

저작자표시-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 <u>이용허락규약(Legal Code)</u>을 이해하기 쉽게 요약한 것입니다.

Disclaimer =

Pichia anomala SKM-T를발효균주로 이용한 식빵의 식품학적품질특성

2012년

한성대학교 경영대학원 호텔관광외식경영학과 외 식 경 영 전 공 김 명 겸 석 사 학 위 논 문 지도교수 이명호

Pichia anomala SKM-T를발효균주로 이용한 식빵의 식품학적품질특성

Baking Properties of White Pan Bread using *Pichia anomala* SKM-T as a Starter

2011년 12월 일

한성대학교 경영대학원 호텔관광외식경영학과 외 식 경 영 전 공 김 명 겸

석 사 학 위 논 문 지도교수 이명호

Pichia anomala SKM-T를발효균주로 이용한 식빵의 식품학적품질특성

Baking Properties of White Pan Bread using *Pichia anomala* SKM-T as a Starter

위 논문을 경영학 석사학위 논문으로 제출함

2011년 12월 일

한성대학교 경영대학원 호텔관광외식경영학과 외 식 경 영 전 공 김 명 겸

김명겸의 경영학 석사학위논문을 인준함

2011년 12월 일

심사위원 <u>최</u>인

심사위원 이 명호 인

국 문 초 록

Pichia anomala SKM-T를 발효균주로 이용한 식빵의 식품학적 품질특성

한성대학교 경영대학원 호텔관광외식경영학과 외식경영전공 김 명 겸

현대사회에 가장 중요한 요소인 건강은 선택이 아닌 필수가 되었으며, 식생활이 변화함에 따라 인체 소화능력도 변화를 요하게 되었다.

따라서 본 연구는 현대인의 식생활문화 중 가장 대두시 되고 있는 식빵을 *Pichia anomala* SKM-T를 발효원으로 하여 저장성 및 건강기능 성을 향상시킬 수 있도록 제조하여 분석하였다.

실험방법은 식빵의 반죽에 배양한 효모를 첨가하여 반죽을 발효한 후 pH, 밀도, 발효팽창력, 수율, 굽기손실률, 비용적, 색도, 물성, 표면구조, 관능검사, 향기성분, 수분함량, 곰팡이 발생률을 분석 측정하였다.

실험에서는 발효원을 다르게 하였을 때 반죽의 밀도는 대조구 (S. cerevisiae)와 차이를 나타내지 않았고, 비용적은 S. cerevisiae를 발효원으로 하였을 때보다 P. anomala SKM-T가 발효원일 때 식빵의 비용적이약간 높았으나 유의적인 차이는 나타나지 않았으며 crust, crumb의 색도를 측정결과, 대조구 (S. cerevisiae)와 P. anomala SKM-T 처리구 사이에는 오차 범위 내에서만 차이를 나타낼 뿐 발효원을 다르게 하는 데서

기인하는 차이는 관측되지 않았다.

조직감을 측정하는 평가 항목 중에서 hardness, gumminess, cohesiveness는 *S. cerevisiae*로 발효한 식빵과 *P. anomala* SKM-T로 발효한 식빵 사이에는 유의적인 차이가 나타나지 않았다.

저장 시간이 14시간 경과되면서 식빵의 수분 함량이 급격히 감소하였고, 이 후 수분함량이 완만히 감소하였다. 저장 기간이 증가하면서 두처리구 모두에서 곰팡이가 발생이 증가하였으나 *P. anomala* SKM-T로 발효한 식빵의 경우 항진균물질을 생산하여 곰팡이 발생을 억제시키고 있었다. 상기 결과물을 토대로하여 관능검사 결과, 외관, 질감, 맛, 색 등에서는 두 시료간의 차이가 없다고 판단되었으며, 향기에 관해서는 유의적인차이가 나타난다고 평가되었다. 따라서 제품제조시 외관상의 특징은 큰 변화가 없으며, 내부적인 변화에 있어서 약간의 변동이 있음을 확인할 수 있었다.

【주요어】 *Pichia anomala* SKM-T, 새로운 감화 에이전트, 식빵, 수명, 곰 팡이의 발생 속도. 물리 속성, 감각 특성

목 차

제 1 장 서 론	··· 1
제 2 장 문헌적 고찰	·· 4
제 1 절 생균제 (Probiotics)·····	·· 4
제 2 절 Qualified Presumption of Safety (QPS)······	 9
제 3 절 식빵	11
제 3 장 실험의 재료 및 방법	12
1. 효모의 배양 및 건조 효모의 제조	• 12
2. 제빵 조건	• 12
3. 식빵 반죽의 pH	
4. 식빵 반죽의 밀도	· 13
5. 반죽의 발효팽창력	• 14
6. 반죽 수율 및 굽기손실률	14
7. 식빵의 비용적	• 14
8. 식빵의 색도	· 15
9. 식빵의 물성	15
10. 식빵의 표면구조	•16
11. 관능검사	• 16
12. 향기성분	• 16
13. 식빵의 수분함량	·17
14. 식빵에서의 곰팡이 발생률	• 17
15. 통계분석	• 17
제 4 장 실험결과 및 고찰	18
1. 동결건조 효모	· 18

2. 식빵 반죽의 pH…	
3. 식빵 반죽의 밀도	21
4. 반죽의 발효 팽창	·력······ 22
5. 반죽 수율 및 굽기	기손실률 22
6. 식빵의 pH	
7. 식빵의 비용적	
8. 식빵의 색도	
9. 식빵의 물성	33
10. 관능검사	
11. 향기성분	
12. 저장 기간 중 식	빵의 수분 함량 변화41
13. 저장 기간 중 식	빵의 경도 변화42
14. 저장 기간 중 식	빵에서의 곰팡이 발생률 43
제 5 장 결 론	45
【참고문헌】	47
ABSTRACT	

【 표 목 차 】

Table 1. Composition of ingredients for bread making 13
Table 2. Operating condition for texture profile analysis 15
Table 3. Texture characteristics of white pan bread fermented by Pichia anomala SKM-T
Table 4. Characteristics of identified volatile compounds from the white pan bread fermented with <i>Pichia anomala</i> SKM-T

【그림목차】

Fig. 1. Ascospores of <i>Pichia anomala</i> SKM-T on Kleyn media for 3 day at 25℃
Fig. 2. The growth curves of <i>Pichia anomala</i> SKM-T19
Fig. 3. pH of white pan bread dough fermented by <i>Pichia</i> anomala SKM-T. 20
Fig. 4. Density of white pan bread dough fermented by <i>Pichia</i> anomala SKM-T. 21
Fig. 5. Dough expansion rate of white pan bread dough fermented by <i>Pichia anomala</i> SKM-T. 23
Fig. 6. Dough yield of white pan bread dough fermented by <i>Pichia anomala</i> SKM-T. 24
Fig. 7. Baking loss rate of white pan bread dough fermented by <i>Pichia anomala</i> SKM-T. 25
Fig. 8. pH of white pan bread fermented by <i>Pichia anomala</i> SKM-T. 26
Fig. 9. Specific volume of white pan bread fermented by <i>Pichia anomala</i> SKM-T. 28
Fig. 10. Scanning electron microscope of white pan bread fermented by <i>Pichia anomala</i> SKM-T 29
Fig. 11. Lightness (L value) of white pan bread fermented by Pichia anomala SKM-T30
Fig. 12. Redness (a value) of white pan bread fermented by

Pichia anomala SKM-T 31
Fig. 13. Yellowness (b value) of white pan bread fermented by <i>Pichia anomala</i> SKM-T
Fig. 14. Directional difference test of white pan breads fermented by <i>Pichia anomala</i> SKM-T and <i>Saccharomyces cereviseia</i>
Fig. 15. GC-MS spectrum of identified volatile compounds from Pichia anomala SKM-T
Fig. 16. Moisture content of white pan bread fermented by <i>Pichia</i> anomala SKM-T during storage at 30°C
Fig. 17. Hardness of white pan bread fermented by <i>Pichia</i> anomala SKM-T during storage at 30°C
Fig. 18. Fungi incidence in white pan bread fermented by <i>Pichia</i> anomala SKM-T during storage at 30°C

제 1 장 서 론

"Probiotics"란 생균제라는 말로 번역되는데 "for life"란 뜻을 지니고 있으며 antibiotics의 "against life"와는 반대의 의미를 지니고 있다. 최초로 "probiotics"란 용어를 사용한 사람을 Parker (1974)로 "Probiotics는 장내 미생물 균형에 도움을 주는 미생물이나 물질"들을 의미한다. 그 후에 probiotics란 용어는 널리 사용되어 왔는데 일반적으로 생균, 사균 및 해당미생물의 발효부산물을 일컫는다. 생균제는 섭취된 후에 산 (acid)을 생산하여 장내의 pH를 낮추고, 소화관 내에서 번식하면서 병원성 미생물과의경쟁작용을 통해 병원성 미생물의 성장을 억제하는 항균작용을 한다.

생균제로 사용되는 대표적인 세균 중 lactic acid producing bacteria는 Lactobacillus acidophillus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus plantarum, Streptococcus faecium이다. 포자를 형성하는 간균인 Bacillus subtitlis, Bacillus coagulans등이 있다. 이들은 일반적으로 amylase와 protease를 분비하며 일부는 항생물질인 subtilin이나 bacillomycin을 생산하기도 한다. 생균제로 이용되는 진균으로는 Aspergillus oryzae가 있다. A. oryzae는 양조 및 장류제조에 이용되는 곰팡이로, amylase 및 protease 분비능이 높은 특징이 있다. 효모 중에서는 포자를 형성하는 Saccharomycese boulardii와 포자를 형성하지 않는 Torulopsis가 있고, 그 외에 Saccharomycese cerevisiae, Saccharomycese uvarum, Candida utilis, Candida guilliermondii, Kluyveromyces fragilis등이 있다.

Pichia anomala는 코코아 가공시 초기 발효과정에서 풍미 생성에 관여하는 것으로 알려져 있다.1) 또한 동남아시아의 전통 음식인 Tape, Ragi 및 Ruou can 등에서도 정상 발효 균주로 분리되었다.2)3) QPS

¹⁾ Schwan RF and Wheals A. 2004. "The microbiology of cocoa fermentation and its role in chocolate quiality", *Critical Reviews in Food Science and Nutrition*. 44: pp.205–221.

²⁾ Djien KS. 1972. "Tape fermentation", Applied Microbiology. 23: pp.976-978.

³⁾ 모은경, 이선영, 제갈성아, 성창근. 2007. 「Pichia anomala SKM-T와 Galactomyces geotrichum SJM-59 첨가가 배추김치 발효에 미치는 영향」 한국식품저장유통학회지. 14: pp.94-99

(Qualified Presumption of Safety of microorganism in food and feed)에 의하면 *Pichia anomala*는 안전한 균주이며, 이들 균주를 이용한 생산품 또한 안전한 것으로 알려져 있다.⁴⁾ 특히 *Pichia anomala*는 biosafety class I에 속하는 균주로, biosafety 균주는 취급시 특별한 주의를 필요로 하지 않는다.⁵⁾

식품의 건강기능성에 대한 시민들의 관심이 증가하면서 제조과정에 기능성 부재료를 첨가하여 해당 식품의 건강기능성을 상승시키고자 하는 연구들이 지속되고 있다. 제조법이 간단하고 기호도가 높아 널리 이용되고 있는 식빵도 건강기능성이 강화된 제품을 만들기 위한 연구가 활발히 진행되고 있는데, 이와 관련된 연구로는 probiotics인 젖산균을 첨가하여 반죽 특성을 개량하고자 하는 연구가 가장 많이 보고되었다.6)7)8)9) 10)11)12)13)14) 젖산균 이외에 효모를 첨가하여 식빵 발효를 조절하고자 하는 연구15)16)17) 등이 보고되고 있다.

⁴⁾ EFSA. 2009. "Scientific opinion of the panel on biological hazards on the maintenance of the list of QPS microorganisms intentionally added to food or feed" EFSA Journal. 7: p.93.

⁵⁾ De Hoog GS. 1996. "Risk assessment of fungi reported from humans and animals" *Mycoses*. 39: pp.407-417.

⁶⁾ 장준형, 안재범. 1996. 「빵의 품질에 미치는 유산균의 영향」 한국식품영양학회지. 9: pp.509-515.

⁷⁾ 홍정훈, 김경자, 방극승. 2000. 「Bifidobacterium infantis 및 Streptococcus thermophillus가 밀가루 반죽의 물성적 성질에 미치는 영향」 한국조리과학회지. 16: pp.22-26

⁸⁾ 이예경, 박인경, 김순동. 2001. 「김치 숙성 관련 젖산균이 식빵의 품질에 미치는 영향」 동아시아 식생활학회지. 11: pp.379-385.

