesign for optimal implementation, the methods for
algorithm implementation, and additional implementations. Chapter 4
evaluates the performance of the proposed implementations. Chapter 5
concludes the dissertation.

- 3 -

2. Preliminaries

2.1 Symmetric-Key Cryptography
A symmetric-key encryption system is an algorithm in which

encryption and decryption are performed using a single shared secret
key, also referred to as a secret-key encryption algorithm. The basic
structure of symmetric-key cryptography is shown in [Figure 2-1].

[Figure 2-1] Symmetric-key cryptography structure

It is defined by the use of the same key for both encryption and
decryption. However, symmetric-key cryptography has the drawback
of difficulty in securely sharing the secret key. Since the secret key
is used for both encryption and decryption, if the key is
compromised, the encrypted confidential information can be
immediately restored. Therefore, securely sharing the secret key is
critical, and this remained a significant challenge until the
development of public-key cryptography. Algorithms that belong to
symmetric key encryption include DES, AES, LEA, ARIA, and CHAM.

Symmetric-key cryptography is divided into block ciphers and
stream ciphers.

- 4 -

l A block cipher encrypts data in fixed-size blocks, and its
structure is illustrated in [Figure 2-2]. Since input messages may
exceed the block size, block cipher operation modes are provided
to encrypt messages larger than a single block. While block
ciphers offer high diffusion and versatility, they tend to have
slower encryption speeds and the propagation of errors in case of
transmission issues. Common operation modes include ECB, CBC,
CFB, OFB, and CTR.

[Figure 2-2] Block cipher framework (Encryption only)

l Stream ciphers, on the other hand, do not encrypt the input
message directly. Instead, they generate pseudorandom numbers,
which are combined with the input message to produce the
ciphertext, as shown in [Figure 2-3]. Typically, XOR operations
are used to combine the pseudorandom numbers with the input
message. Stream ciphers are known for their fast encryption speed
and the non-propagation of errors, but they suffer from lower
diffusion.

- 5 -

[Figure 2-3] Stream cipher framework (Encryption only)

2.2 Public-Key Cryptography
A public-key encryption system uses different keys for encryption

and decryption, as shown in [Figure 2-4], and is therefore also
referred to as an asymmetric-key encryption algorithm.

[Figure 2-4] Public-key cryptography architecture

In this cryptography, encryption is performed using a public key,
while decryption is carried out using a private key, also known as a
secret key. The public key is known to all participants in the

- 6 -

network, but only the key owner knows the private key. As long as
the private key remains secure, decrypting the ciphertext is
impossible, making public-key encryption highly secure for
transmitting information or messages. Due to these characteristics,
public-key encryption can also provide additional functionalities such
as authentication, integrity, and non-repudiation. However, compared
to symmetric-key encryption, it is significantly slower and requires
larger key sizes. For this reason, public-key encryption is not
commonly used for general message transmission but is instead
employed for tasks such as key exchange and authentication.
Examples of public-key cryptography include RSA.

2.3 Post-Quantum Cryptography
With the advancement of quantum computing, cryptographic

systems based on traditional mathematical challenges have begun to
face threats. Grover's algorithm, which can be implemented on
quantum computers, is an optimized search algorithm capable of
performing attacks such as brute force effectively. While Grover's
algorithm poses a threat to symmetric-key cryptography and hash
functions, increasing the key length can mitigate its impact. Shor's
algorithm, on the other hand, solves problems such as integer
factorization and discrete logarithms. Among public-key cryptography,
those based on integer factorization, such as RSA, are highly
vulnerable to Shor's algorithm, and no effective countermeasures are
currently known.

In response to the threat posed by quantum computers, the U.S.
National Institute of Standards and Technology (NIST) launched a
competition to standardize new cryptographic algorithms resistant to
quantum attacks, known as post-quantum cryptography (PQC). As a

- 7 -

result, Kyber was selected as the standard for PKE/KEM algorithms,
while Dilithium, Falcon, and SPHINCS+ were chosen for digital
signature algorithms. In Republic of Korea, a competition named KpqC
is being held to select a PQC standard. Currently, the competition is
in its second round, with NTRU+, PALOMA, REDOG, and SMAUG-T
competing as candidates for PKE/KEM, and AIMer, HAETAE,
MQ-Sign, and NCC-Sign competing in the digital signature category.
Post-quantum cryptography involves more fundamental problems than
traditional symmetric-key and public-key cryptography.

l Lattice-based cryptography: It is based on the Shortest Vector
Problem (SVP) and Closest Vector Problem (CVP), which involve
finding the shortest vector in a lattice when two integer vectors
exist. Lattice-based cryptography is known for its fast
computation speed and relatively small key and signature sizes.
Due to these advantages, many algorithms in the post-quantum
cryptography competition are based on lattice problems. Examples
of lattice-based cryptographic algorithms include Kyber, Dilithium,
Falcon, NCC-Sign, and HAETAE.

l Code-based cryptography: This problem generates public/private
key pairs using error correction codes, which control errors in
signals. Code-based cryptography has been subject to security
analysis for a longer time compared to other hard problems, thus
earning a high level of trust. Classic McEliece is a representative
example of code-based cryptography.

l Hash-based cryptography: It relies on the collision resistance of
hash functions. Although quantum algorithms can compromise hash
functions, security can be maintained by extending the hash output
length. Additionally, if a security vulnerability is discovered in a

- 8 -

hash function used in the cryptographic scheme, it can be replaced
with another hash function to maintain security. SPHINCS+ is an
example of hash-based cryptography.

l Multivariate based cryptography: This cryptographic method is
based on the difficulty of solving systems of multivariate
polynomial equations over finite fields. Compared to other
problems, proving security mathematically is relatively
straightforward. Since the primary operation involves solving
matrices of polynomials, effective implementations can be achieved
using the Gaussian Elimination algorithm. Rainbow and MQ-Sign
are examples of multivariate polynomial cryptography.

2.4 Target Cryptographic Algorithm
2.4.1 Block Cipher CHAM
CHAM is a block cipher introduced in South Korea in 2017,

designed with low-end processors in mind. In 2019, revised CHAM
was published, with the only difference between the original and
revised versions being the number of rounds, while the core design
remains the same. CHAM is an ARX-based algorithm that divides the
input data into four blocks, as shown in [Figure 2-5]. Although the
operations per round are identical, the number of left shifts differs
between odd and even rounds. [Table 2-1] summarizes the
parameters of CHAM.

- 9 -

[Figure 2-5] Round function structure of CHAM

2.4.2 Lightweight Cipher TinyJAMBU
TinyJAMBU is a permutation-based variant of the block cipher

JAMBU. The encryption and decryption processes consist of five
stages: Initialization, Processing Associated Data,
Encryption/Decryption, Finalization, and Verification. TinyJAMBU
employs a keyed permutation structure with NLFSR, as shown in

Cipher n k ω r
CHAM-64/128 64 128 16 88
CHAM-128/128 128 128 32 112
CHAM-128/256 128 256 32 120

[Table 2-1] List of CHAM parameters (n: block size, k: key size, ω:
word size, r: number of rounds)

- 10 -

[Figure 2-6], and [Figure 2-7] shows the TinyJAMBU mode. [Table
2-2] provides its pseudocode representation.

[Figure 2-6] NLFSR for Keyed permutation of TinyJAMBU

[Figure 2-7] Whole structure of TinyJAMBU

2.4.3. Post Quantum Cryptography Rainbow
Rainbow, a finalist in the third round of the NIST post-quantum

cryptography competition, is a multivariate polynomial-based digital
signature algorithm. It leverages the UOV problem and offers faster

- 11 -

signing and verification speeds compared to other algorithms, along
with smaller signature sizes. However, Rainbow has the disadvantage
of slow key generation and significantly larger key sizes than other
post-quantum algorithms, especially lattice-based cryptography.
Variants of Rainbow, such as the circumzenithal and compressed
versions, are available to reduce key size, and the parameters are
summarized in [Table 2-2].

Security
Level Parameters Public

key size
Private

key size
Signature

size
 Standard Rainbow

I (GF(16),36,32,32) 157.8 101.2 528
III (GF(256),68,32,48) 681.4 611.3 1,312
V (GF(256),96,36,64) 1,885.4 1,375.7 1,632

 Circumzenital Rainbow

I (GF(16),36,32,32) 58.8 101.2
(99.0) 528

III (GF(256),68,32,48) 258.4 611.3
(603.0) 1,312

V (GF(256),96,36,64) 523.5 1,357.7
(1,631.8) 1,696

[Table 2-2] Key and signature size of Rainbow signature. (Key size
unit: KB, Signature size unit: bit)

- 12 -

2.5 Target Processor
2.5.1 8-bit AVR Microcontroller
The 8-bit AVR processor, first introduced in 1996 with the

ATmega series, is a RISC-based processor. It features 32
general-purpose 8-bit registers, and for any operation, values must
first be loaded from memory into the registers. Similarly, the results
of operations must be stored back from the registers to memory, with
each process requiring 2 cycles. [Figure 2-8] illustrates the
structure of AVR registers.

[Figure 2-8] Structure of AVR registers

The R1 register serves as the zero register, allowing flexible use,
but it must always hold the value zero when the operation is
complete. Therefore, if the R1 register is used, it is recommended to
clear the register with the CLR instruction before the operation
finishes. Registers R2 through R17, as well as R28 and R29, are
callee-saved registers. These registers might hold important values
necessary for computations prior to function calls, so their contents
should be temporarily saved before usage and restored after the
operation. Lastly, registers R26 through R31 are pointer registers,
with R26 and R27, R28 and R29, and R30 and R31 paired to form the
X, Y, and Z pointer registers. These pointer registers are used to
access memory, either to load or store values via pointers. It is

- 13 -

important to note that since the Y pointer register is callee-saved,
its value needs to be preserved before use.

2.5.2 64-bit ARM Processor
The ARMv8 processor is a high-performance processor within the

embedded processor category, commonly used in devices such as
smartphones and laptops. Its register configuration consists of 64-bit
general-purpose registers and 128-bit vector registers. The vector
registers, which support parallel computation, have a maximum size of
128 bits, though the effective size for storage is limited to 64 bits,
allowing for up to two values to be stored. The arrangement specifier
determines how the internal data is treated in terms of bit size,
which can be set when utilizing vector instructions (also referred to
as NEON). [Figure 2-9] illustrates how data is handled in vector
registers based on the arrangement specifier.

[Figure 2-9] Controlling vector registers via arrangement
specifiers

2.6 Previous Work

- 14 -

Seo et al. conducted optimized implementations of the LEA and
HIGHT block ciphers on an 8-bit AVR processor. For this purpose,
they optimized the rotation operations, particularly the right rotation,
by utilizing BST and BLD instructions to reduce the number of
instructions used. Additionally, they addressed the limited number of
registers available on the AVR processor by optimizing register usage
strategies. As a result, the C implementation of LEA required 326
cpb for key generation, 263 cpb for encryption, and 236 cpb for
decryption, whereas the AVR-optimized implementation achieved 235,
168, and 176 cpb for the same processes, respectively. For HIGHT,
the C implementation required 156, 537, and 525 cpb for key
generation, encryption, and decryption, while the AVR-optimized
implementation achieved 58, 160, and 161 cpb, respectively.

Kim et al. proposed the FACE-LIGHT algorithm, a lightweight
implementation of AES-CTR mode tailored for low-resource
processors like AVR. Their approach involved designing a new cache
table to enable partial precomputation, extending the precomputation
capability from two rounds in the original FACE algorithm to three
rounds in FACE-LIGHT. The resulting implementation achieved
optimal performance, with AES-128, AES-192, and AES-256
requiring 1,967, 2,449, and 2,931 cpb, respectively.

Kwon et al. optimized the block cipher SIMON for the AVR
processor. Their work leveraged the characteristics of 8-bit
processors to demonstrate that specific registers could be
precomputed. They also calculated operational parts based on the
plaintext length. The implementation resulted in performance
improvements ranging from 1.5% to 5.3%.

Seo et al. also optimized the post-quantum cryptographic
algorithms SIDH and SIKE on the ARMv8 processor. Their approach

- 15 -

focused on accelerating the Montgomery multiplier and extensively
utilized 64-bit operations. For SIDH, the C implementation required
643.8 million or 574.3 million clock cycles, depending on the
processor, while the proposed method reduced this to 133.3 million
and 90.3 million clock cycles, respectively. For SIKE, the C
implementation required 626.3 million or 558.5 million clock cycles,
but the optimized implementation reduced this to 129.6 million and
87.8 million clock cycles, respectively.

