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Abstract: Efficient and sustainable bike-sharing service (BSS) operations require accurate demand
forecasting for bike inventory management and rebalancing. Probabilistic forecasting provides a set
of information on uncertainties in demand forecasting, and thus it is suitable for use in stochastic
inventory management. Our research objective is to develop probabilistic time-series forecasting for
BSS demand. We use an RNN–LSTM-based model, called DeepAR, for the station-wise bike-demand
forecasting problem. The deep-learning structure of DeepAR captures complex demand patterns
and correlations between the stations in one trained model; therefore, it is not necessary to develop
demand-forecasting models for each individual station. DeepAR makes parameter forecast estimates
for the probabilistic distribution of target values in the prediction range. We apply DeepAR to
estimate the parameters of normal, truncated normal, and negative binomial distributions. We use
the BSS dataset from Seoul Metropolitan City to evaluate the model’s performance. We create district-
and station-level forecasts, comparing several statistical time-series forecasting methods; as a result,
we show that DeepAR outperforms the other models. Furthermore, our district-level evaluation
results show that all three distributions are acceptable for demand forecasting; however, the truncated
normal distribution tends to overestimate the demand. At the station level, the truncated normal
distribution performs the best, with the least forecasting errors out of the three tested distributions.

Keywords: probabilistic forecasting; shared bike; demand forecasting; deep learning; sharing
information

1. Introduction

Bike-sharing services (BSSs) have been widely used in many cities around the world
to reduce carbon emissions and energy consumption and provide social benefits. BSSs also
function as first- and last-mile transportation systems, which can work in conjunction with
current motorized public systems, such as buses and subways. Hence, BSSs have attracted
large numbers of city dwellers as well as visitors and are recognized as a sustainable and
easy-access mode of transportation.

BSS operating systems are either dock-based or free floating. In a dock-based BSS
(DBSS), users pick up a bike at one station and return it to another—that is, pick-up and
return are only allowed at stations built in designated areas in the city. A free-floating BSS
(FBSS) does not have stations, and users pick up nearby bikes and return them anywhere.

Essentially, a BSS requires bike redistribution (rebalancing) to increase the utilization
of their assets (bikes) because it is a one-way rental service. As a DBSS has stations in fixed
locations, and the service operator redistributes the bikes based on demand forecasting
for each individual station. FBSS rebalancing is conducted on a regional basis. In Seoul
city, FBSSs are generally employed for electric bikes or scooters, and the service area is
restricted; therefore, less rebalancing is needed. In our paper, we focus on DBSS bike-
demand forecasting. Forecasting is key to the success of bike rebalancing [1–3].
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When the bikes need to be redistributed, a truck picks up surplus bikes from a station
and delivers some of them to stations where there are not enough bikes for the upcoming
demand. The truck traverses the area and continues its rebalancing work several times a day
while considering cost-efficient routing. Therefore, bike rebalancing is a mix of inventory-
management and vehicle-routing problems. To determine the appropriate number of
bikes to be picked up and delivered, a forecast of the station-level demand for the bikes is
necessary; therefore, knowing the probabilistic distribution of demand, particularly under
high levels of uncertainty, is useful for making optimal decisions regarding the number of
bikes placed in a station.

The demand for BSS has seasonal characteristics. Figure 1 displays variations of
the daily bike demand over almost two years in the Dongdaemun-gu area of Seoul city.
As the service year extends, more user demand occurs and, at the same time, there are
seasonal demand fluctuations because biking is an outdoor activity that depends on weather
conditions. Generally, the bike demand decreases substantially in the winter time and on
hot summer days. Demand is also affected by everyday weather conditions, such as rain
and snow. Therefore, we must consider seasonal and daily conditions when forecasting
bike demand.

Figure 1. The daily bike demand for Dongdaemun-gu in Seoul.

Statistical time-series models using the state–space modeling (SSM) approach [4,5]
learn patterns, such as trends and seasonality, and provide corresponding error terms
that are used to compute prediction intervals; that is, SSM can provide a framework for
distributional time-series forecasts. However, is difficult to infer shared patterns across
the series using SSM because the model parameters are estimated independently for each
bike station.

Consequently, demand forecasting is primarily for bike rebalancing, and the demand
forecast must be obtained from all the city’s stations or at least from a city district. Individu-
ally developing SSM for each station within the entire area requires too many computations;
therefore, it is difficult to consider this method a viable option. Moreover, demand correla-
tions exist between neighboring stations [1,6]. For example, if one station is crowded with
people picking up bikes, the nearby stations will be crowded with people from the same
group. Therefore, we must consider alternative forecasting methodologies that encompass
these issues.

Recently published research investigated deep-learning neural-network models that
tackle time-series forecasting problems [7–11]. Despite the drawbacks of the deep-learning
structure, such as requiring a great deal of data to obtain an accurate model and difficulty
in interpreting the developed model, it can capture complex seasonality and trend patterns
and incorporate sharing information across the time series into the model [7,9]. This is a
purely data-driven modeling process that does not require labor-intensive human effort in
raw data pre-processing and model-feature selection.

Time-series forecasting predicts the future value (or values) given individual or se-
quences of past entities. Among advanced deep-neural-network models, recurrent neural
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networks (RNNs) have been widely used for sequence modeling, such as natural language
processing [12], and even in forecasting problems [7,9,10]. LSTM (long short-term memory)
cells are also adopted to incorporate data with long time dependencies to the conventional
RNN. The RNN model with LSTM cells (RNN-LSTM) has advantages when dealing with
long-time sequential-history time series in forecasting.