⁹⁾ 홍정훈, 김경자. 2001. 「*Enterococcus sp.*와 *Lactobacillus sp.* 첨가 sourdough로 제조된 보리식빵의 품질특성 I. 보리가루에서 분리한 균주의 동정 및 반죽의 물성적 특성」 한국식생활문화학회지. 16: pp.354-360.

¹⁰⁾ 홍정훈, 안덕준. 2002. 「*Bifidobacterium sp.*로 제조된 반죽의 물성적 특성」 한국식생활문화학회 지. 17: pp.165-170.

¹¹⁾ 신언환, 김소미, 박천석. 2003. 「김치 유산균으로 제조한 preferment 첨가 수준에 따른 white pan bread의 품질 특성」 한국식품과학회지. 35: pp.1193-1198.

¹²⁾ 차욱진, 이시경, 이정훈, 조남지. 2004. 「Lactobacillus acidophilus로 발효시킨 밀가루 발효물의 특성」 한국식품과학회지. 36: pp.116-122.

¹³⁾ 이정훈, 이시경. 2009. 「L acidophillus KCCM 32820과 P. freudenreichii KCCM 31227로 발효한 유청 발효물이 빵 반죽의 레올로지 특성에 미치는 영향」 한국식품영양과학회지. 38: pp.795-800.

¹⁴⁾ 윤미숙, 이정훈, 이시경. 2010. 「Lactobacillus helveticus ATCC 55163과 Propionibacterium acidipropionici 5020로 배양한 유청발효물이 빵의 품질특성에 미치는 영향」 한국동물자원학회지. 30: pp.458-465.

¹⁵⁾ 이종열, 이시경, 조남지, 박원종. 2003. 「천연제빵 발효 starter의 개발」 한국식품영양과학회지. 32: pp.1245-1252.

¹⁶⁾ 정진웅, 박기재. 2006. 「탁주 분말을 첨가한 식빵의 품질 특성」 한국식품과학회지. 38: pp.52-58.

¹⁷⁾ 최인덕, 최원석. 2010. 「Effects of Kokja as a fermentation starter on sponge-and-dough bread properties」 한국응용생명화학회지. 53: pp.50-55.

최근에는 자연발효빵 (sour dough bread)이 건강빵으로 인식되면서 이에 대한 연구도 활발히 진행되고 있다. 그러나 빵 제조에 효모와 함께 젖산균을 이용할 경우, 젖산균의 생육에 필요한 환경을 별도로 조정해주어야 하는 불편함이 따른다. 따라서 전통적으로 사용하는 제빵효모인 Saccharomyces cerevisiae를 기능성이 강화된 효모로 대체할 경우 식빵제조 공정을 특별히 조정하지 않으면서 식빵의 건강기능성을 향상시킬 수있을 것으로 사료되었다.

따라서 본 연구에서는 식빵의 건강기능성을 쉽게 향상시킬 수 있 도록 유용한 probiotic 효모인 *Pichia anomala* SKM-T를 발효원으로 하여 식빵을 제조하였고 이의 식품학적 특성을 분석하였다.

제 2 장 문헌적 고찰

제 1 절 생균제 (Probiotics)

사람의 장에는 많은 수의 장내 세균이 살고 있다. 이들은 소화 과정의 유지에 중요한 역할을 하고 있으며 장의 운동을 돕기도 하고 병원성균의 서식으로부터 장을 보호하는 역할도 한다.¹⁸⁾ 인체의 장내에 음식물의양과 세균의 양이 반반씩 존재하고 매일 배설하는 분변 내용물도 수분을제외하면 약 40%가 세균이다.

인간의 장내에 혼재하는 약 1 kg (성인)의 균총 균형을 바람직한 방향으로 바꾸어줄 수 있는 미생물을 Probiotics (생균제)라고 한다. Bifidobacterium을 포함한 대부분의 유산균과 Sacchromyces boulardii 등의 효모 등이 이에 해당한다. 유산균은 포유류의 장내에 서식하며 잡균에 의한 이상 발효를 방지하고 장내 환경을 개선하여 음식물의 소화와 흡수를 돕고 대장의 기능을 증진시키는 유익균으로 역할을 한다. 메치니코프에 의하여 발효유의 유산균들이 정장 작용을 한다는 것이 소개된 이후로 발효유 산업이 지속적으로 성장하여 현재 우리나라에서 연 1조원의 시장을 형성하고 있다.19)

사람의 변을 현미경으로 관찰하면 변은 거의 세균 덩어리로 이루어져 있음을 알 수 있다. 이들은 99%가 편성 혐기성 세균으로 인체의 건강에 지대한 영향을 미치고 있다. 사람은 출생하자마자 약 4시간 후부터장에 세균이 자라기 시작한다. 세균의 균총은 산모의 균총, 분만 방법, 분만 환경 등에 영향을 받고 특히 모유 수유에 의한 영향을 많이 받는다. 초기에는 대장균, Streptococcus 등이 우세하다가 약 3주 후부터는 세균들이 안정화되어 Bifidobacterium이 우세하게 되는데 Bifidobacterium은 유아와

¹⁸⁾ 김남주, 지근억. 2005. 「프로바이오틱스의 임상적 효과와 작용 기작」. 소아알레르기 및 호흡기학회지. 15: pp.327-343.

¹⁹⁾ 상계논문, pp.327-343

성인에게 모두 가장 유익한 균이다. 유아가 모유 또는 분유를 섭취하느냐에 따라 장내에 섭취하는 균의 종류가 달라지고 장내 환경 및 병의 이환률에 영향을 미친다. 특히, 모유를 먹는 아기는 Bifidobacterium infantis, Bifidobacterium breve, Bifidobacterium longum 등의 Bifidobacterium이 전체 장내 세균의 90% 이상을 차지하게 되어 대장균 등 유해균으로부터 보호받고 면역 능력도 향상된다. 분유를 섭취하면 상대적으로 clostridia, enterococci나 enterobactereria와 같은 유해성 세균들이 증가한다. 이유식이후에 장의 균총은 복잡해지며 Bifidobacterium은 줄고 Bacteroides라는 다소 유해한 균이 가장 많은 상태가 된다20이 나이가 들어가며 Bifidobacterium의 종류도 바뀌어 Bifidobacterium adolescentis가 많은 상태로 변하게 되며 노인이 되면 Bifidobacterium은 더욱 줄게 되고 유해균의 대표인 Clostridium perfringens라는 세균이 증가한다. 이와 같이 노인의 장내 균총이 유해하게 변하는 것은 장의 운동력이 줄어들고 장내 세균에 의한 유해 물질생산이 늘어나기 때문이다.

장내 세균은 대사 물질을 내어 장 점막계에 영향을 주기도 하지만 직접적으로 장 상피세포, Peyer's patches, dendritic cell 등과 반응하며 숙주의 장내 세포 및 조직에 신호를 주는 것으로 알려져 있다. 장 상피 세포 막의 Toll-like receptors (TLRs)는 장내에 존재하는 세균을 인식한다. TLRs 1-9 등은 각각 lipopolysaccharide, peptidoglycan, flagellin, oligomer, RNA 등을 인식하는데 반응의 강도 및 지속 시간에 따라 관용면역 또는 과민성 면역으로 나타날 수 있다.²¹⁾ TLR 반응의 신호가 세포 내로 전달되어 nuclear factor (NF)-成B 등의 염증성신호가 촉발된 경우에도 일부의 장내 세균은 세포 내에서 Toll-interacting protein (Tollip)를 활성화하여 면역 관용을 유도할 가능성이 제기되었다.²²⁾ 장내 세균이 없는

²⁰⁾ Bezkorovanyl, A. 1989. "Ecology of bifidobacteria.In: Bezkorovany A, Miller-Catchpole R, editors" *Biochemistry and physiology of bifidobacteria*. Florida: CRC press. pp.29–72.

²¹⁾ Otte JM, Cario E, and Podolsky DK. 2004. "Mechanism of cross hyporesponsiveness to toll-like receptor bacterial ligands in intestinal epithelial cells" *Gastroenterology*. 126: pp.1054–1070.

²²⁾ Ibid. pp.1054-1070

무균 동물은 면역 관용이 미약하고 아토피 성향을 나타내지만 어린무균 동물에 Bifidobacterium 등의 장내 세균을 도입하면 면역 관용이 회복된다.²³⁾ 그러나, 일단 성숙한 무균 쥐에서는 Bifidobacterium을 도입하여도 면역 관용이 유도되지 않았다.²⁴⁾ 이와같이 장내세균총은 면역계에 있어서 중요한 조절 신호를 제공한다.

Probiotics 균들은 일반적으로 유용성을 나타내지만 균의 종류에 따라 정장 능력에 차이가 있다. 예를 들어, 요구르트의 제조에 전통적으로 사용되어 왔던 Streptococcus thermophilus와 Lactobacillus bulgaricus는 인간의 장 내에서는 생존력이 약하여 정장효과가 미약한 것으로 조사되었다. 따라서, 가장 우수한 균을 선발하여 산업적으로 활용하는 것이 산업적측면과 소비자 측면에서 모두 중요하다. 우수한 균의 능력으로서는, 우선적으로 장내 정착성이 좋은 것이 필요하며 또한 각각의 생리활성에 대한특별한 기능성을 발휘하는 것이 바람직하다.

FAO/WHO 합동 프로바이오틱스 전문가 위원회 보고서25)26)와 캐 나다 보건복지부의 Natural Health Products Directorate²⁷⁾ 에서는 기능성 과 안전성을 고려하여 Bifidobacterium과 Lactobacillus를 사용하고 Enterococcus는 프로바이오틱스 균주로 사용하지 말 것을 권장하였다. 이 는 Enterococcus가 유산균의 성질을 보유하고 있지만 오히려 질병을 유발 할 수도 있기 때문이다.

²³⁾ Tanaka K and Ishikawa H. 2004. "Role of intestinal bacterial flora in oral tolerance induction" *Histological Histopathology*. 19: pp.907–914.

²⁴⁾ Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, and Koga Y. 1997. "The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction" *Journal of Immunology*. 159: pp.1739–1745.

²⁵⁾ Joint FAO/WHO Expert Consultation on. 2001. "Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria" pp.1–32.

²⁶⁾ Report of Joint FAO/WHO Working Group on. 2002. "Drafting guide lines for the evaluation of probiotics in food"

²⁷⁾ Natural Health Products Directorate. 2003. "Evidence for safety and efficacy of finished natural health products".

이와 같이 질병을 일으키는 균들 중에도 유산을 왕성히 생산하는 균들도 있다: 포도상 구균, 병원성 Enterococcus 등이 이에 해당한다. Enterococcus faecalis와 Enterococcus faeceum은 각각 Streptococcus faecalis와 Streptococcus faeceum과 같은 균으로 이들은 항생제 내성을 쉽게 습득할 수 있고 매우 많은 감염성 질환을 일으키는 병원성 Enterococcus와의 구별이 쉽지 않다. 또한 일부 정장제로 사용하는 Clostridium에 대하여도 UN의 FAO/WHO에서는 프로바이오틱스로 인정하지는 않고 있다.

Bifidobacterium 또는 Lactobacillus 속이라고 하더라도 모두 프로 바이오틱스로 인정하는 것은 아니다. 동물 유래의 균으로서 Bifidobacterium animalis는 현재 유럽에서 유통되고 있는 균이지만 그 사 용이 점차 줄어들고 있으며 beta-glucuronidase를 생산하는 균들은 사용하 지 않는다. Lactobacillus rhamnosus와 Saccharomyces의 일부 균주는 임 상적 유용성 보고와 아울러 감염사례가 제기되고 있어 앞으로 유산균의 안전성에 대한 연구도 꾸준히 이루어져야 한다.28)29)30)31)32)33)

현재에는 동물의 성장과 관련하여 항생제 (antibiotics)를 대체하기 위

²⁸⁾ Notario R, Leardini N, Borda N, Gambande T, and Cerutti H. 2003. "Hepatic abscess and bacteremia due to *Lactobacillus rhamnosus*" Reviews of Argentina Microbiology. 35: pp.100-101.

²⁹⁾ Rautio M, Jousimies-Somer H, Kauma H, Pietarinen I, Saxelin M, and Tynkkynen S. 1999. "Liver abscess due to a *Lactobacillus rhamnosus* strain indistinguishable from *L. rhamnosus* strain GG" *Clinical Infection and Disesase*. 28: pp.1159-1160.