Kim et al. optimized the post-quantum signature scheme
CRYSTALS-Dilithium for ARM processors. Their proposed method
utilized ARM NEON parallel instructions to optimize the NTT
multiplier and employed layer merging to reduce memory access
frequency. This approach resulted in performance improvements of
49%, 113%, and 41% in the key generation, signature generation, and
verification processes, respectively.

- 16 -

3. Optimized Implementation of Target Cipher

3.1 CHAM with Precomputation
3.1.1 Skip Rounds by Precomputation
In the Counter (CTR) mode of operation, rather than encrypting

the plaintext directly, a fixed nonce is first encrypted, and the result
is then XORed with the plaintext to perform the encryption. The
nonce is divided into a fixed part, generated randomly, and a counter
that represents the block number. Since the fixed part remains the
same for all blocks, it always produces the same result, making
precomputation possible. Due to the structure of CHAM’s round
function, as the encryption progresses, the block storing the counter
begins to affect other blocks, making it necessary to analyze the flow
of the counter block. [Figure 3-1] highlights the flow of counter
values in each round, marked in red.

In round 0, only one block is affected by the counter, but by round
9, all blocks are influenced by the counter. This implies that certain
computations during the first nine rounds can be omitted. However,
for the sake of implementation efficiency, the actual precomputations
are conducted up to the first eight rounds. This corresponds to
approximately 9.09%, 7.14%, and 6.67% of the total rounds for
CHAM’s 88, 112, and 120-round variants, respectively. The specific
computations that can be omitted for each round are as follows:
l Round 0: Addition of the round key to the second block.
l Round 1: Entire round.
l Round 2: Entire round.
l Round 3: Addition of the round counter to the first block.
l Round 4: Addition of the round key to the second block (same as

- 17 -

round 0).
l Round 5: Entire round.
l Round 6: Addition of the round counter to the first block (same as

round 3).
l Round 7: No precomputable operations.

[Figure 3-1] Flow of counter values in CHAM CTR mode of
operation

Although [Figure 3-1] shows that precomputations are possible in
round 8, they were not implemented. Implementing round 8 results in
less than 1 cpb performance improvement. However, due to the paired
round structure of CHAM, implementing round 9 separately would lead
to inefficiency, and thus, round 8 is not implemented.

- 18 -

3.1.2 Logical Block Rotation
At the end of each round in CHAM, the blocks undergo a

word-wise rotation. In CHAM-64/128, the rotation occurs in 16-bit
units, while for the other CHAM variants, the rotation occurs in
32-bit units. Although the block rotation can be implemented in AVR
assembly using the MOV instruction, a more efficient implementation
can be achieved using the MOVW instruction, which moves data in
16-bit word units. However, the implementation can be further
optimized by applying a logical block rotation, thereby omitting the
actual rotation.

Also in CHAM, the blocks used for computation in each round are
the first and second blocks. Since the block rotation occurs at the
end of every round, the blocks involved in computations do not
change. Without performing the rotation, the first and second blocks
are used in the first round, the second and third blocks in the second
round, the third and fourth blocks in the third round, and the fourth
and first blocks in the fourth round. This process repeats starting
from the fifth round. Thus, the original implementation grouped odd
and even rounds in pairs, but by applying logical block rotation, the
implementation can be optimized into 4-round units. This is also the
reason why round 8 was not implemented in Section 3.1.1;
implementing round 8 would require separate implementation for
rounds 9, 10, and 11, making efficient implementation more difficult.

A similar approach can be applied to the 8-bit left rotation
operation used in each round. Since the AVR registers store 8 bits,
the 8-bit left rotation can be implemented using register shifting
instructions instead of a rotation instruction. However, instead of
actually shifting the registers, the operation can be logically treated
as if the value has been rotated. In the following round, operations

- 19 -

that would normally apply to the lower register can be applied to the
upper register, effectively bypassing the rotation operation.

[Figure 3-2] illustrates the structure of the first eight rounds of
CHAM with all proposed techniques applied.

[Figure 3-2] Optimized CHAM structure with CTR mode of operation

In block cipher counter mode, a 16-bit counter can be used, but a
32-bit counter is generally preferred. In CHAM-64/128, where
internal blocks are processed in 16-bit units, the structure of a
16-bit counter is depicted in [Figure 3-2]. If a 32-bit counter is
used, two blocks are required to store the counter value, resulting in
a slightly different structure as shown in [Figure 3-3]. No additional
implementation is required for CHAM-128/128 and CHAM-128/256,
as they operate with 32-bit units.

- 20 -

[Figure 3-3] Optimized 32-bit counter CHAM-64/128 structure

3.1.3 Register Scheduling, Instructions Used and Implementation
To implement the proposed CHAM cipher, the register allocation is

planned as shown in [Figure 3-4].

[Figure 3-4] Register allocation plan for proposed CHAM

Register R0 is used to store the round key value, while R1 serves

- 21 -

as a zero register. In AVR architecture, R1 is conventionally assigned
as the zero register by default, so there is no need to use another
register. Register R16 holds the total round count for CHAM, with 88
rounds for CHAM-64/128, 112 for CHAM-128/128, and 120 for
CHAM-128/256. Register R17 is used to store the present round
counter value, which increments with each round. Registers R18
through R25 store the plaintext composed of the nonce and counter.
Lastly, registers R26 and R27, R30 and R31 are used both as the X,
Z register, respectively. And also R26 and R27 are used for
temporary registers to store intermediate values during computations.
In case of CHAM-128/128 and CHAM-128/256, these are required
more plaintext registers and temporary registers. So in this cases, R8
to R15 used to store plaintext and R28, R29 used for additional
temporary registers.

[Table 3-1] summarizes the instructions used in the
implementation, while [Table 3-2] shows the code for the first 8
rounds where round skipping is applied, specifically for
CHAM-64/128.

Mnemonic Operands Description Operation
ADC Rd, Rr Add with Carry Rd←Rd+Rr+C
ADD Rd, Rr Add without Carry Rd←Rd+Rr
EOR Rd, Rr Exclusive OR Rd←Rd⊕Rr

LD Rd, X+ Load Indirect and Post
Increment

Rd←(X)
X←X+1

[Table 3-1] List of instructions used in implementation for CHAM in
alphabetical order

- 22 -

Lines 1-4 represent round 0, where the LDI instruction is used to
retrieve precomputed values from the second block and add them to
the first block containing the counter value. Rounds 1 and 2 are
skipped and do not appear in the code. Lines 5-18 correspond to

LD Rd, Y+ Load Indirect and Post
Increment

Rd←(Y)
Y←Y+1

LD Rd, Z+ Load Indirect and Post
Increment

Rd←(Z)
Z←Z+1

LDI Rd, K Load Immediate Rd←K
LPM Rd, Z Load Program Memory Rd←(Z)

LSL Rd Logical Shift Left
Rd(n+1)←Rd(n)

Rd(0)←0
C←Rd(7)

MOV Rd, Rr Copy Register Rd←Rr
MOVW Rd, Rr Copy Register Word Rd+1:Rd←Rr+1:Rr

POP Rd Pop Register from Stack Rd←STACK
PUSH Rr Push Register on Stack STACK←Rr

ROL Rd Rotate Left Through
Carry

Rd(n)←Rd(n+1)
Rd(7)←0
C←Rd(0)

ST X+, Rr Store Indirect and Post
Increment

(X)←Rr
(X)←X+1

ST Y+, Rr Store Indirect and Post
Increment

(Y)←Rr
(Y)←Y+1

ST Y+, Rr Store Indirect and Post
Increment

(Z)←Rr
(Z)←Z+1

- 23 -

Line Code Comment
1: LDI XT0, 0x45 Round 0 start
2: LDI XT1, 0x65
3: ADD X00, XT0
4: ADC X01, XT1 ROL8 skipped
5: ADIW R30, 6 Round 3 start
6: MOVW XT0, X00
7: LD RK, Z+
8: EOR XT0, RK
9: LD RK, Z+
10: EOR XT1, RK
11: LDI X30, 0x65
12: LDI X31, 0x77
13: ADD X30, XT0
14: ADC X31, XT1
15: LSL X30
16: ROL X31
17: ADC X30, ZERO
18: LDI RC, 4
19: EOR X01, RC Round 4 start, XOR on upper register
20: LDI XT0, 0xDC
21: LDI XT1, 0xCA
22: ADD X01, XT0 XOR in reverse order of registers
23: ADC X00, XT1 XOR in reverse order of registers
24: LDI X10, 0x02 Round 5 start

[Table 3-2] Implementation code of proposed CHAM (RC: round
counter, RK: round key, X00~X31: plaintext, XT: temporary register,

Zero: zero register)

- 24 -

round 3, where the ADIW instruction first shifts the lower address of
the skipped round key, followed by normal operations, with lines

25: LDI X11, 0X32
26: ADIW R30, 4 Round 6 start
27: MOVW XT0, X30
28: LSL XT0
29: ROL XT1
30: ADC XT0, ZERO
31: LD RK, Z+
32: EOR XT0, RK
33: LD RK, Z+
34: EOR XT1, RK
35: LDI X20, 0x0B Load in reverse order of registers
36: LDI X21, 0x3D Load in reverse order of registers
37: ADD X21, XT0
38: ADC X20, XT1
39: LDI RC, 7
40: MOVW XT0, X00 Round 7 start
41: EOR X30, RC
42: LD RK, Z+
43: EOR XT1, RK
44: LD RK, Z+
45: EOR XT0, RK
46: ADD X30, XT1
47: ADC X31, XT0
48: LSL X30
49: ROL X31
50: ADC X30, ZERO
51: INC RC

- 25 -

11-12 fetching precomputed values. The round counter, which had
not been modified until this point, is updated at line 18. Lines 19-23
implement round 4, which is nearly identical to round 0, except that
an XOR operation is performed with the round counter before the
computation begins. In round 0, XOR with 0 would yield the same
result, so it was omitted, but round 4 requires XOR due to the round
counter.

Lines 24-25 implement round 5, which, like rounds 1 and 2, can
be fully skipped. However, a load operation is added, as the values
are needed for round 6. Lines 26-39 represent round 6, structured
similarly to round 3. Finally, the implementation of round 7 in lines
40-51 completes the process, as no further parts can be skipped.

Since logical block rotation, described in section 3.1.2, is applied,
no word-level rotation occurs at the end of each round. The eight
left-rotate operations are also omitted in lines 4, 19, 22, 23, 35, and
36. These rotations would have required the MOV instruction and an
additional temporary register, necessitating a total of three MOV
instructions, which were successfully avoided. CHAM-128/128 and
CHAM-128/256 can be implemented in a similar manner.

The implementation outlined in [Table 3-2] pertains to a
fixed-key scenario, assuming that the secret key remains unchanged.
The implementation utilizes the LDI instruction to load predefined
values, meaning that if the key varies, these values must also be
adjusted. Therefore, in environments where the key changes, this
implementation is not feasible. Additional modifications are required to
accommodate key variability, as illustrated in [Figure 3-5].

- 26 -

[Figure 3-5] Two implementation scenarios for the variable key
model

The scenario of generating precomputed values while processing
the first block can be divided into two cases. The first case involves
generating only the precomputed values without encrypting the first
block, corresponding to [Figure 3-5] (a). In this case, only the first
8 rounds are executed to generate the precomputed values, and then
the computation halts. Once these values are generated, all blocks,
including the first, can be precomputed. This approach is referred to
as the "separated model."

The second case involves generating the precomputed values while
simultaneously processing the first block to completion, as shown in
[Figure 3-5] (b). This is referred to as the "online model." The
advantage of the online model is that it avoids repeating the initial 8
rounds for the first block. However, it has the drawback of increased
code complexity. Even in the variable-key scenario, the register
allocation remains largely unchanged from [Figure 3-4]. However,
due to the need to load the precomputed table, the address of the
table is stored in registers R28 and R29, which are then used as the
Y pointer register. In the case of CHAM-128/128 and

- 27 -

CHAM-128/256, the temporary values that were previously stored in
R28 and R29 are moved to R2 and R3, allowing R28 and R29 to
function as the Y pointer register for table access.