Our research objective is to develop probabilistic time-series forecasting for bike-
sharing-service demand. We use an RNN-LSTM model to resolve the station-wise bike-
demand forecasting problem. Salinas et al. [7] provided a framework for probabilistic time-
series forecasting that shared information across the time series—they called it DeepAR.
DeepAR is based on an auto-regressive recurrent neural network with LSTM cells. They
estimated parameters for the probabilistic distribution of target values in the prediction
range using RNN-LSTM modeling.

The model learns one global model from time-series sales data in an online market-
place. Sales-item demand is correlated, showing common seasonal behaviors and sharing
the same information represented by model covariates. Their model has similar problem
structures compared to ours. There are many bike stations that are correlated in demand,
and probabilistic forecasting is required to properly manage inventory through rebalanc-
ing. Therefore, we implement the DeepAR framework to the station-wise probabilistic
bike-demand forecasting problem.

The output of DeepAR in this research is probabilistic distributions of bike demand
for all the stations of a district (or the whole service area). Knowing the probabilistic
distributions, as aforementioned, is essential to determine the optimal number of bikes
required. To the best of our knowledge, this is the first approach to make the probabilistic
forecasting for demand distributions of the stations of which demand is correlated in some
ways, and this work can be a basis for the inventory rebalancing problem of BSS.

The rest of the paper is organized as follows: Section 2 reviews the related literature.
Section 3 defines our demand-forecasting model based on DeepAR. Section 4 implements
the model developed in Section 3 and provides the results of numerical experiments.
The conclusions and future directions of our research are discussed in Section 5.

2. Related Work

Probabilistic demand forecasting provides decision makers with a set of information
regarding uncertainties in the demand prediction. In the literature, we found that there
are two representations of probabilistic forecasting [9]: the parametric and non-parametric
models. In the former, a particular probability distribution is determined first, and the
distribution parameters are estimated accordingly. In the non-parametric model, there is
no pre-defined distribution, and an empirical distribution, usually defined by quantiles, is
obtained from the prediction.

Snyder et al. [13] developed a methodology on prediction distribution and its perfor-
mance measures. They used the Poisson and negative binomial distributions to develop a
plan for inventory management. Salinas et al. [7] mainly employed the parametric model
and used the parameterized Gaussian and negative binomial distributions for multiple
time series of customer demand. Toubeau et al. [9] adopted their methodology in both of
the models to provide probabilistic forecasting in electric power markets.

The literature [8,10,14–16] also suggests methodologies for probabilistic forecasting
with a non-parametric structure. Some researchers believe that non-parametric methods
are more robust because they does not rely on a pre-determined probability distribution [9].
Moreover, in a practical forecasting setting, a specified distribution will likely not fit
the real data. However, parametric model predictions provide more information on the
uncertainty in upcoming events if any dataset statistically fits to a particular probability
distribution. Thus, it is easier to make a managerial decision on inventory control based on
the probability distribution obtained from the forecasting.

Time series of counts occur frequently in a variety of supply chain operations. ARIMA
(Auto-Regressive Integrated Moving Average) and exponential smoothing (ES) are a family



Sustainability 2022, 14, 15889 4 of 18

of state-space models that have been widely employed for time-series forecasting. In the
state-space model [4,5,13,14,16], there is a latent state that evolves over time and, thus,
catches the time-series characteristics.

We believe that the real observation is solely governed by a corresponding latent state
for that particular time, while the observation itself is assumed to be independent from
others. The state-space model, including the ARIMA and ES, usually contains normality
assumptions in the error term, and the model is essentially structured with real numbers.
However, large divisions in demand forecasting applications have skewed non-negative
data [14,16]; moreover, sometimes there are many zeros, which does not literally mean that
the real count is zero but larger than zero (e.g., out of stock) or with small integers and/or
little history. Thus, a complementary or alternative method is required.

Chapados [14] proposed a hierarchical probabilistic state–space model for predictions
on a group of time series that share some common information. Their model adopted
explanatory variables to impose time-dependent dynamics on the latent variable and some
higher hierarchy variables explain the shared information. Seeger et al. [16] presented
a robust and scalable forecasting algorithm that manipulates a generalized linear model
(GLM) and exponential smoothing time series.

The GLM explains medium-to-longer-term variations of data, which separates the
counts of zero, one, and larger with its latent variable. The time-series smoothing pro-
vides the short-term series predictions and temporal correlations. They used maximum-
likelihood learning for their model parameters and provided a probabilistic forecast. They
insisted that the model can efficiently handle thousands of items, which outperforms [14];
however, their paper did not tackle the information-sharing issue in a group of data.

Time-series data in supply-chain applications typically have Gaussian assumption
violations that encompass intermittent, very small (near zero) and bursty counts in addition
to non-negativity and non-linearity structures over time. Therefore, neural-network (NN)
models are widely employed and easily found in the literature [7,8,10,17,18]. Researchers
have argued that NN models are more flexible for forecasting because they require neither
rigid structures nor data assumptions [17,18].

Kourentzes [18] proposed an NN model for intermittent time-series data, which
captures dynamic demand rates over time and considers interactions between non-zero
demand and the inter-arrival rate of demand events. The model is an expansion from
Croston’s [19] method and its variants. However, the model did not outperform Croston’s
method in terms of forecasting errors, although the model showed better performance than
the benchmarks considering the inventory metrics point of view (service levels represented
by holding and backlog volumes); therefore, Kourentzes insisted on the possibility of using
the NN models in the intermittent time-series data.

