
Received April 12, 2020, accepted April 20, 2020, date of publication April 30, 2020, date of current version May 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991431

Fine-Grained Access Control-Enabled Logging
Method on ARM TrustZone
SEUNGHO LEE 1, HYO JIN JO 2, WONSUK CHOI 3, HYOSEUNG KIM 1,
JONG HWAN PARK 4, AND DONG HOON LEE 1, (Member, IEEE)
1Graduate School of Information Security, Korea University, Seoul 02841, South Korea
2Department of Software Convergence, Hallym University, Chuncheon 24252, South Korea
3Division of IT Convergence Engineering, Hansung University, Seoul 02876, South Korea
4Department of Computer Science, Sangmyung University, Seoul 03016, South Korea

Corresponding author: Dong Hoon Lee (donghlee@korea.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) under
Grant NRF-2017R1A2B3009643.

ABSTRACT Most applications for the Internet of Things operate on embedded systems. In particular,
embedded devices intended for smart healthcare, smart homes, and smart cars generate logs containing
sensitive user information. These logs must be protected from malicious users while also being accessible
for legitimate users to utilize them for providing customized services. Unfortunately, the existing logging
system only supporting one-to-one encryption based on a server-client model, so there are limitations in
building a decentralized logging infrastructure for the hyper-connected era. In this paper, we propose a new
secure logging method that supports one-to-many encryption and extends existing logging systems to a
decentralized logging infrastructure. In the proposed method, log publishers are able to encrypt generated
logs and distribute them to cloud storage in real time and can ensure that only authorized log subscribers
access the logs. For one-to-many encryption, we apply a key-policy attribute-based encryption schemewhich
is suitable for logging systems. For reliability and efficiency of logs, we apply a key-derivation process
that cooperates with one-way hash functions within a trusted execution environment. In a real time logging
scenario, the proposed method is 93% faster and occupies 83% less storage space than when an original
attribute-based encryption scheme is applied. In addition, performance-tunable parameters can optimize our
method for various environments.

INDEX TERMS Embedded system, secure logging, privacy, access controls.

I. INTRODUCTION
The Internet, which started from the Advanced Research
Project AgencyNetwork (ARPANET) developed in 1969, has
become an indispensable technology [1] and is continuously
evolving toward a hyper-connected era in which numerous
heterogeneous devices are interconnected. With the develop-
ment of Internet, advances in the Internet of Things (IoT)
technology result in the production of myriad information
from interacting with machines, devices, and cars without
human intervention. In the future, this information is likely
to be utilized by a number of service providers to create cus-
tomized services such as smart healthcare, smart shopping,
smart homes, smart car care, et cetera.

In such a hyper-connected era, a logging system is one of
the essential modules for building secure and reliable IoT
environments. In general, logs are produced by the logging

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

system according to a de facto standard [2], each of which
presents a wide variety of information on events occurring
within systems, applications, and networks in a small number
of bytes, and as human-readable messages without platform
dependency. These logs generally record events in a sys-
tem. Therefore, they are mainly used in provenance anal-
ysis to quickly discover the root cause or ramification of
attack symptoms when malicious behaviors are detected in
a system [3]–[7]. Recently, cloud service companies present
a publish-and-subscribe logging model, i.e., Logging as a
Service (LaaS), which can store logs produced by multiple
devices to the cloud [8], [9].

This publish-and-subscribe logging model could be
applied into various IoT applications. For example, a self-
driving car owned by a private individual may act as a log
publisher and transmit logs about the vehicle’s internal state
to a cloud. In this case, a ‘‘subscriber’’ denotes a mechanic,
insurer, or vehicle manufacturer. The subscribers, therefore,
can monitor the status of the vehicle from the transmitted

81348 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2505-8797
https://orcid.org/0000-0002-3496-7899
https://orcid.org/0000-0003-3253-4827
https://orcid.org/0000-0003-2908-5266
https://orcid.org/0000-0003-2742-6119
https://orcid.org/0000-0003-0692-2543
https://orcid.org/0000-0003-3181-4480

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

logs and link it to marketing activities for customized
services.

However, behind the bright side of the hyper-connected
era, there is a privacy concern to be addressed. According to
[10], one of the major privacy problems of IoT environments
is that personal data can be collected without awareness
of users. For example, in [11], the careless integration of
health data logs into social networks can cause a privacy
leakage by identifying Fitbit tracker’s vulnerabilities. Like
health data, in-vehicle sensor data logs on the controller area
network (CAN) can be used to infer who is driving because
those sensor data logs indicate driving patterns or habits of a
driver [12].

Unfortunately, there are limitations for existing logging
systems to be directly applied into a new type of logging envi-
ronments like a publish-and-subscribe logging model. The
reason is that existing logging systems and infrastructures
only focus on centralized log management applying one-to-
one encryption. It means that logs cannot be utilized by a
number of service providers in various places.

In centralized log management, when clients request
logs, the server encrypts logs with the key generated via
a key exchanged protocol with the clients and transmits
the encrypted logs. Furthermore, when multiple clients
request logs simultaneously, excessive computational over-
head incurs to encrypt logs in addition to key management
issues. Therefore, existing logging systems are limited in
utilizing encrypted logs in multiple places by only once
encryption, and since the server can access all logs, it is
difficult to guarantee privacy.

In the case of provenance analysis, the reliability of logs
must be guaranteed because the analysis based on manip-
ulated logs leads to incorrect results. Logs inside a system
without external access could be reliable, but logs sent to
a remote server or cloud storage could be manipulated at
unexpected places. Thus, it is difficult to provide sufficient
reliability. Therefore, logs used in provenance analysis are
mainly used under the assumption that they are reliable.

Therefore, it is desirable for a logging system in the hyper-
connected era to be able to guarantee the reliability of logs
and provide an infrastructure that allows only authorized log
subscriber to access the logs.

In this paper, we propose a fine-grained access control-
enabled logging method on a trusted execution environment
(TEE), called TEE-aided Log, or T-Log, which addresses
the above discussed limitations. T-Log supports fine-grained
access control by applying a key-policy attribute-based
encryption scheme with minor modification to be suitable
for secure logging systems; it provides end-to-end security
by encrypting logs with keys derived from one-way hash
functions. The key derivation process is advantageous in that
a log can be verified directly by deriving a key to match
the position of the log, even if previous logs do not exist.
The secret keys (i.e., a symmetric key) and the device’s
unique private-key used by T-Log are handled only within
ARM TrustZone, which is widely used in embedded devices.

In addition, T-Log is practical, as it works with the plug-in of
an existing logging system and provides performance-tunable
optimization parameters for various environments.

The main contributions of T-Log are as follows:

• Proposing a secure logging method that supports one-to-
many encryption by integrating a key-policy attribute-
based encryption scheme and one-way hash functions
within ARM TrustZone.

• Implementing the proposed method as a plug-in of an
existing logging system to satisfy compatibility and
providing performance-tunable parameters to optimize
performance in various embedded systems.

• Providing a method to support a chain of custody for
forensics when adopting logs as legal digital evidence.

• Presenting performance evaluation results and practical
overhead based on open platforms.

The remainder of this paper is organized as follows: in
Section II, we discuss our proposed T-Log system in the con-
text of related works. In Section III, we provide background
knowledge regarding ABE, TEE, and Syslog. In Section IV,
we present a system model and threat model. In Section V
and VI, we explain the T-Log method and security analy-
sis in detail. Considerations when implementing T-Log and
performance results on a real target board can be found in
Section VII and Section VIII. In Section IX, we discuss
limitations and future research areas regarding our method.
Finally, the conclusion is given in Section X.

II. RELATED WORKS
FForward-secure logging: A study by Bellare and Yee was
the first work using one-way hash functions to detect mali-
cious manipulation of logs [13]. The authors reproduced keys
to generate a message authentication code (MAC) on every
predefined time interval called an ‘‘epoch’’ to prevent forged
logs by attackers. Schneier and Kelsey proposed a secure
logging method generating MAC with previous logs on an
untrusted machine to provide manipulation detection of logs
[14]. However, the use of one-way hash functions allows
detection of replay, replacement, and manipulation of logs,
but there are still critical vulnerabilities, in that attackers
could exploit keys and information at any time since the keys
are used in an untrusted environment.