Assuming that the key changes, the first block of the input
plaintext cannot undergo precomputation. Consequently, standard
encryption must be performed for the first block. During this process,
there is a need to store precomputed values, which will later be used
for precomputation. In the proposed CHAM scheme, there are five
points at which precomputed values are called. As a result, when
encrypting the first block, five values must be stored to enable
precomputation for subsequent blocks. Since CHAM-64/128 uses
16-bit words, five values require storing 10 bytes. In the case of
CHAM-128/128 and CHAM-128/256, which use 32-bit words,
double the storage—20 bytes—is required.

Once the encryption of the first block is complete, precomputed
values can be used for subsequent blocks. From this point forward,
the initial eight rounds can be rapidly processed using the
precomputation technique outlined in the code provided in [Table 3-
2].

3.1.4 Alternative Implementation: Furious CHAM
The total round keys for CHAM-64/128 amount to 32 bytes, and

they are reused over 88 rounds. Upon reviewing the register
allocation plans in [Figure 3-4] (a), it is evident that several
registers remain unused during the implementation of CHAM-64/128.
Given the structural characteristic of CHAM, where round keys are
reused across rounds, preloading the round keys could reduce the
number of load operations, thereby enhancing computational efficiency.
This optimized approach is termed "Furious CHAM."

- 28 -

With 16 registers available, it becomes possible to preload half of
the round keys (16 bytes out of the total 32 bytes). This allows the
omission of round key loads for 40 of the 80 rounds, excluding the
initial 8 rounds. Since each round involves the loading of 2 bytes of
round keys, omitting 80 LD instructions corresponds to a savings of
160 cycles.

[Figure 3-6] Register allocation plan for furious CHAM

To implement Furious CHAM, a new register allocation plan is
proposed, as outlined in [Figure 3-5] (a) and (b). In the fixed-key
scenario at [Figure 3-5] (a), only the plaintext and round key
pointers are required, allowing the free use of the Y register (R28,
R29). Additionally, since R28 and R29 are not callee-saved registers,
the need for PUSH and POP operations is eliminated, providing a
further efficiency advantage.

In the variable-key scenario at [Figure 3-5] (b), a similar
register allocation is applied, but the storage location of the plaintext
differs. In the fixed-key scenario, the precomputed values remain
constant, allowing the use of the LDI instruction, which is one cycle
faster than the LD instruction. However, LDI can only be used with

- 29 -

registers R16 to R31, so plaintext was stored in R18 to R25. In the
variable-key scenario, since the precomputed values cannot be
fetched via LDI and must be accessed via LD, this constraint does
not apply.

Nonetheless, even when using LD, it is possible to maintain the
same register allocation. The reason for altering the plaintext
registers more precisely lies in the need to preserve the pointer
value passed as a parameter. Unlike the fixed-key scenario, the
variable-key scenario requires an additional pointer to store the
precomputed values (table pointer). Since the parameter pointers are
stored starting at R24 and R25, the third pointer is stored in R20 and
R21. If the plaintext pointer is moved to X or Z and values are
loaded as in the fixed-key scenario, there is a risk of losing the
table pointer stored in R20 and R21. While the use of MOVW, PUSH,
and POP instructions could prevent this, it would result in additional
cycle costs, making the alternative register allocation plan more
efficient.

Although it is possible to load the round keys before the plaintext,
this approach is less efficient because round keys require more
registers than plaintext. Therefore, using MOVW or PUSH and POP
instructions would be unavoidable in that case.

3.2 TinyJAMBU with Reverse Bitwise Shift
3.2.1 Reverse Bitwise Shift
TinyJAMBU exhibits a high dependency on keyed permutations, as

demonstrated in [Table 3-3], where the number of keyed
permutations performed at each stage is indicated.

[Table 3-4] presents the pseudocode of the keyed permutations.
It can be observed that when generating t2, t3, and t4, the same

- 30 -

Step
Key length

128-bit 192-bit 256-bit
Initialization: Key setup 1,024 1,152 1,280

Initialization: Nonce setup 640 640 640
Processing associated data 640 640 640

Encryption/Decryption 1,024 1,152 1,280
Finalization 1,024 / 640 1,152 / 640 1,280 / 640

[Table 3-3] Number of keyed permutations each step in tinyJAMBU

state block is used, and it is shifted in the same direction. Since each
state block of TinyJAMBU consists of 32 bits, it occupies four
registers on the AVR processor. In the pseudocode of [Table 3-4],
the s2 state block undergoes shifts of 6, 21, and 27 times,
respectively.

Input: State s0, s1, s2, s3(32-bit each), Key k, Round n
Output: State s0, s1, s2, s3(32-bit each)
1: StateUpdate(s0, s1, s2, s3, k, n)
2: for i = 0 to n
3: t1 = (s1>>15)|(s2<<17)
4: t2 = (s2>>6)|(s3<<26)

[Table 3-4] Pseudocode for keyed permutation(<<n: bitwise left
shift n times, >>n: bitwise right shift n times, |: bitwise OR, &:

bitwise AND, ^: bitwise XOR, ~: bitwise NOT)

- 31 -

However, by utilizing the values stored in the registers, as shown
in [Figure 3-4], a total of 27 shifts can be reduced to 6, 15, and 6
shifts, respectively. Consequently, the required size for s2 during
computation is 26 bits, 11 bits, and 5 bits, respectively. By reusing
the values left in the registers, it becomes possible to reduce the
number of shifts compared to the reference implementation, leading to
a more efficient computation.

[Figure 3-7] S2 state computation structure using AVR assembly
instructions

5: t3 = (s2>>21)|(s3<<11)
6: t4 = (s2>>27)|(s3<<5)
7: feedback = s0^t1^(~(t2&t3))^t4^k
8: s0 = s1
9: s1 = s2
10: s2 = s3
11: s3 = feedback
12: end for

- 32 -

Additionally, if the 8-bit operations of the AVR processor’s
registers are utilized, the number of shifts can be further minimized.
In the second stage of [Figure 3-4], the remaining 11 bits are
stored across R0, R1, and R2, with only the most significant bit of
R2 being used. Thus, instead of shifting 15 times to obtain 11 bits,
shifting once in the opposite direction allows the required 11 bits to
be retained in R0 and R1. Similarly, the final 5 bits can be found by
shifting twice in the opposite direction, as only the second bit of R1
is needed. Therefore, by reversing the direction of the shifts, as
illustrated in [Figure 3-7], all necessary values can be obtained with
6 shifts in the first stage, 1 shift in the second, and 2 shifts in the
third, resulting in a total of 9 shifts to complete the computation of
the s2 block. [Figure 3-7] also shows that the red outline values are
the same as the original results.

[Figure 3-8] Proposed RBS applied to s2 state calculation

The s3 state block can be processed similarly. However, unlike s2,
s3 is shifted to the right, with the shift count decreasing in later
stages. Since some values may already be lost in the early stages
due to the large number of shifts, the computation proceeds in
reverse order. Typically, as shown in [Figure 3-8], 5, 6, and 15

- 33 -

shifts are required, totaling 26 shifts.
By reversing the direction of the shifts, as done with the s2 block,

the number of shifts can be reduced which described at [Figure 3-
9]. Specifically, the first stage proceeds with 5 shifts as usual, while
the second stage, which requires 21 bits, can be obtained by shifting
twice in the opposite direction and utilizing the values from R1, R2,
and R3. In the final stage, which requires 6 bits, the values in R2
and R3 are shifted once in the opposite direction, and only the value
from R3 is used. Similarly, the values indicated by the red line in
[Figure 3-9] are the same as the existing results at [Figure 3-8].

[Figure 3-9] S3 state flow with AVR assembly implementation

[Figure 3-10] S3 state calculation with RBS technique applied
The temporary value t1 is generated using the s1 and s2 state

- 34 -

blocks, which are not involved in the generation of other temporary
values. Thus, a separate implementation is performed to generate this
value. The s1 block undergoes a 15-bit right shift, leaving the upper
17 bits intact. By using a RBS implementation, 24 bits from s1 can be
loaded, and a single RBS will yield the required value, as illustrated
in [Figure 3-10] (a) and (b). [Figure 3-10] (a) represents the
implementation using the conventional method, while [Figure 3-10]
(b) shows the implementation with the RBS applied. The section
marked with the red line in [Figure 3-10] (b) demonstrates that the
result matches the output of [Figure 3-10] (a).

[Figure 3-11] Operation process with the previous s1 state block
operation and RBS applied

For s2, a 17-bit left shift is performed to retain the lower 15
bits. This can be implemented without Reverse Bitwise Shifting by
loading only the lower 16 bits and shifting once to the left to obtain
the desired value, as shown in [Figure 3-11] (a) and (b). In [Figure
3-11] (a), the operation is performed by shifting s2 15 times,
whereas in [Figure 3-11] (b), the result is obtained by shifting in
the same direction but only once. Although the number of shifts

- 35 -

differs, it can be observed that both yield identical computation
results.

[Figure 3-12] Operate s2 state block with single shift

By employing reverse bitwise shifts, the number of required shifts
in the original TinyJAMBU can be drastically reduced, even more than
the method of reusing accumulated values. The differences in shift
counts between the various implementations are summarized in [Table

Case Reference Assembly RBS
s1>>15 15 15 6
s2<<17 17 17 1
s2>>6 6 6 2
s2>>21 21 15 5
s2>>27 27 6 2
s3>>5 5 5 1

[Table 3-5] Number of shifts for each implementation

- 36 -

3-5].
3.2.2 Register Scheduling, Instructions Used and Implementation
To implement the proposed TinyJAMBU, a register allocation plan,

as illustrated in [Figure 3-13], is devised.

[Figure 3-13] Register allocation plan for RBS TinyJAMBU

Registers R2, R3, R4, and R5 are assigned to store the
computation result state variables, while registers R6 through R13 are
allocated for storing the input state variables. Registers R14, R15,
R16, and R17 are designated as temporary registers to hold
intermediate values during the computation. Additionally, registers R18
through R22 are used for storing key values, and registers R28
through R31 are allocated for storing pointer addresses. The types of
instructions used in the implementation can be found in [Table 3-6].

[Table 3-7] presents the source code implementation of a keyed
permutation that incorporates reverse bitwise shifts. The code
includes only the portions where t1, t2, t3, and t4 are generated during

s3>>11 11 6 1
s3>>26 26 15 1

- 37 -

the overall keyed permutation process. Lines 1-8 cover the loading

Mnemonic Operands Description Operation
ADD Rd, Rr Add without Carry Rd←Rd+Rr
CLR Rd Clear Register Rd←Rd⊕Rd
COM Rd One’s Comeplement Rd←$FF-Rd
EOR Rd, Rr Exclusive OR Rd←Rd⊕Rr

LDD Rd, Y+q Load Indirect with
Displacement Rd←(Y+q)

LDD Rd, Z+q Load Indirect with
Displacement Rd←(Z+q)

LSL Rd Logical Shift Left
Rd(n+1)←Rd(n)

Rd(0)←0
C←Rd(7)

MOVW Rd, Rr Copy Register Word Rd+1:Rd←Rr+1:Rr
OR Rd, Rr Logical OR Rd←Rd v Rr
POP Rd Pop Register from Stack Rd←STACK

PUSH Rr Push Register on Stack STACK←Rr

ROL Rd Rotate Left Through
Carry

Rd(n)←Rd(n+1)
Rd(7)←0
C←Rd(0)

STD Y+q, Rr Store Indirect with
Displacement (Y+q)←Rr

STD Z+q, Rr Store Indirect with
Displacement (Z+q)←Rr

[Table 3-6] List of instructions used in implementation for
TinyJAMBU in alphabetical order

- 38 -

of required values. In lines 9-12, the left shift operation for s1 is
used to calculate the first part of t1, replacing the original 15 right
shifts with a single left shift. Lines 13-17 prepare for subsequent
operations, a process that appears intermittently after shifting each
state block.

Lines 18-19 handle the computation of the second part of t1,
where s2 is shifted left once instead of the 17 left shifts in the
original method. Lines 20-25 are further preparation steps for the
next operations. From lines 26-49, the front part of t2 is computed
by shifting s2 six times to the right, following the original procedure.

Lines 56-75 cover the calculation of the back part of t4, where s3
is shifted left five times. Since the initial shift of each state block
remains unchanged, this step mirrors the original process. Lines
80-87 simplify the calculation of the back part of t3 by replacing the
original 11 left shifts with two right shifts.

