
sensors

Article

Enabling Reliable UAV Control by Utilizing Multiple Protocols
and Paths for Transmitting Duplicated Control Packets

Woonghee Lee

����������
�������

Citation: Lee, W. Enabling Reliable

UAV Control by Utilizing Multiple

Protocols and Paths for Transmitting

Duplicated Control Packets. Sensors

2021, 21, 3295. https://doi.org/

10.3390/s21093295

Academic Editor: Carlos Tavares

Calafate

Received: 16 April 2021

Accepted: 7 May 2021

Published: 10 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of IT Convergence Engineering, Hansung University, Seoul 02876, Korea; whlee@hansung.ac.kr;
Tel.: +82-2-760-4225

Abstract: In the last ten years, supported by the advances in technologies for unmanned aerial
vehicles (UAVs), UAVs have developed rapidly and are utilized for a wide range of applications.
To operate UAVs safely, by exchanging control packets continuously, operators should be able to
monitor UAVs in real-time and deal with any problems immediately. However, due to any networking
problems or unstable wireless communications, control packets can be lost or transmissions can be
delayed, which causes the unstable drone control. To overcome this limitation, in this paper, we
propose MuTran for enabling reliable UAV control. MuTran considers the packet type and duplicates
only control packets, not data packets. After that, MuTran transmits the original and duplicate packets
through multiple protocols and paths to improve the reliability of control packet transmissions. We
designed MuTran and conducted a lot of theoretical analyses to demonstrate the validity of MuTran
and analyze it from various aspects. We implemented MuTran on real devices and evaluated MuTran
using the devices. We conducted experiments to verify the limitations of the existing systems and
demonstrate that control packets can be transmitted more stably by using MuTran. Through the
analysis and experimental results, we confirmed that MuTran reduces the control packet transfer
delay, which improves the reliability and stability of controlling UAVs.

Keywords: unmanned aerial vehicle; drone; control packet; multipath transmission control protocol;
user datagram protocol

1. Introduction

In recent years, technologies for unmanned aerial vehicles (UAVs) have developed
considerably and UAVs, also known as drones, have recently received tremendous attention
from many researchers [1,2]. Many service providers in various fields have also tried to
utilize UAVs for their services [3]. UAVs can move freely in three dimensions and perform
various operations to accomplish given missions from operators [4]. During the missions,
UAVs constantly send and receive control packets with the operators, so that the operators
continue to monitor the status of UAVs and control their behavior appropriately. Thus,
delayed transmissions or losses of control packets can cause very dangerous situations
although the size of control packets are generally much smaller than that of data packets.
For example, in the process of controlling UAVs in real time, delayed transmissions or
losses of control packets can cause catastrophic accidents, such as crashes or collisions
with obstacles or other UAVs. Therefore, only when control packets are delivered at an
appropriate time without loss or delay, UAVs perform their missions well.

Today, it is not difficult to utilize multiple communication modules together. Many
studies have been conducted that utilize multiple interfaces simultaneously, including
studies on improving the existing transmission control protocol (TCP) and user datagram
protocol (UDP) for multipath transmissions [5]. If the state of one link deteriorates, by
leveraging multiple paths, the user is able to continuously send and receive packets over
the other paths, which improves the reliability and stability of data communications.
However, these methods are not effective in preventing delays or losses of packets that

Sensors 2021, 21, 3295. https://doi.org/10.3390/s21093295 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0856-6415
https://doi.org/10.3390/s21093295
https://doi.org/10.3390/s21093295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093295
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093295?type=check_update&version=2


Sensors 2021, 21, 3295 2 of 29

have already been queued or sent because such methods are reactive approaches to address
the issues. In other words, even if drones or users using these methods respond quickly to
problems, it is inevitable that packets already transmitted might be delayed or lost due to
the problems. Such delayed transmission or loss of control packets can be extremely fatal
to fast-moving UAVs.

In this paper, we propose a new control packet transmission scheme for controlling
UAVs, MuTran, to overcome the aforementioned problem. The existing MPTCP does
not consider characteristics of packets when selecting a subflow for transmission [6]. In
contrast, MuTran selectively duplicates only control packets, not data packets, considering
the contents of the packets. Then, MuTran transfers the originals and their duplicates
to different networks respectively using multiple protocols and paths. Through such
behaviors, MuTran prevents delayed transmissions and losses of control packets, which
improves the reliability of controlling UAVs. We designed MuTran and implemented it
on real devices. We conducted various experiments to prove the effectiveness of MuTran,
and we also performed theoretical analyses to prove MuTran’s validity. Furthermore, we
analyzed MuTran from various perspectives, such as the number of subflows to guarantee
the target latency, the overhead due to duplication, and the control packet transmission
rate when using MuTran.

To summarize the contributions of this paper:

• We propose MuTran which reduces the control packet transfer delay, so UAVs can be
controlled more reliably by using MuTran.

• We come up with a technique that selectively duplicates only control packets, not data
packets, and transfers the originals and copies of them through different paths.

• We design MuTran to be able to utilize multiple protocols for transmitting data and
control packets separately, so the control packets can be transferred to UAVs with
guaranteed low-latency regardless of data traffic.

• We implemented MuTran on real devices and demonstrated its value by conducting
many experiments using the devices.

• We demonstrate the validity of MuTran by theoretically analyzing it from various
perspectives.

Drones are the most representative and widely used UAVs today, so we have focused
on drones among various UAVs in this paper. However, since MuTran is not designed to be
specific to a particular UAVs, MuTran can be applied to any UAVs.

The remainder of this paper is organized as follows: We introduce related work and
describe MuTran’s novelties and advantages against the related work in Section 2. We
explain the problem statement and describe the design and implementation details of
the MuTran in Section 3. We perform various theoretical analyses of MuTran in Section 4.
We describe the experiments we have conducted and evaluate MuTran’s performance in
Section 5. We discuss several issues that need to be addressed further in Section 6. Finally,
Section 7 concludes this paper.

2. Related Work

We introduce various studies related to our work and then describe MuTran’s novelties
and advantages in comparison to the relevant studies in this section.

Since UAVs can fly fast and move freely in any direction, delays in control packet
transmission can cause difficulty in controlling them properly. Therefore, many studies
relevant to controlling UAVs focused on reducing control packet transfer delay to guarantee
deterministic properties in packet delivery, positioning, navigation, and timing. Some of
these studies tried to reduce delays in terms of the physical layer or media access control
(MAC) layer. Firstly, Chandhar et al. proposed a research which reduces the communication
interference using beamforming of a multiple input multiple output (MIMO), which made
a significant improvement in delay reduction [7]. Ruan et al. proposes an adaptive channel
division MAC protocol for UAV networks [8]. The proposed protocol flexibly adjusts
parameters related to MAC according to the number of UAVs and traffic load to make full



Sensors 2021, 21, 3295 3 of 29

use of the channel resources and guarantee the communication performance of multiple
UAVs. In addition to these studies, there are studies that focused on approaches in the
transport layer or application layer. Dai et al. designed a relay mechanism based on
software defined network (SDN) architecture [9]. By considering the network environment
changes, the proposed architecture switches to MANET mode to guarantee UAVs’ carrier
transmissions, so as to reduce the transmission delays of UAVs. Zhu et al. proposed a
low latency clustering method for large scale drone swarms [10]. The authors established
a model which solves the relationship between the number of drones and the number
of cluster heads. By using the model, the communication delay can be minimized by
obtaining the optimal number of drones and cluster heads.

The efficient routing for low packet transmission delays is essential when operating
multiple drones. Therefore, some researchers conducted research to devise routing algo-
rithms suitable for networks composed of UAVs. Bousbaa et al. proposed GeoUAVs which
is a geocast routing protocol for a fleet of UAVs [11]. This protocol reduces the average
transmission delay by delivering information to a specific group of UAVs identified by
their geographical location. Zhang et al. proposed a low latency routing algorithm for
UAV swam networks [12]. The algorithm utilizes the information about UAVs’ location
and connectivity of the network to decrease the link average delay. Hong et al. proposed a
proactive topology-aware routing scheme, which keeps tracking the mobility and topology
changes [13]. According to the results, their proposed scheme is able to reduce the average
delay by adapting routing quickly to topology changes.

Due to advances in communication and network technologies, it is not difficult for
devices to transmit packets through multiple paths by leveraging multiple interfaces simul-
taneously. The communication reliability and throughput can be improved by transmitting
packets over different paths, so some researchers tried to apply multi-path communications
to drones. Chiba et al. proposed an application layer protocol that copies all packets and
transmits them over two different paths [14]. The authors showed that the proposed proto-
col reduces the transmission delay and rate of packet loss through simulations. However,
this protocol copies all packets without any consideration on characteristics of packets.
Thus, this protocol unnecessarily wastes communication bandwidth, and it does not im-
prove throughput despite utilizing multiple interfaces. To improve [14], the proposed
scheme in [15] replicates control packets only. However, like [14], data and control packets
are inserted into the same network queue competitively. Thus, diverse causes, such as the
increase in the amount of data packets or data packet retransmissions, increase the network
queuing delay, which lengthens the latency of control packet transmission. Thirdly, Shailen-
dra et al. proposed a new path scheduler of multipath TCP (MPTCP), which distinguishes
control packets from data packets [16]. After distinguishing, the proposed scheduler as-
signs data packets and control packets separately to two different interfaces for more
reliable transmission of control packets. However, since the interface for control packet is
only used to transmit control packets, the throughput of the data packet transmission is
not enhanced even when the interface for the control packet is not used. Moreover, this
scheduler does not fully utilize the communication bandwidth of the interface for control
packets. This is because control packets are generally generated less frequently and are
smaller in size compared to data packets.

