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ABSTRACT  

Structural Optimization of Cryptographic 
Algorithms Based on Embedded Processor 

Characteristics

Kwon, HyeokDong
Major in Information System 
Engineering
Dept. of Information and 
Computer Engineering
The Graduate School
Hansung University

 
     This dissertation investigates and presents the results of an 
optimized implementation technique achieved through modifications to 
the internal structure of cryptographic algorithms. Among the various 
aspects of optimal implementation, speed optimization is crucial in 
improving inefficient computational performance by accelerating the 
algorithm's processing speed. Parallel implementation is commonly 
employed for optimization; however, inherent limitations exist when 
relying solely on parallelizing internal operations. A method for 
enhancing the performance of cryptographic algorithms is proposed 
through modifications to their internal structure. These structural 
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modifications may involve precomputing specific values, utilizing 
precomputation tables for large-scale calculations, or leveraging 
processor features to reverse original operations.
     The cryptographic algorithms targeted for implementation in this 
research include the domestic lightweight block cipher CHAM, the 
lightweight block cipher candidate TinyJAMBU, and the post-quantum 
cryptography candidate Rainbow. The implementation platforms 
selected for this study are the 8-bit AVR processor, commonly used 
in low-end Internet of Things (IoT) environments, and the 64-bit 
ARM processor, which, though relatively high-end compared to AVR, 
has recently expanded its application from smartphones to laptops. 
The proposed technique involves redesigning the internal structure of 
each algorithm, considering the unique characteristics of the 
algorithms and the processor environments, to enhance overall 
algorithm performance.

【Keywords】Block cipher, Post Quantum Cryptography, Optimized 
implementation, IoT Processor
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1. Introduction

1.1  Main Contribution

Cryptographic algorithms, which provide security based on complex 
mathematical principles, typically require significant computational 
resources. With recent advancements in hardware, performing 
cryptographic operations is no longer a major challenge. However, for 
small electronic devices such as sensor nodes, available resources are 
limited, and executing cryptographic algorithms can consume 
considerable time. This dissertation presents optimal implementation 
methods to efficiently execute cryptographic algorithms. Although 
there are various perspectives on optimal implementation, the focus is 
primarily on speed optimization, which aims to enhance processing 
speed. The main contributions of this dissertation are as follows.

1. Proposal of optimized implementation through modifications to the 
internal operational structure of the algorithm. Parallel 
implementation is one of the most powerful methods used in 
optimization; however, it is limited to environments that support 
parallel instructions. Moreover, parallel implementation is applicable 
only to algorithms that benefit from parallel operations. Therefore, 
various methods for modifying the internal structure of algorithms 
are proposed. By utilizing the unique characteristics of each 
algorithm, the computational process is redesigned, and a more 
advanced design is proposed by taking into account the 
characteristics of the processor.
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2. Presentation of additional implementations for special purposes. 
The proposed optimized implementations are designed based on 
general use cases. In addition, specialized implementations tailored 
to specific scenarios are presented. While these additional 
implementations may require certain assumptions not present in the 
general implementations, they offer more optimized performance or 
exhibit resistance to certain attacks, thereby possessing distinctive 
features compared to the general optimal implementations.

The remainder of this dissertation is organized as follows. Chapter 
2 introduces various cryptographic algorithm structures and examines 
the algorithms selected for optimal implementation, along with an 
introduction to the target processors for optimization. Additionally, 
prior research on optimal implementations is reviewed. Chapter 3 
discusses the redesign for optimal implementation, the methods for 
algorithm implementation, and additional implementations. Chapter 4 
evaluates the performance of the proposed implementations. Chapter 5 
concludes the dissertation.
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2.  Preliminaries

2.1  Symmetric-Key Cryptography
A symmetric-key encryption system is an algorithm in which 

encryption and decryption are performed using a single shared secret 
key, also referred to as a secret-key encryption algorithm. The basic 
structure of symmetric-key cryptography is shown in [Figure 2-1].

[Figure 2-1] Symmetric-key cryptography structure

It is defined by the use of the same key for both encryption and 
decryption. However, symmetric-key cryptography has the drawback 
of difficulty in securely sharing the secret key. Since the secret key 
is used for both encryption and decryption, if the key is 
compromised, the encrypted confidential information can be 
immediately restored. Therefore, securely sharing the secret key is 
critical, and this remained a significant challenge until the 
development of public-key cryptography. Algorithms that belong to 
symmetric key encryption include DES, AES, LEA, ARIA, and CHAM.

Symmetric-key cryptography is divided into block ciphers and 
stream ciphers.
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l A block cipher encrypts data in fixed-size blocks, and its 
structure is illustrated in [Figure 2-2]. Since input messages may 
exceed the block size, block cipher operation modes are provided 
to encrypt messages larger than a single block. While block 
ciphers offer high diffusion and versatility, they tend to have 
slower encryption speeds and the propagation of errors in case of 
transmission issues. Common operation modes include ECB, CBC, 
CFB, OFB, and CTR.

[Figure 2-2] Block cipher framework (Encryption only)

l Stream ciphers, on the other hand, do not encrypt the input 
message directly. Instead, they generate pseudorandom numbers, 
which are combined with the input message to produce the 
ciphertext, as shown in [Figure 2-3]. Typically, XOR operations 
are used to combine the pseudorandom numbers with the input 
message. Stream ciphers are known for their fast encryption speed 
and the non-propagation of errors, but they suffer from lower 
diffusion.
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[Figure 2-3] Stream cipher framework (Encryption only)

2.2  Public-Key Cryptography
A public-key encryption system uses different keys for encryption 

and decryption, as shown in [Figure 2-4], and is therefore also 
referred to as an asymmetric-key encryption algorithm.

[Figure 2-4] Public-key cryptography architecture

In this cryptography, encryption is performed using a public key, 
while decryption is carried out using a private key, also known as a 
secret key. The public key is known to all participants in the 
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network, but only the key owner knows the private key. As long as 
the private key remains secure, decrypting the ciphertext is 
impossible, making public-key encryption highly secure for 
transmitting information or messages. Due to these characteristics, 
public-key encryption can also provide additional functionalities such 
as authentication, integrity, and non-repudiation. However, compared 
to symmetric-key encryption, it is significantly slower and requires 
larger key sizes. For this reason, public-key encryption is not 
commonly used for general message transmission but is instead 
employed for tasks such as key exchange and authentication. 
Examples of public-key cryptography include RSA.

2.3  Post-Quantum Cryptography
With the advancement of quantum computing, cryptographic 

systems based on traditional mathematical challenges have begun to 
face threats. Grover's algorithm, which can be implemented on 
quantum computers, is an optimized search algorithm capable of 
performing attacks such as brute force effectively. While Grover's 
algorithm poses a threat to symmetric-key cryptography and hash 
functions, increasing the key length can mitigate its impact. Shor's 
algorithm, on the other hand, solves problems such as integer 
factorization and discrete logarithms. Among public-key cryptography, 
those based on integer factorization, such as RSA, are highly 
vulnerable to Shor's algorithm, and no effective countermeasures are 
currently known.

In response to the threat posed by quantum computers, the U.S. 
National Institute of Standards and Technology (NIST) launched a 
competition to standardize new cryptographic algorithms resistant to 
quantum attacks, known as post-quantum cryptography (PQC). As a 
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result, Kyber was selected as the standard for PKE/KEM algorithms, 
while Dilithium, Falcon, and SPHINCS+ were chosen for digital 
signature algorithms. In Republic of Korea, a competition named KpqC 
is being held to select a PQC standard. Currently, the competition is 
in its second round, with NTRU+, PALOMA, REDOG, and SMAUG-T 
competing as candidates for PKE/KEM, and AIMer, HAETAE, 
MQ-Sign, and NCC-Sign competing in the digital signature category. 
Post-quantum cryptography involves more fundamental problems than 
traditional symmetric-key and public-key cryptography.

l Lattice-based cryptography: It is based on the Shortest Vector 
Problem (SVP) and Closest Vector Problem (CVP), which involve 
finding the shortest vector in a lattice when two integer vectors 
exist. Lattice-based cryptography is known for its fast 
computation speed and relatively small key and signature sizes. 
Due to these advantages, many algorithms in the post-quantum 
cryptography competition are based on lattice problems. Examples 
of lattice-based cryptographic algorithms include Kyber, Dilithium, 
Falcon, NCC-Sign, and HAETAE.

l Code-based cryptography: This problem generates public/private 
key pairs using error correction codes, which control errors in 
signals. Code-based cryptography has been subject to security 
analysis for a longer time compared to other hard problems, thus 
earning a high level of trust. Classic McEliece is a representative 
example of code-based cryptography.

l Hash-based cryptography: It relies on the collision resistance of 
hash functions. Although quantum algorithms can compromise hash 
functions, security can be maintained by extending the hash output 
length. Additionally, if a security vulnerability is discovered in a 
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hash function used in the cryptographic scheme, it can be replaced 
with another hash function to maintain security. SPHINCS+ is an 
example of hash-based cryptography.

l Multivariate based cryptography: This cryptographic method is 
based on the difficulty of solving systems of multivariate 
polynomial equations over finite fields. Compared to other 
problems, proving security mathematically is relatively 
straightforward. Since the primary operation involves solving 
matrices of polynomials, effective implementations can be achieved 
using the Gaussian Elimination algorithm. Rainbow and MQ-Sign 
are examples of multivariate polynomial cryptography.

2.4  Target Cryptographic Algorithm
2.4.1 Block Cipher CHAM
CHAM is a block cipher introduced in South Korea in 2017, 

designed with low-end processors in mind. In 2019, revised CHAM 
was published, with the only difference between the original and 
revised versions being the number of rounds, while the core design 
remains the same. CHAM is an ARX-based algorithm that divides the 
input data into four blocks, as shown in [Figure 2-5]. Although the 
operations per round are identical, the number of left shifts differs 
between odd and even rounds. [Table 2-1] summarizes the 
parameters of CHAM.
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[Figure 2-5] Round function structure of CHAM

2.4.2 Lightweight Cipher TinyJAMBU
TinyJAMBU is a permutation-based variant of the block cipher 

JAMBU. The encryption and decryption processes consist of five 
stages: Initialization, Processing Associated Data, 
Encryption/Decryption, Finalization, and Verification. TinyJAMBU 
employs a keyed permutation structure with NLFSR, as shown in 

Cipher n k ω r
CHAM-64/128 64 128 16 88
CHAM-128/128 128 128 32 112
CHAM-128/256 128 256 32 120

[Table 2-1] List of CHAM parameters (n: block size, k: key size, ω: 
word size, r: number of rounds)
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[Figure 2-6], and [Figure 2-7] shows the TinyJAMBU mode. [Table 
2-2] provides its pseudocode representation.

[Figure 2-6] NLFSR for Keyed permutation of TinyJAMBU

[Figure 2-7] Whole structure of TinyJAMBU

2.4.3. Post Quantum Cryptography Rainbow
Rainbow, a finalist in the third round of the NIST post-quantum 

cryptography competition, is a multivariate polynomial-based digital 
signature algorithm. It leverages the UOV problem and offers faster 
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signing and verification speeds compared to other algorithms, along 
with smaller signature sizes. However, Rainbow has the disadvantage 
of slow key generation and significantly larger key sizes than other 
post-quantum algorithms, especially lattice-based cryptography. 
Variants of Rainbow, such as the circumzenithal and compressed 
versions, are available to reduce key size, and the parameters are 
summarized in [Table 2-2].