Lines 91-92 compute the back part of t2 from s3, where the
original 26 left shifts are replaced by a single right shift. Lines
94-96 compute the front part of t3, shifting s2 left once instead of
the original 21 right shifts. Finally, in lines 101-104, the front part

Line Code Comment
1: LDD R2, Y+0 Load state
2: LDD R3, Y+1
3: LDD R4, Y+2
4: LDD R5, Y+3

[Table 3-7] Implementation code of proposed TinyJAMBU (RC:
round counter, RK: round key, X00~X31: plaintext, XT: temporary

register, Zero: zero register)

- 39 -

5: LDD R6, Y+5
6: LDD R7, Y+6
7: LDD R8, Y+7
8: CLR R9
9: LSL R6 Front t1: s1>>15 → s1<<1
10: ROL R7
11: ROL R8
12: ROL R9
13: EOR R2, R7
14: EOR R3, R8
15: EOR R4, R9
16: LDD R6, Y+8
17: LDD R7, Y+9
18: LSL R6 Rear t1: s2<<17 → s2<<1
19: ROL R7
20: EOR R4, R6
21: EOR R5, R7
22: LDD R6, Y+8
23: LDD R7, Y+9
24: LDD R8, Y+10
25: LDD R9, Y+11
26: LSR R9 Front t2: s2>>6 (same as original)
27: ROR R8
28: ROR R7
29: ROR R6
30: LSR R9
31: ROR R8
32: ROR R7

- 40 -

33: ROR R6
34: LSR R9
35: ROR R8
36: ROR R7
37: ROR R6
38: LSR R9
39: ROR R8
40: ROR R7
41: ROR R6
42: LSR R9
43: ROR R8
44: ROR R7
45: ROR R6
46: LSR R9
47: ROR R8
48: ROR R7
49: ROR R6
50: MOVW R14, R6
51: MOVW R16, R8
52: LDD R10, Y+12
53: LDD R11, Y+13
54: LDD R12, Y+14
55: LDD R13, Y+15
56: LSL R10 Rear t4: s3<<5 (same as original)
57: ROL R11
58: ROL R12
59: ROL R13
60: LSL R10

- 41 -

61: ROL R11
62: ROL R12
63: ROL R13
64: LSL R10
65: ROL R11
66: ROL R12
67: ROL R13
68: LSL R10
69: ROL R11
70: ROL R12
71: ROL R13
72: LSL R10
73: ROL R11
74: ROL R12
75: ROL R13
76: PUSH R10
77: PUSH R11
78: PUSH R12
79: PUSH R13
80: LSR R13 Rear t3: s3<<11 → s3>>2
81: ROR R12
82: ROR R11
83: ROR R10
84: LSR R13
85: ROR R12
86: ROR R11
87: ROR R10
88: PUSH R10

- 42 -

of t4 is calculated from s2, reducing the original 27 left shifts to just
two, enabled by the proposed RBS technique.

3.2.3 Alternative Implementation: Initialization Skip
During the initialization step of TinyJAMBU, the key and nonce are

set. If the key has changed, this process must be repeated; however,
in environments such as the Internet of Things (IoT), the key and
nonce may not be updated frequently. In such cases, the previously

89: PUSH R11
90: PUSH R12
91: LSR R11 Rear t2: s3<<26 → s3>>1
92: ROR R10
93: OR R9, R10
94: LSL R15 Front t3: s2>>21 → s2<<1
95: ROL R16
96: ROL R17
97: POP R12
98: POP R11
99: POP R10
100: OR R10, R17
101: LSL R16 Front: t4: s2>>27 → s2<<2
102: ROL R17
103: LSL R16
104: ROL R17
105: POP R13
106: POP R12
107: POP R11
108: POP R10

- 43 -

used key and nonce settings can be retained, eliminating the need to
repeat the initialization process. Skipping this initialization step allows
for faster computation, providing a simple yet effective method for
increasing efficiency. Notably, the number of keyed permutations
required for key and nonce settings during initialization is significantly
higher compared to other stages, so bypassing this step can enhance
computational efficiency.

3.3 Rainbow with Look-Up Table Based Multiplication
3.3.1 Tower-Field Based Multiplication
Rainbow signature uses the Karatsuba polynomial multiplication

algorithm based on tower fields. While Rainbow signature operates
over GF16, it transitions to the subfield GF4 for tower field
operations, and GF4 further transitions to another subfield, GF2. This
hierarchical process is illustrated in [Expression 3-1].

   
   



[Expression 1] Tower-field based multiplication of Rainbow I
signature

The multiplication process for Rainbow signature can be
represented in pseudocode, as shown in [Table 3-8]. In the first to
fourth lines, two 4-bit input values are split into 2-bit segments.
Lines five and six perform multiplications on the lower and upper
2-bit segments, respectively. Line seven involves XORing the upper
and lower 2-bit segments derived from the same values, then
multiplying them to obtain the intermediate value. Line eight
generates the square of the upper 2-bit value, termed as "square."
Lastly, the algorithm XORs the intermediate value with the result of

- 44 -

multiplying the upper 2-bit values, shifts this result by two bits to
the upper segment, and then XORs it with the lower bit multiplication
result and the square, completing the operation.

For the Rainbow signature multiplication, the initial value is
decomposed down to the lowest subfield, GF2, where the computation
takes place. Afterward, during the reconstruction of the result,
modular reduction is applied. ARMv8 architecture includes PMUL and
PMULL instructions that can perform polynomial multiplication in
parallel. However, these instructions cannot be directly applied to the
polynomial multiplication required for Rainbow signature. While PMUL
and PMULL perform modular reduction, they can only do so for
values with a minimum size of 8 bits. Due to the nature of tower
field-based operations in Rainbow signature, these instructions cannot

Input: 4-bit array A, 4-bit constant B
Output: 4-bit accumulated calculation result C
1: a0 ← low 2-bit from A
2: a1 ← high 2-bit from A
3: b0 ← low 2-bit from B
4: b1 ← high 2-bit from B
5: a0b0 ← a0×b0

6: a1b1 ← a1×b1

7: intermediate ← a0^a1×b0^b1

8: square ← a1b1×a1b1

9: C ← ((intermediate^a1b1)<<2)^a0b0^square
10: return C

[Table 3-8] Pseudocode of tower-field based polynomial
multiplication for Rainbow signature (^: bitwise XOR)

- 45 -

handle the modular reduction of carry values generated in the
subfields. To use PMUL and PMULL for Rainbow signature, additional
custom code would be needed to handle the modular reduction in the
subfields, which would reduce efficiency. Therefore, a different type
of multiplication method is required.

3.3.2 Look Up Table Based Multiplication in Rainbow I
In the Rainbow signature scheme, multiplication can be optimized

using a look-up table (LUT). Since the Rainbow scheme involves
performing multiple multiplications with a single value, loading a
look-up table once can yield multiple results, making it well-suited
for parallel implementation. The proposed LUT stores multiplication
results for 4-bit values, as the Rainbow I scheme operates in
GF(16), where operations are performed on 4-bit units. A 4-bit unit
can represent 16 different values, and a 4-bit by 4-bit multiplication
yields 256 possible results. Therefore, the LUT would require 1024
bits, or 128 bytes of storage. However, given that variables are
stored in 8-bit units, the actual size of the LUT becomes 256 bytes.
The full contents of the LUT are detailed in the Appendix's [Table
Appendix-1].

During the multiplication process, a constant value is multiplied
with a variable array. This means that not all values from the LUT
need to be loaded; only the specific 16-byte segment corresponding
to the constant value is required. While the LUT could be loaded
using conditional statements, this introduces variability in load speeds
depending on the constant value. Thus, an alternative method is
employed to avoid such discrepancies.

[Figure 3-14] illustrates the process of loading the table. To
implement the proposed method, the lower 8 bits of the starting

- 46 -

address of the LUT are set to 0x00. Each row in the table contains
16 bytes, so if the starting address is 0x00, the subsequent rows
increment by 0x10, 0x20, and so on. A pointer variable is initialized
to point to the starting address of the LUT. When a constant value is
provided for multiplication, the pointer is adjusted by adding 16 times
the constant value. For instance, if the constant is 0x03, 0x30 is
added to the pointer. The pointer then references the 16-byte row in
the LUT corresponding to the constant, completing the table load
needed for the multiplication operation.

[Figure 3-14] Table loading process in proposed Rainbow signature

This process can be represented in pseudocode as shown in [Table
3-9]. In the first four lines, the table is set up. From lines 5 to 13,
the multiplication operations based on the table values are performed.
Line 14 returns the result.

3.3.3 Resolve of LUT Size Problem in Rainbow III and V
In Rainbow I, computations were performed over GF16, but

- 47 -

Rainbow III and V perform calculations over GF256. Since GF256 is
represented by 8 bits and can express 256 values, the results of
8-bit multiplication yield 65,536 possible values, requiring a lookup
table size of 65,536 bytes. This poses a problem not only due to the
table size increasing by 256 times from the previous 256 bytes but
also because a single lookup now requires loading 256 bytes. Since
vector registers can only hold 16 bytes, loading a 256-byte lookup

Input: 8-bit(4-bit||4-bit) operand array A, 4-bit constant C
Output: 8-bit(4-bit||4-bit) accumulated result R
1: Table address pointer P initialized to first address of LUT
2: C ← C×16
3: P ← P+C
4: Table[16] ← Load table values via P
5: Loop counter LC ← |A|/16
6: for i from 0 until to LC do
7: j ← i×16
8: Alow[j:j+15] ← Alow[j:j+15]&0x0f
9: Ahigh[j:j+15] ← Ahigh[j:j+15>>4
10: Alow[j:j+15] ← Table[Alow[j:j+15]]
11: Ahigh[j:j+15] ← Table[Ahigh[j:j+15]]
12: R[j:j+15] ← R[j:j+15]^(Alow[j:j+15]&(Ahigh[j:j+15]<<4))
13: end for
14: return R

[Table 3-9] Pseudocode of look-up table based polynomial
multiplication for Rainbow I (<<n: bitwise left shift n times, >>n:

bitwise right shift n times, &: bitwise AND, ^: bitwise XOR)

- 48 -

table would require 16 vector registers. This stands in stark contrast
to the previous design, where only one vector register was needed.

Considering that Rainbow III and V also use tower-field-based
multiplication, it is possible to use the original 4-bit multiplication
table instead of an 8-bit multiplication table. However, an additional
16-byte table for precomputed intermediate values is required. Thus,
the total size for the Rainbow signature becomes 256 bytes + 16
bytes, resulting in a total of 272 bytes.

Implementing multiplication with an 8-bit lookup table simplifies
the entire computation, except for the table loading process, but it
comes with the drawback of requiring a large number of vector
registers and an excessively large table size. On the other hand,
implementing 8-bit multiplication by breaking it down into 4-bit units
reduces the required vector register allocation and decreases the table
size by approximately 99.58%. However, the computation process
becomes slightly more complex, and when expressed in pseudocode, it
takes the form shown in [Table 3-10]. In lines 1-13, the necessary
table is called, preparing for the calculations and setting the number
of iterations. From lines 14-31, the required values are sequentially
fetched, and the table-based computation is performed. Since the
operands are expressed in 8-bit form, they are first divided into
4-bit segments before calculation. Notably, there is an additional step
where a 16-byte table is loaded. If the table loading is included
within the loop, it could slow down the computation, as the table
would be reloaded in each iteration. However, in the actual
implementation, the loop is not applied, and this approach is used only
in the pseudocode. The result of the computation is returned in line
32.