³⁰⁾ Mackay AD, Taylor MB, Kibbler CC, and Hamilton-Miller JM. 1999. "Lactobacillus endocarditis caused by a probiotic organism (rhamnosus)" Clinical Microbiology and Infection. 5: pp.290-292.

³¹⁾ Presterl E, Kneifel W, Mayer HK, Zehetgruber M, Makristathis A, and Graninger W. 2001. "Endocarditis by Lactobacillus rhamnosus due to yogurt ingestion?", Scandinavian Journal of Infections and Disease. 33: pp.710–714.

³²⁾ Munoz P, Bouza E, Cuenca-Estrella M, Eiros HM, Perez MJ, and Sanchez-Somolinos M. 2005. "Saccharomyces cerevisiae fungemia: an emerging infectious disease" Clinical Infections and Disease. 40: pp.1625–1634.

³³⁾ Burkhardt O, Kohnlein T, Pletz M, and Welte T. 2005. "Saccharomyces boulardii induced sepsis: successful therapy with voriconazole after treatment failure with fluconazole" Scandinavian Journal of Infections and Disease. 37: pp.69–72.

한 생균제를 모색하는 연구^{34)35)36)37)38)39)40)41)42), 생균제의 건강기능성 효과 발현에 대한 연구⁴³⁾⁴⁴⁾⁴⁵⁾⁴⁶⁾⁴⁷⁾⁴⁸⁾⁴⁹⁾, 새로운 생균제를 개발하는 연구⁵⁰⁾⁵¹⁾ 52)53), 생균제를 발효균주로 하여 새로운 기능성 물질을 생산하고자 하는}

34) 김소영, 김홍, 채희정. 2004. 「Selection of probiotic yeasts from soil, characterization and application for feed additives」 한국응용생명화학회지. 47: pp.20-26.

³⁵⁾ Agawane SB and Lonkar PS. 2004. "Effect of probiotic containing Saccharomyces boulardii on experimental ochratoxicosis in broilers: hematobiochemical studies" Journal of Veterinary Science. 5: pp.359–367.

³⁶⁾ 김중재, 윤숙경, 김홍익, 박용하, 오희목. 2006. 「Effect of Spirulina platensis and probiotics as feed additives on growth of shrimp Fenneropenaeus chinensis」 한국미생물생명공학회지. 16: pp.1248-1254.

³⁷⁾ 김재황. 2005. 「생균제, illite 및 활성탄의 첨가가 돈육의 이화학적 특성에 미치는 영향」 농업생명과학연구. 39: pp.61-69.

³⁸⁾ 하경희, 이창우, 진상근, 김일석, 송영민, 허선진, 김회윤, 류현지, 하지희. 2005. 「생균제의 급여가 돈육의 이화학적 성상 및 관능에 미치는 영향」 한국동물자원학회지. 25: pp.295-303.

³⁹⁾ 박재홍, 박홍석, 허삼남, 이세나, 류경선. 2005. 「혼합생균제의 수준별 급여가 돼지의 성장과 돈육의 품질에 미치는 영향」 전북대학교 농대논문집. 36: pp.103-116.

⁴⁰⁾ 진상근, 김일석, 송영민, 박기훈, 하지희, 강석모, 김인진, 김정화, 박용수, 이창범. 2006. 「돈육의 품질 특성에 미치는 생균제 급여 효과」 한국국제농업개발학회지. 18: pp.105-111.

⁴¹⁾ 진상근, 김일석, 송영민, 하지희, 박기훈, 이정일, 이제룡, 이창우. 2006. 「생균제 급여가 돈육의 품질 특성에 미치는 영향」 한국축산식품학회지. 26: pp.49-57.

⁴²⁾ 양철주, Uuganbayar D, 신영환, 박일철, 정일병, 조영무, 김원호, 남병섭. 2003. 「남은 음식물 사료 와 생균제 첨가에 따른 육계의 성장 및 체조성에 미치는 영향』 폐기물자원화. 11: 113-121.

⁴³⁾ Bengmark S. 2002. "Use of prebiotics, probiotics and synbiotics in clinical immunonutrition" *Nutraceuticals and Food.* 7: pp.332–345.

⁴⁴⁾ 임준희, 김덕한, 구자경, 강윤성, 김미연, 김형옥, 청명준, 박영민. 2006. Therapeutic effects of probiotics inpatients with atopic dermatitis. 한국미생물생명공학학회지. 16: pp.1699-1705.

⁴⁵⁾ 모은경, 이미라, 이선영, 김재천, 성창근. 2005. 「Surface characteristics and adhesive properties of Pichia farinosa SKM-1, Pichia anomala SKM-T, and Galactomyces geotrichum SJM-59 for preparation of probiotics」 한국식품과학학회지. 14: pp.493-497.

⁴⁶⁾ Jayaprakasha HeddurM, 윤우창, 백현동. 2005. 「Probiotic functional dairy foods and health claims: an overview」 한국식품과학학회지. 14: pp.523-528.

⁴⁷⁾ 박자령, 배진우, 이성근, 남영도, 오종원, 박용하. 2005. 「신생아 장내 미생물의 형성과 이의 분석을 위한 분자 생태학적 기술」 한국산업미생물학회지. 33: pp.159-168.

⁴⁸⁾ 김남주, 지근억, 전개논문, pp. 327-343

⁴⁹⁾ 이수영. 2004. 「알레르기 질환의 예방과 치료에 있어서 probotics의 역할」 소아알레르기 및 호흡 기학회지. 14: pp.127-129.

⁵⁰⁾ 모은경. 2004. 「Identification of yeasts from Korean feces and prerequisite characterization for preparation of probiotics」 한국식품과학학회지. 13: pp.63-70.

⁵¹⁾ 유숙진, 조진국, 하철규, 김창현, 허강철. 2006. 「Kefir에서 분리한 *Candida kefyr*의 생균제를 위한 특성」 한국동물자원학회지. 48: pp.307-314.

⁵²⁾ 진효상. 1994. 「순물 (두부폐액)을 이용한 probiotics의 생산」 한국환경학회지. 12: 59-64.

⁵³⁾ 김선재, 마승진, 김학렬. 2005. 「젓갈로부터 분리된 젖산균 및 효모의 프로바이오틱 특성」 한국 식품저장유통학회지. 12: pp.184-188.

제 2 절 Qualified Presumption of Safety (QPS)

Europe food safetv authority (EFSA)는 **OPS** (Qualified Presumption of Safety of microorganism in food and feed)를 biological agent (미생물 균주)의 일반적인 위해도 평가법 (generic risk assessment approach)로 인증하였다.57) EFSA는 식품과 관련된 광범위한 생물학적 위 해요인을 평가하고 인증할 수 있는 기관이다. 유럽에서는 EFSA가 GRAS (Generally Recognized As Safe)를 사용하지 않고 QPS를 적용시키기 때 문에, 동일한 미생물 균주일지라도 GRAS와 QPS에서는 각각 다른 안전도 를 나타낼 수 있다. QPS는 biological agent 자체의 안전성 (safety)만을 평가하고 biological agent를 생산하기 위한 특이적인 공정이나 biological agent를 사용하여 생산하는 최종제품의 조성에 대해서는 안전성을 평가하 지 않는다.

빵 및 맥주를 제조하는 효모인 Saccharomyces cerevisiae나 치즈 제조에 사용하는 Lactobacillus bulgaricus 등은 인류의 오랜 역사 속에서 경험적으로 안전하다고 인지되고 있는 미생물이다. 그러나 대부분의 미생 물 (biological agents)에 대한 안전성에 대해서는 잘 알려져 있지 않고 과

⁵⁴⁾ 오수명, 김찬식, 이삼빈. 2004. 「Bioconversion of soybean curd residues into functional ingredients with probiotics」 한국식품영양과학회. 9: pp.138-143.

⁵⁵⁾ 이보현, 유현주, 박명수, 권빈, 지근옥. 2006. 「Transformation of the glycosidesfrom food materials by probiotics and food microorganisms」 한국미생물생명공학회지. 16: pp.497-504.

⁵⁶⁾ 문영건, 이경준, 김기영, 송춘복, 전유진, 허문수. 2006. 「Probiotics를 이용하여 발효시킨 감귤 가 공부산물 발효물의 특성」 한국산업미생물학회지. 34: pp.158-165.

⁵⁷⁾ Leuschner RGK, Robinson TP, Hugas M, Cocconcelli PS, Richard-Forget F, Klein G, Licht TR, Nguyen-The C, Querol A, Richardson M, Suarez JE, Thrane U, Vlak JM, and von Wright A. 2010. "Qualified presumption of safety (QPS): A generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA)". Trends in Food Science and Technology. 21: pp.425-435.

학적으로 검증되어 있지도 않다. 따라서 특별한 인증과정과는 별도로 선별된 biological agents에 대한 안전성 분석이 필수적으로 요구되고 있다. Biological agents가 식품안전과 관련된 문제 (사건)를 유발한 이력이 없거나 식품안전을 위해할 위험가능성이 없다고 EFSA의 BIOHAZARD panel이 판단하게 되면 QPS 인증을 받게 된다. 이와 같이 QPS 인증을 받은 biological agent는 미생물 균주를 이용하거나 이를 식품가공에 이용하게될 경우에 EFSA로부터 추가적인 안전성 분석을 면제받게 된다. BIOHAZARD panel에 의한 QPS 인증은 해마다 개정되고 있다.

QPS list에 Debarvomyces hansenii (Pichia farinosa). Hanseniaspora uvarum, Kluyveromyces lactis, Kluyveromyces marxianus, Saccharomyces cerevisiae. Saccharomyces bayanus, Saccharomyces pastorianus, Schizosaccharomyces pombe, Xanthophyllomyces dendrorhous 가 feed additives 및 plant production product로서 사용가능하다고 되어 있고, Pichia angusta, Pichia anomala, Pichia jardinii, Pichia pastoris는 식품효소 생산을 위한 목적으로 안전하게 사용가능한 것으로 인증되었다. 58)

제 3 절 식빵

빵의 제조는 기원전 7,000년 경부터 제조되기 시작하였으며 기원 전 3,550년경의 빵 화석이 발견되기도 하였다. 이러한 화석에 의하면 sour dough를 이용하여 빵을 발효시킨 후 구운 것으로 추정된다.⁵⁹⁾ 고대의 sour dough는 곡류를 거칠게 갈아 물을 첨가한 죽 상태로 만든 것으로 이

⁵⁸⁾ EFSA, op.cit.,, p.93.

⁵⁹⁾ Doerry W. 1998. "Sourdoughs and breads. In Technical Bulletin" *American Institute of Baking*, Vol. 20. Chapter 7.

곡류 혼합물에 존재하던 야생효모에 의해 발효되어 부풀은 것으로 추정된다. Sour dough는 1868년 상업용 효모가 출현하기 전까지 빵의 발효 방법의 하나로 사용되었으며 빵 제조의 starter라는 의미로 인지되었다.60)

빵의 발효에는 효모에 의한 알코올 발효에 의한 발효산물은 빵에 풍미를 제공하고 기호성을 향상시킨다⁶¹⁾ 효모는 빵을 발효하는 동안 이산화탄소를 발생하여 반죽을 부풀리며 생성된 부산물에 의하여 반죽을 산성화시키고 효소의 작용에 의하여 반죽의 물리적 성질과 단백질의 생물가 (biological value)가 개선된다.⁶²⁾

빵의 발효에 관여하는 효모는 가장 일반적으로 사용하는 Saccharomyces cerevisiae 이외에 San Francisco sour dough에서 분리된 Saccharomyces exiguus, Saccharomyces inusitatus, Saccharomyces uvarum 등이 있다.63)

HANSUNG UNIVERSITY

⁶⁰⁾ 이종열, 이시경, 조남지, 박원종, 전개논문, ,pp.1245-1252

⁶¹⁾ Sugihara TF. 1977. "Non-traditional fermentations in the production of baked foods". *Baker's Digest*, 51: pp.76-80

⁶²⁾ 이종열, 이시경, 조남지, 박원종, 전개논문, ,pp.1245-1252

⁶³⁾ Sugihara TF, Kline L, and Miller MW. 1971. "Microorganism of San Francisco sour dough bread process", *Applied Microbiology*. 21: pp.459-465.