Karande et al. and Paccagnella et al. proposed Intel
SGX-based logging method which encrypts logs by using
symmetric-keys derived from one-way hash functions in
Enclave, a commercial TEE solution supported by Intel
Software Guard eXtension (Intel-SGX) [15], [16]. However,
this approach exhibits limitations extending to a variety of
technologies because it is only able to process logs on the
same local machine. Recently, researchers have investigated
blockchain technology as oneway tomake logsmore reliable.
White et al. generated immutable logs by using Enclave
and sending checkpoints—a digest of logs—to an external
blockchain [17]. Since these proposed methods do not sup-
port one-to-many encryption, as once encryption, many users

VOLUME 8, 2020 81349

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

are unable to utilize the encrypted data in various places and
do not support efficient access control mechanisms to logs.
Thus, it is not sufficient for a decentralized secure logging
infrastructure.
FIBE and ABE: ABE is derived from identity-based

encryption (IBE). The initial idea for an identity-based cryp-
tosystem appeared in Shamir [18], and Boneh et al. subse-
quently proposed the first IBE able to calculate efficiently
based on a pairing operation [19]. Following this, Sahai et al.
extended IBE to handle various public input during data
encryption [20]. ABE is an extension of traditional IBE con-
sidering many identities—so-called attributes—rather than
a single identity. ABE is classified into ciphertext-policy
ABE (CP-ABE) and key-policy ABE (KP-ABE) depending
on where the policy composed of access control structure is
located. CP-ABE is a policy located on a ciphertext, so it is
mainly used to set access permissions for ciphertext when
encrypting sensitive data such as personal health records [21],
[22]. Therefore, CP-ABE must consider access permissions
for a subject who wants to access data before it is encrypting.
Recently, [23] proposed a traceable CP-ABE scheme with
accountability to address both user and authorization center
key abuse.

On the contrary, in the case of KP-ABE, the access policy
is located on a secret key and attributes are associated with a
ciphertext. Goyal et al. proposed amodified KP-ABE scheme
that adds a fine-grained access control structure which has
demonstrated that ABE can be used to audit a log appli-
cation [24]. Recently, Zeutro released OpenABE, an open
library implemented by C++ that emphasizes access control
policies as a cornerstone of these ABE-related studies [25].
However, there is still a revocation problem in ABE. Zeutro
explained in the study that this can be solved by expire-date
attribute, but the downside is that the size of the key and
ciphertext would increase linearly in relation to the number
of attributes. Although the ABE scheme is suitable for secure
logging systems, it is not efficient for embedded systems.
This is because the length of the key and ciphertext increase
linearly in proportion to a number of attributes, and it also
consumes heavy computing power for pairing operations.
FData and log: In a hyper-connected era, there is a need

for a hybrid method that uses data and logs simultaneously
as required. Lee et al. surveyed the limitations of motor vehi-
cle event data recorders (MVEDR) [26] to record vehicular
data in the event of a car accident and proposed a real-time
data recording system called T-Box [27]. However, when
T-Box continuously recorded real-time data generated by a
vehicle, there was significant network traffic overhead when
transferring the recorded data to a destination in addition
to a lack of storage space. As a result, it was necessary to
separate and manage large amounts of data which contains
the current state of a vehicle, and logs which contain short
human-readablemessages that record events on a vehicle. Lee
et al. proposed a logging method based on ARM TrustZone
that could encrypt and transmit logs without changing the
existing Syslog [28], but it made key management difficult

between log publishers and subscribers due to the use of only
symmetric keys and its inability to utilize logs in various
places.
FSecrecy: Previous studies use terminology about secrecy

such as forward secrecy and backward secrecy, but these
terms are interpreted differently in group-key agreement pro-
tocols and server-client models. As such, this paper uses past-
key secrecy and future-key secrecy suggested by Alzaid et al.
in [29]. Past-key secrecy denotes that the previous key cannot
be known by the currently exposed key, whereas future-key
secrecy indicates that the future-key cannot be known by the
current exposed key.

III. BACKGROUND
A. PAIRING-BASED CRYPTOGRAPHY AND KP-ABE
1) BILINEAR MAPS
Let G and GT be two multiplicative cyclic groups of prime
order p and let g be a generator of G, then a map ê : G ×
G→ GT is a (symmetric) bilinear map if it has the following
properties.

• Bilinearity: ∀u, v ∈ G, and ∀a, b ∈ Zp, it holds that
ê(ua, vb) = ê(u, v)ab.

• Non-degeneracy: ê(g, g) 6= 1.
• Efficiency: ê(g, g) is efficiently computable.

2) COMPUTATIONAL BILINEAR DIFFIE-HELLMAN
ASSUMPTION
Let (p,G,GT , ê, g) be a bilinear group. Given the tuple
(ga, gb, gc) where a, b, c ∈ Zp, the computational Bilinear
Diffie-Hellman (BDH) problem is to compute ê(g, g)abc. The
computational BDH assumption holds that solving the prob-
lem is infeasible in polynomial time.

3) KEY-POLICY ATTRIBUTE-BASED ENCRYPTION
KP-ABE consists of the following four algorithms:

• ABESetup(1λ) → (PPs,MK). An authority runs this
algorithm to generate a master key MK and public
parameters PPs associated with MK under security
parameter λ.

• ABEKeyGen(A,MK) → DK . A key generation center
(possibly the same as the authority) havingMK runs this
algorithm to issue a user’s decryption keyDK according
to access policy A.

• ABEEnc(PPs, α,M) → CT . A user who wants to
encrypt a message M with a set of attributes α runs
this algorithm. The algorithm outputs ciphertext CT
corresponding to α.

• ABEDec(CT ,DK)→M/⊥. A user runs this algorithm
to decrypt a ciphertext CT using decrypt key DK asso-
ciated with policy A. If the attribute set of ciphertext
α satisfies policy A (denoted by A(α) = 1), then this
algorithm outputs a correct message M; otherwise ⊥.

To prove KP-ABE, a selective attribute set model under
chosen plaintext attacks (CPA) [24] was introduced by

81350 VOLUME 8, 2020

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

FIGURE 1. ARM TrustZone consists of two worlds according to the
non-secure bit, and each world provides libraries and utilities for
interaction [30], [31].

defining a game in which a challenger C interacts with an
adversary A as follows.
GSS−CPAA,ABE : Selective-Set CPA game.

• Init. A provides the challenge attribute set α∗ to C.
• Setup. C gives PPs to A, where PPs represents public
parameters generated by the ABE setup algorithm.

• Phase 1. A submits an access policy A where A(α∗) 6= 1
and then receives the corresponding DK from C.

• Challenge. A submits two equal length messages M0 and
M1. Then C chooses bit b, and encryptsMb with α∗. The
challenge ciphertext CT ∗ is given to A.

• Phase 2. Identical to Phase 1.
• Guess. A outputs b′ and wins if b = b′.

Definition: KP-ABE has CPA security in the case that
probability A wins the game GSS−CPAA,ABE is negligible.
The model for chosen ciphertext attacks (CCA), denoted

by GSS−CCAA,ABE , can be formalized by accepting the decrypt
query without the challenge ciphertext in Phase 1 and 2.
Definition: KP-ABE has CCA security in the case that

probability A wins the game GSS−CCAA,ABE is negligible.

B. TRUSTED EXECUTION ENVIRONMENT
The trusted execution environment (TEE) is a hardware-
based isolation technology that provides two separate exe-
cution environments that physically share all hardware
resources on one processor. TEE provides a more practical
trusted computing base for running secure software without
wasting hardware resources. Representative commercial TEE
solutions are ARM TrustZone and Intel-SGX. Depending on
which TEE is chosen, there are different considerations from
designing security services to implementation, deployment,
and maintenance. This paper focuses solely on ARM Trust-
Zone, which is used for a variety of embedded devices such as
mobile phones, IoT devices, vehicles, and industrial systems.

FIGURE 1 shows libraries and utilities for running ARM
TrustZone [32]–[34]. ARM TrustZone consists of a normal
world, called a rich execution environment (REE), running
a Rich OS such as Linux or Windows, and a secure world
running a Secure OS. An application running in REE is called
a client application (CA), and an application running in TEE
is called a trusted application (TA). The TA is a passive

application that is called from the CA and provides security
services.

Two elements are necessary to operate ARM TrustZone:
ARM trusted firmware (ATF) [30], which is responsible
for initializing a device and managing boot-chain, and an
open portable TEE (OP-TEE) [31], which operates a secure
world. ATF provides a secure boot scheme that guarantees
a maliciously modified binary will not work until the user
program is run from initially run at power up. This only
runs properly signed binaries, which prevents an attacker
from gaining privilege at boot time. OP-TEE consists of a
Secure OS to run TA, related libraries, a TEE service daemon
called tee-supplicant that runs as a background process in
REE, and a Linux device driver. The tee-supplicant provides
a file system and network resource to TEE. The device driver
manages memory and communication channels between CA
and TA. Related application programming interfaces (API)
are standardized by GlobalPlatform [35]. Typical standards
include Client API for requesting security service from TA,
Internal API for key generation and data encryption inside
TA, Socket API for connecting to a remote server with the
assistance of tee-supplicant, and SE API for storing sensitive
data to a secure element (SE) with tamper-resistant hardware.

Normal worlds and secure worlds are distinguished by
a non-secure (NS) bit in the secure configuration register
(SCR). Setting the NS-bit is possible only inmonitor software
running in monitor mode. Switching between normal and
secure worlds is generally called world switching. NS-bit
in SCR is directly linked with advanced extensible interface
(AXI), a main bus line inside system on chip (SoC), and can
affect the operating environment of all intellectual property
(IP) connected to AXI as a secure or non-secure execution
environment [33].

C. SYSLOG
Syslog was developed by researcher Eric Allman, who
worked on the Sendmail open source project in 1980, which,
since its introduction into Berkeley Software Distribution
(BSD), has become a ‘‘de facto standard’’ widely used in a
variety of unix-based systems. Syslog has evolved continu-
ously since becoming a standard through request for com-
ments (RFC) by Internet engineering task force (IETF).