Security
Level Parameters Public

key size
Private

key size
Signature 

size
  Standard Rainbow

I (GF(16),36,32,32) 157.8 101.2 528
III (GF(256),68,32,48) 681.4 611.3 1,312
V (GF(256),96,36,64) 1,885.4 1,375.7 1,632

  Circumzenital Rainbow

I (GF(16),36,32,32) 58.8 101.2 
(99.0) 528

III (GF(256),68,32,48) 258.4 611.3 
(603.0) 1,312

V (GF(256),96,36,64) 523.5 1,357.7 
(1,631.8) 1,696

[Table 2-2] Key and signature size of Rainbow signature. (Key size 
unit: KB, Signature size unit: bit)
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2.5  Target Processor
2.5.1 8-bit AVR Microcontroller
The 8-bit AVR processor, first introduced in 1996 with the 

ATmega series, is a RISC-based processor. It features 32 
general-purpose 8-bit registers, and for any operation, values must 
first be loaded from memory into the registers. Similarly, the results 
of operations must be stored back from the registers to memory, with 
each process requiring 2 cycles. [Figure 2-8] illustrates the 
structure of AVR registers.

[Figure 2-8] Structure of AVR registers

The R1 register serves as the zero register, allowing flexible use, 
but it must always hold the value zero when the operation is 
complete. Therefore, if the R1 register is used, it is recommended to 
clear the register with the CLR instruction before the operation 
finishes. Registers R2 through R17, as well as R28 and R29, are 
callee-saved registers. These registers might hold important values 
necessary for computations prior to function calls, so their contents 
should be temporarily saved before usage and restored after the 
operation. Lastly, registers R26 through R31 are pointer registers, 
with R26 and R27, R28 and R29, and R30 and R31 paired to form the 
X, Y, and Z pointer registers. These pointer registers are used to 
access memory, either to load or store values via pointers. It is 
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important to note that since the Y pointer register is callee-saved, 
its value needs to be preserved before use.

2.5.2 64-bit ARM Processor
The ARMv8 processor is a high-performance processor within the 

embedded processor category, commonly used in devices such as 
smartphones and laptops. Its register configuration consists of 64-bit 
general-purpose registers and 128-bit vector registers. The vector 
registers, which support parallel computation, have a maximum size of 
128 bits, though the effective size for storage is limited to 64 bits, 
allowing for up to two values to be stored. The arrangement specifier 
determines how the internal data is treated in terms of bit size, 
which can be set when utilizing vector instructions (also referred to 
as NEON). [Figure 2-9] illustrates how data is handled in vector 
registers based on the arrangement specifier.

[Figure 2-9] Controlling vector registers via arrangement 
specifiers

2.6  Previous Work
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Seo et al. conducted optimized implementations of the LEA and 
HIGHT block ciphers on an 8-bit AVR processor. For this purpose, 
they optimized the rotation operations, particularly the right rotation, 
by utilizing BST and BLD instructions to reduce the number of 
instructions used. Additionally, they addressed the limited number of 
registers available on the AVR processor by optimizing register usage 
strategies. As a result, the C implementation of LEA required 326 
cpb for key generation, 263 cpb for encryption, and 236 cpb for 
decryption, whereas the AVR-optimized implementation achieved 235, 
168, and 176 cpb for the same processes, respectively. For HIGHT, 
the C implementation required 156, 537, and 525 cpb for key 
generation, encryption, and decryption, while the AVR-optimized 
implementation achieved 58, 160, and 161 cpb, respectively.

Kim et al. proposed the FACE-LIGHT algorithm, a lightweight 
implementation of AES-CTR mode tailored for low-resource 
processors like AVR. Their approach involved designing a new cache 
table to enable partial precomputation, extending the precomputation 
capability from two rounds in the original FACE algorithm to three 
rounds in FACE-LIGHT. The resulting implementation achieved 
optimal performance, with AES-128, AES-192, and AES-256 
requiring 1,967, 2,449, and 2,931 cpb, respectively.

Kwon et al. optimized the block cipher SIMON for the AVR 
processor. Their work leveraged the characteristics of 8-bit 
processors to demonstrate that specific registers could be 
precomputed. They also calculated operational parts based on the 
plaintext length. The implementation resulted in performance 
improvements ranging from 1.5% to 5.3%.

Seo et al. also optimized the post-quantum cryptographic 
algorithms SIDH and SIKE on the ARMv8 processor. Their approach 
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focused on accelerating the Montgomery multiplier and extensively 
utilized 64-bit operations. For SIDH, the C implementation required 
643.8 million or 574.3 million clock cycles, depending on the 
processor, while the proposed method reduced this to 133.3 million 
and 90.3 million clock cycles, respectively. For SIKE, the C 
implementation required 626.3 million or 558.5 million clock cycles, 
but the optimized implementation reduced this to 129.6 million and 
87.8 million clock cycles, respectively.

Kim et al. optimized the post-quantum signature scheme 
CRYSTALS-Dilithium for ARM processors. Their proposed method 
utilized ARM NEON parallel instructions to optimize the NTT 
multiplier and employed layer merging to reduce memory access 
frequency. This approach resulted in performance improvements of 
49%, 113%, and 41% in the key generation, signature generation, and 
verification processes, respectively.
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3.  Optimized Implementation of Target Cipher

3.1  CHAM with Precomputation
3.1.1 Skip Rounds by Precomputation
In the Counter (CTR) mode of operation, rather than encrypting 

the plaintext directly, a fixed nonce is first encrypted, and the result 
is then XORed with the plaintext to perform the encryption. The 
nonce is divided into a fixed part, generated randomly, and a counter 
that represents the block number. Since the fixed part remains the 
same for all blocks, it always produces the same result, making 
precomputation possible. Due to the structure of CHAM’s round 
function, as the encryption progresses, the block storing the counter 
begins to affect other blocks, making it necessary to analyze the flow 
of the counter block. [Figure 3-1] highlights the flow of counter 
values in each round, marked in red.

In round 0, only one block is affected by the counter, but by round 
9, all blocks are influenced by the counter. This implies that certain 
computations during the first nine rounds can be omitted. However, 
for the sake of implementation efficiency, the actual precomputations 
are conducted up to the first eight rounds. This corresponds to 
approximately 9.09%, 7.14%, and 6.67% of the total rounds for 
CHAM’s 88, 112, and 120-round variants, respectively. The specific 
computations that can be omitted for each round are as follows:
l Round 0: Addition of the round key to the second block.
l Round 1: Entire round.
l Round 2: Entire round.
l Round 3: Addition of the round counter to the first block.
l Round 4: Addition of the round key to the second block (same as 
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round 0).
l Round 5: Entire round.
l Round 6: Addition of the round counter to the first block (same as 

round 3).
l Round 7: No precomputable operations.

[Figure 3-1] Flow of counter values in CHAM CTR mode of 
operation

Although [Figure 3-1] shows that precomputations are possible in 
round 8, they were not implemented. Implementing round 8 results in 
less than 1 cpb performance improvement. However, due to the paired 
round structure of CHAM, implementing round 9 separately would lead 
to inefficiency, and thus, round 8 is not implemented.
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3.1.2 Logical Block Rotation
At the end of each round in CHAM, the blocks undergo a 

word-wise rotation. In CHAM-64/128, the rotation occurs in 16-bit 
units, while for the other CHAM variants, the rotation occurs in 
32-bit units. Although the block rotation can be implemented in AVR 
assembly using the MOV instruction, a more efficient implementation 
can be achieved using the MOVW instruction, which moves data in 
16-bit word units. However, the implementation can be further 
optimized by applying a logical block rotation, thereby omitting the 
actual rotation.

Also in CHAM, the blocks used for computation in each round are 
the first and second blocks. Since the block rotation occurs at the 
end of every round, the blocks involved in computations do not 
change. Without performing the rotation, the first and second blocks 
are used in the first round, the second and third blocks in the second 
round, the third and fourth blocks in the third round, and the fourth 
and first blocks in the fourth round. This process repeats starting 
from the fifth round. Thus, the original implementation grouped odd 
and even rounds in pairs, but by applying logical block rotation, the 
implementation can be optimized into 4-round units. This is also the 
reason why round 8 was not implemented in Section 3.1.1; 
implementing round 8 would require separate implementation for 
rounds 9, 10, and 11, making efficient implementation more difficult. 

A similar approach can be applied to the 8-bit left rotation 
operation used in each round. Since the AVR registers store 8 bits, 
the 8-bit left rotation can be implemented using register shifting 
instructions instead of a rotation instruction. However, instead of 
actually shifting the registers, the operation can be logically treated 
as if the value has been rotated. In the following round, operations 
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that would normally apply to the lower register can be applied to the 
upper register, effectively bypassing the rotation operation.

[Figure 3-2] illustrates the structure of the first eight rounds of 
CHAM with all proposed techniques applied.

[Figure 3-2] Optimized CHAM structure with CTR mode of operation

In block cipher counter mode, a 16-bit counter can be used, but a 
32-bit counter is generally preferred. In CHAM-64/128, where 
internal blocks are processed in 16-bit units, the structure of a 
16-bit counter is depicted in [Figure 3-2]. If a 32-bit counter is 
used, two blocks are required to store the counter value, resulting in 
a slightly different structure as shown in [Figure 3-3]. No additional 
implementation is required for CHAM-128/128 and CHAM-128/256, 
as they operate with 32-bit units.
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[Figure 3-3] Optimized 32-bit counter CHAM-64/128 structure

3.1.3 Register Scheduling, Instructions Used and Implementation
To implement the proposed CHAM cipher, the register allocation is 

planned as shown in [Figure 3-4]. 

[Figure 3-4] Register allocation plan for proposed CHAM

Register R0 is used to store the round key value, while R1 serves 
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as a zero register. In AVR architecture, R1 is conventionally assigned 
as the zero register by default, so there is no need to use another 
register. Register R16 holds the total round count for CHAM, with 88 
rounds for CHAM-64/128, 112 for CHAM-128/128, and 120 for 
CHAM-128/256. Register R17 is used to store the present round 
counter value, which increments with each round. Registers R18 
through R25 store the plaintext composed of the nonce and counter. 
Lastly, registers R26 and R27, R30 and R31 are used both as the X, 
Z register, respectively. And also R26 and R27 are used for 
temporary registers to store intermediate values during computations. 
In case of CHAM-128/128 and CHAM-128/256, these are required 
more plaintext registers and temporary registers. So in this cases, R8 
to R15 used to store plaintext and R28, R29 used for additional 
temporary registers.

[Table 3-1] summarizes the instructions used in the 
implementation, while [Table 3-2] shows the code for the first 8 
rounds where round skipping is applied, specifically for 
CHAM-64/128. 