제 3 장 실험의 재료 및 방법

1. 효모의 배양 및 건조 효모의 제조

Pichia anomala SKM-T는 (주)대덕바이오의 균주보관실로부터 무상으로 분양받았다. P. anomala SKM-T를 potato dextrose broth (PDB)에 접종하여 (O.D. = 0.3 ± 0.05), $140 \text{ rpm으로 교반하면서 } 24시간동안 배양하였다 (30 ± <math>1^{\circ}$ C). Log phase의 효모를 $3,000 \text{ rpm에서 } 10분간 (20 ± <math>1^{\circ}$ C)원심분리하여 효모균체를 회수하였고, 동결건조하여 제빵에 사용하였다.

2. 제빵 조건

밀가루는 강력분 (대한제분)을 사용하였고, 설탕은 삼양사의 정백 당을, 소금의 해표 꽃소금을, 대조구용 효모는 홈베이킹용으로 판매되는 일반제품 (Jenico Foods Co., Korea)을 사용하였다. 제빵을 위한 조성은 Table 1과 같다. 식빵은 AACC 101-10A⁶⁴⁾에 의한 직접반죽법에 따라 Table 1의 재료를 반죽기에 넣고 혼합하여 2분간 수화시킨 후 중속으로 5 분간 혼합하고 다시 고속으로 5분간 혼합하였다. 28℃의 발효 온도와 75% 의 습도를 유지하여 40분간 1차 발효를 수행하였고, 160 g씩 분할하여 둥 글리기 한 후 5분간 중간 발효시켰다. 이 후 성형하여 38℃, 85%의 습도 를 유지하면서 40분간 2차 발효시킨 다음, 180℃로 예열된 오븐에서 30분 간 구웠다. 소성이 완성된 식빵은 틀에서 분리하여 실온에서 2시간 방냉한 후 식품학적 특성을 분석하는 시료로 사용하였다.

⁶⁴⁾ AACC. 2000. "Approved methods of the AACC", MN, USA, The American Association of Cereal Chemists

Table 1. Composition of ingredients for bread making

Ingredients	Composition (g)
Bread flour	1,600
Water	1,000
Whole egg	90
Sugar	90
Salt	35
Dry yeast	45

3. 식빵 반죽의 pH

pH는 반죽 5 g에 증류수 50 mL를 가하여 균질화하여 실온에서 1 분간 vortexing하였다. 균질액을 3,000 rpm에서 10분간 원심분리하여 상등 액의 pH를 측정하였다.

4. 식빵 반죽의 밀도

식빵 반죽의 비용적은 50 mL 메스실린더에 증류수 40 mL를 넣은 후 식빵 반죽 5 g을 넣었을 때 늘어난 증류수의 부피와 반죽의 중량비 (g/mL)로 산출하였다.

5. 반죽의 발효팽창력

식빵 반죽을 50 g씩 분리하여 50 mL 메스실린더에 넣은 반죽의 표면을 편평하게 하였다. 식빵 반죽이 들어있는 메스실린더를 1차 발효온도와 습도 75%에서 40분간 1차 발효시키면서 반죽의 부피를 측정하여 발효팽창력을 산출하였다.

6. 반죽 수율 및 굽기손실률

2차 발효가 완료된 식빵 반죽의 중량과 소성 후 식빵의 중량을 각 각 측정하여 다음의 식으로부터 반죽수율과 굽기손실률을 산출하였다.

7. 식빵의 비용적

식빵의 부피는 좁쌀을 이용한 종자치환법⁽⁵⁾으로 측정하였고, 이를 중량으로 나누어 비용적을 산출하였다.

⁶⁵⁾ Pyler E.J. 1979. "Physical and chemical test method. Baking science and technology", *Sosland Publication Company*, Kansas, USA, 2nd ed: pp.891-895.

8. 식빵의 색도

식빵의 빵껍질 (crust)을 잘게 부수어 6 mm Petri dish에 가득담하 색도를 측정하였다. 식빵 내부 (crumb)는 식빵의 표면으로부터 2 cm 들어간 부분만을 잘게 부수어 Petri dish에 담아 색차계 (Color meter JX777, Minolta Japan)를 이용하여 색도를 측정하여 Hunter의 명도 (L, lightness), 적색도 (a, redness), 및 황색도 (b, yellowness)로 나타내었다. 표준 백판의 보정치는 L=98.46, a=-0.23, 그리고 b=1.02이었다. Hue angle (색상)은 $(\tan^{-1} (b^*/a^*))$ 로, 채도 (chroma 또는 intensity)는 $((a^{*2}+b^{*2})^{1/2})$)로 산출하였다.

9. 식빵의 물성

식빵을 3 × 3 × 3 cm의 입방체로 잘라 물성을 측정하였으며, 그 조건은 Table 2와 같다 (Texture analyzer TA-XT2, Stable Microsystem. LTD., UK).

Table 2. Operating condition for texture profile analysis

Classification	Condition
Pretest speed	10.0 mm/sec
Test speed	1.0 mm/sec
Posttest speed	1.0 mm/sec
Probe	P10 (10 mm DIA cylinder aluminium)
Sample area	3.0 mm ²
Contact force	5.0 g
Threshold	20.0 g
Distance	10.0 mm
Strain deformation	90.0 %

10. 식빵의 표면구조

식빵을 얇게 썰고 에탄올로 순차 (30, 50, 70, 80, 95, 100%) 탈수한 후, ion-sputter (Hitachi E-101, Japan)에서 금으로 코팅하여 주사전자현미경 (Hitachi S-2350, Japan)으로 표면구조를 검경하였다.

11. 관능검사

20~40대 남녀 18명을 관능검사요원으로 선정하여 본 실험의 목적과 평가방법에 대해 잘 인지할 수 있도록 차이식별검사 (directional difference test)를 실시하기 이전에 사전교육을 실시하였다. 관능검사는 *S. cerevisiae*, *P. anomala* SKM-T로 발효한 식빵이 balanced reference가되도록 제시하여 시료의 외관, 색, 향기 및 맛 (질감)의 차이유무를 식별하도록 하였다. 차이식별검사 결과는 유의성검정표 (단측검정)를 기준으로하였다.

12. 향기성분

제조한 후 실온에서 2시간 동안 냉각한 시료 (500 g)를 분쇄한 후 dichloromethan: pentane = 2:1 (v/v)의 혼합용매 (1 L)를 가하여 실온에서 3분간 shaking한 후 용매를 회수하였다. 향기성분 추출수율을 향상시키기 위하여 상기 조작을 10회 반복하고 회수한 용매는 무수황산나트륨을 통과시켜 용매에 포함된 수분을 제거한 후 40℃에서 감압농축하였다. 이농축물을 1 mL 추출용매에 재용해하여 향기성분분석에 사용하였다.

향기성분의 분리 및 확인을 위하여 gas chromatography (GC, Hewlett-Packard 5890A)를 수행하였다. Detector는 flame ionization detector (FID) 및 mass detector를 사용하였고, column은 capillary column (HP-1, 30 m × 0.25 mm i. e. × 0.33 mm)을 사용하였다. Injector와 Detector의 온도는 각각 250℃로 맞추었다. 오븐의 온도는 50℃에서 5분간 유지시킨 후 3℃/min으로 230℃까지 승온하여 230℃에서 30분간 유지하였다. Carrier gas는 GC 분석시에는 질소 (1 mL/min)를, GC-MS 분

석시에는 헬륨 (1 mL/min)을 사용하였고, 시료의 injection volume은 1 μ L로 하였다. GC-MS spectrum은 NIST Hewlett-Packard 59942C original library의 mass spectra와 비교하여 향기성분을 확인하였다.

13. 식빵의 수분함량

시료의 수분함량은 적외선수분측정기 (Moisture analyzer, MS-70, A&D Co., Tokyo, Japan)로 측정하였다.

14. 식빵에서의 곰팡이 발생률

식빵을 0.5 cm의 두께로 잘라 시료별로 각각 30개의 200 mm Petri dish에 담아 온도 30℃, 습도 65% 로 조절되는 항온실에 저장하면서 식빵 표면에 곰팡이가 발생되는 정도를 측정하였다. 즉, 육안으로 확인할수 있는 곰팡이가 발생되는 정도를 계수하여 저장기간의 곰팡이 발생률로 나타내었다.

15. 통계분석

모든 실험은 3회 이상 반복측정하여 '평균 ± 표준편차'로 표시하였다. 대조구와 실험구 간의 유의적인 차이는 Student's *t*-test로 분석하였다. 통계분석에는 SPSS (Statistical Package for Social Sciences, ver. 14.0, SPSS Inc., IL, USA) 프로그램을 사용하였다.

제 4 장 실험결과 및 고찰

1. 동결건조 효모

배양한 *P. anomala* SKM-T를 동결건조하여 dry yeast를 제조하였다. 효모는 세포 내에 포자를 지니고 있으므로 적절한 생육환경에 노출되면 포자가 활성화되면서 생육할 수 있다. 동결건조한 후 재배양한 효모는 Fig. 1에서와 같이 포자를 형성하고 있으므로 제빵 과정 동안 잘 생육할 것으로 사료되었다.

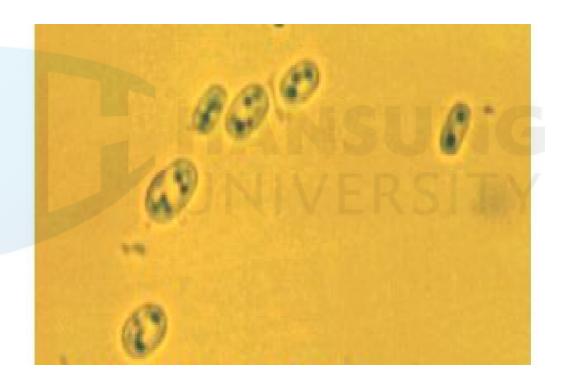


Fig. 1. Ascospores of *Pichia anomala* SKM-T on Kleyn media for 3 day at 25°C.

Sodium acetate 0.5 g, K_2HPO_4 0.02 g, KH_2PO_4 0.012 g, glucose 0.062 g, NaCl 0.062 g, biotin 2 μ g, mineral solution 1 mL, agar 2.0 g, and distilled water was added to make 100 mL. Light microscopy, magnification was 40.

Pichia anomala SKM-T를 potato dextrose broth 배지에 배양하는 동안 효모의 생육 양상은 Fig. 2와 같다. 균주를 배지에 접종하여 약20 시간 정도 배양하였을 때 효모의 성장이 대수기 (log phase)에 진입하므로 24시간이 경과되었을 때 효모를 회수하여 동결건조하여 제빵에 사용하였다.

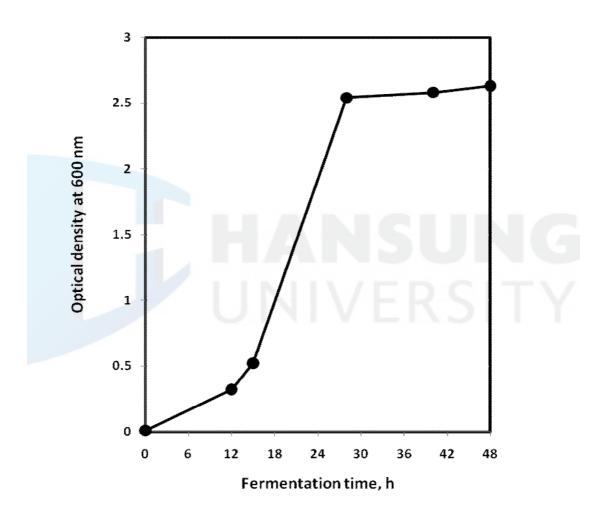


Fig. 2. The growth curves of Pichia anomala SKM-T.

P. anomala SKM-T was inoculated into 1.5 L potato dextrose broth in 3 L Erlenmeyer flask and placed on the shaker of 140 rpm for 48 h at $30\pm1^{\circ}$ C.

2. 식빵 반죽의 pH

P. anomala SKM-T를 발효원 (starter)으로 하여 제조한 식빵 반죽의 pH를 측정한 결과는 Fig. 3과 같다. 반죽의 pH가 S. cerevisiae를 발효원으로 하였을 때보다 약간 낮았다. P. anomala SKM-T 균주는 발효되는 동안 많은 양의 유기산을 생산하는 것으로 보고되어 있다.66) 따라서 S. cerevisiae 처리구보다 반죽의 pH가 유의적으로 낮은 것으로 사료되었다.