- 49 -

Input: 8-bit operand array A, 8-bit constant C
Output: 8-bit accumulated result R
1: Table address pointer P initialized to first address of LUT
2: Clow ← C&0x0f
3: Clow ← Clow×16
4: P ← P+Clow

5: Tablelow[16] ← Load table values via P
6: Table address pointer P initialized to first address of LUT
7: Chigh ← C>>4
8: Chigh ← Chigh×16
9: P ← P+Chigh

10: Tablehigh[16] ← Load table values via P
11: Table address pointer P initialized to first address of LUTA

12: TableA[16] ← Load table values via P
13: Loop counter LC ← |A|/16
14: for i from 0 until to LC do
15: j ← i×16
16: Alow[j:j+15] ← Alow[j:j+15]&0x0f
17: Ahigh[j:j+15] ← Ahigh[j:j+15]>>4
18: Amiddle[j:j+15] ← Alow[j:j+15]^Ahigh[j:j+15]
19: Alow[j:j+15] ← Table[Alow[j:j+15]]

[Table 3-10] Pseudocode of look-up table based polynomial
multiplication for Rainbow III and V(<<n: bitwise left shift n times,
>>n: bitwise right shift n times, &: bitwise AND, ^: bitwise XOR,

A: additional)

- 50 -

3.3.4 Register Scheduling and Instructions Used
The instructions in [Table 3-11] are the commands used to

implement the Rainbow signature. Since the ARMv8 processor
supports both general instructions and vector instructions, the vector

20: Ahigh[j:j+15] ← Table[Ahigh[j:j+15]]
21: Clow ← C&0x0f
22: Chigh ← C>>4
23: Cmiddle ← Clow^Chigh

24: Table address pointer P initialized to first address of LUT
25: P ← P+Cmiddle

26: Tablemiddle[16] ← Load table values via P
27: Amiddle[j:j+15] ← Tablemiddle[Amiddle[j:j+15]]
28: Alow[j:j+15] ← Alow[j:j+15]^Amiddle[j:j+15]
29: Ahigh[j:j+15] ← TableA[Ahigh[j:j+15]]
30: R[j:j+15] ← R[j:j+15]^(Alow[j:j+15]&(Ahigh[j:j+15]<<4))
31: end for
32: return R

Mnemonic Operands Description Operation

ADD Xd, Xn, #imm Add registers
immediate Xd←Xn+#imm

ADR Xd, (Label) Form PC-relative
address Xd←address

[Table 3-11] List of instructions used to implement Rainbow
signatures in alphabetical order

- 51 -

B (Label) Branch Go to label

BEQ (Label) Branch if it is
equal Go to label

CBNZ Xt, (Label) Compare and
branch on nonzero Go to label

CMP Xd, #imm Compare Flags←result

LSL Xd, Xn, #shift Logical shift left
immeidate Xd←Xn<<#shift

MOV Xd, #imm Move immediate Xd←#imm

RET {Xn} Return from
subroutine Return

SUB Xd, Xn, #imm Subtract
immediate Xd←Xn-#imm

AND Vd.T, Vn.T, Vm.T Bitwise AND Vd←Vn&Vm
EOR Vd.T, Vn.T, Vm.T Bitwise XOR Vd←Vn⊕Vm

LD1 Vt.T, [Xn]
Load multiple

single-element
structures

Vt←[Xn]

MOVI Vt.T, #imm Move immediate Vt←#imm

SHL Vd.T, Vn.T, #shift Shift left
immediate Vd←Vn<<#shift

ST1 Vt.T, [Xn]
Store multiple
single-element

structures
[Xn]←Vt

TBL Vd.T, {Vn.16B}, Table vector Vd←Vn[Vm]

- 52 -

instructions that utilize vector registers are listed separately. [Figure
3-] shows the register allocation plan for the proposed
implementation. As with the instructions, the general registers and
vector registers are separated and represented distinctly. In the
general registers, x0 and x1 are used to store address values, while
x2 holds operand constants, and x3 records the size of the input
array. The x4 and x5 registers are used for temporary variables. In
the vector registers, v0–v15 store the operand arrays, and v16–v23
are additionally used for storing operand arrays in Rainbow III and V.
Registers v28 and v29 store additional lookup table values, while v30
is used for the general lookup table. The v31 register holds the
constant value 0x0f for specific AND operations.

[Figure 3-15] Register allocation plan for Look-up table based
Rainbow signature

Vm.T Lookup

USHR Vd.T, Vn.T, #shift Unsigned shift
right immediate Vd←Vn>>#shift

- 53 -

The actual implementation code for Rainbow I is shown in [Table
3-12], and it operates in the same way as the pseudocode. The
multiplier design operates on 4-bit units, but the actual computation
is carried out in 8-bit units, with the minimum size of a vector
register also being 8 bits. Consequently, although the vector register
is 128 bits in size, it can fetch 16 values in parallel from the lookup

table at once. The implementation source code for Rainbow III and V
can be found in [Table Appendix-2]. Rainbow III and V perform
multiplication over GF256, making their source code slightly longer
and more complex compared to Rainbow I.

Line Code Comment
1: MOVI v31.16b, #15
2: ADR x4, MUL_TABLE Initial address
3: LSL w2, w2, #4 Multiplied by 16
4: ADD x4, x4, x2 Get table address
5: LD1.16b {v30}, [x4] Load table values
6: LD1.16b {v1}, [x1]
7: AND.16b v0, v1, v31 Divide into 4-bit
8: USHR.16b v1, v1, #4
9: TBL.16b v0, {v30}, v0 Table look-up
10: TBL.16b v1, {v30}, v1
11: SHL.16b v1, v1, #4
12: EOR.16b v0, v0, v1
13: LD1.16b {v1}, [x0]
14: EOR.16b v1, v1, v0
15: ST1.16b {v1}, [x0] Return

[Table 3-12] Implementation code of proposed multiplication (x0:
output address, x1: operand address, x2(w2): constant)

- 54 -

3.3.5 Alternative Implementation: Avoiding Cache Side Attack
The proposed optimized implementation of the Rainbow signature

has a potential vulnerability where timing information could be leaked
during the lookup table access process. To mitigate this risk, an
additional timing attack-resistant implementation is presented. This
implementation introduces two approaches, the first being a cache
side attack-resistant method.

This approach is inspired by the characteristics of the M1
processor, which has a 128-byte cache line size, the 256-byte size
of the full lookup table, and the aligned memory addresses of the
table. In the proposed method, when 16 bytes of a specific table are
loaded, the M1 processor’s cache stores an additional 128 bytes from
the adjacent table in the cache line. By proactively loading the
remaining 128 bytes into the cache, cache hits are always ensured,
effectively obfuscating cache timing information. The implementation
is structured as shown in [Table 3-13].

Line Code Comment
1: ADR x4, MUL_TABLE Initial address
2: LSL w2, w2, #4 Multiplied by 16
3: ADD x4, x4, x2 Get table address
4: LD1.16b {v30}, [x4] Load table values
5: SUB x4, x4, x2 Address recovery
6: ROR w2, w2, #4
7: XOR w2, w2, #80 Offset move

[Table 3-13] Implementation code of cache side attack resistance
implementation. (x2(w2): constant)

- 55 -

In lines 1–4, a 16-byte table is called, following the same process
as in the original [Table 3-12]. During this step, the 128 bytes
adjacent to the currently called lookup table are also loaded into the
cache. In lines 5–6, the table is reset to its initial address. Line 7
modifies the offset value used to specify the table by XORing it with
0x80, ensuring that the offset always points to the opposite
128-byte segment, regardless of the original offset. Lines 8–10 call
the new lookup table, but the loaded data are not used directly.
Instead, this step ensures that the remaining 128 bytes are stored in
the cache.

Through this process, the entire lookup table is stored in the
cache, ensuring that all accesses result in cache hits, thereby
eliminating timing information leaks related to cache access.

Another implementation is the constant-time version. The process
of loading table values typically involves conditional statements, such
as if-else constructs, which can cause variations in execution time
depending on the condition. If execution time depends on secret
information, it introduces the risk of timing attacks, where secret
values can be inferred from timing variations. The constant-time
implementation ensures that all operations are executed in a uniform
amount of time. In the proposed method, the constant-time
implementation guarantees identical execution times when loading
values into registers.

To achieve this, the entire 256-byte lookup table is preloaded into

8: LSL w2, w2, #4
9: ADD x4, x4, x2 Get other address
10: LD1.16b {v27}, [x4] Load other table

- 56 -

registers. According to [Figure 3-15], when implementing Rainbow I,
registers v16 to v29 are unused, while v30 is used to store lookup
table values and v31 is used for the constant value required to split
data into 4-bit segments. These 16 registers, capable of holding 256
bytes in total, are used to preload all table values.

The offset value determining the table load ranges from 0 to 15.
The implementation divides the table into two branches based on the
midpoint value of 8. In the second stage, each branch is further
divided into two sub-branches using midpoint values of 4 and 12.
This process continues iteratively until the final branch is reached, at
which point the value in the corresponding register is moved to the
actual usage register, v30.

To ensure uniform execution time across all paths, dummy branch
instructions are inserted in cases where the condition is not met.
This ensures that every branch has the same number of instructions,
maintaining consistent execution times regardless of the input. The
complete implementation can be found in [Table Appendix-3].

- 57 -

4. Performance Evaluation

4.1 Evaluation CHAM Block Cipher
The performance evaluation of the optimized CHAM block cipher

implementation is conducted on the AVR processor, specifically the
ATmega128, using the Microchip Studio IDE. The performance metric
used is cycles per byte (cpb), with an overall performance summary
provided in [Figure 4-1].

[Figure 4-1] Performance Measurement Results for CHAM (Unit:
clock cycles per byte, 32-bit: 32-bit counter of CHAM-64/128)

The original CHAM algorithm yields 188, 203, and 219 cpb for
CHAM-64/128, 128/128, and 128/256, respectively. The proposed

- 58 -

CHAM optimization techniques include various versions, starting with
the fixed-key scenario implementation.

In the fixed-key scenario, the implementations achieve 158.8,
162.8, 184, and 197 cpb for CHAM-64/128 (16-bit counter), 64/128
(32-bit counter), 128/128, and 128/256, respectively. This
corresponds to performance improvements of 18.4%, 15.5%, 10.3%,
and 11.2%. The proposed methods optimize operations by omitting a
significant number of computations in the initial 8 rounds and
employing techniques like logical block rotation to maintain efficient
processing in subsequent rounds.

For the variable-key scenario, a look-up table must be generated,
and two models are provided: the separated model and the online
model. The separated model is less efficient, as it effectively
encrypts the first plaintext block twice. In contrast, the online model
avoids redundant encryption and achieves performance improvements
of 11.9%, 11.9%, 5.7%, and 6.8% for CHAM-64/128 (16-bit
counter), 64/128 (32-bit counter), 128/128, and 128/256,
respectively. In the actual variable-key scenario, after generating the
look-up table, the encryption proceeds using the precomputed table,
resulting in performance gains of 16.8%, 14.6%, 9.7%, and 10.6%
compared to the original implementation.

[Figure 4-cf] shows the performance measurement results for
Furious CHAM. Due to the characteristics of the implementation
environment, only CHAM-64/128 was implemented, and the 32-bit
counter was not considered. The performance results indicate that the
fixed-key scenario implementation achieves 148.1 cpb. In the
variable-key scenario, the process of generating the look-up table
and performing encryption takes 155.8 cpb, while the encryption
process alone in the variable-key scenario requires 150 cpb. These

- 59 -

results represent performance improvements of 26.9%, 20.7%, and
25.3%, respectively, compared to the original implementation.

[Figure 4-2] Performance Measurement Results for Furious
CHAM-64/128 (Unit: clock cycles per byte)

4.2 Evaluation TinyJAMBU Lightweight Cipher
The performance evaluation of the TinyJAMBU implementation was

conducted using the Microchip Studio IDE on the ATmega128
processor. Clock cycles were used as the performance metric, and an
8-byte plaintext input was selected for the tests. The performance of
TinyJAMBU’s keyed permutation was compared across three
implementations: the original TinyJAMBU reference, an
assembly-optimized version, and the proposed implementation that
incorporates RBS optimization.

Performance measurements were carried out for 640 keyed
permutations with various key lengths, and for 1024, 1152, and 1280
keyed permutations, which correspond to key lengths of 128-bit,
192-bit, and 256-bit, respectively. The results are summarized in
the graph in [Figure 4-3].

- 60 -

[Figure 4-3] Performance Measurement Results for Keyed
permutation of TinyJAMBU (Unit: clock cycles)

For the reference implementation, the cycles recorded for 640/128,
640/192, 640/256, 1024, 1152, and 1280 keyed permutations were
21,752, 22,325, 21,752, 34,736, 40,088, and 43,392, respectively.
The 640 keyed permutation showed little variation in performance
across different key lengths because the number of repetitions
remained constant. However, as the number of keyed permutations
increased like 1024, 1152, 1280, the cycle count also increased.