Mnemonic Operands Description Operation
ADC Rd, Rr Add with Carry Rd←Rd+Rr+C
ADD Rd, Rr Add without Carry Rd←Rd+Rr
EOR Rd, Rr Exclusive OR Rd←Rd⊕Rr

LD Rd, X+ Load Indirect and Post 
Increment

Rd←(X)
X←X+1

[Table 3-1] List of instructions used in implementation for CHAM in 
alphabetical order
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Lines 1-4 represent round 0, where the LDI instruction is used to 
retrieve precomputed values from the second block and add them to 
the first block containing the counter value. Rounds 1 and 2 are 
skipped and do not appear in the code. Lines 5-18 correspond to 

LD Rd, Y+ Load Indirect and Post 
Increment

Rd←(Y)
Y←Y+1

LD Rd, Z+ Load Indirect and Post 
Increment

Rd←(Z)
Z←Z+1

LDI Rd, K Load Immediate Rd←K
LPM Rd, Z Load Program Memory Rd←(Z)

LSL Rd Logical Shift Left
Rd(n+1)←Rd(n)

Rd(0)←0
C←Rd(7)

MOV Rd, Rr Copy Register Rd←Rr
MOVW Rd, Rr Copy Register Word Rd+1:Rd←Rr+1:Rr

POP Rd Pop Register from Stack Rd←STACK
PUSH Rr Push Register on Stack STACK←Rr

ROL Rd Rotate Left Through 
Carry

Rd(n)←Rd(n+1)
Rd(7)←0
C←Rd(0)

ST X+, Rr Store Indirect and Post 
Increment

(X)←Rr
(X)←X+1

ST Y+, Rr Store Indirect and Post 
Increment

(Y)←Rr
(Y)←Y+1

ST Y+, Rr Store Indirect and Post 
Increment

(Z)←Rr
(Z)←Z+1
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Line Code Comment
1: LDI XT0, 0x45 Round 0 start
2: LDI XT1, 0x65
3: ADD X00, XT0
4: ADC X01, XT1 ROL8 skipped
5: ADIW R30, 6 Round 3 start
6: MOVW XT0, X00
7: LD RK, Z+
8: EOR XT0, RK
9: LD RK, Z+
10: EOR XT1, RK
11: LDI X30, 0x65
12: LDI X31, 0x77
13: ADD X30, XT0
14: ADC X31, XT1
15: LSL X30
16: ROL X31
17: ADC X30, ZERO
18: LDI RC, 4
19: EOR X01, RC Round 4 start, XOR on upper register
20: LDI XT0, 0xDC
21: LDI XT1, 0xCA
22: ADD X01, XT0 XOR in reverse order of registers
23: ADC X00, XT1 XOR in reverse order of registers
24: LDI X10, 0x02 Round 5 start

[Table 3-2] Implementation code of proposed CHAM (RC: round 
counter, RK: round key, X00~X31: plaintext, XT: temporary register, 

Zero: zero register)
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round 3, where the ADIW instruction first shifts the lower address of 
the skipped round key, followed by normal operations, with lines 

25: LDI X11, 0X32
26: ADIW R30, 4 Round 6 start
27: MOVW XT0, X30
28: LSL XT0
29: ROL XT1
30: ADC XT0, ZERO
31: LD RK, Z+
32: EOR XT0, RK
33: LD RK, Z+
34: EOR XT1, RK 
35: LDI X20, 0x0B Load in reverse order of registers
36: LDI X21, 0x3D Load in reverse order of registers
37: ADD X21, XT0
38: ADC X20, XT1 
39: LDI RC, 7
40: MOVW XT0, X00 Round 7 start
41: EOR X30, RC 
42: LD RK, Z+
43: EOR XT1, RK
44: LD RK, Z+
45: EOR XT0, RK 
46: ADD X30, XT1
47: ADC X31, XT0 
48: LSL X30
49: ROL X31
50: ADC X30, ZERO
51: INC RC
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11-12 fetching precomputed values. The round counter, which had 
not been modified until this point, is updated at line 18. Lines 19-23 
implement round 4, which is nearly identical to round 0, except that 
an XOR operation is performed with the round counter before the 
computation begins. In round 0, XOR with 0 would yield the same 
result, so it was omitted, but round 4 requires XOR due to the round 
counter.

Lines 24-25 implement round 5, which, like rounds 1 and 2, can 
be fully skipped. However, a load operation is added, as the values 
are needed for round 6. Lines 26-39 represent round 6, structured 
similarly to round 3. Finally, the implementation of round 7 in lines 
40-51 completes the process, as no further parts can be skipped.

Since logical block rotation, described in section 3.1.2, is applied, 
no word-level rotation occurs at the end of each round. The eight 
left-rotate operations are also omitted in lines 4, 19, 22, 23, 35, and 
36. These rotations would have required the MOV instruction and an 
additional temporary register, necessitating a total of three MOV 
instructions, which were successfully avoided. CHAM-128/128 and 
CHAM-128/256 can be implemented in a similar manner.

The implementation outlined in [Table 3-2] pertains to a 
fixed-key scenario, assuming that the secret key remains unchanged. 
The implementation utilizes the LDI instruction to load predefined 
values, meaning that if the key varies, these values must also be 
adjusted. Therefore, in environments where the key changes, this 
implementation is not feasible. Additional modifications are required to 
accommodate key variability, as illustrated in [Figure 3-5].
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[Figure 3-5] Two implementation scenarios for the variable key 
model

The scenario of generating precomputed values while processing 
the first block can be divided into two cases. The first case involves 
generating only the precomputed values without encrypting the first 
block, corresponding to [Figure 3-5] (a). In this case, only the first 
8 rounds are executed to generate the precomputed values, and then 
the computation halts. Once these values are generated, all blocks, 
including the first, can be precomputed. This approach is referred to 
as the "separated model."

The second case involves generating the precomputed values while 
simultaneously processing the first block to completion, as shown in 
[Figure 3-5] (b). This is referred to as the "online model." The 
advantage of the online model is that it avoids repeating the initial 8 
rounds for the first block. However, it has the drawback of increased 
code complexity. Even in the variable-key scenario, the register 
allocation remains largely unchanged from [Figure 3-4]. However, 
due to the need to load the precomputed table, the address of the 
table is stored in registers R28 and R29, which are then used as the 
Y pointer register. In the case of CHAM-128/128 and 
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CHAM-128/256, the temporary values that were previously stored in 
R28 and R29 are moved to R2 and R3, allowing R28 and R29 to 
function as the Y pointer register for table access.

Assuming that the key changes, the first block of the input 
plaintext cannot undergo precomputation. Consequently, standard 
encryption must be performed for the first block. During this process, 
there is a need to store precomputed values, which will later be used 
for precomputation. In the proposed CHAM scheme, there are five 
points at which precomputed values are called. As a result, when 
encrypting the first block, five values must be stored to enable 
precomputation for subsequent blocks. Since CHAM-64/128 uses 
16-bit words, five values require storing 10 bytes. In the case of 
CHAM-128/128 and CHAM-128/256, which use 32-bit words, 
double the storage—20 bytes—is required.

Once the encryption of the first block is complete, precomputed 
values can be used for subsequent blocks. From this point forward, 
the initial eight rounds can be rapidly processed using the 
precomputation technique outlined in the code provided in [Table 3-
2].

3.1.4 Alternative Implementation: Furious CHAM
The total round keys for CHAM-64/128 amount to 32 bytes, and 

they are reused over 88 rounds. Upon reviewing the register 
allocation plans in [Figure 3-4] (a), it is evident that several 
registers remain unused during the implementation of CHAM-64/128. 
Given the structural characteristic of CHAM, where round keys are 
reused across rounds, preloading the round keys could reduce the 
number of load operations, thereby enhancing computational efficiency. 
This optimized approach is termed "Furious CHAM."
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With 16 registers available, it becomes possible to preload half of 
the round keys (16 bytes out of the total 32 bytes). This allows the 
omission of round key loads for 40 of the 80 rounds, excluding the 
initial 8 rounds. Since each round involves the loading of 2 bytes of 
round keys, omitting 80 LD instructions corresponds to a savings of 
160 cycles.

[Figure 3-6] Register allocation plan for furious CHAM

To implement Furious CHAM, a new register allocation plan is 
proposed, as outlined in [Figure 3-5] (a) and (b). In the fixed-key 
scenario at [Figure 3-5] (a), only the plaintext and round key 
pointers are required, allowing the free use of the Y register (R28, 
R29). Additionally, since R28 and R29 are not callee-saved registers, 
the need for PUSH and POP operations is eliminated, providing a 
further efficiency advantage.

In the variable-key scenario at [Figure 3-5] (b), a similar 
register allocation is applied, but the storage location of the plaintext 
differs. In the fixed-key scenario, the precomputed values remain 
constant, allowing the use of the LDI instruction, which is one cycle 
faster than the LD instruction. However, LDI can only be used with 
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registers R16 to R31, so plaintext was stored in R18 to R25. In the 
variable-key scenario, since the precomputed values cannot be 
fetched via LDI and must be accessed via LD, this constraint does 
not apply.

Nonetheless, even when using LD, it is possible to maintain the 
same register allocation. The reason for altering the plaintext 
registers more precisely lies in the need to preserve the pointer 
value passed as a parameter. Unlike the fixed-key scenario, the 
variable-key scenario requires an additional pointer to store the 
precomputed values (table pointer). Since the parameter pointers are 
stored starting at R24 and R25, the third pointer is stored in R20 and 
R21. If the plaintext pointer is moved to X or Z and values are 
loaded as in the fixed-key scenario, there is a risk of losing the 
table pointer stored in R20 and R21. While the use of MOVW, PUSH, 
and POP instructions could prevent this, it would result in additional 
cycle costs, making the alternative register allocation plan more 
efficient.

Although it is possible to load the round keys before the plaintext, 
this approach is less efficient because round keys require more 
registers than plaintext. Therefore, using MOVW or PUSH and POP 
instructions would be unavoidable in that case.

3.2  TinyJAMBU with Reverse Bitwise Shift
3.2.1 Reverse Bitwise Shift
TinyJAMBU exhibits a high dependency on keyed permutations, as 

demonstrated in [Table 3-3], where the number of keyed 
permutations performed at each stage is indicated.

[Table 3-4] presents the pseudocode of the keyed permutations. 
It can be observed that when generating t2, t3, and t4, the same 
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Step
Key length

128-bit 192-bit 256-bit
Initialization: Key setup 1,024 1,152 1,280

Initialization: Nonce setup 640 640 640
Processing associated data 640 640 640

Encryption/Decryption 1,024 1,152 1,280
Finalization 1,024 / 640 1,152 / 640 1,280 / 640

[Table 3-3] Number of keyed permutations each step in tinyJAMBU

state block is used, and it is shifted in the same direction. Since each 
state block of TinyJAMBU consists of 32 bits, it occupies four 
registers on the AVR processor. In the pseudocode of [Table 3-4], 
the s2 state block undergoes shifts of 6, 21, and 27 times, 
respectively.

Input: State s0, s1, s2, s3(32-bit each), Key k, Round n
Output: State s0, s1, s2, s3(32-bit each)
1: StateUpdate(s0, s1, s2, s3, k, n)
2:   for i = 0 to n
3:     t1 = (s1>>15)|(s2<<17)
4:     t2 = (s2>>6)|(s3<<26)

[Table 3-4] Pseudocode for keyed permutation(<<n: bitwise left 
shift n times, >>n: bitwise right shift n times, |: bitwise OR, &: 

bitwise AND, ^: bitwise XOR, ~: bitwise NOT)
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However, by utilizing the values stored in the registers, as shown 
in [Figure 3-4], a total of 27 shifts can be reduced to 6, 15, and 6 
shifts, respectively. Consequently, the required size for s2 during 
computation is 26 bits, 11 bits, and 5 bits, respectively. By reusing 
the values left in the registers, it becomes possible to reduce the 
number of shifts compared to the reference implementation, leading to 
a more efficient computation.

[Figure 3-7] S2 state computation structure using AVR assembly 
instructions

5:     t3 = (s2>>21)|(s3<<11)
6:     t4 = (s2>>27)|(s3<<5)
7:     feedback = s0^t1^(~(t2&t3))^t4^k
8:     s0 = s1
9:     s1 = s2
10:     s2 = s3
11:     s3 = feedback
12:   end for
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Additionally, if the 8-bit operations of the AVR processor’s 
registers are utilized, the number of shifts can be further minimized. 
In the second stage of [Figure 3-4], the remaining 11 bits are 
stored across R0, R1, and R2, with only the most significant bit of 
R2 being used. Thus, instead of shifting 15 times to obtain 11 bits, 
shifting once in the opposite direction allows the required 11 bits to 
be retained in R0 and R1. Similarly, the final 5 bits can be found by 
shifting twice in the opposite direction, as only the second bit of R1 
is needed. Therefore, by reversing the direction of the shifts, as 
illustrated in [Figure 3-7], all necessary values can be obtained with 
6 shifts in the first stage, 1 shift in the second, and 2 shifts in the 
third, resulting in a total of 9 shifts to complete the computation of 
the s2 block. [Figure 3-7] also shows that the red outline values   are 
the same as the original results.