According to RFC5424 [2], Syslog messages consist
of message length, header, and message. Among them,
the header field consists of the log priority, Syslog protocol
version, log creation timestamp, hostname of themachine that
generates the log, application name, and process id, the source
and destination IP address and so on. The priority value can be
expressed in 8 bits as a numerical code. It has a facility value
in a range from 0 (kernel message) to 23 (local7) depending
on log use purpose and severity value from 0 (emergency) to
7 (debug). The priority value is calculated by first multiplying
the facility value by 8 and then adding the numerical value of
the severity.

Representative solutions that improve the stability and
scalability of the existing Syslog standard are Rocket-fast

VOLUME 8, 2020 81351

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

FIGURE 2. Logging infrastructures consist of publishers who generate
logs, subscribers who want to utilize logs, and a cloud.

Syslog (Rsyslog) [36] and Syslog next generation (Syslog-
ng) [37]. Since 2009, Debian’s code name Leny has adopted
Rsyslog as the default logger, which is compatible with the
existing Syslog configuration and takes into account message
processing capacity, processing speed, and scalability [38].
Ubuntu, mainly used by developers, is based on the Debian
distribution.

Rsyslog has a modular structure that allows for the adding
of various modules as a plug-in for supporting scalabil-
ity. Rsyslog consists of three modules, input modules for
supporting various log input methods, modification mod-
ules for reprocessing input messages into desired form,
and output modules for storing processed logs as files and
databases or for transmitting them to a remote server. Rsys-
log’s configuration file written in a scripting language can set
rules of filtering logs and actions to handle events. Through
this configuration file, Rsyslog handles log-flow from input
to output modules.

In this paper, we use the log priority to provide access
control to logs and a plug-in that is compatible with existing
logging systems to support a secure logging mechanism.

IV. OVERVIEW
A. SYSTEM MODEL
Logs are human-readable messages generated by software
running inside a device. FIGURE 2 shows an abstraction
of logging infrastructure in which publishers produce logs
and subscribers utilize logs to provide customized services.
In this paper, the publisher is a subject that generates logs and
distributes them to a cloud, and the subscriber is a subject that
reprocesses and analyzes distributed logs in the cloud.

B. ADVERSARY MODEL
In a logging infrastructure supporting the publish-and-
subscribe model as shown in FIGURE 2, the generated logs
could be accessed by an adversary such as unauthorized
subscribers or a cloud server because logs generated within a
device might contain privacy-sensitive information the adver-
sary are interested in. In addition, the adversary can mali-
ciously manipulate logs to cause confusion for authorized
subscribers and obstruct the provision of correct customized
services. However, we assume that the adversary cannot
access to secret values within TEE, e.g., ARMTrustZone; the
side-channel attacks on TEE [39] is out of scope of this work.

C. REQUIREMENTS
In the above described logging system, publisher-generated
logs must satisfy the following security requirements.

FR1. Fine-grained access control: Logs generated by
smart home, smart healthcare, and smart car devices include
sensitive information related to user privacy. In a hyper-
connected era, a number of subscribers who provide cus-
tomized services must be able to legally acquire and utilize
these logs. In the existing server-client model, one-to-one
encryption is applied. It means that existing logging systems
only provide log confidentiality through a communication
channel, so the server is able to access all logs. This results
in a privacy issue over logs. In addition, when a number
of subscribers request logs, the server requires tremendous
overhead for enencryption and transmission according to the
number of requesting parties. To solve this issue, the log-
ging system must provide a one-to-many encryption scheme
that can be decrypted in various places with one encryption.
Also, fine-grained access control should be applied to the
logs based on specific attributes from logs. This require-
ment can transform existing, centralized logmanagement into
decentralized logging infrastructure. This requirement is also
included in the ‘‘Data Subject Rights’’ of the European Union
General Data Protection Regulation (GDPR), which went
into effect in May 2018 [40].
FR2. Reliability and key protection: Since logs record

various events generated in a device, they can be used as
digital evidence for forensics or in provenance analyses to
uncover root causes that trigger malicious behaviors in a
system. Misjudgments made by using abnormally manipu-
lated logs in log analyses can lead to unexpected results and
waste considerable time. For example, vehicular manufactur-
ers may tamper with logs produced from a vehicle involved
in an accident to hide significant faults in a vehicle itself, and
malicious users could send abnormally modified logs to force
the server into poor decision-making. As such, reliability,
integrity, authentication, non-repudiation, and immutability
of logs are essential security properties. Integrity can detect
manipulation of logs, authentication and non-repudiation can
verify whether the logs were generated from the correct
device, and immutability can preserve the order of logs.
Furthermore, to prevent forging, all the relevant keys should
be handled within trusted execution environment without any
key exposure.
FR3. Practicality: Abandoning the existing logging sys-

tems used for decades and introducing a new one to build a
decentralized infrastructure is quite inefficient and expensive.
Emerging logging systems, therefore, must be compatible
with existing systems to guarantee easy application and use.
In addition, even if hardware resources are limited such as
embedded systems, the logging systems must be able to be
effectively applied to various environments. Therefore, opti-
mization parameters must be provided to handle processing
overhead in various environments.

V. DESIGN
A. MAIN CONSIDERATIONS FOR DESIGNING T-LOG
FFine-grained access control to logs: We considered ABE
to provide fine-grained access control. As in Section II, ABE

81352 VOLUME 8, 2020

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

is categorized into KP-ABE and CP-ABE according to where
the access structure comprising the policy is located. In this
paper, we adopt KP-ABE. Logs are generated by various
processes from system-process to user-process. When CP-
ABE is applied to the logging system, devices must consider
the access structure for each log entry. At this time, it is
difficult to predeterminewhich logs will be required bywhich
subscribers. Furthermore, if the device encrypts logs with a
wrong access structure, all logs must be re-encrypted.

By applying KP-ABE, T-Log can quickly encrypt logs
without considering the access structure by using specific log
message fields as attributes. After that, when a subscriber
requests a decryption key, a trusted operator can issue a key,
which includes access structure regarding the policy. Thus,
applying KP-ABE as a secure logging system is practical. It is
also advantageous in that the ciphertext size is proportional to
the log message size since only the predefined attributes were
used.

Although hashing can provide log immutability, it cannot
support fine-grained access control for various subscribers
whowant to utilize encrypted logs. Therefore, T-Log encrypts
logs using keys derived from an initial key via a one-way hash
function and encrypts the initial key with KP-ABE to provide
access control.

More precisely, we adopt a KP-ABE scheme by Goyal
et al. [24] and Zeutro [25] with a minor modification.
This modification leads to ciphertexts reduced in size and
enhances performance for embedded systems. The construc-
tion of our scheme is described as follows.
• ABESetup(1λ). Under given security parameter λ, this
algorithm first defines the universe U = {1, 2., . . . , n}.
Then, it randomly chooses t1, . . . , t|U |, y ∈ Zp and
generates public parameter PPs and master key MK as
shown below:

PPs = (T1 = gt1 , . . . ,T|U | = gt|U | ,Y = ê(g, g)y),

MK = (t1, . . . , t|U |, y).

• ABEKeyGen(A,MK). The algorithm uses access structure
A andMK . Here, A is realized by a linear secret sharing
scheme (LSSS) [41]. From LSSS, the algorithm can
determine random shares λi of secret y according to
A, where each share is assigned to the corresponding
attribute (we omit a concrete description of LSSS and
instead refer readers to the study [41]). A decryption key
DK is a set of DKi as shown below:

DKi = gλi/ti for i ∈ {1, . . . , `},

where ` is the number of rows in the matrix associated
with A in LSSS.

• ABEEnc(PPs, α,M). The algorithm uses PPs, attribute
set α, and message M ∈ {0, 1}k . Then it chooses a
random s ∈ Zp. The ciphertext is:

CT = (α,C ′ =M⊕ H (Y s),Ci = Tis)i∈α,

where H : {0, 1}∗→ {0, 1}k is a hash function.

• ABEDec(CT ,DK). The algorithm uses CT under α and
DK associated with A. If A(α) 6= 1 then it outputs ⊥.
Otherwise, it can obtain a set of coefficients� = {wi}i∈α
such that

∑
i∈α wi · λi = y in the LSSS reconstruction

manner. Then, for i ∈ α it computes the following
values:

Yi = ê(Ci,DKi) = ê(g, g)λis.

It finally obtains M by C ′ ⊕ H (Y s),Y s =
∏

i∈α′ Y
wi
i .

FKey secrecy and periodic time T : T-Log satisfies not
only past-key secrecy by applying a hash-chain based on
a one-way hash function, but also future-key secrecy by
updating periodic key Pkey every period T . The initial block
key BKey derived from PKey is encrypted with ABE and
distributed to the cloud. At this time, if an adversary were to
obtain the BKey decrypted with P computing power, he/she
would only be able to decrypt logs processed within T using
the obtained BKey, but not the logs produced after time T .
If the adversary wished to access these logs, he/she has would
be required to spend P computing power again.