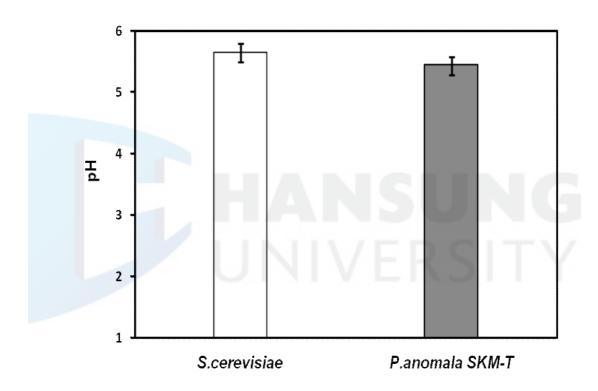


Fig. 3. pH of white pan bread dough fermented by *Pichia anomala* SKM-T.

Data were expressed as Mean \pm standard deviation. Tested groups were significantly different (p < 0.05), analyzed by Student' t-test.

⁶⁶⁾ 모은경, 강효진, Lee CT, Xu BJ, 김재훈, Wang QJ, 김재천, 성창근. 2003. 「Identification of phenylethyl alcohol and other volatile flavor compounds from yeasts, Pichia farinosa SKM-1, Pichia anomala SKM-T, and Galactomyces geotrichum SJM-59」한국미생물생명공확회지. 13: pp.800-808.

3. 식빵 반죽의 밀도

밀도는 반죽의 팽창 정도를 나타내고 완성된 제품의 향과 색에 영향을 미치는 인자로 보고되어 있다.67) 본 실험에서는 발효원을 다르게 하였을 때 Fig. 4 처럼 반죽의 밀도는 대조구 (*S. cerevisiae*)와 차이를 나타내지 않았다. 따라서 *P. anomala* SKM-T로 발효한 식빵의 식품학적 품질도 *S. cerevisiae*로 발효한 대조구와 다르지 않을 것으로 사료되었다.

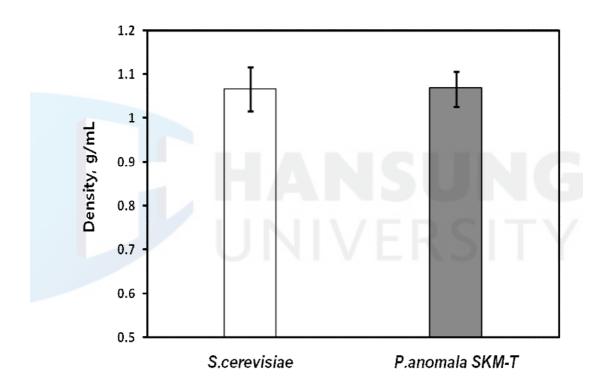


Fig. 4. Density of white pan bread dough fermented by *Pichia* anomala SKM-T.

Data were expressed as Mean \pm standard deviation. Tested groups were not significantly different (ρ < 0.05), analyzed by Student' t-test.

⁶⁷⁾ 조희숙, 박복희, 김경희, 김현아. 2006. 「다시마 분말을 첨가하여 제조한 쿠키의 품질특성과 항산화효과」 한국식생활문화학회지. 5: pp.541-549.

4. 반죽의 발효 팽창력

식빵 반죽의 발효 팽창력은 반죽에서의 gluten 생성량과 가스 보유력에 의해 영향을 받는다. Fig. 5에서와 같이, 식빵의 1차 발효 초기에는 P. anomala SKM-T 발효구가 대조구에 비하여 팽창력이 유의적으로 낮았으나 발효시간 30분을 지나면서 발효속도가 빨라져 최종 발효 단계에서는 S. cerevisiae로 발효하였을 때와 유의적인 차이를 나타내지 않았다.

5. 반죽 수율 및 굽기손실률

반죽 수율과 굽기손실률은 식빵의 중량에 영향을 받는다. Figs. 6 ~7에서와 같이 *S. cerevisiae* 처리구와 *P. anomala* SKM-T 처리구 사이에는 유의적인 차이가 없었다. 이는 각각의 균주로 발효한 식빵의 중량에 차이가 없었기 때문으로 사료되었다.

6. 식빵의 pH

S. cerevisiae로 발효시킨 식빵의 pH와 P. anomala SKM-T로 발효시킨 식빵의 pH는 유의적인 차이를 나타내었다 (Fig. 8). 발효원으로 P. anomala SKM-T를 사용하였을 경우가 대조구인 S. cerevisiae 보다 현저히 낮은 pH를 나타내었다. 이는 전술한 바와 같이 P. anomala SKM-T가생산하는 많은 양의 유기산때문인 것으로 사료되었다.

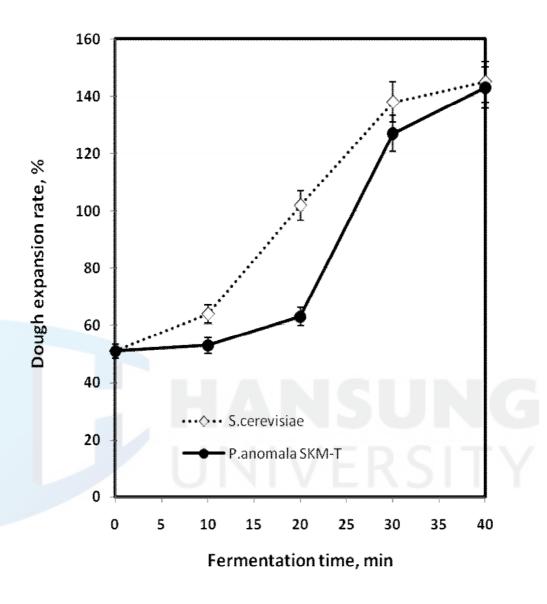


Fig. 5. Dough expansion rate of white pan bread dough fermented by *Pichia anomala* SKM-T.

Data were expressed as Mean \pm standard deviation. Tested groups were not significantly different (p < 0.05), analyzed by Student' t-test.

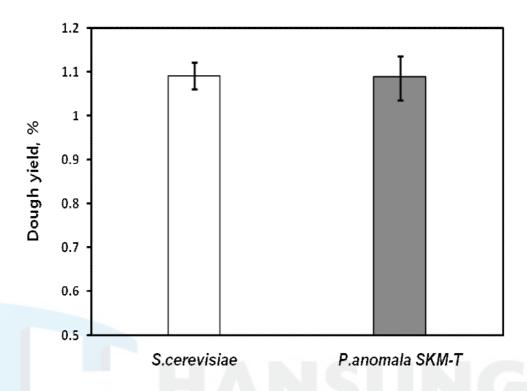


Fig. 6. Dough yield of white pan bread dough fermented by *Pichia* anomala SKM-T.

Data were expressed as Mean \pm standard deviation. Tested groups were not significantly different (p < 0.05), analyzed by Student' t-test.

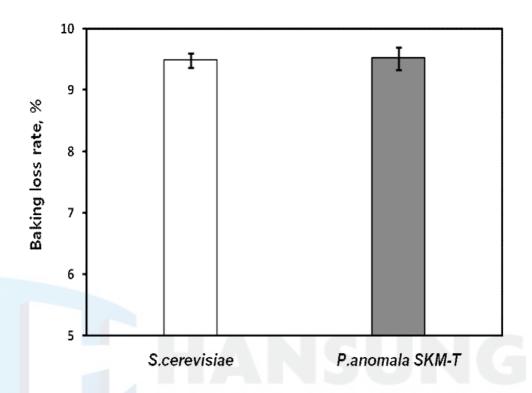


Fig. 7. Baking loss rate of white pan bread dough fermented by *Pichia* anomala SKM-T.

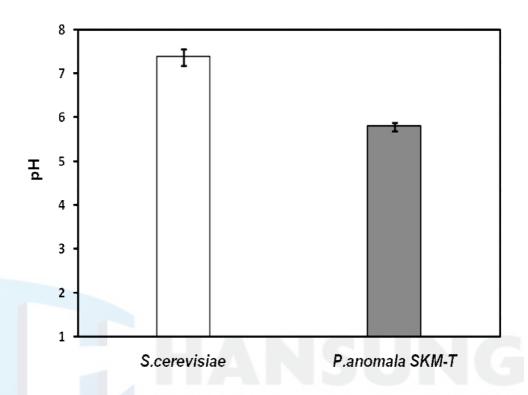


Fig. 8. pH of white pan bread fermented by *Pichia anomala* SKM-T.

Data were expressed as Mean \pm standard deviation. Tested groups were significantly different (p < 0.05), analyzed by Student' t-test.

7. 식빵의 비용적

P. anomala SKM-T로 발효한 식빵의 비용적을 측정한 결과는 Fig. 9와 같다. S. cerevisiae를 발효원으로 하였을 때보다 P. anomala SKM-T가 발효원일 때 식빵의 비용적이 약간 높았으나 유의적인 차이는 나타나지 않았다.

제빵에서 비용적은 밀가루 단백질의 양과 질, 글루텐의 발달정도, 제빵 반죽에 첨가되는 부재료의 양과 종류에 의해 영향을 받는다. 본 실험에서는 밀가루의 종류와 식빵의 formulation이 동일하였으므로 반죽의 단백질 농도 및 첨가되는 부재료에 의한 영향은 없는 것으로 사료되었다. 비용적이 높을수록 빵의 반죽 및 발효시 글루텐이 형성됨에 따라 air cell이 균일하게 고루 발생하여 탄력성있는 빵을 형성한다. 따라서 대조구보다는 P. anomala SKM-T로 발효시킨 빵이 좀 더 탄력성이 있을 것으로 추정하였다.

S. cerevisiae로 발효한 식빵과 P. anomala SKM-T로 발효한 식빵의 표면구조를 관찰한 결과는 Fig. 10과 같다. 각각의 식빵은 air cell이잘 발달되어 있었고, 대조구보다 P. anomala SKM-T 처리구에서 gluten matrix가 더 단단히 형성되어 있는 것으로 관찰되었다.

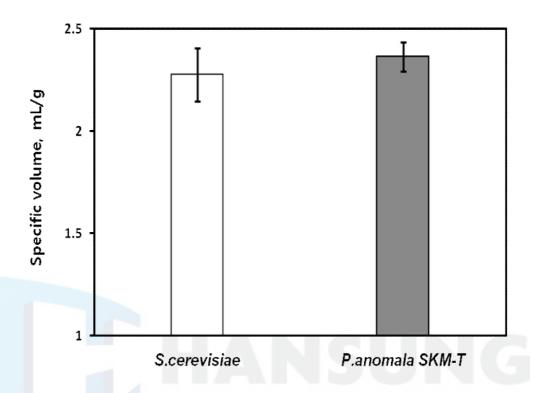


Fig. 9. Specific volume of white pan bread fermented by *Pichia* anomala SKM-T.

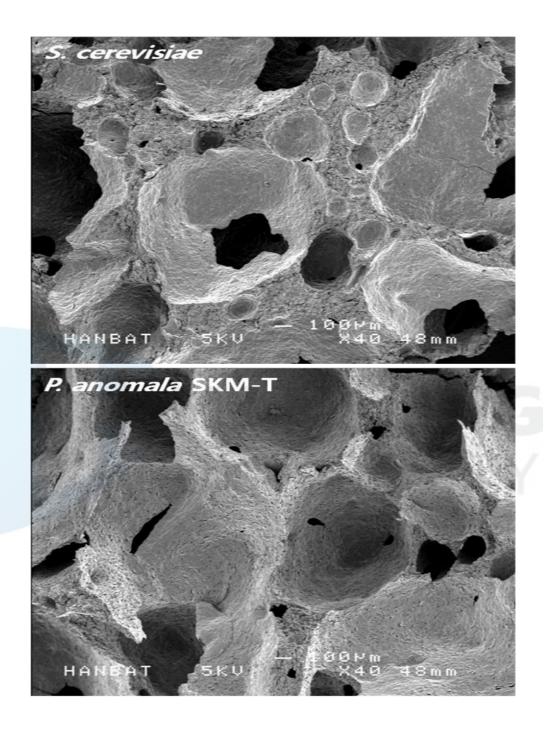


Fig. 10. Scanning electron microscope of white pan bread fermented by *Pichia anomala* SKM-T.

Magnification was 40.

8. 식빵의 색도

빵의 색도는 첨가하는 물질이 지닌 본연의 색, 당의 종류와 양, 반죽의 pH 및 발효 온도 등에 의해 영향을 받는 것으로 알려져 있다⁶⁸⁾. 식빵의 표면 (crust)과 내부 (crumb)의 색도를 측정한 결과, 대조구 (*S. cerevisiae*)와 *P. anomala* SKM-T 처리구 사이에는 오차 범위 내에서만 차이를 나타낼 뿐 발효원을 다르게 하는 데서 기인하는 차이는 관측되지 않았다 (Figs. 11~13).