MuTran has novelty and advantages in some respects compared to the above related
studies. First, MuTran considers the contents of packets and then selectively copies only
the control packets, not the data packets. MuTran then transfers the originals and copies
through different paths to reduce the delay in delivering the control packets. Secondly,
MuTran uses multiple interfaces fully to transmit data packets and control packets, so
the use of MuTran increases the overall throughput. Thirdly, MuTran is able to utilize not
only TCP but also UDP, so MuTran can transmit control packets through UDP connections
separated by TCP connections used for data transmissions. Thus, the control packets
can be transferred to UAVs with a guaranteed low-latency, regardless of large traffic or
retransmissions of data packets. Fourth, unlike many related studies, which conducted



Sensors 2021, 21, 3295 4 of 29

performance evaluations only through simulations, we implemented MuTran in Linux
kernel layer and conducted many experiments using real devices with MuTran. Finally, as
well as evaluations through real-world experiments, we perform theoretical analyses to
prove MuTran’s validity. In contrast, most related studies performed only experiments or
simulations without theoretical analysis.

3. System Design and Implementation

In this section, we describe the problem statement and explain the concept of the
techniques used in MuTran. Then, we give a detailed description of MuTran’s design and
three main elements.

3.1. Problem Statement

When operating drones, an operator continuously exchanges control packets and data
packets with the drones through wireless communications. In general, data packets contain
video, audio, sensor data, processed data, and so forth. On the other hand, control packets
usually include commands, such as mission requests and responses, various instructions,
and so forth, and control information, such as heartbeat, system status, position information,
neighborhood discovery, configuration, fleet management, and so forth, for UAV systems
and networks [17]. Compared to the wired communication, the wireless communication
is more unstable and its available bandwidth changes more frequently. In addition to
this, the high mobility of drones further exacerbates the communication instability. If the
quality of communication for drones becomes poor, packet transmissions can be severely
delayed or packets can be lost, which destabilizes the drones’ flight. In particular, control
packets should be delivered in time without loss or delay, so that the operator keeps
monitoring the drones’ conditions and properly controls their operations. For example, a
drone should receive a control packet every 500 ms at the latest when using the offboard
mode of Pixhawk 4 (PX4) autopilot with MAVLink protocol. (The offboard mode is mainly
used to control movement and posture of vehicles [18], and Pixhawk autopilot [19] and
MAVLink [17] are one of the most widely used autopilots and protocols to communicate
with small unmanned vehicles, respectively.) Therefore, problems with transferring control
packets can cause serious accidents.

Utilizing MPTCP and multiple interfaces, even when the condition of one communi-
cation path deteriorates, the operator can communicate reliably with a drone over another
communication path. However, this method is a reactive method to deal with these prob-
lems, so it is not effective in preventing the loss or delay of packets that have already been
queued or transmitted. Even if control packets are not delivered to a drone for a very short
period of time, such momentary problems of transmission can be serious. For example, a
quadcopter flying at a speed of 30 m/s travels 3 m in just 100 ms. (30 m/s is the typical
flight speed of a drone for disaster management [20].) Thus, the high reliability with short
delay is the most important concern when operating drones.

3.2. Duplicated Control Packet Transmission

Control packets are created less and are relatively small compared to data packets, but
the control packet transmission with short delay is very essential for the reliable control of
drones. Existing MPTCP-enabled systems do not prevent loss or delay of packets that have
already been queued or sent as shown in Figure 1a. In the figure, there is one sender and one
receiver, each with two wireless communication interfaces. The interfaces of the sender and
the receiver are all identical, and each interface of the sender is connected to the receiver’s
corresponding interface. The sender and receiver communicate via two paths, and these
communication pairs use different channels to avoid interference. White blocks and black
blocks mean control packets and data packets, respectively. In this situation, if the quality of
the communication link on the left path deteriorates, control packet number 3 may be lost.
In addition, all packets queued in the first subflow, including control packets number 4 and
5, can be delayed or lost. To overcome such a limitation, if all packets are copied without



Sensors 2021, 21, 3295 5 of 29

considering characteristics of packets as shown in Figure 1b, control packet number 3 is
transferred successfully. However, the communication bandwidth is unnecessarily wasted,
and the throughput cannot be improved even with multiple interfaces.

Figure 1. The packet transmissions of various cases. (This figure is drawn to distinctly present the
difference between cases, so the ratio of control packets to data packets is exaggerated.)

In existing systems with MPTCP, when a packet is inserted into one of the subflows,
the default path scheduler selects the subflow with the shortest smoothed round trip time
(SRTT). Therefore, the device cannot designate a specific subflow to transmit a certain
packet. Thus, if the device using an existing system duplicates a packet and transmits
the original and the duplicate, the both packets can be inserted into the same subflow
as shown in Figure 1c. The duplicated packet is the following packet of the original, so
the time between the insertions of them is too short for the communication situation to
be changed. For this reason, using the existing system with MPTCP, the original and its
duplicate are almost always inserted into the same subflow. If the original and the duplicate
are transferred to the same path, it does not prevent delay or loss of control packets, and it
also wastes the communication bandwidth unnecessarily. Therefore, the original and the
duplicate should be transmitted through different paths.

In addition to the aforementioned scheduler using SRTT, by default, the MPTCP
contains another scheduler, which transmits packets in a round-robin fashion. Therefore,
if the device uses this scheduler to transfer the original and the duplicate, they can be
transferred through different paths. This is the simplest way to transfer the original and
the duplicate through different subflows. However, devices using this method transmit
packets without considering the communication status of paths because packets are simply
transmitted in a round-robin fashion. Therefore, in this case, the overall throughput can be
degraded compared to the case when using the default scheduler utilizing SRTT. Section 5.2
shows this degradation.

To overcome the limitations mentioned above, we devise MuTran, which duplicates
control packets and transfers the original and their duplicates through different paths and
multiple protocols. The Figure 1d briefly shows the MuTran’s concept. As shown in the
figure, even if one of the links suddenly becomes unavailable, control packet number 3 is
transferred successfully.



Sensors 2021, 21, 3295 6 of 29

3.3. Design of MuTran

TCP and UDP are widely used transport protocols for UAVs, and they have different
characteristics. TCP is a reliable transport protocol, so packet deliveries are guaranteed
by using TCP. However, TCP has rather complicated operations, which causes a long
transmission delay. Unlike TCP, UDP does not guarantee the delivery of all packets,
but it is easier to implement UDP compared to TCP. In addition, UDP has a relatively
high transmission rate because of fast processing with small overhead. Because of such
advantages, UDP is more preferred by some platforms and protocols for UAVs, such as
MAVlink. (MAVLink is a protocol dedicated for communicating with small unmanned
vehicles, and MAVLink is widely used for commercial UAVs [17]. MAVLink mainly
utilizes UDP and uses response messages for the sake of communication reliability [21].)
However, many technologies support the both protocols because they have different
strengths and weaknesses. For example, for shorter distance, UDP is better due to high
throughput performance, whereas the connection-oriented protocol TCP is better for longer
distance [22]. Thus, we design MuTran to be able to transmit control packets in two
modes, TCP-mode and UDP-mode. In TCP-mode, not only data packets but also control
packets are transferred by using MPTCP. In comparison, MuTran in UDP-mode transfers
control packets using UDP, separated by transmitting data packets through MPTCP. Note
that MuTran in the both modes transmits data packets using MPTCP for performance
improvement and transfers original control packets and their duplicates through different
paths for improving reliability. The difference between the two modes exists in protocols
used for transmitting control packets as shown in Figure 2.

Figure 2. The difference between TCP and UDP modes of MuTran.

Figure 3 shows the structure and operation flow of MuTran. The red-dotted line
indicates the operation flow for transmitting control packets in TCP-mode, and the blue
line with a relatively simple shape shows the operation flow in UDP-mode of MuTran.
As shown in the figure, MuTran in UDP-mode operates more simply in comparison with
MuTran in TCP-mode because of TCP’s innate complicated operations. Thus, in this
subsection, we describe the design of MuTran with focusing on the TCP-mode and give
additional explanations for understanding differences between operations in the TCP-mode
and UDP-mode.



Sensors 2021, 21, 3295 7 of 29

Figure 3. The structure and operation flow of MuTran.