Notably, we use M as an initial key BKey(0). More pre-
cisely, PKey and BKey are derived as follows:

PKey(t) =

{
H (SKey), if t = 0
H (PKey(t−1)), otherwise,

where SKey is a secret key that is shared with stakeholders
through the hierarchical shared secret scheme (HSSS), and t
is a value of a monotonic counter located in TEE, which is
generated by time T .

BKey(b) =

{
H (PKey(t) | Tag), if b = 0
H (BKey(b−1)), otherwise,

where Tag is a priority value of a log entry, and b is an index
of a block that manages a predefined number of log entries.
In addition,
FKey protection: T-Log applies a key-derivation process

using a one-way hash function to provide key secrecy and log
immutability. This means that if an adversary obtained an ini-
tial key, they could easily reproduce all relevant keys. There-
fore, T-Log adopts ARM TrustZone as an optimal solution
to prevent key exposure in embedded systems. All relevant
keys used by T-Log are only handled within ARM TrustZone
without key exposure.

B. ARCHITECTURE
T-Log infrastructure requires publishers, subscribers, and a
trusted operator (TO) as shown in FIGURE 3. The main role
of the TO is to manage access permissions and keys regarding
to logs. The TO manages the ruleset and policies related
to access permissions set by publishers, and synchronizes
with the subscriber T-Logwhen necessary.When a subscriber
requests a key from the TO in order to decrypt specific logs,
the TO checks the rules set by publishers regarding the logs
and composes a policy accordingly to issue the key. At this
time, the policy builds up an access control structure by

VOLUME 8, 2020 81353

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

FIGURE 3. T-Log functions across publishers and subscribers. publishers encrypt logs through T-Log and distribute them to various channels.
subscribers can decrypt the logs with a decryption key received from the trusted-operator. T-Log and the trusted-operator are synchronized over a
secure channel.

FIGURE 4. An entry is roughly composed of a public-field accessible to
everyone, a secret-field to be protected, and a MAC.

using a publisher ID and a log priority managed by Syslog
protocol. This makes subscribers only able to access logs
that match a policy in DK having the publisher’s ID and
log priority. Details are given in Subsection V-D and Sub-
section V-E. Publishers, subscribers, and a TO communicate
with each other over a secure channel established by the
TEE Socket API for rule synchronization. REE and TEE
use shared memory to encrypt and decrypt logs. The shared
memory uses a ring-buffer for efficient use of memory.

C. ENTRY STRUCTURE
The output of T-Log is generated with a predefined structure
called entry. The entry is classified into one of three types.
An ABE entry (AE) includes a BKey encrypted via ABE and
a log entry (LE) includes an original log message encrypted
via AES-CBC256. Lastly, the signature entry (SE) contains
a signature generated by the device’s private key. Each entry
must be a type of string presented in ASCII codes for com-
patibility with Syslog. For this, T-Log encodes each entry as
Base64 [42]. This operation maximizes the advantages of the
existing Syslog. For example, an entry produced by T-Log can
be displayed more efficiently through a console, connected
to various output modules configured in a configuration file,
transferred to a remote server, or saved as a database through
structured query language (SQL).

FIGURE 4 shows an entry structure generated by T-
Log. An entry consists of a public-field (PF), a secret-field
(SF), and a message authentication code (MAC). PF is not
encrypted as a field accessible to everyone, but it should be
included when generating a MAC since it affects the integrity
of the whole message. Internally, it contains an owner ID,
message type, priority, and sequential index. PF is used when

a log is later decrypted by subscribers. The ID and priority
are used as attributes of ABE while the generated entries are
managed by entry units (Index: e). If an entry size is larger
than the Syslog message size, it is divided into sub-entries
(Index: s) with sub-entry total (Index: t). Rsyslog essentially
sets a log message size to 1KB and T-Log fixes the default
entry size to 512Bytes, considering the base64 encoding.
When the size of an input message is n bytes, the output
size is d 4n3 ebytes. Of course, this setting can be modified
depending on the log message size of Rsyslog. When the
number of entries included in a block (Index: b) is equal
to the predetermined number of entries, a publisher creates
a signature for the block and sends it as an entry SE to
support non-repudiation. SF consists of log messages sent
from Syslogd and a TEE timestamp (T-TS) at the time of
T-Log processing, and be encrypted with AES-CBC mode
for confidentiality. Finally, the MAC is generated through
HMAC-SHA256 with PF and SF.

D. LOG PUBLISHER
A publisher consists of an application that generates logs,
a Syslog daemon (Syslogd) that runs as a background pro-
cess to handle logs, and T-Log. The application sends log
messages to Syslogd.More precisely, the application calls the
Syslog function in a standard C library (libc). Syslog function
is handled in Linux kernel through system call, and Linux
kernel delivers application-generated log messages to the
Syslogd message queue through Syslog system call handler.
This section describes how the T-Log located in the publisher
works to provide security properties.

1) FORENSICS-ENABLED KEY DERIVATION
FIGURE 5 shows the entire key derivation process in which
the initial block key (BKey) is used for one block. T-Log
generates a secret key (SKey) through a random number
generator (RNG) or a password-based key derivation function
(PBKDF) to prevent brute force attacks during setup. The
generated SKey is divided into secrets for participants through
hierarchical secret sharing schemes (HSSS), encrypted with

81354 VOLUME 8, 2020

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

FIGURE 5. T-Log distributes a first-generated SKey to each participant
through a secret sharing scheme that supports digital forensics and
derives PKey from SKey .

FIGURE 6. Rectangles represent participants, and each ellipse represents
the threshold level of secret sharing to reconstruct the SKey . ‘‘k of n’’
means that if more than k secrets are combined from n participants,
the secret can be reconstructed.

the public-key included in each participant’s certificate, and
stored in an InitBlk (Initial Block). In addition, T-Log cre-
ates a signature based on RSASSA-PKCS1-v1.5 2048-bits
to support the non-repudiation security requirement for every
block unit. The InitBlk contains not only secrets but also an
extra header-field to involve the time when the T-Log was
initialized and the device’s serial number. Secrets divided
by HSSS can become a restored SKey only when there
are a number of secrets that meet the set threshold. The
restored SKey can derive PKey and BKey through the ini-
tialization time of InitBlk in the header-field recorded by T-
Log. Thus, the InitBlk is constructed in a simple as follows:
[Header|RSAENC (secreti,PubKeyi)]i∈participants.
This is for using the log produced by T-Log as forensic

digital evidence. In digital forensics, electronic evidencemust
adhere to a chain of custody. This requires chronological
documentation from initial data collection to its official use
as evidence [43]. If logs generated by T-Log need to be used
as legal evidence, HSSS can obtain explicit approval from
relevant participants and document when the SKey is restored.
The keys used to produce an entry can be re-derived only
through the reconstructed SKey, InitBlk’s initial time, and the
log’s creation time, such that the reliability of the logs can be
guaranteed by verifying entries using corresponding keys.

For example, in the case of logs generated from a vehi-
cle, SKey can be first divided into two shared secrets S1
and S2 through HSSS as shown in FIGURE 6. In order to
decrypt logs in the event of a vehicle accident in this example,
a neutral national investigation agency managing the chain of
custody must participate, and the threshold level accordingly
is set to ‘‘2of2’’. The other secret, S2, is composed of four
participants related to the vehicle. The threshold is set to

‘‘2of4’’ so that at least two participants are required to agree to
restore S2. This is to consider situations in which one driver
does not survive the car accident. As such, HSSS has the
advantage of being able to set an appropriate reconstruction
condition for each application environment while delivering
one secret to all participants [44].

The PKey is initially derived from SKey and reproduced
by hash function every period T as shown in FIGURE 5.
This is to ensure the validity of the key only within that
predefined period, even if a strong attacker were to take over a
BKey(p, 0). This means that, in past studies, only the past-key
secrecy for each key was provided through the hash function,
but T-Log provides future-key secrecy by reproducing the
PKey every period T .

T-Log processes logs in each branch classified based on the
log’s priority. The log priority consists of eight bits, so T-Log
has a maximum number of 255 branches. When the current
time reaches the predefined time T , T-Log signs the digests
of the logs processed in each branch and produces an SE.
At this time, T-Log derives BKey to handle a newly delivered
log from PKey. If there is an existing block in a branch and
the block is full of entries, BKey is derived from the previous
BKey. In this way, T-Log ensures continuity of keys through
a key-derivation rule from SKey to BKey. The generated BKey
is encrypted with ABE to become an AE and is included in
one entry in a block. The BKey and the keys needed to encrypt
logs are described in the next section.