[Figure 3-8] Proposed RBS applied to s2 state calculation

The s3 state block can be processed similarly. However, unlike s2, 
s3 is shifted to the right, with the shift count decreasing in later 
stages. Since some values may already be lost in the early stages 
due to the large number of shifts, the computation proceeds in 
reverse order. Typically, as shown in [Figure 3-8], 5, 6, and 15 
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shifts are required, totaling 26 shifts.
By reversing the direction of the shifts, as done with the s2 block, 

the number of shifts can be reduced which described at [Figure 3-
9]. Specifically, the first stage proceeds with 5 shifts as usual, while 
the second stage, which requires 21 bits, can be obtained by shifting 
twice in the opposite direction and utilizing the values from R1, R2, 
and R3. In the final stage, which requires 6 bits, the values in R2 
and R3 are shifted once in the opposite direction, and only the value 
from R3 is used. Similarly, the values   indicated by the red line in 
[Figure 3-9] are the same as the existing results at [Figure 3-8].

[Figure 3-9] S3 state flow with AVR assembly implementation

[Figure 3-10] S3 state calculation with RBS technique applied
The temporary value t1 is generated using the s1 and s2 state 
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blocks, which are not involved in the generation of other temporary 
values. Thus, a separate implementation is performed to generate this 
value. The s1 block undergoes a 15-bit right shift, leaving the upper 
17 bits intact. By using a RBS implementation, 24 bits from s1 can be 
loaded, and a single RBS will yield the required value, as illustrated 
in [Figure 3-10] (a) and (b). [Figure 3-10] (a) represents the 
implementation using the conventional method, while [Figure 3-10] 
(b) shows the implementation with the RBS applied. The section 
marked with the red line in [Figure 3-10] (b) demonstrates that the 
result matches the output of [Figure 3-10] (a).

[Figure 3-11] Operation process with the previous s1 state block 
operation and RBS applied

For s2, a 17-bit left shift is performed to retain the lower 15 
bits. This can be implemented without Reverse Bitwise Shifting by 
loading only the lower 16 bits and shifting once to the left to obtain 
the desired value, as shown in [Figure 3-11] (a) and (b). In [Figure 
3-11] (a), the operation is performed by shifting s2 15 times, 
whereas in [Figure 3-11] (b), the result is obtained by shifting in 
the same direction but only once. Although the number of shifts 
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differs, it can be observed that both yield identical computation 
results.

[Figure 3-12] Operate s2 state block with single shift

By employing reverse bitwise shifts, the number of required shifts 
in the original TinyJAMBU can be drastically reduced, even more than 
the method of reusing accumulated values. The differences in shift 
counts between the various implementations are summarized in [Table 

Case Reference Assembly RBS
s1>>15 15 15 6
s2<<17 17 17 1
s2>>6 6 6 2
s2>>21 21 15 5
s2>>27 27 6 2
s3>>5 5 5 1

[Table 3-5] Number of shifts for each implementation
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3-5].
3.2.2 Register Scheduling, Instructions Used and Implementation 
To implement the proposed TinyJAMBU, a register allocation plan, 

as illustrated in [Figure 3-13], is devised.

[Figure 3-13] Register allocation plan for RBS TinyJAMBU

Registers R2, R3, R4, and R5 are assigned to store the 
computation result state variables, while registers R6 through R13 are 
allocated for storing the input state variables. Registers R14, R15, 
R16, and R17 are designated as temporary registers to hold 
intermediate values during the computation. Additionally, registers R18 
through R22 are used for storing key values, and registers R28 
through R31 are allocated for storing pointer addresses. The types of 
instructions used in the implementation can be found in [Table 3-6].

[Table 3-7] presents the source code implementation of a keyed 
permutation that incorporates reverse bitwise shifts. The code 
includes only the portions where t1, t2, t3, and t4 are generated during 

s3>>11 11 6 1
s3>>26 26 15 1
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the overall keyed permutation process. Lines 1-8 cover the loading 

Mnemonic Operands Description Operation
ADD Rd, Rr Add without Carry Rd←Rd+Rr
CLR Rd Clear Register Rd←Rd⊕Rd
COM Rd One’s Comeplement Rd←$FF-Rd
EOR Rd, Rr Exclusive OR Rd←Rd⊕Rr

LDD Rd, Y+q Load Indirect with 
Displacement Rd←(Y+q)

LDD Rd, Z+q Load Indirect with 
Displacement Rd←(Z+q)

LSL Rd Logical Shift Left
Rd(n+1)←Rd(n)

Rd(0)←0
C←Rd(7)

MOVW Rd, Rr Copy Register Word Rd+1:Rd←Rr+1:Rr
OR Rd, Rr Logical OR Rd←Rd v Rr
POP Rd Pop Register from Stack Rd←STACK

PUSH Rr Push Register on Stack STACK←Rr

ROL Rd Rotate Left Through 
Carry

Rd(n)←Rd(n+1)
Rd(7)←0
C←Rd(0)

STD Y+q, Rr Store Indirect with 
Displacement (Y+q)←Rr

STD Z+q, Rr Store Indirect with 
Displacement (Z+q)←Rr

[Table 3-6] List of instructions used in implementation for 
TinyJAMBU in alphabetical order



- 38 -

of required values. In lines 9-12, the left shift operation for s1 is 
used to calculate the first part of t1, replacing the original 15 right 
shifts with a single left shift. Lines 13-17 prepare for subsequent 
operations, a process that appears intermittently after shifting each 
state block.

Lines 18-19 handle the computation of the second part of t1, 
where s2 is shifted left once instead of the 17 left shifts in the 
original method. Lines 20-25 are further preparation steps for the 
next operations. From lines 26-49, the front part of t2 is computed 
by shifting s2 six times to the right, following the original procedure.

Lines 56-75 cover the calculation of the back part of t4, where s3 
is shifted left five times. Since the initial shift of each state block 
remains unchanged, this step mirrors the original process. Lines 
80-87 simplify the calculation of the back part of t3 by replacing the 
original 11 left shifts with two right shifts.

Lines 91-92 compute the back part of t2 from s3, where the 
original 26 left shifts are replaced by a single right shift. Lines 
94-96 compute the front part of t3, shifting s2 left once instead of 
the original 21 right shifts. Finally, in lines 101-104, the front part 

Line Code Comment
1: LDD R2, Y+0 Load state
2: LDD R3, Y+1
3: LDD R4, Y+2
4: LDD R5, Y+3

[Table 3-7] Implementation code of proposed TinyJAMBU (RC: 
round counter, RK: round key, X00~X31: plaintext, XT: temporary 

register, Zero: zero register)
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5: LDD R6, Y+5
6: LDD R7, Y+6
7: LDD R8, Y+7
8: CLR R9
9: LSL R6 Front t1: s1>>15 → s1<<1
10: ROL R7
11: ROL R8
12: ROL R9
13: EOR R2, R7
14: EOR R3, R8
15: EOR R4, R9
16: LDD R6, Y+8
17: LDD R7, Y+9
18: LSL R6 Rear t1: s2<<17 → s2<<1
19: ROL R7
20: EOR R4, R6
21: EOR R5, R7
22: LDD R6, Y+8
23: LDD R7, Y+9
24: LDD R8, Y+10
25: LDD R9, Y+11
26: LSR R9 Front t2: s2>>6 (same as original)
27: ROR R8
28: ROR R7
29: ROR R6
30: LSR R9
31: ROR R8
32: ROR R7
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33: ROR R6
34: LSR R9
35: ROR R8
36: ROR R7
37: ROR R6
38: LSR R9
39: ROR R8
40: ROR R7
41: ROR R6
42: LSR R9
43: ROR R8
44: ROR R7
45: ROR R6
46: LSR R9
47: ROR R8
48: ROR R7
49: ROR R6
50: MOVW R14, R6
51: MOVW R16, R8
52: LDD R10, Y+12
53: LDD R11, Y+13
54: LDD R12, Y+14
55: LDD R13, Y+15
56: LSL R10 Rear t4: s3<<5 (same as original)
57: ROL R11
58: ROL R12
59: ROL R13
60: LSL R10
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61: ROL R11
62: ROL R12
63: ROL R13
64: LSL R10
65: ROL R11
66: ROL R12
67: ROL R13
68: LSL R10
69: ROL R11
70: ROL R12
71: ROL R13
72: LSL R10
73: ROL R11
74: ROL R12
75: ROL R13
76: PUSH R10
77: PUSH R11
78: PUSH R12
79: PUSH R13
80: LSR R13 Rear t3: s3<<11 → s3>>2
81: ROR R12
82: ROR R11
83: ROR R10
84: LSR R13
85: ROR R12
86: ROR R11
87: ROR R10
88: PUSH R10
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of t4 is calculated from s2, reducing the original 27 left shifts to just 
two, enabled by the proposed RBS technique.

3.2.3 Alternative Implementation: Initialization Skip
During the initialization step of TinyJAMBU, the key and nonce are 

set. If the key has changed, this process must be repeated; however, 
in environments such as the Internet of Things (IoT), the key and 
nonce may not be updated frequently. In such cases, the previously 

89: PUSH R11
90: PUSH R12
91: LSR R11 Rear t2: s3<<26 → s3>>1
92: ROR R10
93: OR R9, R10
94: LSL R15 Front t3: s2>>21 → s2<<1
95: ROL R16
96: ROL R17
97: POP R12
98: POP R11
99: POP R10
100: OR R10, R17
101: LSL R16 Front: t4: s2>>27 → s2<<2
102: ROL R17
103: LSL R16
104: ROL R17
105: POP R13
106: POP R12
107: POP R11
108: POP R10
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used key and nonce settings can be retained, eliminating the need to 
repeat the initialization process. Skipping this initialization step allows 
for faster computation, providing a simple yet effective method for 
increasing efficiency. Notably, the number of keyed permutations 
required for key and nonce settings during initialization is significantly 
higher compared to other stages, so bypassing this step can enhance 
computational efficiency.

3.3  Rainbow with Look-Up Table Based Multiplication
3.3.1 Tower-Field Based Multiplication
Rainbow signature uses the Karatsuba polynomial multiplication 

algorithm based on tower fields. While Rainbow signature operates 
over GF16, it transitions to the subfield GF4 for tower field 
operations, and GF4 further transitions to another subfield, GF2. This 
hierarchical process is illustrated in [Expression 3-1].

   
   



[Expression 1] Tower-field based multiplication of Rainbow I 
signature

The multiplication process for Rainbow signature can be 
represented in pseudocode, as shown in [Table 3-8]. In the first to 
fourth lines, two 4-bit input values are split into 2-bit segments. 
Lines five and six perform multiplications on the lower and upper 
2-bit segments, respectively. Line seven involves XORing the upper 
and lower 2-bit segments derived from the same values, then 
multiplying them to obtain the intermediate value. Line eight 
generates the square of the upper 2-bit value, termed as "square." 
Lastly, the algorithm XORs the intermediate value with the result of 
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multiplying the upper 2-bit values, shifts this result by two bits to 
the upper segment, and then XORs it with the lower bit multiplication 
result and the square, completing the operation.