3.3.1. Mutran with MPTCP

There are two types of socket, meta-socket and sub-socket, when using MPTCP as
shown in Figure 3. To perform data communications, the application creates a meta-socket
first and adds a sub-socket repeatedly as the application needs, so there are usually one
meta-socket and multiple sub-sockets. The firstly created sub-socket among sub-sockets is
called the master sub-socket, and the others are slave sub-sockets. When the application
sends data using the standard socket application programming interface (API), the meta-
socket receives the data and performs segmentation using the data. The meta socket
then passes segments to the MPTCP scheduler. The MPTCP scheduler is responsible for
assigning the segments to sub-sockets according to the rule, such as the shortest SRTT or
round-robin. MuTran is made up of three main elements, Classifier, Duplicator, and Assignor,
and we implemented these elements in the application layer and transport layer as shown
in Figure 3.

3.3.2. Classifier

As the name suggests, Classifier has the role of classifying segments by data type. It is
not trivial to know which data contains control information in the kernel layer. Among
pointers related to segment in Linux kernel in Figure 4 [23], Classifier uses the pointer that
points to the starting position of segment data in memory for direct access to the data.
Classifier analyzes the directly accessed data to determine whether this segment has control
information. If so, Classifier delivers the segment to Duplicator, otherwise Classifier does
nothing. In UDP-mode, control packets and data packets are transmitted separately, so
Classifier is not included in the operations as shown in Figure 3.

Figure 4. Pointers related to segment in kernel.



Sensors 2021, 21, 3295 8 of 29

3.3.3. Duplicator

Duplicator duplicates the segment received from Classifier and then forwards the
original and the duplicates to the Assignor. Duplicator does not need to be located in the
kernel layer, and it is possible for the application to contain Duplicator alternatively. In
this case, the application knows whether or not a certain data has control information, so
the Duplicator can only duplicate control data without Classifier. MuTran in UDP-mode
does not use MPTCP to transmit control packets, so it is unnecessary to duplicate control
packets in the kernel layer. Thus, as shown in Figure 3, Duplicator in the application layer
duplicates control packets when MuTran operates in UDP-mode.

3.3.4. Assignor

Assignor has the role of distributing the original and the duplicates to sub-sockets
belonging to different interfaces. First, Assignor delivers the original to the most preferred
sub-socket based on the default scheduler’s assessment. Assignor then selects the most
preferred sub-socket of each interface that is not associated with the sub-socket used to
transmit the original packet. Assignor transmits the duplicated packets through each of the
different interfaces using the selected sub-sockets. In the UDP-mode, each interface has
one datagram socket for UDP, so Assignor simply distributes the original and its duplicates
to a socket of each interface.

After the sender with MuTran transmits the original and its duplicates to the receiver,
the receiver receives one of them first. In the receiver, only this first packet is used and the
packets that arrived later are discarded. As described above, the receiver-side MuTran is
relatively simple, so we do not describe the details.

3.4. Implementation

We implemented MuTran by modifying source files of MPTCP, specifically mptcp_sc
hed.c, mptcp_ctrl.c, skbuff.c, mptcp.h, and skbuff.h [24]. After that, we implemented
MuTran in Linux kernel of Ubuntu 16.04 LTS on computing boards for drones. (The
computing board, Intel Aero compute board, performs a variety of computing operations,
except for processing performed by the flight controller. The Intel Aero compute board is a
UAV/Drone developer board powered by a quad-core Intel Atom x7-Z8750 processor [25].)
We built a test-bed composed of two MuTran-implemented computing boards equipped
with two network interfaces for performance evaluations. We will describe the detailed
explanation about experiments in Section 5.

4. Theoretical Analysis

In this section, we conduct a theoretical analysis of the delay of control packet trans-
mission when using MuTran. We then analyze practical cases with MuTran to demonstrate
the validity of MuTran. After that, we figure out the number of subflows needed to guaran-
tee the target delay, and we analyze the overhead due to the duplication. Furthermore, we
conduct the analysis of control packet transmission rate when using MuTran. Table 1 lists
the parameters and variables used in the analyses.



Sensors 2021, 21, 3295 9 of 29

Table 1. The parameters and variables used in the analyses.

Notation Definition

W The maximum size of congestion window in the steady-state
RTT The round trip time in the steady-state
MSS The maximum segment size
c The speed of light
dist The distance between the sender and receiver
p The probability of transmission success
q The probability of transmission failure
delaytotal

i The total delay of ith subflow
delaysq

i The buffer queuing delay of ith subflow in the sender
delayrq

i The buffer queuing delay of ith subflow in the receiver
delaynet

i The propagation delay of ith subflow
delayrt

i The sum of propagation delay and buffer queuing delay of ith subflow in the
sender, (delaynet

i + delaysq
i )

delayint The determined time interval for control packet transmission
delaytarget The target delay to meet the required service quality
sizesq

i The queue size of ith subflow in the sender
sizerq

i The queue size of ith subflow in the receiver
sizecp The size of control packet
sizewodup The total size of control packets without duplication
sizewdup The total size of control packets with duplication
rateproc

i The processing rate of ith subflow in the receiver
ratesend

i The sending rate of ith subflow in the sender
rateTCP

CP The control packet transmission rate in TCP-mode
rateUDP

CP The control packet transmission rate in UDP-mode

4.1. Element Delays of Control Packet Transmission

For this analysis, we assume a situation where there is one sender and one receiver
and they have multiple identical interfaces. Each interface of the sender is connected to
the corresponding interface of the receiver. These communication pairs utilize different
channels to avoid interference. For example, in Figure 1, the number of pairs is two. The
sender continues to send data packets to the receiver, while control packets are periodically
created and transmitted. The order of control packets is separated from that of data packets.
The delay means the time from one moment a packet is delivered to a sub-socket in the
sender to the other moment a sub-socket in the receiver delivers the packet to the upper
layer. In this analysis, we focus on the delay of only control packet transmission. Compared
to data packets, control packets are generated much less frequently, and the time between
consecutive transmissions is relatively long. Thus, reordering control packets rarely occurs,
so we do not consider the delay caused by reordering control packets in this analysis.

When the data communications are in a steady-state, all the communications through
subflows are identical. In this situation, the delay of ith subflow, delaytotal

i , consists of three
element delays as follows:

delaytotal
i = delaysq

i + delaynet
i + delayrq

i , (1)

where delaysq
i , delaynet

i , and delayrq
i represent delays due to buffer queuing in the sender,

propagation delay, and buffer queuing in the receiver, respectively.

4.2. Analysis of the Control Packet Transmission over TCP

The first element delay in Equation (1), delaysq
i , is defined as follows:

delaysq
i = sizesq

i /ratesend
i . (2)

The sending queue is usually filled with packets because the sender and receiver communi-
cate without any restrictions. Therefore, if the sender’s queue size and the sending rate are



Sensors 2021, 21, 3295 10 of 29

sizesq
i and ratesend

i , respectively, the time between when one control packet is inserted into
the queue and when the packet is transferred from the sender is as shown in Equation (2).

If W and RTT represent the maximum size of congestion window and the round trip
time in the steady-state, respectively, the congestion window size increases from W/2 to W
and falls back to W/2 repeatedly [26]. Therefore, the relation between W and ratesend

i can
be expressed as follows:

ratesend
i = {(3W2/8) ·MSS}/(RTT ·W/2)

= 3W ·MSS/4RTT,
(3)

where MSS means the maximum segment size. In terms of W, Equation (3) can be trans-
formed as follows:

W = 4ratesend
i · RTT/3MSS. (4)

By default, the initial size of the buffer in the network layer in the kernel is set to the default
buffer size, and the operating system adjusts the size as needed. Taking account of the
sending rate fluctuation, the operating system sets the send buffer size (The send buffer
and receive buffer are terms used in Linux kernel.) to double the maximum amount of data
that can be sent using one window as follows:

sizesq
i = 2W ·MSS. (5)

Using Equation (4), Equation (5) can be transformed as follows:

sizesq
i = 8ratesend

i · RTT/3. (6)

Using Equation (6), Equation (2) can be transformed as follows:

delaysq
i = 8RTT/3. (7)

Secondly, since each interface of the sender is directly connected to the corresponding
interface of the receiver, delaynet

i in Equation (1) is defined as follows:

delaynet
i = dist/c, (8)

where c and dist respectively mean the speed of light and the distance between the sender
and receiver.

The third element delay in Equation (1) is defined as follows:

delayrq
i = sizerq

i /rateproc
i , (9)

where sizerq
i and rateproc

i are the receiver’s queue size and the processing rate, respectively.
Similar to the send buffer, the size of the receive buffer is set to double the value of the
advertised window size multiplied by MSS. The communication between the sender and
receiver in this situation is closed loop, so the amount of packets in the receiver’s receive
buffer should be smaller than that of the sender’s send buffer. Therefore, the upper bound
of sizerq

i is sizesq
i in Equation (6). As a result, according to Equation (9), the upper bound

of delayrq
i is 8ratesend

i · RTT/3rateproc
i . The rate at which the receiver processes packets is

much faster than that at which the sender transmits packets. Therefore, in general, delayrq
i

is much smaller than delaysq
i .