Wen et al. [10] used a recurrent neural network (RNN) model with LSTM cells to
perform probabilistic multi-period forecasting. The time series have recursive structures
and often have long-term time dependencies, such as a year. Many NN-forecasting stud-
ies [7–10] have used RNN with LSTM cells. Wen et al. [10] adopted a Sequence-to-Sequence
(Seq2Seq) framework with their innovative forking-sequences-scheme, which captures
time-dependent features to perform multi-horizon forecasting with less errors caused by
the RNN structure in the prediction period.

Thus, when multi-horizon values are predicted, the regular RNN scheme iteratively
estimates one-step ahead of future values (ŷt+1) given a predicted ŷt. This process is likely
to accumulate errors. The forking-sequences scheme works as a decoder in the prediction
phase and, thus, avoids a prediction-dependent multi-horizon.

Wen et al. [10] performed forecasting for multiple time-series groups that shared
information. This is similar to Rangapuram et al. [8] and Salinas et al. [7]. Rangapuram et al.
combined the state–space model (SSM) and RNN to predict multiple time series in an
information-sharing group. Their RNN network was used to compute the parameters for
the SSM, which was followed by learning the shared network parameters. Salinas et al. [7]
adopted an auto-regressive recurrent neural-network model with LSTM cells for proba-
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bilistic forecasting—they called the methodology DeepAR. DeepAR provides probabilistic
forecasting for multiple time series.

Parameterized negative binomial and normal distributions are used for the forecasts,
and the model predicts the parameters for the probability distributions for each time step
in the forecasting horizon. DeepAR is able to provide quantile forecasts using Monte-
Carlo sampling from the predicted probability distributions. As the model learns global
seasonality and dependencies on given covariates from related time series, the authors
argued that the DeepAR can handle group-dependent complexity from data, such as
different magnitudes of counts. DeepAR also provides forecasts for items with little or no
history in the information-sharing group.

Recent studies have widely used machine-learning methodologies for bike-sharing-
system demand prediction [1,20–22]. Gao and Chen [20] applied linear regression, k-nearest
neighbors, random forest, and support vector machine (SVM) methods to predict customer
demand for bike-sharing systems. Explanatory features, such as the weather, COVID-19,
air pollution, and social economic factors were incorporated into the prediction model,
and they showed that random forest and support vector machine models were acceptable
with weather and COVID-19 as the primary features.

In a similar study, Sathishkumar et al. [21] compared linear regression, gradient
boosting machine (the best performer from their paper), SVM, boosted tree, and extreme
gradient-boosting tree methods with a bike-sharing dataset from the same city in a different
time period.

Lin et al. [1] used a graph convolution neural-network model with a data-driven
graph filter (GCNN-DDGF) to provide station-level demand forecasting in a bike-sharing
system in New York City. The model learns spatio-temporal dependencies between bike
stations without elaborately pre-processing demand data. They compared six GCNN
models (two with data-driven filters and the other four with pre-defined adjacency data,
such as the spatial distance, demand, average trip duration, and demand correlation) and
seven benchmark models. Their results showed that their proposed GCNN-DDGF with a
recurrent block from long short-term memory (LSTM) architecture outperformed the others
in terms of the prediction accuracy.

Mehdizadeh and Morency [22] adopted a hybrid convolutional neural network (CNN)
and LSTM model to provide short-term bike-demand forecasts. The stations were grouped
by their connection strength, which was defined by the number of trips within each group,
and they predicted the demand for each group over the next 15 min. Compared with a
typical ARIMA model, their proposed model performed better when measured by MAE
and RMSE.

However, the forecasts we obtained from this paper are point estimates, and the
forecasts’ usabilities and point estimations are limited in environments with uncertainties.
The major role of forecasts in a bike-sharing system is to develop a bike-rebalancing plan.
As there are many human-related uncertainties in the system, probabilistic forecasting is
able to provide more information for decision makers.

As described, there is a large volume of literature on forecasting customer demand.
In addition, as shared bike system services extend in many cities worldwide, bike-demand
forecasting has been commonly studied in the literature. This paper is about bike-demand
forecasting for the BSS and as with the bike-rebalancing problem, a probabilistic forecasting
problem for bike demand is tackled. We selected a probabilistic forecasting methodology
(DeepAR [7]) from the literature, as DeepAR can provide probabilistic distributions for the
demand, and we applied it to a BSS.

3. Demand Forecasting Model

Denote a value from the time series for a station i by zi,t. The conditional distribution
is defined as P(zi,t0 :T |zi,1:t0−1) of time series zi,t0 :T = [zi,t0 , zi,t0+1, . . ., zi,T ] given time series
zi,1:t0−1 = [zi,1, zi,1, . . ., zi,t0−1] where t0 stands for the first time point of the prediction
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period. Therefore, zi,1:t0−1 is the past time range—the so-called “conditioning range”;
and zi,t0 :T is the future time range—in other words, the “prediction range”.

As DeepAR is an LSTM-based model, DeepAR requires an encoder–decoder structure.
In DeepAR, encoder and decoder lengths reflect the length of the conditioning and predic-
tion ranges, respectively. Both ranges have to be in the past to train the network so that
all observations can be fed in for learning. When predicting, observations are used for the
conditioning range.