For the Rainbow signature multiplication, the initial value is 
decomposed down to the lowest subfield, GF2, where the computation 
takes place. Afterward, during the reconstruction of the result, 
modular reduction is applied. ARMv8 architecture includes PMUL and 
PMULL instructions that can perform polynomial multiplication in 
parallel. However, these instructions cannot be directly applied to the 
polynomial multiplication required for Rainbow signature. While PMUL 
and PMULL perform modular reduction, they can only do so for 
values with a minimum size of 8 bits. Due to the nature of tower 
field-based operations in Rainbow signature, these instructions cannot 

Input: 4-bit array A, 4-bit constant B
Output: 4-bit accumulated calculation result C
1: a0 ← low 2-bit from A
2: a1 ← high 2-bit from A
3: b0 ← low 2-bit from B
4: b1 ← high 2-bit from B
5: a0b0 ← a0×b0

6: a1b1 ← a1×b1

7: intermediate ← a0^a1×b0^b1

8: square ← a1b1×a1b1

9: C ← ((intermediate^a1b1)<<2)^a0b0^square
10: return C

[Table 3-8] Pseudocode of tower-field based polynomial 
multiplication for Rainbow signature (^: bitwise XOR)
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handle the modular reduction of carry values generated in the 
subfields. To use PMUL and PMULL for Rainbow signature, additional 
custom code would be needed to handle the modular reduction in the 
subfields, which would reduce efficiency. Therefore, a different type 
of multiplication method is required.

3.3.2 Look Up Table Based Multiplication in Rainbow I
In the Rainbow signature scheme, multiplication can be optimized 

using a look-up table (LUT). Since the Rainbow scheme involves 
performing multiple multiplications with a single value, loading a 
look-up table once can yield multiple results, making it well-suited 
for parallel implementation. The proposed LUT stores multiplication 
results for 4-bit values, as the Rainbow I scheme operates in 
GF(16), where operations are performed on 4-bit units. A 4-bit unit 
can represent 16 different values, and a 4-bit by 4-bit multiplication 
yields 256 possible results. Therefore, the LUT would require 1024 
bits, or 128 bytes of storage. However, given that variables are 
stored in 8-bit units, the actual size of the LUT becomes 256 bytes. 
The full contents of the LUT are detailed in the Appendix's [Table 
Appendix-1].

During the multiplication process, a constant value is multiplied 
with a variable array. This means that not all values from the LUT 
need to be loaded; only the specific 16-byte segment corresponding 
to the constant value is required. While the LUT could be loaded 
using conditional statements, this introduces variability in load speeds 
depending on the constant value. Thus, an alternative method is 
employed to avoid such discrepancies.

[Figure 3-14] illustrates the process of loading the table. To 
implement the proposed method, the lower 8 bits of the starting 
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address of the LUT are set to 0x00. Each row in the table contains 
16 bytes, so if the starting address is 0x00, the subsequent rows 
increment by 0x10, 0x20, and so on. A pointer variable is initialized 
to point to the starting address of the LUT. When a constant value is 
provided for multiplication, the pointer is adjusted by adding 16 times 
the constant value. For instance, if the constant is 0x03, 0x30 is 
added to the pointer. The pointer then references the 16-byte row in 
the LUT corresponding to the constant, completing the table load 
needed for the multiplication operation.

[Figure 3-14] Table loading process in proposed Rainbow signature

This process can be represented in pseudocode as shown in [Table 
3-9]. In the first four lines, the table is set up. From lines 5 to 13, 
the multiplication operations based on the table values are performed. 
Line 14 returns the result. 

3.3.3 Resolve of LUT Size Problem in Rainbow III and V
In Rainbow I, computations were performed over GF16, but 



- 47 -

Rainbow III and V perform calculations over GF256. Since GF256 is 
represented by 8 bits and can express 256 values, the results of 
8-bit multiplication yield 65,536 possible values, requiring a lookup 
table size of 65,536 bytes. This poses a problem not only due to the 
table size increasing by 256 times from the previous 256 bytes but 
also because a single lookup now requires loading 256 bytes. Since 
vector registers can only hold 16 bytes, loading a 256-byte lookup 

Input: 8-bit(4-bit||4-bit) operand array A, 4-bit constant C
Output: 8-bit(4-bit||4-bit) accumulated result R
1: Table address pointer P initialized to first address of LUT
2: C ← C×16
3: P ← P+C
4: Table[16] ← Load table values via P
5: Loop counter LC ← |A|/16
6: for i from 0 until to LC do
7:   j ← i×16
8:   Alow[j:j+15] ← Alow[j:j+15]&0x0f
9:   Ahigh[j:j+15] ← Ahigh[j:j+15>>4
10:   Alow[j:j+15] ← Table[Alow[j:j+15]]
11:   Ahigh[j:j+15] ← Table[Ahigh[j:j+15]]
12:   R[j:j+15] ← R[j:j+15]^(Alow[j:j+15]&(Ahigh[j:j+15]<<4))
13: end for
14: return R

[Table 3-9] Pseudocode of look-up table based polynomial 
multiplication for Rainbow I (<<n: bitwise left shift n times, >>n: 

bitwise right shift n times, &: bitwise AND, ^: bitwise XOR)
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table would require 16 vector registers. This stands in stark contrast 
to the previous design, where only one vector register was needed.

Considering that Rainbow III and V also use tower-field-based 
multiplication, it is possible to use the original 4-bit multiplication 
table instead of an 8-bit multiplication table. However, an additional 
16-byte table for precomputed intermediate values is required. Thus, 
the total size for the Rainbow signature becomes 256 bytes + 16 
bytes, resulting in a total of 272 bytes.

Implementing multiplication with an 8-bit lookup table simplifies 
the entire computation, except for the table loading process, but it 
comes with the drawback of requiring a large number of vector 
registers and an excessively large table size. On the other hand, 
implementing 8-bit multiplication by breaking it down into 4-bit units 
reduces the required vector register allocation and decreases the table 
size by approximately 99.58%. However, the computation process 
becomes slightly more complex, and when expressed in pseudocode, it 
takes the form shown in [Table 3-10]. In lines 1-13, the necessary 
table is called, preparing for the calculations and setting the number 
of iterations. From lines 14-31, the required values are sequentially 
fetched, and the table-based computation is performed. Since the 
operands are expressed in 8-bit form, they are first divided into 
4-bit segments before calculation. Notably, there is an additional step 
where a 16-byte table is loaded. If the table loading is included 
within the loop, it could slow down the computation, as the table 
would be reloaded in each iteration. However, in the actual 
implementation, the loop is not applied, and this approach is used only 
in the pseudocode. The result of the computation is returned in line 
32. 
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Input: 8-bit operand array A, 8-bit constant C
Output: 8-bit accumulated result R
1: Table address pointer P initialized to first address of LUT
2: Clow ← C&0x0f
3: Clow ← Clow×16
4: P ← P+Clow

5: Tablelow[16] ← Load table values via P
6: Table address pointer P initialized to first address of LUT
7: Chigh ← C>>4
8: Chigh ← Chigh×16
9: P ← P+Chigh

10: Tablehigh[16] ← Load table values via P
11: Table address pointer P initialized to first address of LUTA

12: TableA[16] ← Load table values via P
13: Loop counter LC ← |A|/16
14: for i from 0 until to LC do
15:   j ← i×16
16:   Alow[j:j+15] ← Alow[j:j+15]&0x0f
17:   Ahigh[j:j+15] ← Ahigh[j:j+15]>>4
18:   Amiddle[j:j+15] ← Alow[j:j+15]^Ahigh[j:j+15]
19:   Alow[j:j+15] ← Table[Alow[j:j+15]]

[Table 3-10] Pseudocode of look-up table based polynomial 
multiplication for Rainbow III and V(<<n: bitwise left shift n times, 
>>n: bitwise right shift n times, &: bitwise AND, ^: bitwise XOR, 

A: additional)
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3.3.4 Register Scheduling and Instructions Used
The instructions in [Table 3-11] are the commands used to 

implement the Rainbow signature. Since the ARMv8 processor 
supports both general instructions and vector instructions, the vector 

20:   Ahigh[j:j+15] ← Table[Ahigh[j:j+15]]
21:   Clow ← C&0x0f
22:   Chigh ← C>>4
23:   Cmiddle ← Clow^Chigh

24:   Table address pointer P initialized to first address of LUT
25:   P ← P+Cmiddle

26:   Tablemiddle[16] ← Load table values via P
27:   Amiddle[j:j+15] ← Tablemiddle[Amiddle[j:j+15]]
28:   Alow[j:j+15] ← Alow[j:j+15]^Amiddle[j:j+15]
29:   Ahigh[j:j+15] ← TableA[Ahigh[j:j+15]]
30:   R[j:j+15] ← R[j:j+15]^(Alow[j:j+15]&(Ahigh[j:j+15]<<4))
31: end for
32: return R

Mnemonic Operands Description Operation

ADD Xd, Xn, #imm Add registers 
immediate Xd←Xn+#imm

ADR Xd, (Label) Form PC-relative 
address Xd←address

[Table 3-11] List of instructions used to implement Rainbow 
signatures in alphabetical order
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B (Label) Branch Go to label

BEQ (Label) Branch if it is 
equal Go to label

CBNZ Xt, (Label) Compare and 
branch on nonzero Go to label

CMP Xd, #imm Compare Flags←result

LSL Xd, Xn, #shift Logical shift left 
immeidate Xd←Xn<<#shift

MOV Xd, #imm Move immediate Xd←#imm

RET {Xn} Return from 
subroutine Return

SUB Xd, Xn, #imm Subtract 
immediate Xd←Xn-#imm

AND Vd.T, Vn.T, Vm.T Bitwise AND Vd←Vn&Vm
EOR Vd.T, Vn.T, Vm.T Bitwise XOR Vd←Vn⊕Vm

LD1 Vt.T, [Xn]
Load multiple 

single-element 
structures

Vt←[Xn]

MOVI Vt.T, #imm Move immediate Vt←#imm

SHL Vd.T, Vn.T, #shift Shift left 
immediate Vd←Vn<<#shift

ST1 Vt.T, [Xn]
Store multiple 
single-element 

structures
[Xn]←Vt

TBL Vd.T, {Vn.16B}, Table vector Vd←Vn[Vm]
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instructions that utilize vector registers are listed separately. [Figure 
3-] shows the register allocation plan for the proposed 
implementation. As with the instructions, the general registers and 
vector registers are separated and represented distinctly. In the 
general registers, x0 and x1 are used to store address values, while 
x2 holds operand constants, and x3 records the size of the input 
array. The x4 and x5 registers are used for temporary variables. In 
the vector registers, v0–v15 store the operand arrays, and v16–v23 
are additionally used for storing operand arrays in Rainbow III and V. 
Registers v28 and v29 store additional lookup table values, while v30 
is used for the general lookup table. The v31 register holds the 
constant value 0x0f for specific AND operations.

[Figure 3-15] Register allocation plan for Look-up table based 
Rainbow signature

Vm.T Lookup

USHR Vd.T, Vn.T, #shift Unsigned shift 
right immediate Vd←Vn>>#shift
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The actual implementation code for Rainbow I is shown in [Table 
3-12], and it operates in the same way as the pseudocode. The 
multiplier design operates on 4-bit units, but the actual computation 
is carried out in 8-bit units, with the minimum size of a vector 
register also being 8 bits. Consequently, although the vector register 
is 128 bits in size, it can fetch 16 values in parallel from the lookup 

table at once. The implementation source code for Rainbow III and V 
can be found in [Table Appendix-2]. Rainbow III and V perform 
multiplication over GF256, making their source code slightly longer 
and more complex compared to Rainbow I.