4.3. Analysis of the Control Packet Transmission with Considering Retransmission

So far, we have considered delays without retransmissions. However, retransmissions
can occur due to a variety of causes, so we should additionally consider delays caused by
retransmissions. Every time a retransmission occurs, a lost packet is inserted to the send



Sensors 2021, 21, 3295 11 of 29

buffer and transmitted again, so delaysq
i + delaynet

i is added to delaytotal
i . Thus, this addition

is repeated continuously as many times as the number of retransmissions until the packet
is successfully delivered. If p is the probability that a packet is transmitted successfully
and q, (1-p), is the probability of transmission failure, the probability that a packet is
delivered successfully after n failed attempts is qn · p. Therefore, if delaysq

i + delaynet
i is

simply expressed as delayrt
i , the expected delay considering retransmissions, E[delaytotal

i ],
is as follows:

E[delaytotal
i ] = delayrq

i + delayrt
i · p + 2delayrt

i · qp + 3delayrt
i · q2 p + · · ·

= delayrq
i + delayrt

i · p
∞

∑
k=1

kqk−1

= delayrq
i + delayrt

i ·
p
q

∞

∑
k=1

kqk.

(10)

With reference to Appendix A, ∑∞
k=1 kqk in Equation (10) can be transformed as follows:

∞

∑
k=1

kqk = lim
n→∞

n

∑
k=1

kqk = lim
n→∞

nqn+2 − (n + 1)qn+1 + q
(q− 1)2 . (11)

Using Equation (11), Equation (10) can be transformed as follows:

E[delaytotal
i ] = delayrq

i + delayrt
i · lim

n→∞

{ p
q
· nqn+2 − (n + 1)qn+1 + q

(q− 1)2

}
. (12)

(1-q) is equal to p, so Equation (12) can be transformed as follows:

E[delaytotal
i ] = delayrq

i + delayrt
i · lim

n→∞

nqn+1 − (n + 1)qn + 1
p

. (13)

The value of q is 0 to 1, so both nqn+1 and (n + 1)qn in Equation (13) become 0. Thus,
Equation (13) can be transformed as follows:

E[delaytotal
i ] = delayrq

i +
delayrt

i
p

. (14)

When using MuTran, the control packet is duplicated, and the original and its dupli-
cates are sent through different interfaces as shown in Figure 1d. If the number of interfaces
that the sender or receiver has is n, the original packet and n−1 duplicate packets are
transmitted via n interfaces. Therefore, the probability that at least one of them is delivered
without failure, psystem, is as follows:

psystem = 1− (1− p1)(1− p2) · · · (1− pn)

= 1−
n

∏
i=1

(1− pi),
(15)

where pi is the probability that the transmission via the ith interface is successful. As we
assumed, all the subflow communications are identical, so all pi, i = 1, ..., n, are the same.
Thus, Equation (15) can be transformed as follows:

psystem = 1− (1− p)n

= 1− qn.
(16)



Sensors 2021, 21, 3295 12 of 29

Based on Equations (14) and (16), the delay when using MuTran in TCP-mode with n
interfaces is as follows:

E[delaytotal ] = delayrq +
delayrt

psystem

= delayrq +
delayrt

1− qn .
(17)

According to Equation (17), even as q increases, the delay increases much slower, which
means that MuTran enables users to control drones with short delays even in poor commu-
nication quality situations.

As explained before, delayrq � delaysq
i < (delaysq

i + delaynet
i ) = delayrt, so Equation (17)

can be simplified as follows:

E[delaytotal ] ≈ delayrt

1− qn . (18)

Based on Equation (18), Figure 5 shows the ratio of delay when using MuTran to that when
using the existing system with one interface, as the packet loss probability increases.

Figure 5. The ratio of delay when using MuTran in TCP-mode to that when using the existing system.

For instance, if the packet loss probability is 0.25, MuTran with two interfaces can
successfully transmit control packets within 80% of the delay when using the existing
system on average. This means that, if an operator uses MuTran, the stability of controlling
drones can be significantly improved simply by using one more interface.

4.4. Analysis of the Control Packet Transmission of MuTran in UDP-Mode

In this subsection, we analyze the delay of control packet transmission of MuTran
in UDP-mode. For comparison, we assume the same network situation as the situation
considered in the previous subsection. In this situation, the sender transmits control packets
with a determined time interval, delayint, as shown in Figure 6, and delaynet

i means the
propagation delay.



Sensors 2021, 21, 3295 13 of 29

Figure 6. Periodical transmissions of control packet in the UDP mode.

If p is the probability that a packet is transmitted successfully and q, (1-p), is the
probability of transmission failure, the expected delay, E[delaytotal

i ], is as follows:

E[delaytotal
i ] = delaynet

i · p + (delaynet
i + delayint

i ) · qp + (delaynet
i + 2delayint

i ) · q2 p + · · ·

= delaynet
i · (p + qp + q2 p + · · ·) + delayint

i · (qp + 2q2 p + 3q3 p + · · ·)

= delaynet
i p · 1− qn

1− q
+ delayint

i · qp
∞

∑
k=1

kqk−1.

(19)

Similar to the development from Equation (10) to Equation (14), Equation (19) can be
transformed as follows:

E[delaytotal
i ] = delaynet

i ·
p

1− q
+ delayint

i ·
q
p

= delaynet
i + delayint

i ·
1− p

p
.

(20)

The original packet and n− 1 duplicate packets are transmitted via n interfaces, and all the
subflow communications are identical. Therefore, the probability that at least one of them
is delivered without loss, psystem, is as follows:

psystem = 1− (1− p)n

= 1− qn.
(21)

As a result, Equation (20) can be transformed as follows:

E[delaytotal ] = delaynet + delayint · qn

1− qn . (22)

Since delaynet is dist/c, delaynet is much less than delayint. Thus, Equation (22) can be
simplified as follows:

E[delaytotal ] ≈ delayint · qn

1− qn . (23)

Similar to Figure 5, based on Equation (23), Figure 7a shows the ratio of delay when
using MuTran in UDP-mode to that when using the existing system with one interface,
as the packet loss probability increases. When using UDP, a device does not conduct
retransmission even when a packet loss occurs. Thus, when transmitting control packets
over UDP, it is much effective to use MuTran which exponentially decreases the system
probability of packet loss as shown in Figure 7a compared to the Figure 5.

In addition, Figure 7b shows the delay in terms of the value of time interval, delayint,
as the packet loss probability increases. As shown in the figure, by using the existing
system, a control packet is delivered to a UAV after one more time interval when the packet
loss probability is 0.5. In other words, during this time, the UAV flies without any control



Sensors 2021, 21, 3295 14 of 29

from the operator, which may cause an accident. On the other hand, in the same situation,
a control packet can be delivered in a much lower delay by using MuTran.

(a) The ratio of delay when using MuTran in UDP-mode to that when using the existing
system.

(b) The delay of control packet transmission in terms of time interval, delayint.

Figure 7. Analysis of the delay when using MuTran in UDP-mode.

4.5. Analysis of Practical Cases with MuTran

To conduct an analysis of MuTran in practical situations, we assume that one drone
is communicating with the ground control system (GCS) over a WiFi connection and that
an operator controls the drone by viewing the video collected by the drone. Under this
circumstance, if a 720p30 stream is encoded at 1 Mbps and the available bandwidth is
2 Mbps, it takes 118.7 ms for the operator to see the collected video [27]. In other words,
if the drone is flying at a speed of 15 m/s, the drone will travel 1.8 m while the operator
senses the need to change the flight and gives instructions. In addition to this, considering
analysis results in [28,29] which analyzed drone networks experimentally, we analyze the
delay of control packet transmission when using MuTran with two interfaces compared to
the existing system. In the assumed circumstance, if the operator or GCS detects a problem
from the ith packet transmitted from the drone, the operator or GCS immediately transmits



Sensors 2021, 21, 3295 15 of 29

the control packet to cope with the problem. To properly respond to the problem, the
control packet should be delivered to the drone before the i+1th packet arrives at the GCS.
In other words, the target delay in this situation is the time between consecutive packet
arrivals at the GCS. The dotted line in Figure 8 indicates the target delay.

According to Figure 8a which shows the result when using the existing system, if
the packet loss probability is 0.2 or less, approximately 95% of packets can be delivered
within the target delay. However, if the packet loss probability increases to 0.35, only
about 68% percent of packets are delivered within the target delay. In contrast, using
MuTran in TCP-mode, most of the packets can be delivered to the drone within the target
delay as shown in Figure 8b, even when the packet loss probability is 0.4, which means
the severe communication situation. Similarly, in Figure 8c, we can see that MuTran in
UDP-mode is able to deliver most packets to the drone within the target delay even in poor
communication situations.

(a) When using the existing system.

(b) When using MuTran in TCP-mode.

Figure 8. Cont.



Sensors 2021, 21, 3295 16 of 29

(c) When using MuTran in UDP-mode.

Figure 8. The analytic delay results in the practical cases.