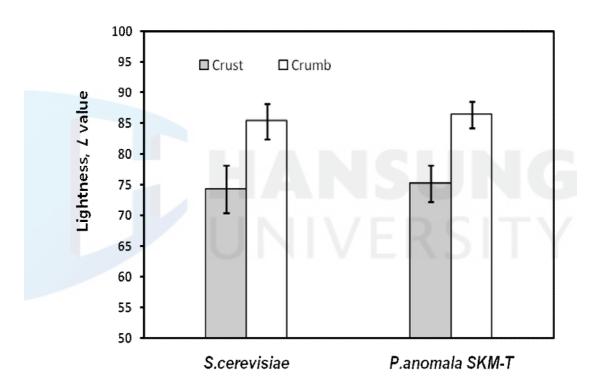


Fig. 11. Lightness (*L* value) of white pan bread fermented by *Pichia* anomala SKM-T.

⁶⁸⁾ 신길만, 김동영. 2008. 「당귀분말을 첨가한 식빵의 품질특성」 한국식품저장유통학회지. 15: pp.497-504.

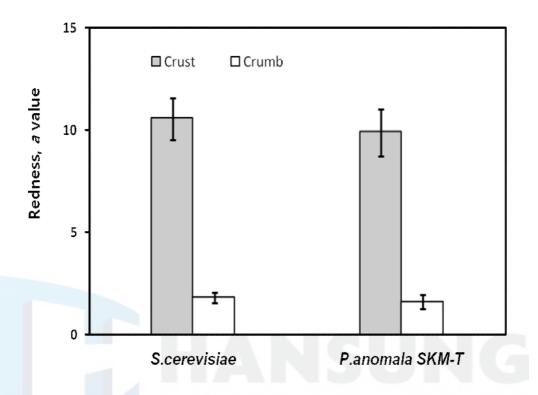


Fig. 12. Redness (a value) of white pan bread fermented by *Pichia* anomala SKM-T.

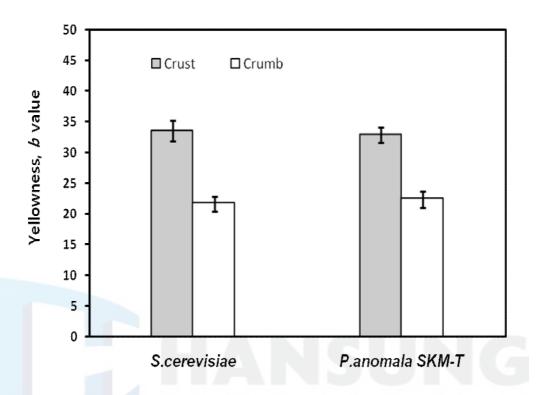


Fig. 13. Yellowness (*b* value) of white pan bread fermented by *Pichia* anomala SKM-T.

9. 식빵의 물성

P. anomala SKM-T로 발효한 식빵의 조직감을 측정한 결과는 Table 3와 같다. 조직감을 측정하는 평가 항목 중에서 hardness, gumminess, cohesiveness는 S. cerevisiae로 발효한 식빵과 P. anomala SKM-T로 발효한 식빵 사이에는 유의적인 차이가 나타나지 않았다. 반면에 springness는 P. anomala SKM-T로 발효한 식빵이 약간 높았고, springness 값에 영향을 받는 chewiness도 P. anomala SKM-T 처리구가 대조구보다 약간 높았다. 이는 P. anomala SKM-T로 발효한 식빵 반죽 및 식빵의 pH가 S. cerevisiae로 발효한 대조구보다 유의적으로 낮았던 것에 기인하는 것으로 사료되었다.

Table 3. Texture characteristics of white pan bread fermented by *Pichia* anomala SKM-T

Categories	S. cerevisiae	<i>P. anomala</i> SKM-T
Hardness (g/cm2)	214.53±20.58	219.83±21.73
Springness	0.97±0.025 ^a	1.13±0.013 ^b
Chewiness	81.89±9.54ª	89.04±9.14 ^b
Gumminess	94.93±10.23	95.36±9.88
Cohesiveness	0.44±0.12	0.44±0.08

Data were expressed as Mean \pm standard deviation. Superscript letters denote values that were significantly different (p < 0.05), analyzed by Student' t-test.

10. 관능검사

S. cerevisiae와 P. anomala SKM-T로 발효한 식빵을 짝을 이루어 무작위로 패널에게 제시하여 두 시료 간의 차이 유무를 검사하게 하는 차이식별검사 (balanced reference)를 실시하였다. 관능검사의 유의성검정표 (단측검정)를 기준으로 18명을 대상으로 실험하였을 때, 13명 이상 차이가 있다고 응답하면 5% 유의수준에서 유의적인 것으로 판단한다. 동일한 패널을 대상으로 3회의 차이식별 검사를 실시한 결과, 본 실험에 참여한 관능검사 요원은 18명이었고, 이 중에서 15 ± 2명이 차이가 있다고 응답하여 두 시료 간의 유의적인 차이가 있는 것으로 판단하였다.

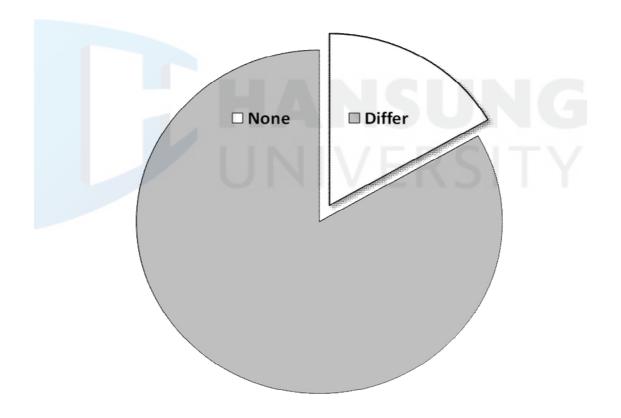


Fig. 14. Directional difference test of white pan breads fermented by *Pichia anomala* SKM-T and *Saccharomyces cereviseia*

관능검사 종료 후, "차이가 없다"고 응답한 관능검사요원들을 대상으로 한 사후토론에서 이들이 두 시료 간에 차이가 없다고 판단한 기준이되는 것은 식빵의 외관, 질감을 포함한 맛, 색 등이었다.

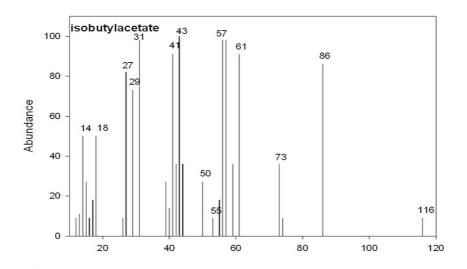
차이가 있다고 응답한 관능검사요원들을 대상으로 한 사후토론에서 이들이 두 시료 간에 차이가 있다고 판단한 기준이 되었던 것은 시료의 "향기"이었다. 이들은 관능검사를 시작하자마자 두 시료 간에 향기가가장 크게 느껴졌기 때문에 최종평가에서도 "차이가 있다"로 평가하였다.

11. 향기성분

두 시료의 향기가 다르다는 관능검사 결과를 분석적으로 확인하기 위하여 소성이 완료된 식빵을 동결건조한 후 dichloromethane: pentane = 2: 1의 혼합용매로 향기성분을 추출한 후 GC 및 GC-MS로 분석하였다.

GC chromatogram 상에서 S. cerevisiae 발효 식빵에서 30개, P. anomala SKM-T 발효 식빵에서 42개의 peak가 분리되었다 (Data not shown). 따라서 S. cerevisiae 발효 식빵에 분리된 성분은 식빵에서 유래된 공통의 향기성분으로 간주하였다. 즉, S. cerevisiae로 발효한 식빵과 P. anomala SKM-T로 발효한 식빵의 향기성분 중에서 동일한 retention time을 지닌 peak를 제외한 결과, P. anomala SKM-T로 발효한 식빵에서 12개의 peak가 더 나타났고, 이들의 성분을 GC-MS로 분리동정하였다.

그 결과 5개의 peak는 unknown compound이었고 7개의 향기성분을 동정하였다. 동정된 향기성분의 GC-MS spectrum은 Fig. 15와 같고, 이들의 volatile characteristics은 Table 4와 같다. Table 4에서와 같이 이들은 "Sweet"하고 "Fruity"한 volatile flavor의 특징을 나타내고 있었다. 이는 Mo 등69)이 *P. anomala* SKM-T의 배양액으로부터 분리동정하였던 향기성분의 profile과 일치하는 결과이었다. 또한 이러한 향기성분은 식품


⁶⁹⁾ 모은경, 강효진, Lee CT, Xu BJ, 김재훈, Wang QJ, 김재천, 성창근, 전개논문, pp.800-808.

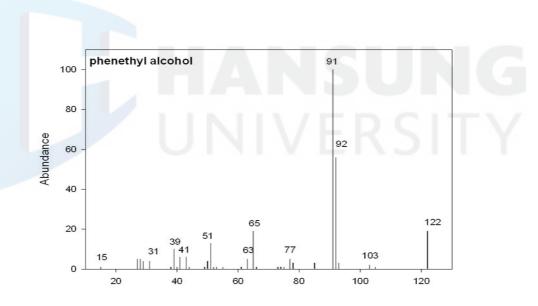
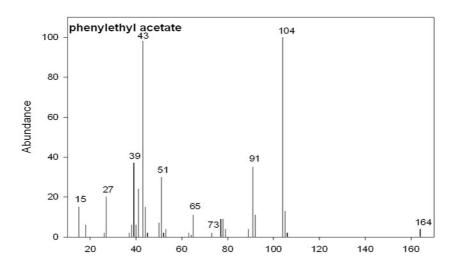
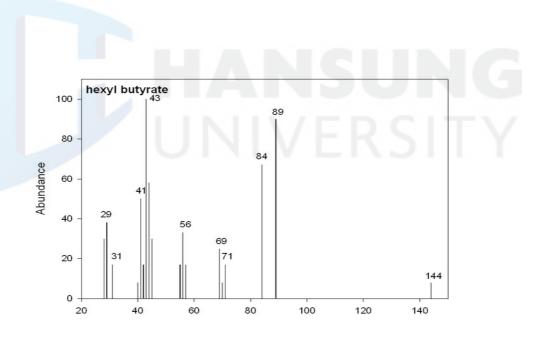
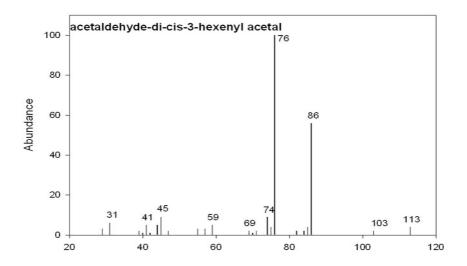

내에 소량 만 존재하여도 강한 휘발성의 향기를 발산하기 때문에 P. anomala SKM-T로 발효한 식빵이 S. cerevisiae로 발효한 식빵과 관능적 인 차이를 나타낸 것으로 사료되었다.

Table 4. Characteristics of identified volatile compounds from the white pan bread fermented with *Pichia anomala* SKM-T


No	R.T.*	Compounds	Characteristics
1	4.5	isobutyl acetate	ethereal, fermented odor
2	6.3	phenethylalcohol	rose-honey like odor
3	7.8	phenethyl acetate	very sweet, rose-fruity, honey-like
4	10.2	acetaldehyde-di-cis-3-hexenyl acetal	oily-green odor with a sweet taste
5	11.8	hexyl butyrate	fruity, heavy odor
6	12.9	Z-2-decenal	waxy-orange-like, sweet-aldehydic
7	13.5	allyl propionate	sour-fruity odor


^{*}R.T.; retention time



continued

continued

continued

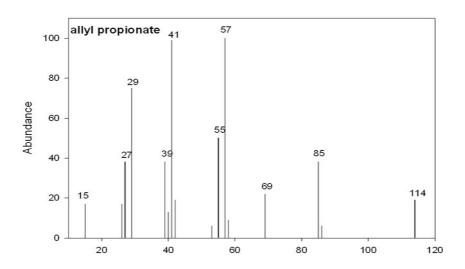


Fig. 15. GC-MS spectrum of identified volatile compounds from *Pichia* anomala SKM-T.

Mass spectra were obtained by electron impact ionization at 70 eV, ion species were normal ion (MF-Linear) and TIC range was m/z 10 to 300. The spectrometric data were compared with those from the NIST Hewlett-Packard 59942C original library mass-spectra.