An auto-regressive recurrent network is the base of our model [7,23]. We assume that
a product of likelihood values makes up the model distribution as below.

QΘ
(
zi,t0 :T |zi,1:t0−1

)
=

T

∏
t=t0

QΘ
(
zi,t|zi,1:t0−1

)
=

T

∏
t=t0

p(zi,t|θ(hi,t, Θ))

(1)

where hi,t is an output of a function implemented by a recurrent neural network (RNN)
with LSTM cells parameterized by Θ; in other words, hi,t = h(hi,t−1, zi,t−1, Θ). Our model
has characteristics that feed both the observation at the previous time point (zi,t−1) and the
output of the function, (hi,t−1) in the sense of an auto-regressive feature. The conditional
probability p(zi,t|θ(hi,t, Θ)) is a fixed distribution parameterized by the function θ(hi,t, Θ)
of hi,t, and the parameters of LSTM cells (Θ. hi,t0−1) carry information—the so-called
context of observations in the conditioning range (zi,1:t0−1) to the prediction range.

We used the same LSTM models for both the conditioning and prediction range. This
corresponds to the encoder–decoder scheme in a sequence-to-sequence model. The initial
state for the decoder hi,t0−1 is acquired by hi,t = h(hi,t−1, zi,t−1, Θ) for t = 1, . . . , t0 − 1,
and we observe demands for t = 1, · · ·, t0 − 1 . For the encoder, the initial states hi,0 and
zi,0 are set to zero by default.

With the model parameter Θ, we obtained the joint samples z̃i,ti :T ∼ QΘ
(
zi,t0 :T |zi,1:t0−1

)
by ancestral sampling. Once hi,t is calculated over t = 1, · · ·, t0 − 1, z̃i,ti :T ∼ p

(
·|θ(h̃i,t, Θ)

)
are sampled over t = 10, · · ·, T when h̃i,t = h(hi,t−1, z̃i,t−1, Θ) with the initial states
h̃i,t0−1 = hi,t0−1 and z̃i,ti :T = zi,t0−1. In this manner, we could compute the various quan-
tiles of the demand distribution for the prediction period using samples obtained from
the model.

3.1. Likelihood Models

Equation (1) embeds likelihood factor p(z|θ). With p(z|θ), the statistical properties of
the data should be considered. In our model, a vector of parameters, θ, of the probability
distribution is predicted by the neural network for the following time period. For example,
θ = [µ, σ] is predicted when the normal distribution of the demand is assumed.

We evaluate three probability distributions for the experiments. They are normal
(or Gaussian), truncated normal, or negative binomial likelihoods for real, positive real,
or positive discrete number data, respectively. The probability distribution of the collected
data is any distribution that positively describes the data. We attain parameters of a normal
distribution θ = [µ, σ] for a normal likelihood by using the affine function of the network
output for µ, in addition to the softplus activation function of the network output, σ,
to ensure that the standard deviation is positive (Equation (2)). Thus,

pN(z|µ, σ) =
1

σ
√

2π
e−

1
2 (

z−µ
σ )

2

µ(hi,t) = wT
µ hi,t + bµ

σ(hi,t) = log
(

1 + ewT
σ hi,t+bσ

) (2)
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In the case of a truncated normal likelihood, we use similar parameters to “parent”
the general normal distribution of µ̄ and σ̄ for the mean and variance, respectively. We
use parameters of zlb = 0 and zub = ∞ for the lower and upper bounds of z, respectively,
to specify the truncation interval. For a truncated normal likelihood, we attain the param-
eters of the truncated normal distribution θ = [µ̄, σ̄] by using the affine function of the
network output for µ̄, in addition to the softplus activation function of the network output,
σ̄, to ensure that the standard deviation is positive as in Equation (3):

pT N(z|µ̄, σ̄, 0, ∞) =

1
σ̄
√

2π
e−

1
2 (

z−µ̄
σ̄ )

2

1−
∫ 0
−∞

1
σ̄
√

2π
e−

1
2

(
t−µ̄

σ̄

)2

dt

µ̄(hi,t) = wT
µ hi,t + bµ

σ̄(hi,t) = log
(

1 + ewT
σ hi,t+bσ

)
(3)

We also observe the case of a negative binomial likelihood. The negative binomial
distribution is widely used to model and depict the behavior of demand [24]. The negative
binomial distribution is parameterized by the mean µ ∈ R+ and shape α ∈ R+. To ensure
both parameters (µ and α) are positive real numbers, we apply the softplus activation
function on the output of the network (Equation (4)). The variance of the negative binomial
distribution can be determined by Var(z) = µ+ µ2α, where µ is the mean and α is the shape.

pN B(z|µ, α) =
Γ(z + 1

α )

Γ(z + 1)Γ( 1
α )

(
1

1 + αµ

) 1
α
(

αµ

1 + αµ

)z

µ(hi,t) = log
(

1 + ewT
µ hi,t+bµ

)
α(hi,t) = log

(
1 + ewT

α hi,t+bα

) (4)

3.2. Training

Consider a dataset {zi,1:T}i=1,···,N in the form of a time series. Our model learns the
parameters Φ, which include the RNN h(·) and θ(·) by maximizing the log-likelihood
function. As a likelihood function in our study is a product of probabilities, the likeli-
hood function is log-transformed for ease of the implementation and computation of the
network’s loss function.