Line Code Comment
1: MOVI v31.16b, #15
2: ADR x4, MUL_TABLE Initial address
3: LSL w2, w2, #4 Multiplied by 16
4: ADD x4, x4, x2 Get table address
5: LD1.16b {v30}, [x4] Load table values
6: LD1.16b {v1}, [x1]
7: AND.16b v0, v1, v31 Divide into 4-bit
8: USHR.16b v1, v1, #4
9: TBL.16b v0, {v30}, v0 Table look-up
10: TBL.16b v1, {v30}, v1
11: SHL.16b v1, v1, #4
12: EOR.16b v0, v0, v1
13: LD1.16b {v1}, [x0]
14: EOR.16b v1, v1, v0
15: ST1.16b {v1}, [x0] Return

[Table 3-12] Implementation code of proposed multiplication (x0: 
output address, x1: operand address, x2(w2): constant)



- 54 -

3.3.5 Alternative Implementation: Avoiding Cache Side Attack
The proposed optimized implementation of the Rainbow signature 

has a potential vulnerability where timing information could be leaked 
during the lookup table access process. To mitigate this risk, an 
additional timing attack-resistant implementation is presented. This 
implementation introduces two approaches, the first being a cache 
side attack-resistant method.

This approach is inspired by the characteristics of the M1 
processor, which has a 128-byte cache line size, the 256-byte size 
of the full lookup table, and the aligned memory addresses of the 
table. In the proposed method, when 16 bytes of a specific table are 
loaded, the M1 processor’s cache stores an additional 128 bytes from 
the adjacent table in the cache line. By proactively loading the 
remaining 128 bytes into the cache, cache hits are always ensured, 
effectively obfuscating cache timing information. The implementation 
is structured as shown in [Table 3-13].

Line Code Comment
1: ADR x4, MUL_TABLE Initial address
2: LSL w2, w2, #4 Multiplied by 16
3: ADD x4, x4, x2 Get table address
4: LD1.16b {v30}, [x4] Load table values
5: SUB x4, x4, x2 Address recovery
6: ROR w2, w2, #4
7: XOR w2, w2, #80 Offset move

[Table 3-13] Implementation code of cache side attack resistance 
implementation. (x2(w2): constant)
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In lines 1–4, a 16-byte table is called, following the same process 
as in the original [Table 3-12]. During this step, the 128 bytes 
adjacent to the currently called lookup table are also loaded into the 
cache. In lines 5–6, the table is reset to its initial address. Line 7 
modifies the offset value used to specify the table by XORing it with 
0x80, ensuring that the offset always points to the opposite 
128-byte segment, regardless of the original offset. Lines 8–10 call 
the new lookup table, but the loaded data are not used directly. 
Instead, this step ensures that the remaining 128 bytes are stored in 
the cache.

Through this process, the entire lookup table is stored in the 
cache, ensuring that all accesses result in cache hits, thereby 
eliminating timing information leaks related to cache access.

Another implementation is the constant-time version. The process 
of loading table values typically involves conditional statements, such 
as if-else constructs, which can cause variations in execution time 
depending on the condition. If execution time depends on secret 
information, it introduces the risk of timing attacks, where secret 
values can be inferred from timing variations. The constant-time 
implementation ensures that all operations are executed in a uniform 
amount of time. In the proposed method, the constant-time 
implementation guarantees identical execution times when loading 
values into registers.

To achieve this, the entire 256-byte lookup table is preloaded into 

8: LSL w2, w2, #4
9: ADD x4, x4, x2 Get other address
10: LD1.16b {v27}, [x4] Load other table
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registers. According to [Figure 3-15], when implementing Rainbow I, 
registers v16 to v29 are unused, while v30 is used to store lookup 
table values and v31 is used for the constant value required to split 
data into 4-bit segments. These 16 registers, capable of holding 256 
bytes in total, are used to preload all table values.

The offset value determining the table load ranges from 0 to 15. 
The implementation divides the table into two branches based on the 
midpoint value of 8. In the second stage, each branch is further 
divided into two sub-branches using midpoint values of 4 and 12. 
This process continues iteratively until the final branch is reached, at 
which point the value in the corresponding register is moved to the 
actual usage register, v30. 

To ensure uniform execution time across all paths, dummy branch 
instructions are inserted in cases where the condition is not met. 
This ensures that every branch has the same number of instructions, 
maintaining consistent execution times regardless of the input. The 
complete implementation can be found in [Table Appendix-3]. 
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4.  Performance Evaluation

4.1  Evaluation CHAM Block Cipher
The performance evaluation of the optimized CHAM block cipher 

implementation is conducted on the AVR processor, specifically the 
ATmega128, using the Microchip Studio IDE. The performance metric 
used is cycles per byte (cpb), with an overall performance summary 
provided in [Figure 4-1].

[Figure 4-1] Performance Measurement Results for CHAM (Unit: 
clock cycles per byte, 32-bit: 32-bit counter of CHAM-64/128)

The original CHAM algorithm yields 188, 203, and 219 cpb for 
CHAM-64/128, 128/128, and 128/256, respectively. The proposed 
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CHAM optimization techniques include various versions, starting with 
the fixed-key scenario implementation.

In the fixed-key scenario, the implementations achieve 158.8, 
162.8, 184, and 197 cpb for CHAM-64/128 (16-bit counter), 64/128 
(32-bit counter), 128/128, and 128/256, respectively. This 
corresponds to performance improvements of 18.4%, 15.5%, 10.3%, 
and 11.2%. The proposed methods optimize operations by omitting a 
significant number of computations in the initial 8 rounds and 
employing techniques like logical block rotation to maintain efficient 
processing in subsequent rounds.

For the variable-key scenario, a look-up table must be generated, 
and two models are provided: the separated model and the online 
model. The separated model is less efficient, as it effectively 
encrypts the first plaintext block twice. In contrast, the online model 
avoids redundant encryption and achieves performance improvements 
of 11.9%, 11.9%, 5.7%, and 6.8% for CHAM-64/128 (16-bit 
counter), 64/128 (32-bit counter), 128/128, and 128/256, 
respectively. In the actual variable-key scenario, after generating the 
look-up table, the encryption proceeds using the precomputed table, 
resulting in performance gains of 16.8%, 14.6%, 9.7%, and 10.6% 
compared to the original implementation.

[Figure 4-cf] shows the performance measurement results for 
Furious CHAM. Due to the characteristics of the implementation 
environment, only CHAM-64/128 was implemented, and the 32-bit 
counter was not considered. The performance results indicate that the 
fixed-key scenario implementation achieves 148.1 cpb. In the 
variable-key scenario, the process of generating the look-up table 
and performing encryption takes 155.8 cpb, while the encryption 
process alone in the variable-key scenario requires 150 cpb. These 
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results represent performance improvements of 26.9%, 20.7%, and 
25.3%, respectively, compared to the original implementation.

[Figure 4-2] Performance Measurement Results for Furious 
CHAM-64/128 (Unit: clock cycles per byte)

4.2  Evaluation TinyJAMBU Lightweight Cipher
The performance evaluation of the TinyJAMBU implementation was 

conducted using the Microchip Studio IDE on the ATmega128 
processor. Clock cycles were used as the performance metric, and an 
8-byte plaintext input was selected for the tests. The performance of 
TinyJAMBU’s keyed permutation was compared across three 
implementations: the original TinyJAMBU reference, an 
assembly-optimized version, and the proposed implementation that 
incorporates RBS optimization.

Performance measurements were carried out for 640 keyed 
permutations with various key lengths, and for 1024, 1152, and 1280 
keyed permutations, which correspond to key lengths of 128-bit, 
192-bit, and 256-bit, respectively. The results are summarized in 
the graph in [Figure 4-3]. 
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[Figure 4-3] Performance Measurement Results for Keyed 
permutation of TinyJAMBU (Unit: clock cycles)

For the reference implementation, the cycles recorded for 640/128, 
640/192, 640/256, 1024, 1152, and 1280 keyed permutations were 
21,752, 22,325, 21,752, 34,736, 40,088, and 43,392, respectively. 
The 640 keyed permutation showed little variation in performance 
across different key lengths because the number of repetitions 
remained constant. However, as the number of keyed permutations 
increased like 1024, 1152, 1280, the cycle count also increased.

The assembly-optimized version recorded 20,135, 20,968, 20,278, 
32,177, 37,203, and 40,488 cycles, respectively, representing 
performance improvements of 8.0%, 6.5%, 7.3%, 8.0%, 7.8%, and 
7.2% compared to the reference implementation. Although no special 
optimization techniques were applied, the assembly version showed 
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slightly better performance than the reference C implementation.
The RBS optimization method recorded 3,594, 3,597, 3,596, 5,706, 

6,415, and 7,118 cycles, achieving significant performance 
improvements of 505.2%, 520.7%, 504.9%, 508.8%, 524.9%, and 
509.6%, respectively, compared to the reference implementation. This 
remarkable performance enhancement is due to the effective use of 
RBS and optimization techniques tailored to the AVR processor, which 
significantly improved the efficiency of the keyed permutation.

The performance evaluation of the encryption and decryption 
processes in TinyJAMBU, each employing different keyed 
permutations, is presented. The results are summarized in the graph 
in [Figure 4-4]. An analysis of the encryption and decryption 
performance reveals that there is minimal difference between the two, 
as TinyJAMBU employs the same structure for both operations. For 
ease of comparison, a detailed analysis is performed on the 
encryption process only. 

For the reference implementation, the cycle counts for key lengths 
of 128-bit, 192-bit, and 256-bit are 217,043, 239,765, and 249,900, 
respectively. In contrast, the assembly implementation records 
208,397, 233,214, and 244,698 cycles for the respective key lengths, 
showing performance improvements of 4.1%, 2.8%, and 2.1% over the 
reference implementation. The implementation using the RBS 
technique, however, achieves cycle counts of 37,970, 40,818, and 
43,626 for the respective key lengths. Compared to the reference 
implementation, these results represent performance enhancements of 
471.6%, 487.2%, and 472.8%.

The RBS technique not only reduces the number of shifts but also 
decreases the number of registers involved in shift 
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[Figure 4-4] Performance Measurement Results for TinyJAMBU 
(Unit: clock cycles, I: Initialization skip implementation)

operations, thereby significantly reducing the number of instructions 
required, making it even more efficient than the proposed structure.

The performance of an additional implementation incorporating the 
initialization-skipping technique is also compared. This technique, 
which is beneficial in environments where the key and nonce are 
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reused, can be applied universally to all implementation types. When 
the initialization-skipping technique is used, performance 
improvements of up to 82.9% for the reference implementation, 
80.9% for the assembly-optimized implementation, and 77.6% for the 
RBS implementation are observed. The combined effect of the RBS 
and initialization-skipping techniques yields up to a 915.3% 
performance improvement over the reference implementation.

4.3  Evaluation Rainbow Post-Quantum Cryptography
In this section, the performance evaluation of the Rainbow 

signature algorithm is presented. The implementation was worked 
using Xcode IDE. The first focus is on assessing the performance of 
the proposed multiplier. The evaluation results are shown in the graph 
in [Figure 4-5]. For the reference implementation, the F16 and F256 
multipliers required 355 and 16,557 cycles, respectively. In contrast, 
the proposed method required only 58 and 99 cycles, corresponding to 
performance improvements of 512.1% and 16,624.2%, respectively. 
Similarly, on the A13 processor, the F16 and F256 multipliers 
demonstrated performance enhancements of 477.9% and 13,485.8%, 
respectively. On the BCM2711, the improvements were even more 
significant, with performance gains of 42,723.3% and 42,773.1% for 
the F16 and F256 multipliers, respectively.

The Rainbow algorithm has several variant implementations, and 
performance measurements have been conducted on different 
processors. Here, the performance evaluation focuses on the Apple 
M1 processor, while data for other processors are provided in the 
Appendix. 
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[Figure 4-5] Performance Measurement Results for table based 
multiplier of proposed Rainbow signature in log scale (Unit: clock 

cycles)

The performance results for Rainbow I are presented in [Figure 
4-6]. When comparing the reference implementation of Rainbow I 
Classic to the proposed method, the improvements for key generation, 
signing, and verification processes were 1490.7%, 919.4%, and 
4614.3%, respectively. Similarly, for the Rainbow I Circumzenithal 
version, performance improvements of 1569.3%, 578.7%, and 35.2% 
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were observed. The Rainbow I Compressed version showed 
enhancements of 1567.4%, 882.4%, and 35.3% for keygen, sign, and 
verify, respectively.