12. 저장 기간 중 식빵의 수분 함량 변화

소성이 완료된 식빵을 30℃에 3일간 저장하면서 식빵의 수분 함량 변화를 측정한 결과는 Fig. 16과 같다. 저장 시간이 14시간 경과되면서 식 빵의 수분 함량이 급격히 감소하였고, 이 후 수분함량이 완만히 감소하였 다. S. cerevisiae 발효 식빵과 P. anomala SKM-T 발효 식빵을 저장하는 동안의 수분 함량 변화에는 유의적인 차이가 나타나지 않았다.

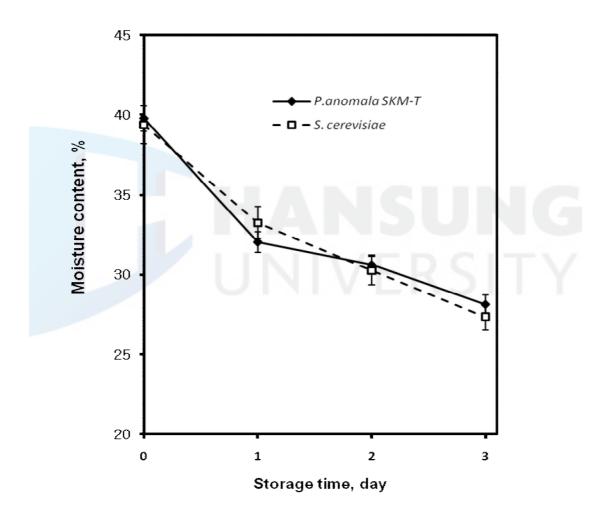


Fig. 16. Moisture content of white pan bread fermented by *Pichia anomala* SKM-T during storage at 30°C

13. 저장 기간 중 식빵의 경도 변화

저장하는 동안 식빵의 수분 함량이 감소하였으므로 식빵의 경도도 변화하였을 것으로 추정되었다. 식빵의 경도 변화를 측정한 결과, 저장 기 간이 증가하면서 식빵의 경도는 유의적으로 높아졌다. 그러나 발효원에 따 른 유의적인 차이는 관측되지 않았다 (Fig. 17).

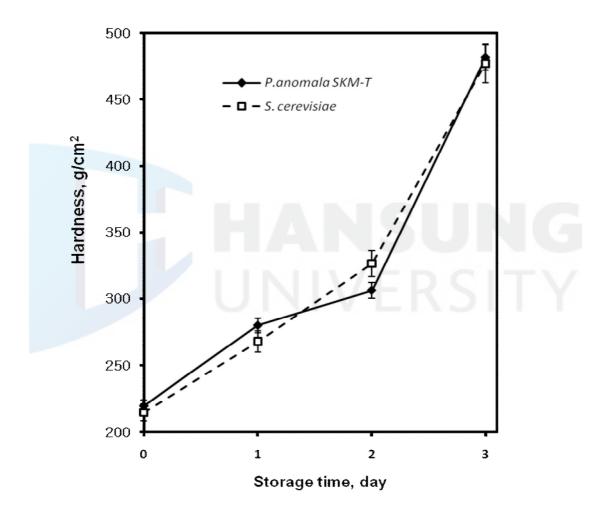


Fig. 17. Hardness of white pan bread fermented by *Pichia anomala* SKM-T during storage at 30°C

14. 저장 기간 중 식빵에서의 곰팡이 발생률

P. anomala SKM-T와 S. cerevisiae로 발효한 식빵을 30℃에서 저장하면서 식빵 표면에서의 곰팡이 발생률을 측정한 결과, 저장 기간이 증가하면서 두 처리구 모두에서 곰팡이가 발생이 증가하였다 (Fig. 18). 그러나 P. anomala SKM-T로 발효한 식빵에서의 곰팡이 발생률은 S. cerevisiae 처리구보다 현저히 낮았다. P. anomala SKM-T는 phenylethyl acetate 등의 항진균물질을 생산하는 효모이다.70)71) 따라서 P. anomala SKM-T가 식빵 반죽 내에서 발효되는 동안 다량의 항진균물질을 생산하였고, 이러한 항진균물질에 의해 식빵에서 곰팡이가 발생되는 것이 억제된 것으로 사료되었다.

⁷⁰⁾ 모은경, 성창근. 2005. 「Effect of Pichia anomala SKM-T and Galactomyces geotrichum SJM-59 Dipping on StorageProperty and Sensory Quality of Strawberry」 한국식품과학학회. 14: pp.487-492.

⁷¹⁾ 모은경, 성창근. 2007. 「Phenylethyl alcohol (PEA) application slows fungal growth and maintains aroma in strawberry」 한국작물학회지. 45: pp.234-239.

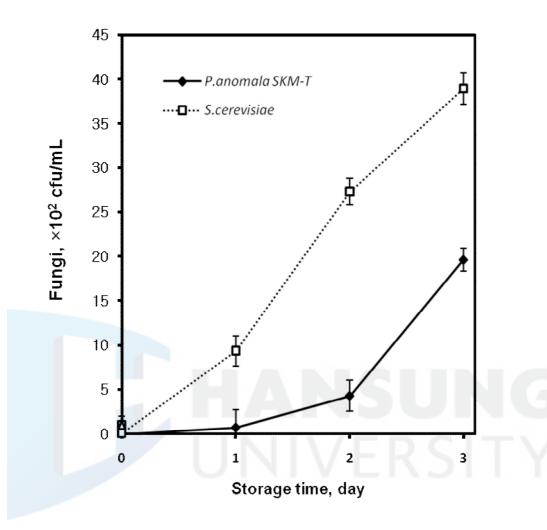


Fig. 18. Fungi incidence in white pan bread fermented by *Pichia* anomala SKM-T during storage at 30°C

제 5 장 결론

본 연구에서는 변하여가는 현대인의 식생활문화에 대하여 그 적응능력 및 건강증대를 위하여 건강기능성 식빵을 제조하여 제과제빵산업을 증대시키며, 인체에 미치는 영향력에 대하여 분석하였다.

- 1. 배양한 *Pichia anomala* SKM-T를 동결건조하여 3일간 25℃에서 재배양하였으며 식빵을 제조하는 동안 생육할 것으로 사료되었다.
- 2. P. anomala SKM-T를 발효원으로 하여 반죽을 제조하고 S. cerevisiae를 발효원으로 하여 반죽을 제조한 뒤 pH를 측정하여 확인한 결과 P. anomala SKM-T를 발효원으로 한 반죽이 유기산을 많은 양을 생산하는 것으로 보고되어 있으며, pH가 유의적으로 낮은 것으로 확인되었다. 또한 굽기 후 식빵의 pH 역시 유의적인 차이를 나타내었으며, 반죽형태보다 굽기 후의 pH가 더 많은 차이를 나타내었는데 이는 유기산을 생산하기 때문이었다.
- 3. 발효원에 차이를 두어 밀도를 측정하였으나, 대조구(S. cerevisiae) 와의 차이는 나타나지 않았으며, 식품학적 품질도 S. cerevisiae로 발효한 대조구와 다르지 않을 것으로 사료되었다. 또한 발효팽창력의 차이를 확인하기 위하여 각 발효원을 첨가하여 발효과정을 실험하였으나, 1차발효 초기에는 P. anomala SKM-T 발효구가 유의적으로 팽창력이 낮았으나 30분 뒤 발효속도가 증가하여 최종단계에서는 S. cerevisiae로 발효하였을 때와 유의적인 차이를 나타내지 않았으며, 비용적 역시 P. anomala SKM-T가 발효원일 때 식빵의 비용적이 약간 높았으나 유의적인 차이는 나타나지 않았다. 하지만 S. cerevisiae로 발효한 식빵과 P. anomala SKM-T로 발효시킨 식빵의 표면구조를 관찰할 결과 대조구(S. cerevisiae)보다 P. anomala SKM-T 처리구에서 gluten matrix가 더 단단히 형성되어 있는 것으로 관찰되었다.

4. 식빵의 표면(crust)과 내부(crumb)의 색도를 측정한 결과 대조구 (S. cerevisiae)와 P. anomala SKM-T 처리구 사이에는 오차범위 내 차이일 뿐 발효원이 다르게 하는 데서 기인하는 차이는 관측되지 않았다. 또한 식빵의 물성을 측정한 결과 hardness, gumminess, cohesiveness는 유의적인 차이가 나타나지 않았으나, springness와 그 값의 영향을 받는 chewiness는 대조구(S. cerevisiae)보다 P. anomala SKM-T로 발효한 식빵이 약간 높았다. 그 이유는 pH가 유의적으로 낮기 때문에 springness에 기인하고 있었다.

5. 대조구(S. cerevisiae)와 P. anomala SKM-T 처리구로 제조한 식빵을 무작위로 패널에게 제시하여 관능검사를 실시하였다. 유의성검정표 (단측검정)를 기준으로 18명을 대상하여 실험하였다. 그 결과 차이가 없다고 답변한 요원들의 판단기준은 식빵의 외관, 질감을 포함한 맛, 색 등 이였고 차이가 있다고 답변한 요원들은 향기에서 가장 큰 차이를 판단하였다. 때문에 두 시료의 향기가 다르다는 관능검사를 분석적으로 확인하기위하여 동결건조 후 향기성분을 추출하여 GC 및 GC-MS로 분석한 결과GC chromatogram상에서 S. cerevisiae발효식빵에서 30개, P. anomala SKM-T 발효식빵에서 42개의 peak가 분리되었다. 따라서 12개의 peak가더 나타나, 이들의 성분을 GC-MS로 분리동정한 결과 sweet, fruity한 volatile flavor의 특징을 가진 향기성분을 발산하기에 관능차이가 있었다.

6. 식품의 저장성을 알아보기 위하여 각 시료를 3일간 30℃에 저장하면서 수분함량변화와 경도변화를 측정하였으나 두 시료 모두 유의적인 차이는 나타나지 않았다. 또한 저장기간이 증가할수록 두 시료 모두 곰팡이가 발생하였으나 대조구(S. cerevisiae)보다 P. anomala SKM-T 처리구로 제조한 식빵이 곰팡이 발생이 현저히 낮아졌다. 따라서 P. anomala SKM-T는 항진균물질을 생산하여 곰팡이 발생이 억제되는 것으로 사료되었다.

본 연구는 S. cerevisiae와 P. anomala SKM-T를 첨가하여 식빵을 제조한 뒤 건강기능성, 저장성 및 풍미의 차이점을 찾고 제과제빵산업의 증대를 위하여 기여하고자 실시하였다. 하지만 대체식품인 식빵만을 기준으로 연구에 임하기에는 다양성과 세부성이 부족하여 연구의 한계성이 있었고, 대체발효물질을 통하여 얻어지는 저장성 및 건강기능성도 있지만 식품의 대중성 및 비용의 문제는 앞으로도 더 연구되어야 할 것이다.

【참고문헌】

1. 국내문헌

- 김남주, 지근억. 2005. 「프로바이오틱스의 임상적 효과와 작용 기작」 소아알레르기 및 호흡기학회지 15: pp.327-343.
- 김선재, 마승진, 김학렬. 2005. 「젓갈로부터 분리된 젖산균 및 효모의 프로바이오틱 특성」 한국식품저장유통학회지 12: pp.184-188.
- 김소영, 김홍, 채희정. 2004. 「Selection of probiotic yeasts from soil, characterization and application for feed additives」 한국응용생명 화학회지. 47: pp.20-26
- 김재황. 2005. 「생균제, illite 및 활성탄의 첨가가 돈육의 이화학적 특성에 미치는 영향」 농업생명과학연구 39: pp.61-69.
- 김중재, 윤숙경, 김홍익, 박용하, 오희목. 2006. 「Effect of Spirulina platensis and probiotics as feed additives on growth of shrimp Fenneropenaeus chinensis」 한국미생물생명공학회지. 16: pp.1248-1254.
- 모은경. 2004. 「Identification of yeasts from Korean feces and prerequisite characterization for preparation of probiotics」 한국식 품과학학회. 13: pp.63-70.
- _____, 성창근. 2005. 「Effect of Pichia anomala SKM-T and

Galactomyces geotrichum SJM-59 Dipping on StorageProperty and Sensory Quality of Strawberry」 한국식품과학학회. 14: pp.487-492.