L =
N

∑
i=1

T

∑
t=t0

log p(zi,t|θ(hi,t)) (5)

The computation of L in Equation (5) is straightforward because hi,t is a deterministic
function for its input; therefore, we can obtain all of the values. Moreover, it is possible
for us to optimize Equation (5) by computing the stochastic gradient descent with respect
to Θ. Each time series created from the dataset is generated by choosing a time series with
a different starting period. In our experiment, we created a time series of length T and
divided it into conditioning and prediction ranges with certain ratios. For example, one
of our datasets ranges from 19 September 2015 to 30 June 2020. We generated the first
time series from t = 1, which corresponds to 19 September 2019, and the second from
t = 1, which corresponds to 20 September 2019, and then we continued this procedure.
The coverage of the prediction range constrains this procedure.

Bengio et al. [15] argued that optimizing Equation (5) results in a difference of model
usage between training and inference cases by the nature of the auto-regressive neural
network. For example, while training, zi,t are used for hi,t during the prediction range.
On the other hand, we do not know zi,t for t ≥ t0 in the prediction; instead, we can use a
sample z̃i,t ∼ p(·|θ(hi,t)) from the model distribution for hi,t. Salina et al. [7] investigated
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this difference and did not find any negative effects for forecasting problems apart from
the natural language problem (NLP).

Data standardization is useful in machine learning because standardization helps the
machine-learning algorithm work better by running optimization algorithms efficiently,
such as gradient descent [25], and minimizes the risk of local optima. We used νi =

1 + ∑
t0
t=1 zi,t

t0
as a scale factor for a specific time series i. We divided the input data zi,t by νi to

feed the network.
Once the output of the network is generated, we reconstructed the forecasting result

according to the assumed distribution. For the case of the normal distribution, we used
µ = νioµ and σ = νi log(1 + exp (oσ)). When we dealt with the truncated normal distribu-
tion, we used µ̄ = νioµ and σ̄ = νi log(1 + exp (oσ)). However, the negative binomial is
slightly different. We used µ = νi log

(
1 + exp (oµ)

)
and α =

√
νi + 1 log(1 + exp (oα)).

4. Numerical Experiments

We implemented the model using tensorflow in Python. We used ADAM for the
optimizer, early stopping to reduce learning time, and the tensor flow built-in LSTM model.
We used a one CPU and GPU workstation to run the experiments. We applied the model to
set up, train, and predict the demands of a shared bike operated by Seoul Metropolitan City.
There are two types of demand forecasting: district level and station level. We chose five
districts (Mapo-gu, Seodaemun-gu, Youngdeungpo-gu, Dongdaemun-gu, and Jongno-gu)
out of 25 districts in Seoul Metropolitan City (Figure 2) for the district level, based on the
volume of demand and proximity of districts.

Figure 2. Districts of Seoul Metropolitan City.

4.1. Forecasting Demand of Bikes by Districts

We aggregated the daily demand from the rental history of an individual bike since
the beginning of the service. We collected Mapo-gu, Seodaemun-gu, and Youngdeungpo-
gu data from 19 September 2015 to 30 June 2020 from the beginning of the shared-bike
service, while Dongdaemun-gu and Jongno-gu data were collected from 17 July 2016 and
15 October 2015, respectively, because the service in these districts was launched later than
in other districts. The data were divided into training and test data. The first 80 percent of
the data were labeled as training data, and the later 20 percent were labeled as test data
(Table 1).
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Table 1. Periods of historical district demand data and the structure of the training dataset.

District Size of Data Duration Size of Training Data Data Duration for Training Data Size of Test Data Data Duration for Test Data

Mapo-Gu 1747 19 September 2015~30 June 2020 1398 19 September 2015~17 July 2019 349 18 July 2019~30 June 2020

Seodaemun-gu 1747 19 September 2015~30 June 2020 1398 19 September 2015~17 July 2019 349 18 July 2019~30 June 2020

Youngdeungpo-gu 1747 19 September 2015~30 June 2020 1398 19 September 2015~17 July 2019 349 18 July 2019~30 June 2020

Dongdaemun-gu 1445 17 July 2016~30 June 2020 1156 17 July 2016~15 September 2019 289 16 September 2019~30 June 2020

Jongno-gu 1721 15 October 2015~30 June 2020 1377 15 October 2015~30 June 2020 344 23 July 2019~30 June 2020

Table 2 describes the demand trend. The daily demand consistently increased in the
five districts since the launch of the service. Variability, represented by the coefficient of
variations, was between 0.5 and 0.6, which is relatively small. This implies that the social
needs for shared bikes are greater than the current service capacity, which consists of the
number of bikes, bike redistribution capability, and station capacity. Thus, demand is
increasing with small amounts of variability.

Table 2. Data description.