2) ENCRYPTING A BKey BY ABE AND SET ATTRIBUTES
T-Log uses KP-ABE. Thus, publishers can encrypt data
quickly by assigning only the attributes according to log
contents, without consideration for log access permissions.
In FIGURE 5, BKey is the first key used in a log block and
is encrypted with ABE. The original KP-ABE uses hybrid
public-key encryption using asymmetric encryption based on
the pairing operation and symmetric encryption based on
AES to improve computation performance. Schemes using
this key encapsulation mechanism (KEM) usually choose a
random number as messageM, then encrypts theM with an
asymmetric cipher. After that, it encrypts real input plaintext
with a symmetric cipher by using M as a symmetric key.
The Celia library [45] referenced in T-Log implementation
is based on the CP-ABE library [46] and uses the KEM.
The function of ABEEnc(PPs, α,M), which is part of libcelia
encryption, needs PPs, a set α of attributes and message
M which is chosen at random in Zp. Then it chooses a
random s ∈ Zp. The result consists of two ciphertexts.
CT1 ← (α,C ′ = MY s,Ci = Tis)i∈α which encapsulates
a symmetric-key under the access structure, and CT2 ←
AESENC (plaintext,H (M)) which encrypts plaintext with the
H (M) as the symmetric-key.
In T-Log, only a 256-bit BKey is encrypted with ABE, and

logs are encrypted using a symmetric key derived from BKey.
Therefore, T-Log produces only an AE as CT1 without CT2.
Let p be an index of periodic time T and m be a log priority.
The BKey as the M derives from PKey: BKey(p,m) ←

VOLUME 8, 2020 81355

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

FIGURE 7. T-Log derives an encryption key (EKey) and a MAC key (MKey)
from the current BKey to process an arbitrary log and to satisfy the
immutability of logs. In order to guarantee the origin of logs, a signature
is generated for each block.

H (PKey(p)|m)m∈[0,255]. Thus, T-Log produces CT (p,m) ←
(α,C ′ = BKey(p,m)⊕H (Y s),Ci = Tis)i∈α and AE(p,m)←
[PF |CT (p,m)].

T-Log applies two attributes when encrypting a BKey to
produce an AE, which is the first entry of a block. The first
is a publisher ID as a string attribute and the other is a log
priority defined in the Syslog protocol as an 8-bit numerical
attribute. The priority consists of a combination of facility
and severity levels [2]. As the number of attributes in KP-
ABE is increasing, the ciphertext size also increases linearly.
Therefore, T-Log minimizes the length of ciphertext with
policy setting an ID as a string-type attribute and a priority
as an 8-bit numerical attribute. The results of the linearly
increasing length of keys and ciphertext according to its
number of attributes are covered in Section VIII.

3) KEY CHAINING FOR IMMUTABILITY
FIGURE 7 shows the process of encrypting logs and gener-
ating a MAC using EKey and MKey derived from the current
BKey, which is used to process blocks that are included in a
branch classified by a priority, and the PKey described earlier
is derived from the hash-chain to satisfy the forward integrity
property. A similar method was first used in [13] by Bellare
and Yee. T-Log derives the keys used in each block from the
one-way hash-chain. This way, if there is a modified entry,
a subscriber can detect it through MAC verification using a
derived MKey, and can get assurance regarding entries in a
block through signature verification by using a publisher’s
public-key. In case of MAC generation, applying hash-chain
with the previously used key without including a digest of a
previous entry, can be directly verified through key derivation
without the previous log if there is a request to decrypt an
arbitrary log later. The order can also be maintained.

4) EXTENDED TEE INTERNAL API
There are three entry types generated by a publisher as in
Section V-C. LE is an entry containing raw logs delivered
from Syslogd, and an input log and an output entry are
mapped to each other. Thus, it is generated through a syn-
chronized operation between CA and TA. However, an AE

Algorithm 1: The Pseudocode of T-Log Publisher
In : Log /*A log received from Syslogd*/
Out: Entry ∈ {AE, SE,LE}

1 LM ← Log-manager handling global parameters;
2 Create a new entry with PF from Log and LM ;
3 Call SyncLogManager();
4 Call KeyDerivation();
5 if message-length > MaxMsgLen then /*split*/
6 Split message then set PF .s and PF .t;
7 end
8 Temp← AESEnc(SF,EKey);
9 MAC ← HMACGen(PF |Temp,MKey);

10 LE ← [PF |Temp|MAC];
11 TEE_ReeSyslog(LE);
12 LM .branch[pri].digest ←
H (LM .branch[pri].digest|LE);

13 Increase LM .branch[pri].eid ;
14 if LM .branch[pri].eid > NumOfEntry then
15 /*send signature*/
16 SE ← RSAsign(LM .branch[pri].digest);
17 TEE_ReeSyslog(SE);
18 LM .branch[pri].eid ← 0;
19 Increase LM .branch[pri].bid ;
20 end

and SE should be handled as additional messages through
the Syslog function located in REE. For this, T-Log adds a
new API called TEE_ReeSyslog in the existing TEE Internal
API. The basic framework of TEE_ReeSyslog to support
calling REE from TEE has referred to Secure Storage API
and TEE Socket API included in TEE Internal API, and a
Syslog patch proposed in 2016 [47]. For the extended API,
T-Log has modified the optee-os, TEE internal library, and
tee-supplicant to extend the interface to the latest OP-TEE.
T-Log uses the extended API to pass an AE and LE to tee-
supplicant located in REE, and tee-supplicant calls Syslog
function to generate additional log messages.

5) T-LOG ALGORITHM FOR A PUBLISHER
Algorithm 1 to 3 show pseudocode for each sub-modules
of a publisher. All logs are handled by the T-Log manager
called LM. The publisher receives a log from Syslogd output
module and then parses the information needed to construct
an entry, such as generated time, priority, log message, and
then adds the time processed in T-Log (line 2 in Alg. 1),
then it calls SyncLogManager to sync LM with the current
time (line 3 in Alg. 1). The added TEE time in a log entry is
used to check abnormal situations in which the time variation
between the generation time and processing time is large
during the verification phase. If the predefined time T has
elapsed, the SE is produced by signing the digest of the log
processed so far and delivering it to the tee-supplicant in REE
through TEE_ReeSyslog function (line 1-9 in Alg. 2). Next,
the PKey is reproduced (line 10-15 in Alg. 2), then it calls

81356 VOLUME 8, 2020

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

Algorithm 2: The Pseudocode of SyncLogManager

1 if T is expired then
2 /* check all priority branches */
3 if LM .br[pri].status 6= empty then
4 /* send signature */
5 SE ← RSAsign(LM .branch[pri].digest);
6 TEE_ReeSyslog(SE);
7 /* clear branch information */
8 Clear LM .branch[pri];
9 end

10 /* update PKey */
11 sync = [SF .T -TS−LM .lasttimeT];
12 while sync 6= 0 do
13 PKey← H (PKey);
14 Decrease sync;
15 end
16 end

Algorithm 3: The Pseudocode of KeyDerivation

1 if PF .e = 0 then
2 /* derive BKey and create AE */
3 if PF .b = 0 then
4 /* first block in priority branch */
5 BKey← H (PKey);
6 else /* previous block exists */
7 BKey← H (BKey);
8 end
9 AE ← [PF |ABEEnc(PPs, α,BKey)];

10 LM .branch[pri].digest ←
H (LM .branch[pri].digest|AE);

11 TEE_ReeSyslog(AE);
12 end
13 EKey← H (BKey|‘‘E ′′|PF .e);
14 MKey← H (BKey|‘‘M ′′|PF .e);

KeyDerivation to derive keys (line 4 in Alg. 1). If the received
log is positioned at the first entry in a branch created based
on the log priority, LM derives BKey from PKey. At this time,
if the previous block exists in the branch, it is derived from
the previous BKey (line 1-8 in Alg. 3). The generated BKey
is treated as M in ABE for encryption, and the ciphertext is
reconstructed as AE and passed to TEE_ReeSyslog function
(line 9-11 in Alg. 3). At this time, Y s ∈ GT is converted to a
fixed 256 bits through element_to_byte API in PBC library
and H function, which then encrypts BKey with it. Next,
the keys for encryption and MAC generation are derived
from BKey through H function for operation on Zp (line 13-
14 in Alg. 3). If the length of the message is longer than
what Syslogd can handle, it is split into sub-entries and then
processed (line 5-13 in Alg. 1). If the number of processed
LEs exceeds the number of entries included in the block,

an SE from digest for the block is created and transferred to
TEE_ReeSyslog function (line 14-20 in Alg. 1).

E. TRUSTED OPERATOR
Trusted operator (TO) is to act as an intermediary between
publishers and subscribers along with key-management.
TO creates MK and PPs used in ABE, and delivers PPs
to the T-Logs located at the publisher and subscriber. The
publisher sets the ID and log priority as attributes, then BKey
is encrypted with the PPs to create an AE. The publisher then
sets a rule for entries and sends it to the TO. Subscribers
can request the TO to issue their DK . The TO generates a
policy according to the subscriber’s request if it is satisfied
with the corresponding ruleset and issues generatedDK to the
subscriber or request the publisher to set a rule if the ruleset
does not exist. For instance, ‘‘(ID = Alice) and ((Pri ≥ 8#8)
and (Pri ≤ 15#8))’’ states that among entries created by
Alice, an 8-bit (#8) priority greater than or equal to 8 and less
than or equal to 15 can be decrypted, which means the log
generated by a user application (Facility: 1) extends from the
emergency level (Severity: 0) to the debug level (Severity:
7) according to the Syslog protocol (Pri = Facility �
3 | Severity) in RFC 5424 [2].