- 모은경, 성창근. 2007. 「Phenylethyl alcohol (PEA) application slows fungal growth and maintains aroma in strawberry」 한국작물학 회지. 45: pp.234-239.
- _____, 이선영, 제갈성아, 성창근. 2007. 「Pichia anomala SKM-T와 Galactomyces geotrichum SJM-59 첨가가 배추김치 발효에 미치는 영향」 한국식품저장유통학회지. 14: pp.94-99.
- 문영건, 이경준, 김기영, 송춘복, 전유진, 허문수. 2006. 「Probiotics를 이용하여 발효시킨 감귤 가공부산물 발효물의 특성」 한국산업미생물학회지. 34: pp.158-165.
- 박자령, 배진우, 이성근, 남영도, 오종원, 박용하. 2005. 「신생아 장내 미생물의 형성과 이의 분석을 위한 분자 생태학적 기술」 한국산업미생물학회지 33: pp.159-168.
- 박재홍, 박홍석, 허삼남, 이세나, 류경선. 2005. 「혼합생균제의 수준별 급여가 돼지의 성장과 돈육의 품질에 미치는 영향」 전북대학교 농대 논문집. 36: pp.103-116.
- 신길만, 김동영. 2008. 「당귀분말을 첨가한 식빵의 품질특성」 한국식품저 장유통학회지. 15: pp.497-504
- 신언환, 김소미, 박천석. 2003. 「김치 유산균으로 제조한 preferment 첨가

- 수준에 따른 white pan bread의 품질 특성」 한국식품과학회지 35: pp.1193-1198.
- 양철주, D. Uuganbayar, 신영환, 박일철, 정일병, 조영무, 김원호, 남병섭. 2003. 「남은 음식물 사료와 생균제 첨가에 따른 육계의 성장 및 체조성에 미치는 영향」 폐기물자원화. 11: pp.113-121.
- 오수명, 김찬식, 이삼빈. 2004. 「Bioconversion of soybean curd residues into functional ingredients with probiotics」 한국식품영양과학회. 9: pp.138-143.
- 유숙진, 조진국, 하철규, 김창현, 허강철. 2006. 」Kefir에서 분리한 Candida kefyr의 생균제를 위한 특성」 한국동물자원학회지 48: pp.307-314.
- 윤미숙, 이정훈, 이시경. 2010. 「Lactobacillus helveticus ATCC 55163과 Propionibacterium acidipropionici 5020로 배양한 유청발효물이 빵 의 품질특성에 미치는 영향」 한국동물자원학회지 30: pp.458-465.
- 이보현, 유현주, 박명수, 권빈, 지근옥. 2006. 「Transformation of the glycosidesfrom food materials by probiotics and food microorganisms」 한국미생물생명공학회지. 16: pp.497-504.
- 이수영. 2004. 「알레르기 질환의 예방과 치료에 있어서 probotics의 역할, 소아알레르기 및 호흡기학회지. 14: pp.127-129.
- 이예경, 박인경, 김순동. 2001. 「김치 숙성 관련 젖산균이 식빵의 품질에 미치는 영향」 동아시아식생활학회지. 11: pp.379-385.
- 이정훈, 이시경. 2009. 「*L. acidophillus* KCCM 32820과 *P. freudenreichii* KCCM 31227로 발효한 유청 발효물이 빵 반죽의 레올로지 특성에 미치는 영향」 한국식품영양과학회지. 38: pp.795-800.
- 이종열, 이시경, 조남지, 박원종. 2003. 「천연제빵 발효 starter의 개발」

- 한국식품영양과학회지. 32: pp.1245-1252.
- 임준희, 김덕한, 구자경, 강윤성, 김미연, 김형옥, 청명준, 박영민. 2006. 「Therapeutic effects of probiotics inpatients with atopic dermatitis」 한국미생물생명공학학회지. 16: pp.1699-1705.
- 장준형, 안재범. 1996. 「빵의 품질에 미치는 유산균의 영향」 한국식품영 양학회지 9: pp.509-515.
- 정진웅, 박기재. 2006. 「탁주 분말을 첨가한 식빵의 품질 특성」 한국식품 과학회지. 38: pp.52-58.
- 조희숙, 박복희, 김경희, 김현아. 2006. 「다시마 분말을 첨가하여 제조한 쿠키의 품질특성과 항산화효과」 한국식생활문화학회지. 5: pp.541-549.
- 진상근, 김일석, 송영민, 하지희, 박기훈, 강석모, 김인진, 김정화, 박용수, 이창범. 2006. 「돈육의 품질 특성에 미치는 생균제 급여 효과」 한국국제농업개발학회지. 18: pp.105-111.
- 진효상. 1994. 「순물 (두부폐액)을 이용한 probiotics의 생산」 한국환경학회지. 12: pp.59-64.
- 차욱진, 이시경, 이정훈, 조남지. 2004. 「*Lactobacillus acidophilus*로 발효 시킨 밀가루 발효물의 특성」 한국식품과학회지. 36: pp.116-122.
- 최인덕, 최원석. 2010. 「Effects of Kokja as a fermentation starter on sponge-and-dough bread properties」 한국응용생명화학회지 53: pp.50-55
- 하경희, 이창우, 진상근, 김일석, 송영민, 허선진, 김회윤, 류현지, 하지희. 2005. 「생균제의 급여가 돈육의 이화학적 성상 및 관능에 미치는

영향」 한국동물자원학회지 25: pp.295-303.

- 홍정훈, 김경자, 방극승. 2000. 「Bifidobacterium infantis 및 Streptococcus thermophillus가 밀가루 반죽의 물성적 성질에 미치는 영향」 한국조리과학회지 16: pp.22-26
- ________. 2001. 「Enterococcus sp.와 Lactobacillus sp. 첨가 sourdough로 제조된 보리식빵의 품질특성. 1. 보리가루에서 분리한 균주의 동정 및 반죽의 물성적 특성」 한국식생활문화학회지 16: pp.354-360.
- _____, 안덕준. 2002. 「Bifidobacterium sp.로 제조된 반죽의 물성적 특성」 한국식생활문화학회지 17: pp.165-170.
- HeddurM Jayaprakasha, 윤우창, 백현동. 2005. 「Probiotic functional dairy foods and health claims: an overview」 한국식품과학학회 지. 14: pp.523-528.

2. 국외문헌

- AACC. 2000. Approved methods of the AACC. MN, USA, The American Association of Cereal Chemists.
- Agawane SB and Lonkar PS. 2004. "Effect of probiotic containing Saccharomyces boulardii on experimental ochratoxicosis in broilers hematobiochemical studies". Journal of Veterinary Science. 5: pp.359–367.
- Bengmark S. 2002. "Use of prebiotics, probiotics and symbiotics in clinical immunonutrition". *Nutraceuticals and Food.* 7: pp.332-345.
- Bezkorovanyl, A. 1989. "Ecology of bifidobacteria.In: Bezkorovainy A, Miller-Catchpole R, editors". *Biochemistry and physiology of bifidobacteria*. Florida: CRC press. pp.29-72.
- Burkhardt O, Kohnlein T, Pletz M, and Welte T. 2005. "Saccharomyces boulardii induced sepsis: successful therapy with voriconazole after treatment failure with fluconazole". Scandinavian Journal of Infections and Disease. 37: pp.69–72.
- De Hoog GS. 1996. "Risk assessment of fungi reported from humans and animals". *Mycoses*. 39: pp.407-417.
- Djien KS. 1972. "Tape fermentation". *Applied Microbiology*. 23: 976–978.
- Doerry W. 1998. "Sourdoughs and breads. In Technical Bulletin".

 American Institute of Baking. Vol. 20. Chapter 7.
- EFSA. 2009. "Scientific opinion of the panel on biological hazards on the maintenance of the list of QPS microorganisms intentionally added to food or feed". *EFSA Journal*. 7:1e93.

- Joint FAO/WHO Expert Consultation on. 2001. "Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria." pp.1–32.
- Leuschner RGK, Robinson TP, Hugas M, Cocconcelli PS, Richard-Forget F, Klein G, Licht TR, Nguyen-The C, Querol A, Richardson M, Suarez JE, Thrane U, Vlak JM, and von Wright A. 2010. "Qualified presumption of safety (QPS): A generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA)". Trends in Food Science and Technology. 21: pp.425-435.
- Mackay AD, Taylor MB, Kibbler CC, and Hamilton-Miller JM. 1999. "Lactobacillus endocarditis caused by a probiotic organism (rhamnosus)" Clinical Microbiology and Infection. 5: pp.290-292.
- Munoz P, Bouza E, Cuenca-Estrella M, Eiros HM, Perez MJ, and Sanchez-Somolinos M. 2005. "Saccharomyces cerevisiae fungemia: an emerging infectious disease". Clinical Infections and Disease. 40: pp.1625–1634.
- Natural Health Products Directorate. 2003. "Evidence for safety and efficacy of finished natural health products".
- Notario R, Leardini N, Borda N, Gambande T, and Cerutti H. 2003. "Hepatic abscess and bacteremia due to *Lactobacillus* rhamnosus". Reviews of Argentina Microbiology. 35: pp.100–101.
- Otte JM, Cario E, and Podolsky DK. 2004. "Mechanism of cross hyporesponsiveness to toll-like receptor bacterial ligands in intestinal epithelial cells". *Gastroenterology*. 126: pp.1054–1070.

- Presterl E, Kneifel W, Mayer HK, Zehetgruber M, Makristathis A, and Graninger W. 2001. "Endocarditis by *Lactobacillus rhamnosus* due to yogurt ingestion?". *Scandinavian Journal of Infections* and *Disease*. 33: pp.710–714.
- Pyler EJ. 1979. "Physical and chemical test method. Baking science and technology". Sosland Publication Company, Kansas, USA. 2nd ed., pp 891–895.
- Rautio M, Jousimies-Somer H, Kauma H, Pietarinen I, Saxelin M, and Tynkkynen S. 1999. "Liver abscess due to a *Lactobacillus rhamnosus* strain indistinguishable from *L. rhamnosus* strain GG". Clinical Infection and Disesase 28: pp.1159-1160.
- Report of Joint FAO/WHO Working Group on. 2002. "Drafting guide lines for the evaluation of probiotics in food".
- Schwan RF and Wheals A. 2004. "The microbiology of cocoa fermentation and its role in chocolate quiality". *Critical Reviews in Food Science and Nutrition.* 44: pp.205–221.
- Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, and Koga Y. 1997.

 "The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction". *Journal of Immunology*. 159: pp.1739–1745.
- Sugihara TF, Kline L, and Miller MW. 1971. "Microorganism of San Francisco sour dough bread process". *Applied Microbiology*. 21: pp.459-465.
- ______. 1977. "Non-traditional fermentations in the production of baked foods". *Baker's Digest.* 51: pp.76–80
- Tanaka K and Ishikawa H. 2004. "Role of intestinal bacterial flora in oral tolerance induction". *Histological Histopathology*. 19: pp.907-914.

ABSTRACT

Baking Properties of White Pan Bread using *Pichia anomala* SKM-T as a Starter

Kim, Myoung Kyoum

Major in Food Service Management

Dept. of Hotel, Tourism and Restaurant

Management

Graduate School of Business Administration

Hansung University

These days health, which is the most important element in our life, is not choice but a must. With the change in food culture, a change in the digestion capability of the human body has taken place as well.

Therefore, in this study bread, which has become one of the most influential parts of recent food culture, was made with *Pichia anomala SKM-T* in order to improve storage and health improving functions. The method of conduct was as follows: After cultivated leaven was added to the bread's paste pH, density, dough expansion rate, dough yield, baking loss rate, specific volume, color, and texture qualities, as well as sensory characteristics were measured and analyzed.

When the fermentation starter differed in the experiment, the density of the paste did not differ from the control group (*S. cerevisiae*). Regarding the specific volume, one could notice that the volume of the bread made with *P. anomala* SKM-T was a little higher than when *S. cerevisiae* was used; however, a noticeable difference was not notified. Considering the measurement result of the color of crust and crumb there was only a difference in the fifth category between the *Pichia anomala SKM-T* treating group and the *S. cerevisiae* control group. However, differences arising from the use of starter could not be observed.

Moreover, there was no difference observed in the variables hardness, gumminess and cohesiveness, which measured the construction of the bread between the treating group ($Pichia\ anomala\ SKM-T$) and the control group ($S.\ cerevisiae$).

During the 14 hours storage time the water content of the bread declined quickly whereas afterwards it declined slightly. Increasing the storage time, in both treating groups the existence of mold increased; however, in case of the bread made with *P. anomala* SKM-T antifungal substances, which helped to suppress the mold, where produced. Based on the results mentioned above, it could be evaluated that there were no differences between the two samples regarding the result of the sensory test, appearance, texture, flavor and color. However, differences in the scent could be noticed. For that reason it could be verified that there were no big differences in the outer appearance but slight differences in internal characteristics.

[Key words] *Pichia anomala SKM-T*, new leavening agent, white pan bread, shelf life, fungi incidence rate, physicochemical properties, sensory characteristics.