District Year Average Daily Demand Standard Deviation of Daily Demand Coefficient of Variation

Mapo District

2015 386.20 216.37 0.56

2016 1116.79 752.20 0.67

2017 2120.15 1219.07 0.57

2018 2495.37 1416.22 0.57

2019 3619.89 1877.56 0.52

2020 3917.39 1697.18 0.43

Total 2385.69 1743.11 0.73

Seodaemun District

2015 80.61 45.23 0.56

2016 291.20 248.95 0.85

2017 786.50 434.75 0.55

2018 985.58 514.73 0.52

2019 1532.93 736.00 0.48

2020 1630.94 576.72 0.35

Total 926.23 718.18 0.78

Youngdeungpo District

2015 233.94 153.98 0.66

2016 812.81 630.53 0.78

2017 1759.75 1062.63 0.60

2018 2444.61 1450.77 0.59

2019 4168.14 2221.80 0.53

2020 4850.25 2133.83 0.44

Total 2438.77 2105.08 0.86

Dongdaemun District

2016 420.67 199.25 0.47

2017 655.95 379.81 0.58

2018 958.46 524.03 0.57

2019 1765.50 907.92 0.51

2020 1949.29 715.69 0.37

Total 1148.17 834.36 0.73

Jongno District

2015 230.38 120.32 0.52

2016 673.90 450.27 0.67

2017 1288.10 703.08 0.55

2018 1522.28 776.39 0.51

2019 2090.97 941.70 0.45

2020 2074.25 780.53 0.38

Total 14121.62 925.72 0.66

We applied the same model parameters to each district’s model because the properties
of the districts’ demand data are identical. The encoder and decoder lengths were 100 and 7,
respectively. When the encoder length was shorter than 100, the forecasting errors were
significant. The batch size was 16, and the learning rate was 1× 10−3. We used two LSTM
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layers with 2048 nodes for normal and truncated normal distributions, while 128 nodes
were used for negative binomials with two layers.

The running time depends on the assumed distribution. The negative binomial
distribution took around 90 s, while the normal and truncated normal distribution both
took around 5000 s. The running time is measured from the beginning of training to the end
of the distribution evaluation. We found the best hyper-parameters by a grid search. We
explored the number of LSTM layers and nodes in addition to the encoder (and decoder)
lengths, batch sizes, and learning rates.

We used Dongdaemun district’s shared-bike rental demand history to forecast the
demand. The green and blue lines present the historical demand and real data during
the prediction period, respectively. The red line is the estimated median based on the
distribution parameters, and the orange area stands for a 95 percent interval (Figures 3–5).

According to Dongdaemun district’s forecasting results, the 95 percent interval of
normal distribution covers most of the true demand (Figure 3). However, in the truncated
normal case (Figure 4), the 95 percent interval lies mostly above the real-data median, which
means that it overestimated the demand. The 95 percent negative binomial distribution
interval is generally narrower than the normal and truncated normal distributions. The nor-
mal distribution resulted in the widest 95 percent interval. The width of the 95 percent
interval varies over time in the negative binomial distribution (Figures 3–5).

(a) Overall trends and forecasting. (b) Forecasting.

Figure 3. The results of DeepAR for a normal distribution in Dongdaemun district.

(a) Overall trends and forecasting. (b) Forecasting.

Figure 4. The results of DeepAR for a truncated normal distribution in Dongdaemun district.
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(a) Overall trends and forecasting. (b) Forecasting.

Figure 5. The results of DeepAR for a negative binomial distribution in Dongdaemun district.

We compared the model accuracy results using negative binomial, normal, and trun-
cated normal distributions (Table 3). Furthermore, we employed statistical models, such
as ARIMA, its variants, and the Holt–Winters models, as benchmarks. According to Kim
and Lim [26], ARIMAX, which incorporates daily precipitation and temperature as covari-
ates, was the most accurate forecasting method among ARIMA variants. Two accuracy
measurement metrics, namely the root mean squared error (RMSE) and the mean absolute
percentage error (MAPE) were used (Equations (6) and (7)).

The RMSE is for estimating the absolute error, and the MAPE is for the relative error,
where At is an estimated median computed by the probability distribution at period t, and
Ft is the demand observation at period t. In general, DeepAR’s performance was better
than ARIMA, its variants, and the Holt–Winters methods for both the RMSE and MAPE.
However, while DeepAR outperformed the others, the best assumed distribution for each
district varied.

The normal distribution performed best in the Mapo, Dongdaemun, and Jongno
districts. The truncated normal distribution was best in Seodaemun District, while it was
the second best for other districts. The negative binomial distribution was the most effective
in Youngdeungpo District but was outperformed by other distributions in other regions.

RMSE =

√
∑T

t=1(At − Ft)
2

T
(6)

MAPE =
1
T

T

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (7)

Table 3. Result comparison.

District Model RMSE MAPE

Mapo District

ARIMA (2,1,1) 2088.956 89.477

ARIMAX (0,1,2) 1378.481 41.167

Holt–Winters α = 0, β = 0, γ = 0.262 1911.502 58.631

DeepAR

Normal Distribution 1305.004 44.894

Truncated Normal Distribution 1325.812 45.088

Negative Binomial Distribution 1662.560 47.439
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Table 3. Cont.