F. LOG SUBSCRIBER
As the subscriber T-Log works in reverse to the publisher
T-Log in Algorithm 1 to 3, we do not explain in detail.
In short, the subscriber provides information about logs
that want to decrypt to the T-Log requester (TR). The TR
first requests to check the validity of the subscriber DK
from T-Log. The T-Log validates DK via a TO and obtains
BKey from an associated AE if the DK is valid: BKey ←
ABEDec(AE,DK). Then EKey and MKey are derived from
BKeywith PF in LE: EKey← H (BKey|‘‘E ′′|PF .e),MKey←
H (BKey|‘‘M ′′|PF .e). At this time, even though DK is valid,
if the policy of DK issued from the TO does not match the
ciphertext attributes, the BKey cannot be decrypted, and the
log decryption fails.

If an LE is authenticated by using a derived MKey, the SF
in the LE is decrypted with EKey, and then delivered to TR.
Finally, TR delivers the decrypted log to a subscriber. Thus,
TR plays a role in assisting T-Log’s stable operation. TR can
transfer entries stored in local storage or on a database to
T-Log, or it can download requested entries from a cloud.
In Section VIII, we use entries stored as local files for evalu-
ation.

TO and T-Log operate on the basis of mutual trust and the
actual keys are not delivered to users. This mode of operation
solves the revocation problem of ABE. Of course, T-Log
can solve the revocation problem by using the an expired
date attribute proposed by Bethencourt et al. in [21], but
this means a 32-bit numerical attribute. A large numerical
attribute is inefficient because it increases the size of the key
and ciphertext, and is not suitable to T-Log, which transfers
logs in real time.

VOLUME 8, 2020 81357

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

FIGURE 8. The protocol consists of registration, producing, and
consuming phases, and sensitive parameters are transferred through a
secure channel.

We decided that both publishers and subscribers could
resolve this problem if they operate within TEE. Accord-
ingly, T-Log applies minimum attributes to reduce the size
of the key and ciphertext, and can control the expiration
date of the subscriber with the corresponding ruleset located
in TEE. Of course, a disadvantage of this mode of opera-
tion is that a subscriber also needs an additional external
device. However, service providers can easily accept the addi-
tional cost for more reliable log acquisition since the goal
is to provide a more suitable service to customers. In addi-
tion, T-Log can apply Intel-SGX to subscribers for utilizing
logs [48].

G. PROTOCOL
FIGURE 8 shows a high-level protocol between publishers,
subscribers, and a TO. It is roughly categorized into reg-
istration phases, producing phases, and consuming phases.
In the registration phase, a publisher and subscriber generate
a public key pair for a digital signature and register the
RSAKeypub with a unique ID assigned to each device related
to the TO. The TO delivers public parameters PPs generates
in ABESetup to each device in advance. In the producing
phase, a publisher encrypts the generated logs with PPs and
attributes, then distributes them to the cloud. In order to build
a more reliable environment, T-Log can send a digest for each
section of logs sent to the blockchain platform. If a subscriber
does not have DK , the subscriber may request TO to issue a
key or request validation of a previously issued DK . If the
DK is valid, the subscriber can decrypt logs stored in the
cloud viaDK .When publishers and subscribers communicate
with a TO, they establish a channel using TEE Socket API to
communicate securely.

TABLE 1. Mechanisms for the secure logging system system.

VI. ANALYSIS
A. APPLIED MECHANISMS
TABLE 1 shows the mechanisms applied in T-Log to sat-
isfy the requirements outlined in Section IV-C. Furthermore,
it shows the relationship of security properties, such as identi-
fication (ID), authentication (AuthN), authorization (AuthZ),
confidentiality (CNF), integrity (INT), non-repudiation (NR),
immutability (IMM), and trusted computing (TC), provided
by the mechanisms in T-Log.

KP-ABE provides various security properties. The ID
attribute applied when encrypting logs with KP-ABE can
identify publishers, and a trusted operator can authenticate
subscribers and issues decryption keys regarding the policy.
It only allows authorized subscribers to decrypt the logs. T-
Log has applied a minor modified scheme from KP-ABE in
Section V-A. The modified scheme in T-Log encrypts BKey,
which is an initial key used for a log block managing multiple
logs. The proposed scheme is effective in encrypting and
transmitting each log generated in real time on embedded sys-
tems. We evaluate the performance of T-Log in Section VIII.
Even though the KP-ABE scheme that was used generally
follows the design for a variant ABE scheme regarding key-
encapsulation mechanism [25], the security therein has not
been concretely proven as dependent on the scheme. As such,
the security guarantee of the KP-ABE scheme used in T-Log
is formally described in Section VI-B (R1).

In order to provide log reliability, integrity must be guar-
anteed to prevent manipulation by malicious users, and the
encrypted logs stored in cloud storagemust only be decrypted
by subscribers who satisfy the policy. In addition, the creation
time and sequence of events occurring in the system are
very important. In particular, immutability must be guaran-
teed in digital forensics and provenance analysis. To achieve
these properties, T-Log applies HMAC256 as the message
authentication code and RSASSA-PKCS1-v1.5 2048-bits as
the signature to ensure that the logs are correctly generated
by honest publishers. Additionally, T-Log applies AES256-
CBC for fast log encryption in embedded systems. To ensure
the log immutability, T-Log uses keys derived from a key
derivation process using a one-way hash function. At this
time, T-Log adds a monotonic counter value and timestamp
to the logs, and it handles various keys to satisfy these prop-
erties. To ensure that these keys are not exposed, all keys are
handled only within a trusted execution environment called
ARM TrustZone (R2).

81358 VOLUME 8, 2020

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

To facilitate compatibility, T-Log operates with a plug-in
of Rsyslog, which is an existing logging system in Debian
Linux. Furthermore, T-Log provides tunable parameters to
optimize performance in embedded systems. Thus, T-Log can
be applied to various embedded systems by setting the num-
ber of log entries to be included in one block unit or changing
the period of time T (R3).

B. SECURITY GUARANTEE OF KP-ABE IN T-LOG
The security of the original KP-ABE scheme [24] can be
proven under the decisional bilinear Diffie-Hellman (BDH)
problem [49] by showing that if an adversary enables to
break the KP-ABE scheme then the problem could be solved.
Following the original strategy, it is possible to show that
the aforementioned T-ABE has CPA security. The security
proof holds using the computational BDH assumption which
is weaker than the decisional one, but it requires the random
oracle model [50]. More precisely, consider the following
theorem:
Theorem: Let H be modeled as a random oracle. Then the

KP-ABE scheme described in Section V-A has CPA security
if the computational BDH assumption holds.

Proof: Let (p,G,GT , ê, g) be a bilinear group and let
(ga, gb, gc) be an instance of the computational BDH prob-
lem. Then a challenger C can solve the problem if an adver-
sary A wins the game GSS−CPAA,ABE . C simulates the game as
follows.

• Init. A gives a challenge set α∗ to C. In addition, C
controls the hash oracle forH , in which for a query about
x, C outputs gγ by randomly choosing γ ∈ Zp and stores
(x, gγ) in a hash list. If x have been queried before then
it outputs the corresponding gγ from the list.

• Setup. C first sets Ti = gri for atti ∈ α∗ and Ti = (gb)ri
for atti /∈ α∗ where ri ∈ Zp is randomly chosen, and sets
Y = ê(ga, gb). Some elements of MK are implicitly set
to unknown exponents regarding either a or b.

• Phase 1. For a key query about A such that A(α∗) = 0,
let M ∈ Z`×k be the matrix associated with A in LSSS
and let Mα∗ be the sub-matrix of M consisting of rows
assigned by α∗. C first finds a vector Eu = (u1, . . . , uk) ∈
Zkp such that u1 = 1 and Mα∗Eu = 0. These uis can be
efficiently obtained from linear algebra and the relevant
proposition is defined in the appendix of the study [24].
Consider a vector Ev = (v1, . . . , vk) ∈ Zkp randomly
chosen by C and a vector Es = bEv + (ab − bv1) · Eu
implying s1 = ab. Recall that the secret shares exist in
LSSS and in particular, they are defined to λi = MiEs ∈
Z`p where Mi are the i-th row of M associated with A.
Now, the secret key for A is as follows. For a share
assigned to an attribute atti ∈ α∗, the corresponding
secret is DKi = gMiEs/ri = (gb)MiEv/ri since MiEu = 0.
Otherwise (i.e., for atti /∈ α∗), the secret is DKi =
gMiEs/bri = gMi(Ev−v1Eu)/ri (ga)MiEu. Obviously, these secrets
can be computed with the values that C knows. Finally
C gives the DKis to A as the response.

• Challenge. C simulates a challenge ciphertext of α∗

as CT ∗ = (α∗,R, (gc)ri)i∈α∗ where R ∈ {0, 1}k is a
random string and the random value used to encrypt s
is implicitly set to the unknown exponent c.