4.6. Analysis of the Number of Subflows Required to Guarantee the Target Delay

As described above, MuTran allows much more control packets to be transferred
within the target delay. Based on Equation (18), if Equation (24) is valid, it is guaranteed
that control packets are delivered to the drone within the target delay in the TCP-mode.

E[delaytotal ] ≈ delayrt

1− qn =
delaysq + delaynet

1− qn ≤ delaytarget, (24)

where delaytarget presents the target delay. Equation (24) can be transformed as follows:

qn ≤ 1− delaysq + delaynet

delaytarget , (25)

and Equation (25) also can be transformed as follows:

n ≥ logq(1−
delaysq + delaynet

delaytarget ). (26)

Similarly, in the UDP-mode, if Equation (27) is valid based on Equation (23), control packets
are guaranteed to be delivered to the drone within the target delay.

E[delaytotal ] ≈ delayint · qn

1− qn ≤ delaytarget. (27)

qn ≤ delaytarget

delayint + delaytarget . (28)

n ≥ logq(
delaytarget

delayint + delaytarget ). (29)

Thus, using Equation (26) or (29) depending on the mode of MuTran, we can obtain
the number of required interfaces to guarantee that 68%, 95%, or 99% of control packets
are transmitted to the drone within the target delay by putting µ + σ, µ + 2σ, or µ + 3σ in
delaytarget, respectively.



Sensors 2021, 21, 3295 17 of 29

4.7. Analysis of Overhead Due to Duplication in MuTran

Until now, we conducted the analyses of delays in MuTran, but in this subsection, we
analyze the overhead due to duplication of control packets. The throughput of data packet
transmission is rarely affected by MuTran since MuTran duplicates only control packets that
are created less often and are smaller in size compared to data packets in general. However,
when the network condition is so poor, the duplicated packets can be retransmitted over
and over again, which may increase the overhead due to the duplication in MuTran. Similar
to Equation (10), the expected total size of control packets without duplication, E[sizewodup],
is as follows:

E[sizewodup] = sizecp p + 2sizecpqp + 3sizecpq2 p + · · ·

= sizecp p ·
∞

∑
k=1

kqk−1

=
sizecp

p
,

(30)

where sizecp presents the size of control packet. Based on Equation (30), with considering
duplication in MuTran additionally, the expected total size of control packets when the
number of connections is n, E[sizewdup], is as follows:

E[sizewdup] = n · E[sizewodup]

=
n · sizecp

p
.

(31)

4.8. Analysis of Control Packet Transmission Rate When Using MuTran

We analyzed the expected delay and the expected total size of control packets when
using MuTran in TCP or UDP-mode before. Thus, based on Equations (18) and (31), we
can figure out the transmission rate of control packet when using MuTran in TCP-mode
as follows:

E[rateTCP
CP ] ≈ n · sizecp(1− qn)

delayrt p
. (32)

Similarly, based on Equations (23) and (31), the control packet transmission rate of MuTran
in UDP-mode is as follows:

E[rateUDP
CP ] ≈ n · sizecp(1− qn)

delayint pqn . (33)

When a packet loss occurs, MuTran in TCP-mode immediately retransmits the lost packet,
whereas MuTran in UDP-mode sends the next control packet after the determined period
of time regardless of the packet loss. Thus, if it is required to achieve as much reliability of
control packet transmission as using TCP while using UDP, MuTran in UDP-mode transmits
control packets more frequently, in other words, with a shorter time interval under the
condition expressed in Equation (36).

E[rateUDP
CP ] ≤ E[rateTCP

CP ]. (34)

nsizecp(1− qn)

delayint pqn ≤ nsizecp(1− qn)

delayrt p
. (35)

delayrt

qn ≤ delayint. (36)



Sensors 2021, 21, 3295 18 of 29

5. Performance Evaluation

In this section, we describe the various experiments we conducted, and we show
the results that evaluate MuTran’s performance. First, we describe an experiment that
shows the limitations of existing systems. After that, we perform a performance evaluation
comparing MuTran and the existing systems and show the results that MuTran is superior
to the others.

5.1. Performance of Existing System in the Problem Situation

In existing systems for drone networks, each drone has only one interface and com-
municates with other drones and with GCS over ad-hoc networks. Therefore, if the
communication quality of the only interface deteriorates, drones have trouble in receiving
control packets from the GCS. The loss of connection means the loss of control over the
drone, and the delayed transmission or loss of control packets can cause catastrophic
accidents. We conducted an experiment to confirm this problem. As shown in Figure 9, in
this experiment, there were two computing boards for drones, Intel Aero compute boards,
one sender and one receiver, and each board had one IEEE 802.11 g interface. After the
experiment began, the sender transmitted data and control packets to the receiver. The data
packets were continuously sent to the recipient, while the control packets were created and
transmitted with a determined time interval, 500 ms. After 60 s, we removed the sender’s
antenna to emulate a situation in which the quality of the communication link deteriorates.
During the experiment, we recorded moments when the receiver received control packets
and time intervals between consecutive moments.

Figure 10a shows the arrival moments of control packets, and we can see that the
receiver received control packets periodically early in the experiment. However, after one
minute, the delayed transmissions or losses of control packets occurred frequently due to
poor communication conditions, so the receiver received the control packets occasionally.
More specifically, Figure 10b shows the inter-arrival times of control packets. At the
beginning of the experiment, there was no significant difference between inter-arrival
times as shown in the figure. However, after the communication quality deteriorated,
inter-arrival time values were increased significantly. As shown in these results, it is hard
to deal with these communication problem situations with the existing systems.

Figure 9. The experiment setup for evaluating the existing system in the problem situation.



Sensors 2021, 21, 3295 19 of 29

(a) Arrival moments of control packets.

(b) Inter-arrival times of control packets.

Figure 10. The limitation of existing system in the problem situation.

5.2. Evaluation of Transmitting Packets in a Round-Robin Fashion

As explained in Section 3.2, the straightforward way to transfer the original and
duplicate packets over different paths is to transfer them in a round-robin fashion using
multiple interfaces. However, the overall performance of data communication is degraded
because the sender using this method transmits packets without considering the communi-
cation situation. We compared performances of MPTCP’s two schedulers, the round-robin
scheduler and the default scheduler that selects the subflow with the shortest SRTT. Similar
to the previous experiment, there were two boards for drones, one sender and one receiver.
However, in this experiment, each board had two interfaces, and each interface of the
sender was connected to the corresponding interface of the receiver as shown in Figure 11.
The sender and receiver communicated via two paths, and these communication pairs used
different channels to avoid interference. The sender began sending packets to the receiver,
and after 60 s, we made the communication quality poor by removing the sender’s antenna.

Figure 11. The experiment setup for evaluating packet transmissions in a round-robin fashion. (In
order to use MPTCP, it is required that the routing tables in the sender and receiver are configured
appropriately and the multiple interfaces are connected to the receiver’s board via a router [30].)

Figure 12 shows the performances of two schedulers in a low-quality communica-
tion situation. As shown in the figure, the round-robin scheduler failed to respond to
the change in the communication situation, while the default scheduler performed data
communication appropriately through the interface with better communication quality.
Thus, the default scheduler outperformed the round-robin scheduler, which means that the



Sensors 2021, 21, 3295 20 of 29

straightforward way explained in the previous paragraph is not suitable for MuTran. For
this reason, we designed MuTran to be compatible with the default scheduler as explained
in Section 3.3.1.

Figure 12. The round-robin scheduler’s problem in a low-quality communication situation.

5.3. Evaluation on the Performance of MuTran

We conducted an experiment to validate the effectiveness of MuTran. Similar to the
experiment in Section 5.2, the sender started data communications through two paths,
and after 60 s, we deteriorated the communication quality of one path by removing the
sender’s antenna. However, unlike the previous experiment, the sender transmitted not
only data packets but also control packets as shown in Figure 13. The data packets were
delivered continuously to the receiver, but the control packets were transmitted at a fixed
time interval, 500 ms. The sender duplicated every control packet and then transmitted the
original and its duplicate to the receiver.

Figure 13. The experiment setup for evaluating the performance of MuTran

We compared four cases in this experiment. The first and second cases are when
using MuTran in UDP-mode and TCP-mode, respectively. In the third and fourth cases, the
sender simply duplicated control packets and transmitted them using the existing system
with MPTCP, so it was not guaranteed that the original and its duplicate were transmitted
through different paths. The default scheduler and the round-robin scheduler were used
in the third and fourth cases, respectively. When the communication quality was good,
there was no problem with data communication naturally. Thus, Figure 14 shows only the
results after the communication condition deteriorated.



Sensors 2021, 21, 3295 21 of 29

(a) Arrival moments of control packets in each case.

(b) Inter-arrival times of control packets.

Figure 14. Performance comparison among MuTran and existing systems.