District Model RMSE MAPE

Seodaemun
District

ARIMA (4,1,2) 878.415 79.968

ARIMAX (0,1,2) 996.094 71.095

Holt–Winters α = 0.119, β = 0, γ = 0.455 4220.476 233.640

DeepAR

Normal Distribution 670.769 46.615

Truncated Normal Distribution 493.624 37.421

Negative Binomial Distribution 840.847 47.302

Youngdeungpo
District

ARIMA (3,1,1) 2477.644 88.779

ARIMAX (0,1,2) 2308.071 63.687

Holt–Winters α = 0, β = 0, γ = 0.524 2008.233 49.97

DeepAR

Normal Distribution 1769.528 48.224

Truncated Normal Distribution 1741.432 52.356

Negative Binomial Distribution 1637.700 46.140

Dongdaemun
District

ARIMA (2,1,1) 819.346 49.850

ARIMAX (1,1,1) 908.813 39.241

Holt–Winters α = 0.004, β = 0, γ = 0.377 817.888 44.478

DeepAR

Normal Distribution 558.430 36.257

Truncated Normal Distribution 595.148 37.254

Negative Binomial Distribution 700.263 40.867

Jongno District

ARIMA (2,1,2) 966.537 72.600

ARIMAX (5,1,1) 880.789 39.709

Holt–Winters α = 0.048, β = 0, γ = 0.477 1867.731 102.214

DeepAR

Normal Distribution 755.448 49.873

Truncated Normal Distribution 785.214 50.882

Negative Binomial Distribution 1446.910 50.882

4.2. Forecasting Demand of a Bike Station

We chose five districts in Seoul Metropolitan City and forecast the daily demand of
each district. Now, we focused on Mapo District and performed demand forecasting using
DeepAR for individual bike stations. While the district-level bike demand is a univariate
time series, the demand for all bike stations in a district is a multivariate series that contains
a demand time series for all stations.

Users pick up bikes at one station and return them to another, which could maximize
the capacity of the latter station. Therefore, it is necessary that a forecasting model effec-
tively reflects the interactions among stations. Salinas et al. [7] showed that the DeepAR
model successfully forecasts multiple correlated items. As the DeepAR is based on a deep-
learning structure, training the model with multiple time series simultaneously makes it
possible to incorporate correlations among bike stations.

There are 73 bike stations in Mapo District. Some of the stations were installed at the
launch of the service and, as demand increased, the number of stations gradually increased.
Thus, for the stations built after the service launch, there is no demand history for the
early time period in the total service period. As our model is built on the encoder–decoder
scheme, certain amounts of training data are required to forecast properly. In other words,
stations that were set up recently and do not have as extensive demand records were not
suitable for training the network. To compare the training performance among stations
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according to age, we intentionally chose two stations: one that was set up at the service
launch, while the other was set up three years later.

Model settings, such as the encoder–decoder lengths, number of LSTM nodes and
layers, batch sizes, and learning rates were the same as for forecasting the demand by
district. However, the running times were different: 240 s for the negative binomial
distribution and 1400 s for the normal and truncated normal distributions.

Figures 6–8 show the forecasting results for Station 10. The figures show the median
values from the forecast distributions as connected large, solid dots, and the forecasting
ranges are displayed as a shaded area. Station 10 was set up at the beginning of the bike-
sharing service. A 95 percent interval of normal distribution (shaded area) covers most of
the true demand (Figure 3).

However, as in the truncated normal case (Figure 4), the 95 percent interval lies mostly
above the median of the real data, which means that it overestimated the demand. If we
perform forecasting with the negative binomial distributions (Figure 5), the prediction
ranges are somewhat narrower than in normal cases, and thus some actual values are
outside the range.

(a) Overall trends and forecasting. (b) Forecasting.

Figure 6. The results of DeepAR for a normal distribution at Station 10 in Mapo District.

(a) Overall trends and forecasting. (b) Forecasting.

Figure 7. The results of DeepAR for a truncated normal distribution at Station 10 in Mapo District.

Station 70’s forecasting results are displayed in Figures 9–11. Station 70 was established
three years after the service launch. Its overall forecasting performance is not as good as
Station 10 because of insufficient data. The normal case does not work (Figure 9) because the
normal distribution can produce unacceptable negative-valued forecasting. The negative
binomial distribution (Figure 11) tends to underestimate the real values. When the truncated
normal distribution was used for the distribution model, the estimations of median values
followed the fluctuation of actual values accordingly; however, the forecast range did not
cover the real-value variability.
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Table 4 summarizes the overall prediction performances among the assumed probabil-
ity distributions. The truncated normal distribution was the best for demand forecasting
because of the root mean squared error (RMSE); however, the negative binomial distribu-
tion worked best with the mean absolute percentage error (MAPE). Table 4 shows that
the MAPE is much larger than the RMSE. We obtained a large MAPE value because the
demand for an individual station is too small.

(a) Overall trends and forecasting. (b) Forecasting.

Figure 8. The results of DeepAR for a negative binomial distribution at Station 10 in Mapo District.

(a) Overall trends and forecasting. (b) Forecasting.

Figure 9. The results of DeepAR for a normal distribution at Station 70 in Mapo District.

(a) Overall trends and forecasting. (b) Forecasting.

Figure 10. The results of DeepAR for a truncated normal distribution at Station 70 in Mapo District.
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(a) Overall trends and forecasting. (b) Forecasting.

Figure 11. The results of DeepAR for a negative binomial distribution at Station 70 in Mapo District.

Unlike for the district-level demand, there were days of zero demand, which may
make the absolute percentage error impossible to compute (Equation (7)). To prevent com-
putation errors, a small number was added to the zero demand to avoid zero denominators
(Equation (8)). This metric is called the symmetric mean absolute percentage error (sMAPE).
For a reasonable comparison, the sMAPE was used to measure the performance, and the
results are displayed in Table 4.

sMAPE =
1
T

T

∑
t=1

∣∣∣∣∣At − Ft
Ft+At

2

∣∣∣∣∣ (8)

Using the truncated normal distribution was most effective when forecasting the
station-level demand with the sMAPE. The truncated normal distribution does not assume
negative values unlike the normal. As the station-level demand is relatively smaller
compared with the district level and the normal distribution can generate many negative
values with the small numbers, the normal is not a realistic choice. That is why the truncated
normal distribution performed better than the normal. Consequently, considering sMAPE
and RMSE, the truncated normal distribution is recommended for forecasting station-level
demand with our model.