• Phase 2. The simulation is same as in Phase 1.
• Guess. A outputs b′.
If A wins the game (i.e., it tries to decrypt CT ∗ correctly),

A should ask the hash oracle for H (Y s) = H (ê(g, g)abc)
under the simulation setting. This implies that C is able to
determine Y s = ê(g, g)abc from the hash list with probability
1/qh where qh is the number of the hash queries. Therefore,
C finds the solution of the computational BDH problem with
non-negligible probability. The proof is complete. �

Note that the CPA security for KP-ABE can be lifted
to CCA security by using one-time signatures. This way
was presented along with the original KP-ABE scheme and
basically follows the arguments by Canetti, Halevi, and Katz
[51]. Consequently, the used KP-ABE scheme having CPA
security can achieve CCA security.

VII. IMPLEMENTATION
A. DEVELOPMENT ENVIRONMENT
To develop a trusted application for providing secure services
based on ARM TrustZone, T-Log should be implemented on
open-platform boards supported by OP-TEE [52]. The boards
supporting OP-TEE are able to operate from ROM code that
operates at power-up to the required software responsible for
trusted services such as ARM Trusted Firmware [30] and
Secure OS [31], and Linux [53] maintained by the Linaro
security working group.

Among possible development boards, T-Log has selected
Raspberry Pi3 Model B (RPi3), which is used in various
open communities. In the case of RPi3, TEE platform was
activated by Sequitur Labs [54]. It does not have functional
problems, but commercial usage is not recommended since
not all security features have been verified. The original OP-
TEE works on a root file system called Busybox [55], which
is one binary including only the essential features as a small
executable. Busybox also provides Syslog but does not meet
the performance or scalability required by T-Log.

T-Log should communicate with a plug-in of Rsyslog.
As explained in Section III-C, Debian applies Rsyslog as
the default logging system. T-Log adopts Debian’s root file
system (RFS) for practicality and compatibility. To do this,
T-Log builds a buster version with Debian RFS using deboot-
strap, a tool that helps build RFS [56].

Note that RPi3 supports symmetric multiprocessing (SMP)
with the ARM cortex-a53 quad-core, but only the primary
core works when OP-TEE is running. This issue has resolved
by modifying the core-enable method to a power state coor-
dination interface (PSCI) in a device tree source (DTS) of a
manufacturer [57].

B. MIGRATION OF KP-ABE TO TEE
Zeutro has released an ABE open-source library called Open-
ABE in 2018 [25]. Unfortunately, the OpenABE is based

VOLUME 8, 2020 81359

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

TABLE 2. Lines of migrated library code into T-Log.

FIGURE 9. T-Log produces entries from received logs from the output
module of Rsyslog, then transfers them through shared memory and
extended API.

on C++ language, which makes it difficult to apply to OP-
TEE, as the current OP-TEE does not support the C++
runtime libraries [58]. To use KP-ABE, T-Log uses Celia
library (libcelia) implemented based on C language for access
control of electronic health data records [45]. The libcelia
extends CP-ABE library [21], [46] to KP-ABE. In addition,
they include additional libraries such as a paring-based cryp-
tography (PBC) library [59] for pairing operations, GLib
to support various data structures, OpenSSL [60] for cryp-
tographic operations, and GNU multiple-precision (GMP)
library [61] for bignum.

In order for KP-ABE to migrate to TEE, it is necessary to
remove unnecessary parts from the existing code and replace
original APIs to TEE internal APIs supported by OP-TEE.
However, the APIs provided by OP-TEE are limited. It means
that embedded applications built with libraries provided by
sysroot in the ARM cross compiler are not guaranteed to
operate in TEE supported by OP-TEE. Therefore, TAmust be
built on a software development kit (SDK) for TA provided
by OP-TEE.

TABLE 2 shows lines of code (LoC) used in T-Log. LoC
was counted by an open-source line counter called cloc [62].
T-Log has adopted approximately 29% codes from relevant
libraries. OpenSSL library for symmetric encryption and hash
functions is replaced with TEE Internal API, and themigrated
PBC supports only Type-A pairing, which is the fastest.
The Extra consists of redesigned codes that support T-Log
operations, which is because some critical input and output
functions may result in possible vulnerabilities, such as scanf
and printf functions, which are not provided by OP-TEE. The
Extra does not include implemented T-Log codes. The line of
code that implements the secure logging functions of T-Log,
except for the migrated library, is approximately 2,000 LoC.

C. INTERACTION WITH RSYSLOG
Direct communication with T-Log is handled by an imple-
mented output module of Syslogd, a background process of

TABLE 3. The results of performance evaluation according to curve
parameters and attribute settings in KP-ABE.

Rsyslog running on REE. The messages processed by each
module are all controlled through the configuration file of
Rsyslog. FIGURE 9 shows the flow of logs. T-Log receives
and handles all logs generated from REE through the output
module. In particular, AEs and SEs are delivered to Sys-
logd through TEE_ReeSyslog extended API as described in
Section V-D.4. The AEs and SEs need not be encrypted again
with T-Log, so they bypass the output module and arrive at
other modules according to filtering rules in the configuration
file. In this way, LE, AE, and SE can be delivered to output
files, databases, or remote servers via Rsyslog’s output mod-
ules. In addition, Rsyslog has worker threads in each message
queue for fast log processing, such that calling T-Log from the
output module does not affect other logs.

VIII. EVALUATION
In this section, we measure basic performance according to
parameters and attributes of KP-ABE on RPi3, and compare
the time required to process 1,000 logs of 512 bytes and the
storage usage. For reference, Rsyslog processes logs asyn-
chronously throughmessage queues, so there is no significant
performance overhead. Thus, this chapter does not include
measurement results of Rsyslog working alone. We compare
the result of processing 1,000 logs from an original KP-ABE
and from T-Log. At this point, KP-ABE does not encrypt all
logs at once, and the reason for this is to create the same
conditions so that T-Log is able to access arbitrary logs. Thus,
KP-ABE encrypts 1,000 logs individually. For evaluation,
we compare the performance of T-Log and KP-ABE library
proposed in [45] in specific scenarios.

T-Log uses Type A pairing provided by PBC library
for symmetric pairing. The pairing operation is based on
difficulty of discrete logarithm computation. According to
guidance by NIST [63], in a type A parameter, (r:160-bits,
q:512-bits) supports security strength of 80 bits, (r:224-bits,
q:1024-bits) is 112 bits, (r:256-bits, q:1024-bits) is 128 bits,
and (r:384-bits, q:3840-bits) corresponds to 192 bits. Other
parameters are not practical on RPi3, so they are not included
in this evaluation.

The upper part of TABLE 3 shows output size and
execution time evaluated when the number of attributes
and plaintext size are fixed and parameters are changed.
Considering suitable parameters that satisfy both security
strength and processing time, (r:256-bits, q:1536-bits) sup-

81360 VOLUME 8, 2020

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

porting a minimum of 128-bits strength was chosen. For
reference, each parameter is generated by the PBC gena-
param utility. The lower part of TABLE 3 shows the output
size and execution time when various attributes are applied
using the previously chosen parameters. Attributes can have
string or numerical attributes, wherein numerical attributes
are represented as ‘‘bag of bits’’ so that a number of attributes
generated are proportionate to the bits. Therefore, when using
a numerical attribute, it should be used with minimal bits.

To solve the key-revocation issue in ABE, Bethen-
court et al. proposed using an expired date as a numerical
attribute in [21], but when using a 64-bit numerical attribute in
an embedded system as shown in TABLE 3, encryption takes
approximately 7 seconds and decryption takes approximately
17 seconds. This is not practical for a real-time logging
system in embedded systems. Therefore, in order to improve
logging performance, T-Log applies a method to validate DK
via TO and solve key-revocation issue. Of course, this method
has additional communication overhead, but we focused on
the logging performance for embedded systems. Thus, T-Log
applies two attributes as a string attribute expressing the
ID and an 8-bit numerical attribute expressing log priority
from 0 to 255. The two attributes produce low performance
overhead on RPi3 and are suitable for operating T-Log.

There are two ways to encrypt logs. The first method is to
encrypt a log file when a file generated by a certain process
is larger than the predefined size and then transmit it to cloud
storage, and the second method is to encrypt each log entry
and transmit it to cloud storage in real time. When applying
the first method, the results are identical with T-Log since
KP-ABE also operates with KEM. However, in this case,
individual log entries cannot be transmitted in real time and
decryption of each log entry becomes impossible. Therefore,
we focused on the second method to transmit the log gener-
ated in a high-speed network environment in real time. When
using KP-ABE, significant encryption time is consumed for
each log entry, and the ciphertext size increases due to ABE
operation. However, T-Log encrypts only BKey with KP-
ABE and, subsequently, generated logs are quickly encrypted
with AES using a key derived from the BKey, which can
reduce encryption overhead and ciphertext size.

We compare time spent and ciphertext size when 1,000
512-byte logs were operated in two cases of KP-ABE [45]
and T-Log. The T-Log period T is set to 10 seconds and the
number of entries in the block is fixed to 16.

In FIGURE 10, the KP-ABE consumed 1.1 seconds to
encrypt a single log, producing a total time (TT) of 1,080 sec-
onds. T-Log only took 50 milliseconds to process an LE,
200 milliseconds when including an SE that is created every
16 entries, and AE, SE, and LE together took 1.7 seconds
and consumed 77 seconds in total. Compared to encrypting
each log with KP-ABE, T-Log reduced the processing time
by almost 93%.