Figure 14a shows the arrival moments of control packets. As shown in the figure, in
the first and second cases using MuTran, the rings are almost uniformly placed, which
means that delayed transmissions or losses of control packets rarely occurred. In contrast,
delayed transmissions or losses of control packets frequently occurred in the third and
fourth cases, so distances between consecutive points are considerably different. To be
more specific about the second case, there were some delayed transmissions, in other
words, there are some overlapping circles. It is because that data and control packets are
inserted into the same network queue when using MuTran in TCP-mode. Thus, the latency
of control packet transmission in MuTran’s TCP-mode can be occasionally lengthened
due to diverse causes, such as the increase in the amount of data packets or data packet
retransmissions. However, in UDP-mode, MuTran transmits control packets through UDP
connections separated by TCP connections used for the data transmission, so it is possible
to transfer control packets with much less fluctuation as shown in the first case.

Figure 14b shows the results in terms of inter-arrival times of control packets. Com-
pared to the results of the first and second cases, there are much more fluctuations in the
results of the third and fourth cases, which results in the unstable control of drones. In ad-
dition, Table 2 shows the mean and standard deviation values of inter-arrival times in each
case. There is no significant difference between the standard deviation values of the cases



Sensors 2021, 21, 3295 22 of 29

when the communication was in a normal situation. However, when the communication
quality was poor, the values of the third and fourth cases are much larger than those of the
first and second cases. Especially, the values of the first case are much lower than those of
the other cases because control packets were transmitted through UDP connections not
affected by data packet transmissions, as explained in the previous paragraph.

Table 2. Mean and standard deviation of inter-arrival times of control packets.

Normal Situation Problematic Situation

Case Mean Std Mean Std

1 0.5002 0.0027 0.5046 0.0511
2 0.5849 0.1155 0.6591 0.1665
3 0.6095 0.142 0.8929 0.6721
4 0.5879 0.1638 0.6993 0.4067

In conclusion, through the results of experiments, we confirm that MuTran improves
the reliability and stability of controlling drones.

5.4. Performance Comparison with Related Techniques

In Section 2, we introduced some techniques relevant to MuTran and explained the
limitations of them. The technique proposed in [14] copies all packets, data and control
packets, and transmits them over two different paths, so this technique unnecessarily
wastes half the communication bandwidth. Another technique in [16] assigns data packets
and control packets separately to two different interfaces, so the interface for control packet
cannot be used to transmit data packets. Therefore, these techniques cannot enhance the
goodput of data packet transmission even with two interfaces. To verify this, we conducted
the experiment by imitating the techniques with reference to the descriptions in their
papers. In this experiment, we conducted data communications via two interfaces similar
to the setup in Figure 13 and measured goodput performances for 1 min. As explained
above, the related techniques performed about half of MuTran’s performance in Figure 15a.

The other related technique in [15] replicates only control packets to improve [14].
However, data and control packets are inserted into the same queue competitively, so the
latency of control packet transmission can be affected by data packet transmissions. To
prove the limitation, we conducted the same experiment as we did in the previous section,
and Figure 15b shows the arrival moments of control packets. As shown in the figure, the
distances between consecutive points are inconsistent when using the related technique.
In other words, the latency of control packet transmission was occasionally lengthened
because the data and control packets were competitively inserted into the same network
queue. The distribution of circles are also not perfectly uniform when using MuTran. It
is because the network interface was shared although UDP and TCP transmissions used
separated queues in their respective connections. However, as shown in the figure, the
interference by data packet transmissions was considerably isolated because of transmitting
control packets separately.



Sensors 2021, 21, 3295 23 of 29

(a)

(b)

Figure 15. The comparison between the related techniques and MuTran. (a) The goodput perfor-
mances of the data packet transmission of the related techniques [14,16] and MuTran. (b) Arrival
moments of control packets in a low-quality communication situation when using the related tech-
nique [15] and MuTran.

6. Discussion

In this section, we describe several issues that need to be addressed further. Firstly,
we explain the complexity and feasibility of MuTran and then discuss MuTran in UAV-
based scenarios.

6.1. Complexity and Feasibility of MuTran

As explained in Section 3.3, MuTran conducts the three major operations, the clas-
sification, duplication, and assignment, so we analyze the complexity and overhead of
the operations.

The classification is required for MuTran to duplicate only control packets, not data
packets. In the kernel layer, it is not trivial to know which data contains control information,
so the process for checking the content of each packet is added when using MuTran. MuTran
directly reads segment data of each packet by using the pointer that points to the starting
position of segment in memory. In this process, if MuTran looks through all the segment
data, it may cause a large amount of computation. However, MuTran only checks some
values in front part of the segment data to determine the characteristic of packets. Most
control protocols for UAV systems, such as MAVLink, use control packets that include their



Sensors 2021, 21, 3295 24 of 29

own header format [21]. Thus, MuTran does not examine all the segment, but only looks
over a few bytes of segment to determine whether this part follows the header format of
control packet. In addition, MuTran utilizes the pointer in struct sk_buff, built in Linux
kernel, so MuTran is able to approach to the segment in memory almost without overhead.

MuTran duplicates control packets only. Thus, when MuTran is used with n interfaces,
the total size of packets is as follows:

packettotal = packetdata + n · packetcontrol . (37)

Control packets are created less and relatively small compared to data packets in general. In
addition to this, in real-world scenarios, the drone is not equipped with a large number of
network interfaces considering the efficiency and the drone’s limited resources. Therefore,
the process of duplicating control packets does not cause much overhead. However, the
proportion of n · packetcontrol in packettotal may increase depending on the application or
situation. Thus, if the second term is not negligible, the operator needs to consider the
overhead based on Equation (37).

MuTran conducts the assignment operation to forward duplicated packets to different
interfaces. Fundamentally in Linux kernel, the function, get_available_subflow(), is
repeatedly called to find the best subflow among available subflows according to the rule,
such as the shortest SRTT. For example, if the selection is based on the shortest SRTT, the
function calculates the SRTT value of each subflow and returns the pointer of socket with
the shortest SRTT when MuTran is not used. However, when using MuTran, the function
returns the best one of sockets belonging to the interfaces which are unused to transmit
duplicated packets. Thus, MuTran utilizes values that are already calculated regardless of
the use of MuTran, and the assignment operation causes very little additional computation.

As a result, MuTran does not require much computation and the complexity of MuTran
is not high, so MuTran can be applied to UAV systems without much overhead in real-world
scenarios. However, as we mentioned above, the amount of computations for MuTran’s
operations can increase depending on the application or situation. Thus, we will perform
a deeper analysis of complexity and feasibility of MuTran in various applications and
real-world scenarios in the future work.

6.2. Applicability of MuTran in UAV-Based Scenarios

MuTran is proposed to improve the reliability and stability of controlling UAVs. Thus,
in this subsection, we explain various features of UAV-based scenarios. After that, we
describe the advantages and effects of MuTran from the perspective of the features.

6.2.1. Physical Aspects in Aerial Scenarios

UAVs can fly fast and move freely, so there are several different features in aerial
scenarios compared to ground-based scenarios. Firstly, in terms of the distance, flying
UAVs are usually sparse with long distances between UAVs. Thus, weak signals due to such
long distances make communications of UAVs unstable [28]. The exploitation of multiple
antennas might be limited by the lack of spatial diversity of the aerial UAV-to-UAV (U2U)
channel [29]. In addition, the communication quality can be degraded by the Doppler
effect owing to the relative difference in velocity between flying UAVs. The Doppler shift,
fc ·∆v

c , caused by the UAVs’ relative motion may result in packet errors [31]. fc, ∆v, and c
mean the frequency, the relative speed, and the light speed, respectively. Moreover, the
antenna’s orientation and position on the UAV also affect the communication quality. UAVs
fly in a 3-dimensional space. Therefore, the signal propagation is almost always partially
obstructed by a UAV’s body and the relative orientation of antennas exists at all times,
which deteriorates the communication quality [32]. Taken together, due to the diverse
factors explained above, the communications in aerial scenarios are generally much more
unstable than those in ground-based scenarios. Thus, MuTran can be utilized effectively to
improve the communication reliability in UAV-based scenarios.



Sensors 2021, 21, 3295 25 of 29

6.2.2. High Mobility and Frequent Topology Change

The high mobility is a representative feature of UAVs, and this is an important charac-
teristic that differentiates UAV network, such as flying ad hoc networks (FANETs) from
other similar networks, such as mobile ad hoc networks (MANETs) or vehicular ad hoc
networks (VANETs). The status of UAVs, such as position, velocity, acceleration, flight plan,
and so forth, varies over time since they often have to react to the environmental feedback
and mission updates [33]. In addition, according to the nature of flying, UAVs must be
sparse apart in the sky with large distances between them [34]. Such high mobility degree
of UAVs results in several communication and networking issues and challenges [35]. In
UAV-based scenarios, UAVs may change their places, and distances between UAVs vary
in a much shorter time interval. Thus, the network topology changes frequently, which
affects the link quality between UAVs and increases the likelihood that the communication
problems occur. In addition to this, the lack of a fixed topology poses a great challenge to
the routing process in UAV scenarios. For example, discovered routes frequently break
and new routes should be discovered. Thus, compared to other systems, UAV systems
require more reliable and robust control message transmissions to cope with the above
problems well. As a result, MuTran is more effective in such systems composed of UAVs
with high mobility.