We randomly chose four sample stations and measured the predictions, accordingly (as
shown in Table 5). In general, the truncated normal distribution performed best when there
were zero day demands. If there were no zero daily demands, then the normal distribution
showed the best performance. We can easily discover the existence of zero daily demands
by checking the MAPE. A large MAPE indicates that there are small denominators. We
added a small value to the daily demand to prevent logical errors caused by dividing
by zero.

A normal distribution with a large MAPE performed best for Station 70. However,
the performance levels between the normal and truncated normal distributions were close.
Furthermore, when we compared Figures 9 and 10, we observed that the truncated normal
distribution caught the fluctuations of the demand trends; therefore, it is reasonable to
argue that the truncated normal distribution performed better than the normal.

Table 4. Forecasting performance comparison for Mapo District.

Distribution MAPE sMAPE RMSE

Normal 922,302,586.916 3303.598 35.772

Truncated Normal 1,338,800,077.387 3269.955 33.603

Negative Binomial 830,237,199.556 3527.138 37.015
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Table 5. Forecasting performance comparison for Station 10 and 70 in Mapo District.

Station Distribution MAPE sMAPE RMSE

Station 10

Normal 0.763 0.411 26.391

Truncated Normal 0.666 0.489 32.083

Negative Binomial 0.676 0.492 31.924

Station 20

Normal 4,193,517,960 0.641 26.453

Truncated Normal 3,504,414,703 0.560 19.476

Negative Binomial 3,924,418,606 0.570 19.714

Station 40

Normal 0.567 0.369 17.324

Truncated Normal 0.563 0.520 23.474

Negative Binomial 0.551 0.402 18.804

Station 70

Normal 537,598,166 0.817 10.984

Truncated Normal 579,754,701 0.821 11.206

Negative Binomial 319,767,443 1.056 12.622

5. Conclusions

We implemented DeepAR [7] in our methodology to produce probabilistic forecasting
for the bike demand in Seoul’s shared-bike service in Korea. Our work streamlines bike
inventory rebalancing and optimal vehicle routing. First, we estimated the future bike
demand for each station. Second, we applied a bike inventory control policy to determine
the optimal number of bikes to satisfy the intended user demand at every station.

Lastly, we adopted an optimal vehicle-routing strategy to appropriately rebalance the
bikes to maximize their use. As the first step, our work provided the demand of bikes
as a form of probabilistic distribution, and we used the distribution output in inventory
management as the input. We proved that DeepAR is an appropriate methodology that
provides a probability distribution as a forecasting output.

Through the computational experiments, we evaluated the performance of the DeepAR
model with the bike-sharing dataset at both the district and station levels. We made our
forecasting estimates for the evaluation with median values from the probability distri-
butions that we obtained from the model. We compared the model’s performance at the
district level compared with benchmark models, such as ARIMA, ARIMAX, and Holt–
Winters. As there were too many different station cases, the station-level comparison was
not effective. Our results from five adjacent districts with large demand showed that
the DeepAR approach outperformed the benchmarks by more than 16 percent and up to
61 percent in error reductions.

The DeepAR model used a recursive neural network with multiple LSTM layers and
cells. It simultaneously learned from the demands of all stations and provided their demand
distributions because the deep-learning structure learned the correlations of demand among
the stations. Large numbers of bike stations exist, and each station’s service-start date
differed; therefore, providing and training different forecasting models for each individual
station was not a practical and reasonable approach. We demonstrated that, although the
forecasting model learned from an aggregated dataset, each individual station’s forecasting
was accurate, and these results are compatible with [7].

However, the forecasting power was weaker in stations with smaller dataset ranges,
and they were slightly adjusted by the probability distribution selected for training the
DeepAR model. Nevertheless, the forecasting estimates (the median values) for the stations
with small datasets efficiently followed the fluctuations of actual values with appropriately
selected probability distributions.

We trained the DeepAR model to derive the appropriate parameters from predefined
probability distributions. That is, we assumed that the observed data were random samples
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from a certain probability distribution and that the parameters of the distribution varied
over time (we used days in our study). We implemented three probability distributions:
normal, truncated normal, and negative binomial. Our evaluation results showed that,
at the district level, all three distributions were acceptable, although the truncated normal
distribution was likely to overestimate the demand. The truncated normal distribution
is recommended at the station level because it had the fewest forecasting errors of the
three distributions.

In order to improve the forecasting performance, it may be useful to have additional
information, such as daily weather conditions, because users are not likely to use bikes when
it rains or snows. In addition, this research is limited to daily forecasting estimation from
the probability distributions. However, since the designated trucks perform rebalancing
work several times a day, demand forecasting for shorter time frames, such as every three
hours, is also necessary.

As a future direction of research, we will extend our work to eventually encompass
the bike inventory rebalancing problem. Our next steps are, first, to make the forecasting
more accurate by accommodating daily weather conditions. Second, we will make short-
time-frame demand forecasting. Next, we will investigate optimal inventory management
policies based on the probability distributions of demand. Finally, in order to achieve opti-
mal inventory management, we will consider a vehicle-routing problem. In this research,
we will determine the optimal routes to satisfy the inventory requirements for each station
at each time. Our results on probabilistic forecasting for BSS can also be applied to new
personal mobility services. This could be an additional direction for future research.
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