The assembly-optimized version recorded 20,135, 20,968, 20,278,
32,177, 37,203, and 40,488 cycles, respectively, representing
performance improvements of 8.0%, 6.5%, 7.3%, 8.0%, 7.8%, and
7.2% compared to the reference implementation. Although no special
optimization techniques were applied, the assembly version showed

- 61 -

slightly better performance than the reference C implementation.
The RBS optimization method recorded 3,594, 3,597, 3,596, 5,706,

6,415, and 7,118 cycles, achieving significant performance
improvements of 505.2%, 520.7%, 504.9%, 508.8%, 524.9%, and
509.6%, respectively, compared to the reference implementation. This
remarkable performance enhancement is due to the effective use of
RBS and optimization techniques tailored to the AVR processor, which
significantly improved the efficiency of the keyed permutation.

The performance evaluation of the encryption and decryption
processes in TinyJAMBU, each employing different keyed
permutations, is presented. The results are summarized in the graph
in [Figure 4-4]. An analysis of the encryption and decryption
performance reveals that there is minimal difference between the two,
as TinyJAMBU employs the same structure for both operations. For
ease of comparison, a detailed analysis is performed on the
encryption process only.

For the reference implementation, the cycle counts for key lengths
of 128-bit, 192-bit, and 256-bit are 217,043, 239,765, and 249,900,
respectively. In contrast, the assembly implementation records
208,397, 233,214, and 244,698 cycles for the respective key lengths,
showing performance improvements of 4.1%, 2.8%, and 2.1% over the
reference implementation. The implementation using the RBS
technique, however, achieves cycle counts of 37,970, 40,818, and
43,626 for the respective key lengths. Compared to the reference
implementation, these results represent performance enhancements of
471.6%, 487.2%, and 472.8%.

The RBS technique not only reduces the number of shifts but also
decreases the number of registers involved in shift

- 62 -

[Figure 4-4] Performance Measurement Results for TinyJAMBU
(Unit: clock cycles, I: Initialization skip implementation)

operations, thereby significantly reducing the number of instructions
required, making it even more efficient than the proposed structure.

The performance of an additional implementation incorporating the
initialization-skipping technique is also compared. This technique,
which is beneficial in environments where the key and nonce are

- 63 -

reused, can be applied universally to all implementation types. When
the initialization-skipping technique is used, performance
improvements of up to 82.9% for the reference implementation,
80.9% for the assembly-optimized implementation, and 77.6% for the
RBS implementation are observed. The combined effect of the RBS
and initialization-skipping techniques yields up to a 915.3%
performance improvement over the reference implementation.

4.3 Evaluation Rainbow Post-Quantum Cryptography
In this section, the performance evaluation of the Rainbow

signature algorithm is presented. The implementation was worked
using Xcode IDE. The first focus is on assessing the performance of
the proposed multiplier. The evaluation results are shown in the graph
in [Figure 4-5]. For the reference implementation, the F16 and F256
multipliers required 355 and 16,557 cycles, respectively. In contrast,
the proposed method required only 58 and 99 cycles, corresponding to
performance improvements of 512.1% and 16,624.2%, respectively.
Similarly, on the A13 processor, the F16 and F256 multipliers
demonstrated performance enhancements of 477.9% and 13,485.8%,
respectively. On the BCM2711, the improvements were even more
significant, with performance gains of 42,723.3% and 42,773.1% for
the F16 and F256 multipliers, respectively.

The Rainbow algorithm has several variant implementations, and
performance measurements have been conducted on different
processors. Here, the performance evaluation focuses on the Apple
M1 processor, while data for other processors are provided in the
Appendix.

- 64 -

[Figure 4-5] Performance Measurement Results for table based
multiplier of proposed Rainbow signature in log scale (Unit: clock

cycles)

The performance results for Rainbow I are presented in [Figure
4-6]. When comparing the reference implementation of Rainbow I
Classic to the proposed method, the improvements for key generation,
signing, and verification processes were 1490.7%, 919.4%, and
4614.3%, respectively. Similarly, for the Rainbow I Circumzenithal
version, performance improvements of 1569.3%, 578.7%, and 35.2%

- 65 -

were observed. The Rainbow I Compressed version showed
enhancements of 1567.4%, 882.4%, and 35.3% for keygen, sign, and
verify, respectively.

[Figure 4-6] Performance Measurement Results for Rainbow I on
Apple M1 processors expressed in log scale (Unit: 106 clock cycles)

Next, the performance evaluation results for Rainbow III on the
M1 processor are shown in [Figure 4-7]. The Rainbow III Classic
version demonstrated performance improvements of 3464.1%,
1296.5%, and 389.2% for key generation, signing, and verification,
respectively. The Rainbow III Circumzenithal version yielded

- 66 -

[Figure 4-7] Performance Measurement Results for Rainbow III on
Apple M1 processors expressed in log scale (Unit: 106 clock cycles)

improvements of 3713.6%, 1289.4%, and 1273.7%, while the Rainbow
III Compressed version achieved 3713.4%, 2147.6%, and 37.3%
enhancements in the same processes.

Lastly, the performance measurements for Rainbow V on the M1
processor are summarized in [Figure 4-8]. The Rainbow V Classic
version showed performance gains of 1565.6%, 2384.6%, and
2219.7% for keygen, sign, and verify, respectively. The Rainbow V
Circumzenithal version recorded improvements of 1706.9%, 2344.8%,
and 46.8%. Finally, the Rainbow V Compressed version exhibited

- 67 -

[Figure 4-8] Performance Measurement Results for Rainbow V on
Apple M1 processors expressed in log scale (Unit: 106 clock cycles)

enhancements of 1707.3%, 1633.2%, and 47.0% in the respective
processes.

The performance evaluation results of the Cache side attack
resistance and Constant time implementations are presented, as shown
in the graph in [Figure 4-9], which focuses on Rainbow I. Data for
Rainbow III and V's Cache side attack resistance implementations are
provided in the appendix.

- 68 -

[Figure 4-9] Performance Measurement Results for Rainbow I cache
side attack resistance implementation and constant-time

implementation on Apple M1 processors expressed in log scale (Unit:
106 clock cycles)

When comparing the Cache side attack resistance implementation with
the proposed optimized implementation, Rainbow I Classic exhibited
performance decreases of 3.4%, 22.5%, and 22.2% for key
generation, signing, and verification, respectively. In the
Circumzenithal version, the performance decreases were 1.9%, 7.8%,

- 69 -

and 7.7% for keygen, sign, and verify. The Compressed version
showed the smallest performance impact, with reductions of 1.0%,
0.5%, and 6.1%, respectively.

Despite the larger performance drops observed in the Classic
version's signing and verification processes, the actual increase in
cycle counts was relatively small, at 0.09 million cycles for sign and
0.02 million cycles for verify. This apparent discrepancy arises
because the original optimized implementation already had very low
cycle counts, making the percentage decrease appear more significant.

For the Constant time implementation, Rainbow I Classic
experienced performance drops of 41.4%, 16.2%, and 41.7% for
keygen, sign, and verify, respectively. In the Circumzenithal version,
key generation experienced a performance decrease of 43.2%, while
sign and verify showed performance improvements of 27.0% and
4.1%, respectively. The Compressed version saw reductions of 42.8%
and 30.7% for keygen and sign, respectively, while verification
showed a 4.0% performance improvement. The observed performance
increases in some cases are due to measurement variations, and under
typical conditions, the Constant time implementation is generally
slower than the optimized implementation.

Overall, the Constant time implementation exhibited greater
performance degradation compared to the Cache side attack resistance
implementation. This is because ensuring constant-time execution
significantly increases the operation time. Additionally, the Constant
time implementation is limited to Rainbow I due to register
constraints, though it offers the crucial advantage of guaranteeing
constant-time behavior.

- 70 -

5. Conclusion

This dissertation presents optimized implementations of the
lightweight cipher CHAM, TinyJAMBU, and the post-quantum
cryptography Rainbow signature. The implementations were carried
out on 8-bit AVR and 64-bit ARMv8 processors, which are
commonly used in embedded hardware. For the CHAM block cipher, a
technique that skips certain operations in the initial 8 rounds was
applied, leveraging the characteristics of block cipher counter mode.
As a result, performance improvements ranging from 9.7% to 18.4%
were achieved, with a maximum improvement of 26.9% for the
specialized Furious CHAM variant.

TinyJAMBU utilized reverse bitwise shifts that take advantage of
AVR register storage to optimize the keyed permutation. This
optimization led to performance enhancements exceeding 500% for the
keyed permutation alone. When the optimized permutation was applied
to TinyJAMBU, overall performance improved by approximately 470%.
Additionally, applying an initialization-skipping technique resulted in a
maximum performance gain of 915.3%.

Finally, for the Rainbow signature, the tower field-based
multiplication, which could not be fully supported by ARMv8 assembly
instructions, was converted into a lookup table format for more
efficient multiplication. This modification yielded performance
improvements between 477.9% and 42,773.1% across various
processors. When the proposed multiplication method was applied to
Rainbow signature on the M1 processor, the maximum performance
gains were observed as follows: 3464.1% for key generation in
Rainbow III, 2384.6% for signing in Rainbow V, and 4614.3% for

- 71 -

verification in Rainbow I.
The specialized implementations of Rainbow signature, such as the

Cache side attack resistance and Constant time versions, exhibited
slightly lower performance compared to the optimized implementation
but provided the advantage of resistance to side-channel attacks. The
optimization techniques proposed in this dissertation demonstrate
effective performance on embedded processors and can be applied to
other cryptographic algorithms with similar structures to achieve
optimized implementations.

- 72 -

Appendix: Look-Up Table for Rainbow

× 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x1 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
0x2 0x0 0x2 0x3 0x1 0x8 0xa 0xb 0x9 0xc 0xe 0xf 0xd 0x4 0x6 0x7 0x5
0x3 0x0 0x3 0x1 0x2 0xc 0xf 0xd 0xe 0x4 0x7 0x5 0x6 0x8 0xb 0x9 0xa
0x4 0x0 0x4 0x8 0xc 0x6 0x2 0xe 0xa 0xb 0xf 0x3 0x7 0xd 0x9 0x5 0x1
0x5 0x0 0x5 0xa 0xf 0x2 0x7 0x8 0xd 0x3 0x6 0x9 0xc 0x1 0x4 0xb 0xe
0x6 0x0 0x6 0xb 0xd 0xe 0x8 0x5 0x3 0x7 0x1 0xc 0xa 0x9 0xf 0x2 0x4
0x7 0x0 0x7 0x9 0xe 0xa 0xd 0x3 0x4 0xf 0x8 0x6 0x1 0x5 0x2 0xc 0xb
0x8 0x0 0x8 0xc 0x4 0xb 0x3 0x7 0xf 0xd 0x5 0x1 0x9 0x6 0xe 0xa 0x2
0x9 0x0 0x9 0xe 0x7 0xf 0x6 0x1 0x8 0x5 0xc 0xb 0x2 0xa 0x3 0x4 0xd
0xa 0x0 0xa 0xf 0x5 0x3 0x9 0xc 0x6 0x1 0xb 0xe 0x4 0x2 0x8 0xd 0x7
0xb 0x0 0xb 0xd 0x6 0x7 0xc 0xa 0x1 0x9 0x2 0x4 0xf 0xe 0x5 0x3 0x8
0xc 0x0 0xc 0x4 0x8 0xd 0x1 0x9 0x5 0x6 0xa 0x2 0xe 0xb 0x7 0xf 0x3
0xd 0x0 0xd 0x6 0xb 0x9 0x4 0xf 0x2 0xe 0x3 0x8 0x5 0x7 0xa 0x1 0xc
0xe 0x0 0xe 0x7 0x9 0x5 0xb 0x2 0xc 0xa 0x4 0xd 0x3 0xf 0x1 0x8 0x6
0xf 0x0 0xf 0x5 0xa 0x1 0xe 0x4 0xb 0x2 0xd 0x7 0x8 0x3 0xc 0x6 0x9
A 0x0 0x8 0xc 0x4 0xb 0x3 0x7 0xf 0xd 0x5 0x1 0x9 0x6 0xe 0xa 0x2

[Table Appendix-1] Precomputation look-up table of tower-field
based polynomial multiplication results on GF16 expressed in

hexadecimal (A: additional table for Rainbow III and V)