[Figure 4-6] Performance Measurement Results for Rainbow I on 
Apple M1 processors expressed in log scale (Unit: 106 clock cycles)

Next, the performance evaluation results for Rainbow III on the 
M1 processor are shown in [Figure 4-7]. The Rainbow III Classic 
version demonstrated performance improvements of 3464.1%, 
1296.5%, and 389.2% for key generation, signing, and verification, 
respectively. The Rainbow III Circumzenithal version yielded 
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[Figure 4-7] Performance Measurement Results for Rainbow III on 
Apple M1 processors expressed in log scale (Unit: 106 clock cycles)

improvements of 3713.6%, 1289.4%, and 1273.7%, while the Rainbow 
III Compressed version achieved 3713.4%, 2147.6%, and 37.3% 
enhancements in the same processes.

Lastly, the performance measurements for Rainbow V on the M1 
processor are summarized in [Figure 4-8]. The Rainbow V Classic 
version showed performance gains of 1565.6%, 2384.6%, and 
2219.7% for keygen, sign, and verify, respectively. The Rainbow V 
Circumzenithal version recorded improvements of 1706.9%, 2344.8%, 
and 46.8%. Finally, the Rainbow V Compressed version exhibited 
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[Figure 4-8] Performance Measurement Results for Rainbow V on 
Apple M1 processors expressed in log scale (Unit: 106 clock cycles)

enhancements of 1707.3%, 1633.2%, and 47.0% in the respective 
processes.

The performance evaluation results of the Cache side attack 
resistance and Constant time implementations are presented, as shown 
in the graph in [Figure 4-9], which focuses on Rainbow I. Data for 
Rainbow III and V's Cache side attack resistance implementations are 
provided in the appendix.
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[Figure 4-9] Performance Measurement Results for Rainbow I cache 
side attack resistance implementation and constant-time 

implementation on Apple M1 processors expressed in log scale (Unit: 
106 clock cycles)

When comparing the Cache side attack resistance implementation with 
the proposed optimized implementation, Rainbow I Classic exhibited 
performance decreases of 3.4%, 22.5%, and 22.2% for key 
generation, signing, and verification, respectively. In the 
Circumzenithal version, the performance decreases were 1.9%, 7.8%, 
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and 7.7% for keygen, sign, and verify. The Compressed version 
showed the smallest performance impact, with reductions of 1.0%, 
0.5%, and 6.1%, respectively.

Despite the larger performance drops observed in the Classic 
version's signing and verification processes, the actual increase in 
cycle counts was relatively small, at 0.09 million cycles for sign and 
0.02 million cycles for verify. This apparent discrepancy arises 
because the original optimized implementation already had very low 
cycle counts, making the percentage decrease appear more significant.

For the Constant time implementation, Rainbow I Classic 
experienced performance drops of 41.4%, 16.2%, and 41.7% for 
keygen, sign, and verify, respectively. In the Circumzenithal version, 
key generation experienced a performance decrease of 43.2%, while 
sign and verify showed performance improvements of 27.0% and 
4.1%, respectively. The Compressed version saw reductions of 42.8% 
and 30.7% for keygen and sign, respectively, while verification 
showed a 4.0% performance improvement. The observed performance 
increases in some cases are due to measurement variations, and under 
typical conditions, the Constant time implementation is generally 
slower than the optimized implementation.

Overall, the Constant time implementation exhibited greater 
performance degradation compared to the Cache side attack resistance 
implementation. This is because ensuring constant-time execution 
significantly increases the operation time. Additionally, the Constant 
time implementation is limited to Rainbow I due to register 
constraints, though it offers the crucial advantage of guaranteeing 
constant-time behavior.
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5.  Conclusion

This dissertation presents optimized implementations of the 
lightweight cipher CHAM, TinyJAMBU, and the post-quantum 
cryptography Rainbow signature. The implementations were carried 
out on 8-bit AVR and 64-bit ARMv8 processors, which are 
commonly used in embedded hardware. For the CHAM block cipher, a 
technique that skips certain operations in the initial 8 rounds was 
applied, leveraging the characteristics of block cipher counter mode. 
As a result, performance improvements ranging from 9.7% to 18.4% 
were achieved, with a maximum improvement of 26.9% for the 
specialized Furious CHAM variant.

TinyJAMBU utilized reverse bitwise shifts that take advantage of 
AVR register storage to optimize the keyed permutation. This 
optimization led to performance enhancements exceeding 500% for the 
keyed permutation alone. When the optimized permutation was applied 
to TinyJAMBU, overall performance improved by approximately 470%. 
Additionally, applying an initialization-skipping technique resulted in a 
maximum performance gain of 915.3%.

Finally, for the Rainbow signature, the tower field-based 
multiplication, which could not be fully supported by ARMv8 assembly 
instructions, was converted into a lookup table format for more 
efficient multiplication. This modification yielded performance 
improvements between 477.9% and 42,773.1% across various 
processors. When the proposed multiplication method was applied to 
Rainbow signature on the M1 processor, the maximum performance 
gains were observed as follows: 3464.1% for key generation in 
Rainbow III, 2384.6% for signing in Rainbow V, and 4614.3% for 
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verification in Rainbow I.
The specialized implementations of Rainbow signature, such as the 

Cache side attack resistance and Constant time versions, exhibited 
slightly lower performance compared to the optimized implementation 
but provided the advantage of resistance to side-channel attacks. The 
optimization techniques proposed in this dissertation demonstrate 
effective performance on embedded processors and can be applied to 
other cryptographic algorithms with similar structures to achieve 
optimized implementations.



- 72 -

Appendix: Look-Up Table for Rainbow

× 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x1 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
0x2 0x0 0x2 0x3 0x1 0x8 0xa 0xb 0x9 0xc 0xe 0xf 0xd 0x4 0x6 0x7 0x5
0x3 0x0 0x3 0x1 0x2 0xc 0xf 0xd 0xe 0x4 0x7 0x5 0x6 0x8 0xb 0x9 0xa
0x4 0x0 0x4 0x8 0xc 0x6 0x2 0xe 0xa 0xb 0xf 0x3 0x7 0xd 0x9 0x5 0x1
0x5 0x0 0x5 0xa 0xf 0x2 0x7 0x8 0xd 0x3 0x6 0x9 0xc 0x1 0x4 0xb 0xe
0x6 0x0 0x6 0xb 0xd 0xe 0x8 0x5 0x3 0x7 0x1 0xc 0xa 0x9 0xf 0x2 0x4
0x7 0x0 0x7 0x9 0xe 0xa 0xd 0x3 0x4 0xf 0x8 0x6 0x1 0x5 0x2 0xc 0xb
0x8 0x0 0x8 0xc 0x4 0xb 0x3 0x7 0xf 0xd 0x5 0x1 0x9 0x6 0xe 0xa 0x2
0x9 0x0 0x9 0xe 0x7 0xf 0x6 0x1 0x8 0x5 0xc 0xb 0x2 0xa 0x3 0x4 0xd
0xa 0x0 0xa 0xf 0x5 0x3 0x9 0xc 0x6 0x1 0xb 0xe 0x4 0x2 0x8 0xd 0x7
0xb 0x0 0xb 0xd 0x6 0x7 0xc 0xa 0x1 0x9 0x2 0x4 0xf 0xe 0x5 0x3 0x8
0xc 0x0 0xc 0x4 0x8 0xd 0x1 0x9 0x5 0x6 0xa 0x2 0xe 0xb 0x7 0xf 0x3
0xd 0x0 0xd 0x6 0xb 0x9 0x4 0xf 0x2 0xe 0x3 0x8 0x5 0x7 0xa 0x1 0xc
0xe 0x0 0xe 0x7 0x9 0x5 0xb 0x2 0xc 0xa 0x4 0xd 0x3 0xf 0x1 0x8 0x6
0xf 0x0 0xf 0x5 0xa 0x1 0xe 0x4 0xb 0x2 0xd 0x7 0x8 0x3 0xc 0x6 0x9
A 0x0 0x8 0xc 0x4 0xb 0x3 0x7 0xf 0xd 0x5 0x1 0x9 0x6 0xe 0xa 0x2

[Table Appendix-1] Precomputation look-up table of tower-field 
based polynomial multiplication results on GF16 expressed in 

hexadecimal (A: additional table for Rainbow III and V)
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Line Code Comment
1: MOVI v31.16b, #15
2: AND w4, w2, #15
3: LSR w5, w2, #4
4: ADR x6, MUL_TABLE Initial address1
5: LSL w4, w4, #4 Multiplied by 16
6: ADD x6, x6, x4 Get table1 address
7: ADR x7, MUL_TABLE Initial address2
8: LSL w5, w5, #4 Multiplied by 16
9: ADD x7, x7, x5 Get table2 address
10: LD1.16b {v30}, [x6] Load table1 values
11: LD1.16b {v29}, [x7] Load table2 values
12: ADR x6, ADDI_TABLE Initial addressA
13: LD1.16b {v27}, [x6] Load tableA values
14: LD1.16b {v1}, [x1], #16
15: LD1.16b {v5}, [x1], #16
16: AND.16b v0, v1, v31 Divide into 4-bit
17: USHR.16b v1, v1, #4
18: AND.16b v4, v5, v31
19: USHR.16b v5, v5, #4
20: TBL.16b v2, {v30}, v0 Table look-up
21: TBL.16b v3, {v29}, v1
22: TBL.16b v6, {v30}, v4
23: TBL.16b v7, {v29}, v5
24: EOR.16b v0, v0, v1

[Table Appendix-2] Implementation code of proposed multiplication 
for Rainbow III and V (x0: output address, x1: operand address, 

x2(w2): constant)
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25: EOR.16b v4, v4, v5
26: AND w4, w2, #15
27: LSR w5, w2, #4
28: EOR w4, w4, w5
29: ADR x6, MUL_TABLE Initial address3
30: LSL w4, w4, #4 Multiplied by 16
31: ADD x6, x6, x4 Get table3 address
32: LD1.16b {v28}, [x6] Load table3 values
33: TBL.16b v0, {v28}, v0 Table look-up
34: EOR.16b v0, v0, v2
35: TBL.16b v4, {v28}, v4
36: EOR.16b v4, v4, v6
37: TBL.16b v3, {v27}, v3
38: TBL.16b v7, {v27}, v7
39: SHL.16b v0, v0, #4
40: EOR.16b v0, v0, v2
41: EOR.16b v0, v0, v3
42: SHL.16b v4, v4, #4
43: EOR.16b v4, v4, v6
44: EOR.16b v4, v4, v7
45: LD1.16b {v1}, [x0], #16
46: LD1.16b {v5}, [x0], #16
47: SUB x0, x0, #32
48: EOR.16b v1, v1, v0
49: EOR.16b v5, v5, v4
50: ST1.16b {v1}, [x0], #16
51: ST1.16b {v5}, [x0], #16 Return
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Line Code Comment
1: ADR x4, MUL_TABLE
2: LD1.16b {v16}, [x4], Load offset0 table
3: (All table values load)
4: LD1.16b {v31}, [x4], Load offset15 table
5: CMP w2, #8
6: BLT MUL_07
7: B MUL_815
8: MUL_BACK:
9: (The multiplication code section)
10: RET Return
11: MUL_07:
12: B Dummy branch
13: CMP w2, #4
14: BLT MUL_03
15: B MUL_47
16: MUL_03:
17: B Dummy branch
18: CMP w2, #2
19: BLT MUL_01
20: B MUL_23
21: MUL_01:
22: B Dummy branch
23: CMP w2, #1
24: BEQ MUL_1
25: B MUL_0