6.2.3. A Wide Range of Networks and Communications

To perform various tasks and services, flying UAVs should be able to communicate
with each other, U2U, as well as with backbones, UAV-to-Infrastructure (U2I) [35]. In addi-
tion, there are various networks used in UAV scenarios, such as Ad-Hoc networks, cellular
networks, delay-tolerant networks, and satellite networks. Thus, many different commu-
nication and network techniques can be available for UAVs, such as IEEE 802.11 (WiFi),
IEEE 802.16 (WiMax), LTE/5G, and satellite communications [36,37]. These techniques
have different uses and characteristics in terms of radio frequency, modulation, MAC, data
rate, transmission range, and so forth, so they are more effective when used together. Thus,
by utilizing heterogeneous networks simultaneously, UAVs not only perform more diverse
tasks and services, but also improve the performance such as increased bandwidth and
enhanced reliability. Since MuTran utilizes different paths and protocols, MuTran can be
applied to UAVs with heterogeneous interfaces well. Furthermore, if MuTran transmits
duplicated control packets using heterogeneous interfaces as well as different paths and
protocols, the reliability and stability of controlling UAVs can be improved much more.

6.2.4. Diverse Applications and Systems Using UAVs

From an operational point of view, UAV systems have a wide range of applications,
and there are various types of traffic. For example, some UAV applications may need to
transmit real-time traffic in contrast to other applications with delay-tolerant traffic. MuTran
was proposed to deliver control packets in time without loss or delay in this paper, but
MuTran with some modifications can also be effectively used to transmit time-constrained
data packets. In some use cases, multiple UAVs are used together to accomplish given
missions. For example, in agriculture, several UAVs could work together to effectively
spray large fields with pesticides or to quickly distribute the seeds over large areas [35]. In
such cases, it is important to provide the robust and reliable connectivity among UAVs in
the system, so MuTran can be utilized to improve the stability of the UAV systems.

7. Conclusions

Today’s UAVs can perform various operations while flying, and because of many
advantages of UAVs, they are utilized in various fields. Since UAVs move freely in
any direction and fly fast, controlling UAVs reliably is paramount to operate UAVs. In
particular, the UAV’s fast movement and wireless communication’s instability increase
the loss or delay of the control packet transmission, which increases the likelihood of a
collision or crash. For this reason, in this paper, we proposed MuTran which improves the



Sensors 2021, 21, 3295 26 of 29

reliability of UAV control by transmitting duplicated control packets utilizing multiple
protocols and paths. We designed and implemented MuTran on real devices. We performed
various experiments, as well as theoretical analyses from various perspectives, to verify
the effectiveness of MuTran. Through the analyses and experiments, we confirmed that, by
using MuTran, control packets can be delivered to UAVs more stably, which improves the
reliability of controlling UAVs.

We have several directions as future work. We plan to improve MuTran to selectively
duplicate control packets by considering the transmission failure rate rather than duplicat-
ing all control packets without any condition. Furthermore, as we mentioned in Section 6,
we will perform a deeper analysis of complexity and feasibility of MuTran in real-world
scenarios and evaluate the applicability of MuTran in various UAV-based scenarios. We
also have a plan to enhance MuTran’s ability to leverage heterogeneous networks to control
UAVs more reliably by exploiting different network interfaces simultaneously.

Funding: This research was financially supported by Hansung University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: Preliminary version of this paper appeared at Proceedings of the 2018 14th
International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob). IEEE, 2018 [38].

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
TCP Transmission Control Protocol
MPTCP Multipath Transmission Control Protocol
UDP User Datagram Protocol
MAC Media Access Control
SDN Software Defined Network
LTE Long Term Evolution
RC Radio Controller
MIMO Multiple Input Multiple Output
MPR Multi-Packet Reception
HRI Human-Robot Interaction
FEC Forward Error Correction
SRTT Smoothed Round Trip Time
API Application Programming Interface
GCS Ground Control System
U2U UAV to UAV
U2I UAV to Infrastructure
FANET Flying Ad hoc Network
MANET Mobile Ad hoc Network
VANET Vehicular Ad hoc Network

Appendix A

n

∑
i=1

i · ai = a + 2a2 + 3a3 + · · ·+ nan. (A1)



Sensors 2021, 21, 3295 27 of 29

Adding nan+1 to both sides of Equation (A1) results in

n

∑
i=1

i · ai + nan+1 = a + 2a2 + 3a3 + · · ·+ nan + nan+1. (A2)

Multiplying both sides of Equation (A1) by a results in

a
n

∑
i=1

i · ai = a2 + 2a3 + 3a4 + · · ·+ nan+1. (A3)

Subtracting Equation (A3) from Equation (A2) results in

n

∑
i=1

i · ai − a
n

∑
i=1

i · ai + nan+1 = a + a2 + a3 + · · ·+ an

=
n

∑
i=1

ai

=
a(an − 1)

a− 1
.

(A4)

Subtracting nan+1 from both sides of Equation (A4) results in

n

∑
i=1

i · ai − a
n

∑
i=1

i · ai =
a(an − 1)

a− 1
− nan+1. (A5)

Let ∑n
i=1 i · ai = X, and Equation (A5) can be transformed as follows:

X− aX =
a(an − 1)

a− 1
− nan+1

X(1− a) =
a(an − 1)

a− 1
− nan+1

X =
nan+1

a− 1
− a(an − 1)

(a− 1)2

X =
nan+2 − nan+1

(a− 1)2 − a(an − 1)
(a− 1)2

X =
nan+2 − nan+1 − an+1 + a

(a− 1)2

X =
nan+2 − (n + 1)an+1 + a

(a− 1)2 .
(A6)

We let ∑n
i=1 i · ai = X before. Thus, Equation (A6) can be transformed as follows:

n

∑
i=1

i · ai =
nan+2 − (n + 1)an+1 + a

(a− 1)2 . (A7)

References
1. Mac, T.T.; Copot, C.; Duc, T.T.; De Keyser, R. AR. Drone UAV control parameters tuning based on particle swarm optimization

algorithm. In Proceedings of the Automation, Quality and Testing, Robotics (AQTR), 2016 IEEE International Conference on
IEEE, Cluj-Napoca, Romania, 19–21 May 2016; pp. 1–6.

2. Park, S.; Kim, H.T.; Lee, S.; Joo, H.; Kim, H. Survey on Anti-Drone Systems: Components, Designs, and Challenges. IEEE Access
2021, 9, 42635–42659. [CrossRef]

3. Lee, J.; Kim, K.; Yoo, S.; Chung, A.Y.; Lee, J.Y.; Park, S.J.; Kim, H. Constructing a reliable and fast recoverable network for
drones. In Proceedings of the Communications (ICC), 2016 IEEE International Conference on IEEE, Kuala Lumpur, Malaysia,
22–27 May 2016; pp. 1–6.

http://doi.org/10.1109/ACCESS.2021.3065926


Sensors 2021, 21, 3295 28 of 29

4. Lee, W.; Lee, J.Y.; Lee, J.; Kim, K.; Yoo, S.; Park, S.; Kim, H. Ground control system based routing for reliable and efficient
multi-drone control system. Appl. Sci. 2018, 8, 2027. [CrossRef]

5. Scharf, M.; Ford, A. Multipath TCP (MPTCP) Application Interface Considerations. Available online: https://tools.ietf.org/
html/rfc6897 (accessed on 10 May 2021).

6. Paasch, C.; Ferlin, S.; Alay, O.; Bonaventure, O. Experimental evaluation of multipath TCP schedulers. In Proceedings of the 2014
ACM SIGCOMM Workshop on Capacity Sharing Workshop, Chicago, IL, USA, 18 August 2014; pp. 27–32.

7. Chandhar, P.; Danev, D.; Larsson, E.G. Massive MIMO for communications with drone swarms. IEEE Trans. Wirel. Commun.
2018, 17, 1604–1629. [CrossRef]

8. Ruan, Y.; Zhang, Y.; Li, Y.; Zhang, R.; Hang, R. An Adaptive Channel Division MAC Protocol for High Dynamic UAV Networks.
IEEE Sens. J. 2020, 20, 9528–9539. [CrossRef]

9. Dai, T.; Li, A.; Wang, H. Design and Implementation of a Relay Mechanism in Restricted UAVs Ad-hoc Networks. In Proceedings
of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019;
pp. 605–611.