- 73 -

Line Code Comment
1: MOVI v31.16b, #15
2: AND w4, w2, #15
3: LSR w5, w2, #4
4: ADR x6, MUL_TABLE Initial address1
5: LSL w4, w4, #4 Multiplied by 16
6: ADD x6, x6, x4 Get table1 address
7: ADR x7, MUL_TABLE Initial address2
8: LSL w5, w5, #4 Multiplied by 16
9: ADD x7, x7, x5 Get table2 address
10: LD1.16b {v30}, [x6] Load table1 values
11: LD1.16b {v29}, [x7] Load table2 values
12: ADR x6, ADDI_TABLE Initial addressA
13: LD1.16b {v27}, [x6] Load tableA values
14: LD1.16b {v1}, [x1], #16
15: LD1.16b {v5}, [x1], #16
16: AND.16b v0, v1, v31 Divide into 4-bit
17: USHR.16b v1, v1, #4
18: AND.16b v4, v5, v31
19: USHR.16b v5, v5, #4
20: TBL.16b v2, {v30}, v0 Table look-up
21: TBL.16b v3, {v29}, v1
22: TBL.16b v6, {v30}, v4
23: TBL.16b v7, {v29}, v5
24: EOR.16b v0, v0, v1

[Table Appendix-2] Implementation code of proposed multiplication
for Rainbow III and V (x0: output address, x1: operand address,

x2(w2): constant)

- 74 -

25: EOR.16b v4, v4, v5
26: AND w4, w2, #15
27: LSR w5, w2, #4
28: EOR w4, w4, w5
29: ADR x6, MUL_TABLE Initial address3
30: LSL w4, w4, #4 Multiplied by 16
31: ADD x6, x6, x4 Get table3 address
32: LD1.16b {v28}, [x6] Load table3 values
33: TBL.16b v0, {v28}, v0 Table look-up
34: EOR.16b v0, v0, v2
35: TBL.16b v4, {v28}, v4
36: EOR.16b v4, v4, v6
37: TBL.16b v3, {v27}, v3
38: TBL.16b v7, {v27}, v7
39: SHL.16b v0, v0, #4
40: EOR.16b v0, v0, v2
41: EOR.16b v0, v0, v3
42: SHL.16b v4, v4, #4
43: EOR.16b v4, v4, v6
44: EOR.16b v4, v4, v7
45: LD1.16b {v1}, [x0], #16
46: LD1.16b {v5}, [x0], #16
47: SUB x0, x0, #32
48: EOR.16b v1, v1, v0
49: EOR.16b v5, v5, v4
50: ST1.16b {v1}, [x0], #16
51: ST1.16b {v5}, [x0], #16 Return

- 75 -

Line Code Comment
1: ADR x4, MUL_TABLE
2: LD1.16b {v16}, [x4], Load offset0 table
3: (All table values load)
4: LD1.16b {v31}, [x4], Load offset15 table
5: CMP w2, #8
6: BLT MUL_07
7: B MUL_815
8: MUL_BACK:
9: (The multiplication code section)
10: RET Return
11: MUL_07:
12: B Dummy branch
13: CMP w2, #4
14: BLT MUL_03
15: B MUL_47
16: MUL_03:
17: B Dummy branch
18: CMP w2, #2
19: BLT MUL_01
20: B MUL_23
21: MUL_01:
22: B Dummy branch
23: CMP w2, #1
24: BEQ MUL_1
25: B MUL_0

[Table Appendix-3] Implementation code of constant-time
implementation. (x2(w2): constant)

- 76 -

26: MUL_23:
27: CMP w2, #3
28: BEQ MUL_3
29: B MUL_2
30: MUL_47:
31: CMP w2, #6
32: BLT MUL_45
33: B MUL_67
34: MUL_45:
35: B Dummy branch
36: CMP w2, #5
37: BEQ MUL_5
38: B MUL_4
39: MUL_67:
40: CMP w0, #7
41: BLT MUL_811
42: B MUL_1215
43: MUL_815:
44: BLT MUL_811
45: B MUL_1215
46: MUL_811:
47: B Dummy branch
48: CMP w2, #10
49: BLT MUL_89
50: B MUL_1011
51: MUL_89:
52: B Dummy branch
53: CMP w2, #9

- 77 -

54: BEQ MUL_9
55: B MUL_8
56: MUL_1011:
57: CMP w2, #11
58: BEQ MUL_11
59: B MUL_10
60: MUL_1215:
61: CMP w2, #14
62: BLT MUL_1213
63: B MUL_1415
64: MUL_1213:
65: B Dummy branch
66: CMP w2, #13
67: BEQ MUL_13
68: B MUL_12
69: MUL_1415:
70: CMP w2, #15
71: BEQ MUL_15
72: B MUL_14
73: MUL_0:
74: MOV v30.16b, v16.16b Get actual table value
75: B MUL_BACK
76: MUL_1:
77: B Dummy branch
78: MOV v30.16b, v17.16b Get actual table value
79: B MUL_BACK
80: MUL_2:
81: MOV v30.16b, v18.16b Get actual table value
82: B MUL_BACK

- 78 -

83: MUL_3:
84: B Dummy branch
85: MOV v30.16b, v19.16b Get actual table value
86: B MUL_BACK
87: MUL_4:
88: MOV v30.16b, v20.16b Get actual table value
89: B MUL_BACK
90: MUL_5:
91: B Dummy branch
92: MOV v30.16b, v21.16b Get actual table value
93: B MUL_BACK
94: MUL_6:
95: MOV v30.16b, v22.16b Get actual table value
96: B MUL_BACK
97: MUL_7:
98: B Dummy branch
99: MOV v30.16b, v23.16b Get actual table value
100: B MUL_BACK
101: MUL_8:
102: MOV v30.16b, v24.16b Get actual table value
103: B MUL_BACK
104: MUL_9:
105: B Dummy branch
106: MOV v30.16b, v25.16b Get actual table value
107: B MUL_BACK
108: MUL_10:
109: MOV v30.16b, v26.16b Get actual table value
110: B MUL_BACK
111: MUL_11:

- 79 -

112: B Dummy branch
113: MOV v30.16b, v27.16b Get actual table value
114: B MUL_BACK
115: MUL_12:
116: MOV v30.16b, v28.16b Get actual table value
117: B MUL_BACK
118: MUL_13:
119: B Dummy branch
120: MOV v30.16b, v29.16b Get actual table value
121: B MUL_BACK
122: MUL_14:
123: MOV v30.16b, v30.16b Get actual table value
124: B MUL_BACK
125: MUL_15:
126: B Dummy branch
127: MOV v30.16b, v31.16b Get actual table value
128: B MUL_BACK

- 80 -

Appendix: Performance evaluation result for
Rainbow on A13 processors

[Figure Appendix-1] Performance Measurement Results for
Rainbow I on Apple A13 processors expressed in log scale (Unit:

106 clock cycles)

The performance evaluation results of Rainbow I on the A13
processor are shown in [Figure Appendix-1], with the graph
represented on a logarithmic scale. For the Classic version, the
performance improvements were 1520.4% for key generation, 967.7%
for signing, and 4785.7% for verification. In the Circumzenithal
version, the improvements for keygen, sign, and verify were 1531.0%,
840.0%, and 35.4%, respectively. The Compressed version achieved

- 81 -

[Figure Appendix-2] Performance Measurement Results for Rainbow
III on Apple A13 processors expressed in log scale (Unit: 106 clock

cycles)

enhancements of 1404.8%, 967.4%, and 27.0%, respectively.
The performance evaluation results of Rainbow III are illustrated in

the graph in [Figure Appendix-2]. For the Classic Rainbow version,
performance improvements were observed at 3042.2% for key
generation, 1275.7% for signing, and 4786.6% for verification. In the
Circumzenithal version, the improvements for keygen, sign, and verify
were 3550.2%, 1246.4%, and 22.5%, respectively. Lastly, the
Compressed version showed performance gains of 3165.9%, 1851.1%,

- 82 -

[Figure Appendix-3] Performance Measurement Results for
Rainbow V on Apple A13 processors expressed in log scale (Unit:

106 clock cycles)

and 14.5% for key generation, signing, and verification, respectively.
The performance evaluation results of Rainbow V are summarized

in the graph in [Figure Appendix-3]. For the Rainbow V Classic
version, performance improvements of 1365.6% for key generation,
1895.9% for signing, and 1797.4% for verification were observed. In
the Circumzenithal version, keygen showed an improvement of
1624.0%, sign improved by 2271.3%, and verify improved by 50.9%.
For the Compressed version, the performance gains were 1569.5% for
key generation, 1822.7% for signing, and 64.1% for verification.

- 83 -

Appendix: Performance evaluation result for
Rainbow on BCM2711 processors

[Figure Appendix-4] Performance Measurement Results for Rainbow
I on BCM2711 processors expressed in log scale (Unit: 106 clock

cycles)

The implementation results of Rainbow on the BCM2711 processor
are evaluated. The performance measurements for Rainbow I are
shown in [Figure Appendix-4], with the graph presented on a
logarithmic scale. For Rainbow I Classic, performance improvements
of 2487.7% for key generation, 1089.8% for signing, and 11316.2%

- 84 -

for verification were observed. The significant improvement in
verification is attributed to the original implementation being
exceptionally slow on the BCM2711 processor.

In the Circumzenithal version, the performance gains were 2584.2%
for keygen, 1083.3% for sign, and 54.3% for verify. For the
Compressed version, keygen improved by 2666.7%, sign by 1400.4%,
and verify by 43.3%.

[Figure Appendix-5] Performance Measurement Results for Rainbow
III on BCM2711 processors expressed in log scale (Unit: 106 clock

cycles)

The performance evaluation results for Rainbow III are summarized

- 85 -

in [Figure Appendix-5]. For the Classic version, key generation
showed a performance improvement of 5766.7%, while signing and
verification improved by 1498.8% and 377.5%, respectively. In the
Circumzenithal version, keygen improved by 6423.2%, sign by
1315.8%, and verify by 48.7%. Lastly, in the Compressed version,
keygen demonstrated a 6445.0% improvement, sign improved by
3541.2%, and verify improved by 54.4%.

[Figure Appendix-6] Performance Measurement Results for Rainbow
V on BCM2711 processors expressed in log scale (Unit: 106 clock

cycles)

The performance evaluation results for Rainbow III are shown in

- 86 -

[Figure Appendix-6]. For Rainbow V Classic, performance
improvements of 1819.4%, 2332.9%, and 2771.1% were observed for
key generation, signing, and verification, respectively. In the
Circumzenithal version, the improvements were 1969.1% for keygen,
2343.5% for sign, and 62.6% for verify. For the Compressed version,
performance gains of 2018.9%, 2139.1%, and 60.5% were recorded
for key generation, signing, and verification, respectively.

- 87 -

Appendix: Performance evaluation result for
Cache side attack resistance implementation of

Rainbow III and V

[Figure Appendix-7] Performance Measurement Results for Rainbow
III cache side attack resistance implementation on Apple M1

processors (Unit: 106 clock cycles)

The performance of the cache side attack resistant implementation

- 88 -

of Rainbow III is summarized in [Figure Appendix-7]. Overall, there
is a slight performance decrease, with the maximum degradation being
2.7% and the minimum being 0.7%, showing results that are nearly
comparable to the original implementation.

[Figure Appendix-8] Performance Measurement Results for Rainbow
V cache side attack resistance implementation on Apple M1

processors (Unit: 106 clock cycles)

The performance evaluation results for the cache side attack

- 89 -

resistant implementation of Rainbow V are also presented in [Figure
Appendix-8]. Similarly, there is a minor performance drop overall,
with a maximum decrease of 2.8% and a minimum of 0%.

- 90 -

Appendix: Abbreviation

l AES: Advanced Encryption Standard
l ARX: Add-Rotate-XOR
l AVR: Advanced Virtual RISC
l CBC: Cipher Block Chaining
l CFB: Cipher Feedback
l CPB: Cycles Per Byte
l CTR: Counter Mode
l CVP: Closest Vector Problem
l DES: Data Encryption Standard
l ECB: Electronic Codebook
l GF: Galois Field
l IoT: Internet of Things
l KEM: Key Encapsulation Mechanism
l LEA: Lightweight Encryption Algorithm
l NIST: National Institute of Standards and Technology
l NLFSR: Non-Linear Feedback Shift Register
l OFB: Output Feedback
l PKE: Public-Key Encryption
l PQC: Post-Quantum Cryptography
l RBS: Reverse Bitwise Shift
l RSA: Rivest–Shamir–Adleman
l SIMD: Single Instruction, Multiple Data
l SPHINCS+: Secure Hash-Based Signature Scheme
l SVP: Shortest Vector Problem
l XOR: Exclusive-OR

- 91 -

Bibliography

1. Domestic Literature
Kwon, H., Sim, M., Lim, S., Kang, Y., & Seo, H. (2022).

Technological Trends in Quantum-Resistant Blockchain. Review of
KIISC, 32(1), 7-17.