[Table Appendix-3] Implementation code of constant-time 
implementation. (x2(w2): constant)
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26: MUL_23:
27: CMP w2, #3
28: BEQ MUL_3
29: B MUL_2
30: MUL_47:
31: CMP w2, #6
32: BLT MUL_45
33: B MUL_67
34: MUL_45:
35: B Dummy branch
36: CMP w2, #5
37: BEQ MUL_5
38: B MUL_4
39: MUL_67:
40: CMP w0, #7
41: BLT MUL_811
42: B MUL_1215
43: MUL_815:
44: BLT MUL_811
45: B MUL_1215
46: MUL_811:
47: B Dummy branch
48: CMP w2, #10
49: BLT MUL_89
50: B MUL_1011
51: MUL_89:
52: B Dummy branch
53: CMP w2, #9
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54: BEQ MUL_9
55: B MUL_8
56: MUL_1011:
57: CMP w2, #11
58: BEQ MUL_11
59: B MUL_10
60: MUL_1215:
61: CMP w2, #14
62: BLT MUL_1213
63: B MUL_1415
64: MUL_1213:
65: B Dummy branch
66: CMP w2, #13
67: BEQ MUL_13
68: B MUL_12
69: MUL_1415:
70: CMP w2, #15
71: BEQ MUL_15
72: B MUL_14
73: MUL_0:
74: MOV v30.16b, v16.16b Get actual table value
75: B MUL_BACK
76: MUL_1:
77: B Dummy branch
78: MOV v30.16b, v17.16b Get actual table value
79: B MUL_BACK
80: MUL_2:
81: MOV v30.16b, v18.16b Get actual table value
82: B MUL_BACK
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83: MUL_3:
84: B Dummy branch
85: MOV v30.16b, v19.16b Get actual table value
86: B MUL_BACK
87: MUL_4:
88: MOV v30.16b, v20.16b Get actual table value
89: B MUL_BACK
90: MUL_5:
91: B Dummy branch
92: MOV v30.16b, v21.16b Get actual table value
93: B MUL_BACK
94: MUL_6:
95: MOV v30.16b, v22.16b Get actual table value
96: B MUL_BACK
97: MUL_7:
98: B Dummy branch
99: MOV v30.16b, v23.16b Get actual table value
100: B MUL_BACK
101: MUL_8:
102: MOV v30.16b, v24.16b Get actual table value
103: B MUL_BACK
104: MUL_9:
105: B Dummy branch
106: MOV v30.16b, v25.16b Get actual table value
107: B MUL_BACK
108: MUL_10:
109: MOV v30.16b, v26.16b Get actual table value
110: B MUL_BACK
111: MUL_11:
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112: B Dummy branch
113: MOV v30.16b, v27.16b Get actual table value
114: B MUL_BACK
115: MUL_12:
116: MOV v30.16b, v28.16b Get actual table value
117: B MUL_BACK
118: MUL_13:
119: B Dummy branch
120: MOV v30.16b, v29.16b Get actual table value
121: B MUL_BACK
122: MUL_14:
123: MOV v30.16b, v30.16b Get actual table value
124: B MUL_BACK
125: MUL_15:
126: B Dummy branch
127: MOV v30.16b, v31.16b Get actual table value
128: B MUL_BACK
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Appendix: Performance evaluation result for 
Rainbow on A13 processors

[Figure Appendix-1] Performance Measurement Results for 
Rainbow I on Apple A13 processors expressed in log scale (Unit: 

106 clock cycles)

The performance evaluation results of Rainbow I on the A13 
processor are shown in [Figure Appendix-1], with the graph 
represented on a logarithmic scale. For the Classic version, the 
performance improvements were 1520.4% for key generation, 967.7% 
for signing, and 4785.7% for verification. In the Circumzenithal 
version, the improvements for keygen, sign, and verify were 1531.0%, 
840.0%, and 35.4%, respectively. The Compressed version achieved 
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[Figure Appendix-2] Performance Measurement Results for Rainbow 
III on Apple A13 processors expressed in log scale (Unit: 106 clock 

cycles)

enhancements of 1404.8%, 967.4%, and 27.0%, respectively.
The performance evaluation results of Rainbow III are illustrated in 

the graph in [Figure Appendix-2]. For the Classic Rainbow version, 
performance improvements were observed at 3042.2% for key 
generation, 1275.7% for signing, and 4786.6% for verification. In the 
Circumzenithal version, the improvements for keygen, sign, and verify 
were 3550.2%, 1246.4%, and 22.5%, respectively. Lastly, the 
Compressed version showed performance gains of 3165.9%, 1851.1%, 
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[Figure Appendix-3] Performance Measurement Results for 
Rainbow V on Apple A13 processors expressed in log scale (Unit: 

106 clock cycles)

and 14.5% for key generation, signing, and verification, respectively.
The performance evaluation results of Rainbow V are summarized 

in the graph in [Figure Appendix-3]. For the Rainbow V Classic 
version, performance improvements of 1365.6% for key generation, 
1895.9% for signing, and 1797.4% for verification were observed. In 
the Circumzenithal version, keygen showed an improvement of 
1624.0%, sign improved by 2271.3%, and verify improved by 50.9%. 
For the Compressed version, the performance gains were 1569.5% for 
key generation, 1822.7% for signing, and 64.1% for verification.
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Appendix: Performance evaluation result for 
Rainbow on BCM2711 processors

[Figure Appendix-4] Performance Measurement Results for Rainbow 
I on BCM2711 processors expressed in log scale (Unit: 106 clock 

cycles)

The implementation results of Rainbow on the BCM2711 processor 
are evaluated. The performance measurements for Rainbow I are 
shown in [Figure Appendix-4], with the graph presented on a 
logarithmic scale. For Rainbow I Classic, performance improvements 
of 2487.7% for key generation, 1089.8% for signing, and 11316.2% 
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for verification were observed. The significant improvement in 
verification is attributed to the original implementation being 
exceptionally slow on the BCM2711 processor. 

In the Circumzenithal version, the performance gains were 2584.2% 
for keygen, 1083.3% for sign, and 54.3% for verify. For the 
Compressed version, keygen improved by 2666.7%, sign by 1400.4%, 
and verify by 43.3%.

[Figure Appendix-5] Performance Measurement Results for Rainbow 
III on BCM2711 processors expressed in log scale (Unit: 106 clock 

cycles)

The performance evaluation results for Rainbow III are summarized 
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in [Figure Appendix-5]. For the Classic version, key generation 
showed a performance improvement of 5766.7%, while signing and 
verification improved by 1498.8% and 377.5%, respectively. In the 
Circumzenithal version, keygen improved by 6423.2%, sign by 
1315.8%, and verify by 48.7%. Lastly, in the Compressed version, 
keygen demonstrated a 6445.0% improvement, sign improved by 
3541.2%, and verify improved by 54.4%.

[Figure Appendix-6] Performance Measurement Results for Rainbow 
V on BCM2711 processors expressed in log scale (Unit: 106 clock 

cycles)

The performance evaluation results for Rainbow III are shown in 
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[Figure Appendix-6]. For Rainbow V Classic, performance 
improvements of 1819.4%, 2332.9%, and 2771.1% were observed for 
key generation, signing, and verification, respectively. In the 
Circumzenithal version, the improvements were 1969.1% for keygen, 
2343.5% for sign, and 62.6% for verify. For the Compressed version, 
performance gains of 2018.9%, 2139.1%, and 60.5% were recorded 
for key generation, signing, and verification, respectively.
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Appendix: Performance evaluation result for 
Cache side attack resistance implementation of 

Rainbow III and V

[Figure Appendix-7] Performance Measurement Results for Rainbow 
III cache side attack resistance implementation on Apple M1 

processors (Unit: 106 clock cycles)

The performance of the cache side attack resistant implementation 
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of Rainbow III is summarized in [Figure Appendix-7]. Overall, there 
is a slight performance decrease, with the maximum degradation being 
2.7% and the minimum being 0.7%, showing results that are nearly 
comparable to the original implementation.

[Figure Appendix-8] Performance Measurement Results for Rainbow 
V cache side attack resistance implementation on Apple M1 

processors (Unit: 106 clock cycles)

The performance evaluation results for the cache side attack 
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resistant implementation of Rainbow V are also presented in [Figure 
Appendix-8]. Similarly, there is a minor performance drop overall, 
with a maximum decrease of 2.8% and a minimum of 0%.
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Appendix: Abbreviation

l AES: Advanced Encryption Standard
l ARX: Add-Rotate-XOR
l AVR: Advanced Virtual RISC
l CBC: Cipher Block Chaining
l CFB: Cipher Feedback
l CPB: Cycles Per Byte
l CTR: Counter Mode
l CVP: Closest Vector Problem
l DES: Data Encryption Standard
l ECB: Electronic Codebook
l GF: Galois Field
l IoT: Internet of Things
l KEM: Key Encapsulation Mechanism
l LEA: Lightweight Encryption Algorithm
l NIST: National Institute of Standards and Technology
l NLFSR: Non-Linear Feedback Shift Register
l OFB: Output Feedback
l PKE: Public-Key Encryption
l PQC: Post-Quantum Cryptography
l RBS: Reverse Bitwise Shift
l RSA: Rivest–Shamir–Adleman
l SIMD: Single Instruction, Multiple Data
l SPHINCS+: Secure Hash-Based Signature Scheme
l SVP: Shortest Vector Problem
l XOR: Exclusive-OR
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국 문 초 록  

임베디드 프로세서 특성 기반
암호 알고리즘의 구조적 최적화

한 성 대 학 교 대 학 원
정 보 컴 퓨 터 공 학 과
정 보 시 스 템 공 학 전 공
권 혁 동

     본 논문에서는 암호 알고리즘의 내부 구조 변경을 통한 최적 구현 
기법에 대해 연구 및 그 결과를 제시한다. 암호 알고리즘의 최적 구현 관
점 중에서 속도 최적화는 알고리즘의 연산 속도를 빠르게 하여 비효율적
인 연산 성능을 개선하는 것이다. 최적 구현에서는 주로 병렬 구현이 많이 
사용되는데, 알고리즘 내부 연산을 병렬 구현하는 것으로는 최적 구현의 
한계점이 존재한다. 제안하는 기법은 알고리즘의 내부 구조를 변경하는 
것으로 암호 알고리즘의 성능을 향상시키는 방법에 대해서 제안한다. 구
조 변경은 특정 값을 사전 연산하거나 또는 대규모로 연산할 때는 사전 
연산 테이블을 활용하는 방법, 프로세서의 특성을 활용하여 원래 연산의 
반대로 연산하는 방법 등이 있다. 구현 대상 알고리즘은 국산 경량 블록암
호 CHAM, 경량 블록암호 후보 TinyJAMBU, 양자내성암호 후보 Rainbow
를 대상으로 한다. 구현 대상 프로세서는 저사양 사물 인터넷 환경에서 주
로 활용되는 8-bit AVR 프로세서와 AVR에 비해서는 상대적으로 고사양
이며 주로 스마트폰과 최근에는 노트북까지 사용처가 넓어진 64-bit 
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ARM 프로세서이다. 제안하는 기법은 각 알고리즘의 특성과 프로세서의 
환경을 고려하여 알고리즘의 성능을 향상시킬 수 있는 내부 구조 재설계
를 진행한다. 

【주요어】블록암호, 양자내성암호, 최적 구현, 사물 인터넷 프로세서
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