10. Zhu, X.; Bian, C.; Chen, Y.; Chen, S. A low latency clustering method for large-scale drone swarms. IEEE Access 2019,
7, 186260–186267. [CrossRef]

11. Bousbaa, F.Z.; Kerrache, C.A.; Mahi, Z.; Tahari, A.E.K.; Lagraa, N.; Yagoubi, M.B. GeoUAVs: A new geocast routing protocol for
fleet of UAVs. Comput. Commun. 2020, 149, 259–269. [CrossRef]

12. Zhang, Q.; Jiang, M.; Feng, Z.; Li, W.; Zhang, W.; Pan, M. IoT enabled UAV: Network architecture and routing algorithm. IEEE
Internet Things J. 2019, 6, 3727–3742. [CrossRef]

13. Hong, L.; Guo, H.; Liu, J.; Zhang, Y. Toward Swarm Coordination: Topology-Aware Inter-UAV Routing Optimization. IEEE
Trans. Veh. Technol. 2020, 69, 10177–10187. [CrossRef]

14. Chiba, N.; Ogura, M.; Nakamura, R.; Hadama, H. Dual transmission protocol for video signal transfer for real-time remote
vehicle control. In Proceedings of the Communications (APCC), 2014 Asia-Pacific Conference on IEEE, Pattaya, Thailand, 1–3
October 2014; pp. 315–320.

15. Lee, W.; Lee, J.Y.; Joo, H.; Kim, H. An MPTCP-Based Transmission Scheme for Improving the Control Stability of Unmanned
Aerial Vehicles. Sensors 2021, 21, 2791. [CrossRef] [PubMed]

16. Shailendra, S.; Aniruddh, K.; Panigrahi, B.; Simha, A. Multipath TCP Path Scheduler for Drones: A Segregation of Control and
User Data. In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Chennai,
India, 10–14 July 2017; p. 40.

17. Erdelj, M.; Saif, O.; Natalizio, E.; Fantoni, I. UAVs that fly forever: Uninterrupted structural inspection through automatic UAV
replacement. Ad Hoc Netw. 2019, 94, 101612. [CrossRef]

18. Team, P.D. Offboard-PX4 User Guide. 2018. Available online: https://docs.px4.io/en/flight_modes/offboard.html (accessed on
10 May 2021).

19. Meier, L.; Honegger, D.; Pollefeys, M. PX4: A node-based multithreaded open source robotics framework for deeply embedded
platforms. In Proceedings of the Robotics and Automation (ICRA), 2015 IEEE International Conference on IEEE, Seattle, WA,
USA, 26–30 May 2015; pp. 6235–6240.

20. Chandhar, P.; Larsson, E.G. Massive MIMO for Drone Communications: Applications, Case Studies and Future Directions. arXiv
2017, arXiv:1711.07668.

21. MAVLink. MAVLink Developer Guide. 2021. Available online: https://mavlink.io/en (accessed on 10 May 2021).
22. Panda, K.G.; Das, S.; Sen, D.; Arif, W. Design and deployment of UAV-aided post-disaster emergency network. IEEE Access 2019,

7, 102985–102999. [CrossRef]
23. Jaakkola, A. Implementation of Transmission Control Protocol in Linux. Proc. Semin. Netw. Protoc. Oper. Syst. 2013 1, 10.
24. Paasch, C.; Barré, S. Multipath TCP in the Linux Kernel. 2013. Available online: www.multipath-tcp.org (accessed on 10

May 2021).
25. Intel. Intel Aero Compute Board Hardware Features and Usage. 2018. Available online: https://www.intel.com/content/dam/

support/us/en/documents/drones/development-drones/intel-aero-compute-board-guide.pdf (accessed on 10 May 2021).
26. Mathis, M.; Semke, J.; Mahdavi, J.; Ott, T. The macroscopic behavior of the TCP congestion avoidance algorithm. ACM SIGCOMM

Comput. Commun. Rev. 1997, 27, 67–82. [CrossRef]
27. Barrett, D.; Desai, P. Low-Latency Design Considerations for Video-Enabled Drones. 2016. Available online: http://www.ti.com/

lit/wp/spry301/spry301.pdf (accessed on 10 May 2021).
28. Muzaffar, R. Routing and Video Streaming in Drone Networks. Ph.D. Thesis, Queen Mary University of London, London UK, 2017.
29. Asadpour, M.; Giustiniano, D.; Hummel, K.A. From ground to aerial communication: Dissecting WLAN 802.11n for the

drones. In Proceedings of the 8th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation &
Characterization, Miami, FL, USA, 30 September 2013; pp. 25–32.

30. MPTCP. Manual Configuration. 2021. Available online: https://multipath-tcp.org/pmwiki.php/Users/ConfigureRouting
(accessed on 10 May 2021).

31. Du, J.; Liu, X.; Rao, L. Proactive doppler shift compensation in vehicular cyber-physical systems. IEEE/ACM Trans. Netw. 2018,
26, 807–818. [CrossRef]

http://dx.doi.org/10.3390/app8112027
https://tools.ietf.org/html/rfc6897
https://tools.ietf.org/html/rfc6897
http://dx.doi.org/10.1109/TWC.2017.2782690
http://dx.doi.org/10.1109/JSEN.2020.2987525
http://dx.doi.org/10.1109/ACCESS.2019.2960934
http://dx.doi.org/10.1016/j.comcom.2019.10.026
http://dx.doi.org/10.1109/JIOT.2018.2890428
http://dx.doi.org/10.1109/TVT.2020.3003356
http://dx.doi.org/10.3390/s21082791
http://www.ncbi.nlm.nih.gov/pubmed/33921044
http://dx.doi.org/10.1016/j.adhoc.2017.11.012
https://docs.px4.io/en/flight_modes/offboard.html
https://mavlink.io/en
http://dx.doi.org/10.1109/ACCESS.2019.2931539
www.multipath-tcp.org
https://www.intel.com/content/dam/support/us/en/documents/drones/development-drones/intel-aero-compute-board-guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/drones/development-drones/intel-aero-compute-board-guide.pdf
http://dx.doi.org/10.1145/263932.264023
http://www.ti.com/lit/wp/spry301/spry301.pdf
http://www.ti.com/lit/wp/spry301/spry301.pdf
https://multipath-tcp.org/pmwiki.php/Users/ConfigureRouting
http://dx.doi.org/10.1109/TNET.2018.2797107


Sensors 2021, 21, 3295 29 of 29

32. Yanmaz, E.; Kuschnig, R.; Bettstetter, C. Achieving air-ground communications in 802.11 networks with three-dimensional aerial
mobility. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 120–124.

33. Tareque, M.H.; Hossain, M.S.; Atiquzzaman, M. On the routing in flying ad hoc networks. In Proceedings of the 2015 Federated
Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 1–9.

34. Purohit, A.; Mokaya, F.; Zhang, P. Demo abstract: Collaborative indoor sensing with the SensorFly aerial sensor network. In
Proceedings of the 2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN), Beijing,
China, 16–20 April 2012; pp. 145–146.

35. Jawhar, I.; Mohamed, N.; Al-Jaroodi, J.; Agrawal, D.P.; Zhang, S. Communication and networking of UAV-based systems:
Classification and associated architectures. J. Netw. Comput. Appl. 2017, 84, 93–108. [CrossRef]

36. Van der Bergh, B.; Chiumento, A.; Pollin, S. LTE in the sky: Trading off propagation benefits with interference costs for aerial
nodes. IEEE Commun. Mag. 2016, 54, 44–50. [CrossRef]

37. Lin, X.; Yajnanarayana, V.; Muruganathan, S.D.; Gao, S.; Asplund, H.; Maattanen, H.L.; Bergstrom, M.; Euler, S.; Wang, Y.P.E. The
sky is not the limit: LTE for unmanned aerial vehicles. IEEE Commun. Mag. 2018, 56, 204–210. [CrossRef]

38. Lee, W.; Lee, J.Y.; Kim, H. Improving Reliability of Real-Time Remote Vehicle Control through Duplicating Control Packets. In
Proceedings of the 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob), Limassol, Cyprus, 15–17 October 2018; pp. 1–8.

http://dx.doi.org/10.1016/j.jnca.2017.02.008
http://dx.doi.org/10.1109/MCOM.2016.7470934
http://dx.doi.org/10.1109/MCOM.2018.1700643

	Introduction
	Related Work
	System Design and Implementation
	Problem Statement
	Duplicated Control Packet Transmission
	Design of MuTran
	Mutran with MPTCP
	Classifier
	Duplicator
	Assignor

	Implementation

	Theoretical Analysis
	Element Delays of Control Packet Transmission
	Analysis of the Control Packet Transmission over TCP
	Analysis of the Control Packet Transmission with Considering Retransmission
	Analysis of the Control Packet Transmission of MuTran in UDP-Mode
	Analysis of Practical Cases with MuTran
	Analysis of the Number of Subflows Required to Guarantee the Target Delay
	Analysis of Overhead Due to Duplication in MuTran
	Analysis of Control Packet Transmission Rate When Using MuTran

	Performance Evaluation
	Performance of Existing System in the Problem Situation
	Evaluation of Transmitting Packets in a Round-Robin Fashion
	Evaluation on the Performance of MuTran
	Performance Comparison with Related Techniques

	Discussion
	Complexity and Feasibility of MuTran
	Applicability of MuTran in UAV-Based Scenarios
	Physical Aspects in Aerial Scenarios
	High Mobility and Frequent Topology Change
	A Wide Range of Networks and Communications
	Diverse Applications and Systems Using UAVs


	Conclusions
	
	References