Kwon, H., Jang, K., Kim, H., & Seo, H. (2021). The fast im-
plementation of block cipher SIMON using pre-computation with
counter mode of operation, Journal of the Korea Institute Of
Information and Communication Engineering(JKIICE), 25(4),
588-594.

Kim, K., Choi, S., Kwon, H., Liu, Z., & Seo, H. (2020). FACE–
LIGHT: Fast AES–CTR mode encryption for low-end
microcontrollers. In Information Security and Cryptology–ICISC
2019: 22nd International Conference, Seoul, South Korea,
December 4–6, 2019, Revised Selected Papers 22 (pp. 102-114).
Springer International Publishing.

- 92 -

2. International Literature
Delfs, H., Knebl, H., Delfs, H., & Knebl, H. (2015). Symmetric-key

cryptography. Introduction to Cryptography: Principles and
Applications, 11-48.

Hellman, M. E. (2002). An overview of public key cryptography.
IEEE Communications Magazine, 40(5), 42-49.

Standard, D. E. (1999). Data encryption standard. Federal Information
Processing Standards Publication, 112, 3.

Rijmen, V., & Daemen, J. (2001). Advanced encryption standard.
Proceedings of federal information processing standards pub-
lications, national institute of standards and technology, 19, 22.

Lee, D., Kim, D. C., Kwon, D., & Kim, H. (2014). Efficient hardware
implementation of the lightweight block encryption algorithm LEA.
Sensors, 14(1), 975-994.

Kwon, D., Kim, J., Park, S., Sung, S. H., Sohn, Y., Song, J. H., ... &
Hong, J. (2003, November). New block cipher: ARIA. In
International conference on information security and cryptology
(pp. 432-445). Berlin, Heidelberg: Springer Berlin Heidelberg.

Roh, D., Koo, B., Jung, Y., Jeong, I. W., Lee, D. G., Kwon, D., &
Kim, W. H. (2020). Revised version of block cipher CHAM. In
Information Security and Cryptology–ICISC 2019: 22nd
International Conference, Seoul, South Korea, December 4–6, 2019,
Revised Selected Papers 22 (pp. 1-19). Springer International
Publishing.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for ob-
taining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2), 120-126.

Grover, L. K. (1996, July). A fast quantum mechanical algorithm for
database search. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing (pp. 212-219).

Shor, P. W. (1999). Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. SIAM review,
41(2), 303-332.

- 93 -

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J. M., ... & Stehlé, D. (2018, April). CRYSTALS-Kyber: a
CCA-secure module-lattice-based KEM. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P) (pp. 353-367).
IEEE.

Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P.,
Seiler, G., ... & Bai, S. (2020). Crystals-dilithium. Algorithm
Specifications and Supporting Documentation.

Prest, T., Fouque, P. A., Hoffstein, J., Kirchner, P., Lyubashevsky, V.,
Pornin, T., ... & Zhang, Z. (2020). Falcon. Post-Quantum
Cryptography Project of NIST.

Bernstein, D. J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J.,
& Schwabe, P. (2019, November). The SPHINCS+ signature
framework. In Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security (pp. 2129-2146).

Kim, J., & Park, J. H. (2023). NTRU+: Compact construction of
NTRU using simple encoding method. IEEE Transactions on
Information Forensics and Security.

Kim, D. C., Jeon, C. Y., Kim, Y., & Kim, M. (2023, April). PALOMA:
binary separable Goppa-based KEM. In Code-Based Cryptography
Workshop (pp. 144-173). Cham: Springer Nature Switzerland.

Kim, J. L., Hong, J., Lau, T. S. C., Lim, Y., & Won, B. S. (2022).
REDOG and its performance analysis. Cryptology ePrint Archive.

Cheon, J. H., Choe, H., Hong, D., Hong, J., Seong, H., Shin, J., & Yi,
M. (2024). SMAUG: the Key Exchange Algorithm based on
Module-LWE and Module-LWR. Algorithm Specifications Version,
3.

Kim, S., Ha, J., Son, M., Lee, B., Moon, D., Lee, J., ... & Lee, J.
(2023, November). AIM: symmetric primitive for shorter sig-
natures with stronger security. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security
(pp. 401-415).

Cheon, J. H., Choe, H., Devevey, J., Güneysu, T., Hong, D., Krausz,
M., ... & Yi, M. (2023). Haetae: Shorter lattice-based fiat-shamir

- 94 -

signatures. Cryptology ePrint Archive.
Shim, K. A., Kim, J., & An, Y. (2022). MQ-sign: A new post-quan-

tum signature scheme based on multivariate quadratic equations:
Shorter and faster. KpqC Round, 1.

Shim, K. A., Kim, J., & Kwon, H. (2024). NCC-Sign: A New
Lattice-based Signature Scheme using Non-Cyclotomic
Polynomials and Trinomials. KpqC Round, 1.

Wu, H., & Huang, T. (2019). TinyJAMBU: A family of lightweight
authenticated encryption algorithms. Submission to the NIST
Lightweight Cryptography Standardization Process (March 2019).

Wu, H., & Huang, T. (2014). JAMBU lightweight authenticated en-
cryption mode and AES-JAMBU. CAESAR competition proposal.

Ding, J., Chen, M. S., Kannwischer, M., Patarin, J., Petzoldt, A.,
Schmidt, D., & Yang, B. Y. (2020). Rainbow—Algorithm
Specification and Documentation, The 3rd Round Proposal. NIST
Post-Quantum Cryptography Standardization Round, 3.

Karatsuba, A. A. (1995). The complexity of computations.
Proceedings of the Steklov Institute of Mathematics-Interperiodica
Translation, 211, 169-183.

Bernstein, D. J., & Chou, T. (2014, August). Faster binary-field
multiplication and faster binary-field macs. In International
Conference on Selected Areas in Cryptography (pp. 92-111).
Cham: Springer International Publishing.

Seo, H., Jeong, I., Lee, J., & Kim, W. H. (2018). Compact im-
plementations of ARX-based block ciphers on IoT processors.
ACM Transactions on Embedded Computing Systems (TECS),
17(3), 1-16.

Seo, H., Liu, Z., Longa, P., & Hu, Z. (2018). SIDH on ARM: faster
modular multiplications for faster post-quantum supersingular iso-
geny key exchange. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 1-20.

Kim, Y., Song, J., Youn, T. Y., & Seo, S. C. (2022). Crystals‐
Dilithium on ARMv8. Security and Communication Networks,
2022(1), 5226390.

- 95 -

국 문 초 록

임베디드 프로세서 특성 기반
암호 알고리즘의 구조적 최적화

한 성 대 학 교 대 학 원
정 보 컴 퓨 터 공 학 과
정 보 시 스 템 공 학 전 공
권 혁 동

 본 논문에서는 암호 알고리즘의 내부 구조 변경을 통한 최적 구현
기법에 대해 연구 및 그 결과를 제시한다. 암호 알고리즘의 최적 구현 관
점 중에서 속도 최적화는 알고리즘의 연산 속도를 빠르게 하여 비효율적
인 연산 성능을 개선하는 것이다. 최적 구현에서는 주로 병렬 구현이 많이
사용되는데, 알고리즘 내부 연산을 병렬 구현하는 것으로는 최적 구현의
한계점이 존재한다. 제안하는 기법은 알고리즘의 내부 구조를 변경하는
것으로 암호 알고리즘의 성능을 향상시키는 방법에 대해서 제안한다. 구
조 변경은 특정 값을 사전 연산하거나 또는 대규모로 연산할 때는 사전
연산 테이블을 활용하는 방법, 프로세서의 특성을 활용하여 원래 연산의
반대로 연산하는 방법 등이 있다. 구현 대상 알고리즘은 국산 경량 블록암
호 CHAM, 경량 블록암호 후보 TinyJAMBU, 양자내성암호 후보 Rainbow
를 대상으로 한다. 구현 대상 프로세서는 저사양 사물 인터넷 환경에서 주
로 활용되는 8-bit AVR 프로세서와 AVR에 비해서는 상대적으로 고사양
이며 주로 스마트폰과 최근에는 노트북까지 사용처가 넓어진 64-bit

- 96 -

ARM 프로세서이다. 제안하는 기법은 각 알고리즘의 특성과 프로세서의
환경을 고려하여 알고리즘의 성능을 향상시킬 수 있는 내부 구조 재설계
를 진행한다.

【주요어】블록암호, 양자내성암호, 최적 구현, 사물 인터넷 프로세서

	20111401(권혁동)
	개요
	1. Introduction 1
	1.1 Main Contribution 1

	2. Preliminaries 3
	2.1 Symmetric-Key Cryptography 3
	2.2 Public-Key Cryptography 5
	2.3 Post-Quantum Cryptography 6
	2.4 Target Cryptographic Algorithms 8
	2.4.1 Block Cipher CHAM 8
	2.4.2 Lightweight Cipher TinyJAMBU 9
	2.4.3 Post-Quantum Cryptography Rainbow 10

	2.5 Target Processors 12
	2.5.1 8-bit AVR Microcontroller 12
	2.5.2 64-bit ARM Processor 13

	3. Optimized Implementation of Target Cipher 16
	3.1 CHAM with Precomputation 16
	3.1.1 Skip Rounds by Precomputation 16
	3.1.2 Logical Block Rotation 18
	3.1.3 Register Scheduling and Instructions Used 20
	3.1.4 Alternative Implementation: Furious CHAM 27

	3.2 TinyJAMBU with Reverse Bitwise Shift 29
	3.2.1 Reverse Bitwise Shift(RBS) 29
	3.2.2 Register Scheduling and Instructions Used 36
	3.2.3 Alternative Implementation: Initialization Skip 42

	3.3 Rainbow with Look-Up Table Based Multiplication 43
	3.3.1 Tower-Field Based Multiplication 43
	3.3.2 Look-Up Table Based Multiplication in Rainbow I 46
	3.3.3 Resolve of LUT Size Problem in Rainbow III and V 50
	3.3.4 Register Scheduling and Instructions Used 50
	3.3.5 Alternative Implementation: Avoiding Cache Side Attack 54

	4. Performance Evaluation 57
	4.1 Evaluation CHAM Block Cipher 57
	4.2 Evaluation TinyJAMBU Lightweight Cipher 59
	4.3 Evaluation Rainbow Post-Quantum Cryptography 63

	5. Conclusion 70

	책갈피
	1. Introduction
	1.1 Main Contribution
	2. Preliminaries
	2.1 Symmetric Key Cryptography
	2.2 Public Key Cryptography
	2.3 Post Quantum Cryptography
	2.4 Target Cryptographic Algorithm
	2.4.1 Block Cipher CHAM
	2.4.2 Lightweight Cipher TinyJAMBU
	2.4.3. Post Quantum Cryptography Rainbow
	2.5 Target Processor
	2.5.1 8-bit AVR Microcontroller
	2.5.2 64-bit ARM Processor
	2.6 Previous Work
	3. Optimized Implementation of Target Cipher
	3.1 CHAM with Precomputation
	3.1.1 Skip Rounds by Precomputation
	3.1.2 Logical Block Rotation
	3.1.3 Register Scheduling and Instructions Used
	3.1.4 Alternative Implementation: Furious CHAM
	3.2 TinyJAMBU with Reverse Shift
	3.2.1 Reverse Shift
	3.2.2 Register Scheduling and Instructions Used
	3.2.3 Alternative Implementation: Initialization Skip
	3.3 Rainbow with Look-Up Table Based Multiplication
	3.3.1 Tower-Field Based Multiplication
	3.3.2 Look Up Table Based Multiplication in Rainbow I
	3.3.3 Resolve of LUT Size Problem in Rainbow III and V
	3.3.4 Register Scheduling and Instructions Used
	3.3.5 Alternative Implementation: Avoiding Cache-Side Attack
	4. Performance Evaluation
	4.1 Evaluation CHAM Block Cipher
	4.2 Evaluation TinyJAMBU Lightweight Cipher
	4.3 Evaluation Rainbow Post Quantum Cryptography
	5. Conclusion
	Appendix: Look-Up Table for Rainbow
	Appendix: Performance evaluation result for Rainbow on A13 processors
	Appendix: Performance evaluation result for Cache side attack resistance implementation of Rainbow III and V
	Appendix: Abbreviation
	Bibliography
	국 문 초 록