FIGURE 11 shows the size of ciphertext as output. KP-
ABE generates an approximate ciphertext size (CS) of 5KB
per log, resulting in an approximate total ciphertext size (TC)

FIGURE 10. Processing time to publish secure logs.

FIGURE 11. Size of ciphertext.

of 4.89 MB. This is almost 10 times that of 1,000 inputs
of 512-bytes. In contrast, the size of the total entry encrypted
by T-Log was approximately 0.82 MB. The encrypted out-
put logs are 26% larger than the size of the total input log
entries, and it includes 33% overhead for each entry due
to base64 encoding. As a result, even in base64-encoded
results in T-Log, the ciphertext size was reduced by almost
83% compared to KP-ABE. Of course, KP-ABE is more
efficient than T-Log when processing logs accumulated over
a certain period were stored in a local file. When encrypting
1,000 logs stored in a file, KP-ABE took 1.18 seconds and the
ciphertext size was 504 KB. However, applying an original
KP-ABE cannot handle an arbitrary entry and is not suitable
for processing logs in real time.

IX. DISCUSSION AND FUTURE RESEARCH
A. DISCUSSION
One of the most important features for a logging system is
logging performance, or how many logs can be processed
per second. Existing logging systems without log encryption
take only a fewmilliseconds to process thousands of logs, and
Paccagnella et al. presented a secure logging system to record
more than one million events per second based on Intel-SGX
[16]. However, T-Log operates on embedded devices with
limited hardware resources, so it consumes more overhead
than other logging systems operating on servers. Thus, it is
efficient in selectively encrypting and transmitting only fil-
tered logs by Syslog rules, instead of applying T-Log to all
logs generated by a device. In addition, if the key exchange is
possible between heterogeneous TEEs such as Intel-SGX and
ARM TrustZone, subscribers can use Intel-SGX to decrypt

VOLUME 8, 2020 81361

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

logs quickly without leaking keys identical to the method
proposed in this paper.

T-Log focuses on the study of logging methods to support
log reliability and to allow multiple authorized subscribers
to use logs in various ways. Although this paper does not
cover the authentication of log publishers, the problem can
be resolved through a secure boot scheme provided by ATF
and SELinux. In short, logs being passed to T-Log can be
delivered only through a registered named-pipe, and SELinux
can manage all related access subscriber permissions.

Attacks regarding logs can be classified into four types:
replay, deletion, modification, and truncation. T-Log can
detect replays, deletions, and modifications, but it does not
cover the situation where a system goes down along with
a truncation attack before signatures are produced block by
block. T-Box solved this truncation attack by adding a flag
bit, indicating whether it is the last or a subsequent continuing
piece of data [27]. However, since the logs produced by T-
Log are sent to a cloud environment in real time, truncation
attacks are not considered an immediate threat. In addition,
when T-Log for subscribers decrypts logs, the scenario of an
insider attacker maliciously storing logs in internal storage
and delivering the logs through an abnormal channel to an
unauthorized subscriber is not considered. We believe that
this can be solved via additional functions, such as digital
rights management (DRM) with T-Log. For the purposes of
this paper, this topic was deemed out of scope and was not
discussed in detail.

B. FUTURE RESEARCH
In recent years, edge computing is emerging as a solution for
reducing computational overhead in a centralized cloud envi-
ronment [64], [65]. The proposed method does not support
a hierarchical structure for such distributed processing, but
applying the ABE-based key delegation method [66] or out-
sourced encryption and decryption scheme suitable for cloud
storage systems [67] can distribute overhead that is concen-
trated on a trusted operator. Furthermore, if the outsourced
ABE scheme can be used in T-Log, a scheme proposed by
Li et al. in [23], [68], which provides continuous leakage
resilience against side-channel attacks by updating decryp-
tion keys, would be a good approach to build more secure
logging infrastructure.

In addition, T-Log can cooperate with blockchains, such
as an Edge IoT framework, integrating a blockchain and
internal cryptocurrency system to manage an edge computer
resource pool [69]. T-Logs supporting many-to-many rela-
tionship between publishers and subscribers can collaborate
with smart contracts in a phase of decryption key generation.
A subscriber can request the blockchain to issue a decryption
key through a smart contract. A trusted operator can obtain
the publisher’s approval, issue a corresponding key for the
event sent through the smart contract, and subsequently pay
cryptocurrency to the publisher, who is the owner of the
requested logs.

We have seen the possibility of a secure logging system
using KP-ABE operating on ARM TrustZone through this
paper. We will continue to research more efficient KP-ABE
schemes for embedded systems that can cooperate with cloud
and convergence technologies.

X. CONCLUSION
In this paper, we first extracted requirements and security
properties for secure logging systems and suggested practical
mechanisms to satisfy these requirements. Then, we designed
and implemented a secure logging method called T-Log that
satisfies all security properties. To date, T-Log is the first
logging solution to apply KP-ABE within ARM TrustZone
where relevant keys can be securely managed. Since our
method provides fine-grained access control and end-to-end
security, it canmakemany-to-many relationships between log
publishers and subscribers, and will become a cornerstone to
creating a number of customized services. In addition, for the
practicality of logs, T-Log was implemented as a plug-in of
Rsyslog, which is a default logging system in Debian Linux,
and demonstrated that it could be easily appliedwhile remain-
ing compatible with existing logging systemswithout degrad-
ing performance. In addition, by providing performance-
tunable optimization parameters, i.e. the number of entries
included in a block and the period T , performance can be
optimized for various environments. Furthermore, T-Log is
able to resolve KP-ABE’s revocation problems by applying
an operational way to validate DK through a secure channel
with TO. The described features make T-Log a dependable
and secure logging infrastructure for the emerging era of
hyperconnectivity.

ACKNOWLEDGMENT
The authors would like to thank the editors and anonymous
reviewers who gave them valuable feedback to improve the
quality of this article.

REFERENCES
[1] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock,

D. C. Lynch, J. B. Postel, L. G. Roberts, and S. S. Wolff, ‘‘A brief history
of the Internet,’’ Comput. Commun. Rev., vol. 39, no. 5, pp. 22–31, 2009.

[2] R. Gerhards, RFC 5424: The Syslog Protocol, document IETF 5424,
Request for Comments, 2009, pp. 1–38.

[3] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
‘‘Towards a timely causality analysis for enterprise security,’’ in Proc.
NDSS, 2018.

[4] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, ‘‘Towards automated log
parsing for large-scale log data analysis,’’ IEEE Trans. Dependable Secure
Comput., vol. 15, no. 6, pp. 931–944, Nov. 2018.

[5] M. Du, F. Li, G. Zheng, and V. Srikumar, ‘‘DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 1285–1298.

[6] A. D’Alconzo, I. Drago, A.Morichetta, M.Mellia, and P. Casas, ‘‘A survey
on big data for network trafficmonitoring and analysis,’’ IEEE Trans. Netw.
Service Manage., vol. 16, no. 3, pp. 800–813, Sep. 2019.

[7] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, ‘‘OmegaLog:
High-fidelity attack investigation via transparent multi-layer log analysis,’’
in Proc. NDSS, 2020.

[8] Splunk. The Data-to-Everything Platform. Accessed: Mar. 5, 2020.
[Online]. Available: https://www.splunk.com

[9] Elastic. Elastic Logs. Accessed: Mar. 5, 2020. [Online]. Available:
https://www.elastic.co

81362 VOLUME 8, 2020

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

[10] R. Chow, ‘‘The last mile for IoT privacy,’’ IEEE Secur. Privacy, vol. 15,
no. 6, pp. 73–76, Nov. 2017.

[11] M. Rahman, B. Carbunar, and M. Banik, ‘‘Fit and vulnerable: Attacks
and defenses for a healthmonitoring device,’’ CoRR, vol. abs/1304.5672,
Aug. 2013. [Online]. Available: http://arxiv.org/abs/1304.5672

[12] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, ‘‘Automobile driver
fingerprinting,’’ Proc. Privacy Enhancing Technol., vol. 2016, no. 1,
pp. 34–50, Jan. 2016.

[13] M. Bellare and B. Yee, ‘‘Forward integrity for secure audit logs,’’ Dept.
Comput. Sci. Eng., Univ. California San Diego, San Diego, CA, USA,
Tech. Rep., 1997, vol. 184.

[14] B. Schneier and J. Kelsey, ‘‘Cryptographic support for secure logs on
untrusted machines,’’ in Proc. 7th USENIX Secur. Symp., vol. 98, 1998,
pp. 53–62.

[15] V. Karande, E. Bauman, Z. Lin, and L. Khan, ‘‘SGX-log: Securing system
logs with SGX,’’ in Proc. ACM Asia Conf. Comput. Commun. Secur.,
Apr. 2017, pp. 19–30.

[16] R. Paccagnella, P. Datta, W. U. Hassan, A. Bates, C. W. Fletcher, A. Miller,
and D. Tian, ‘‘Custos: Practical tamper-evident auditing of operating sys-
tems using trusted execution,’’ in Proc. Netw. Distrib. Syst. Secur. Symp.,
2020.

[17] R. White, G. Caiazza, A. Cortesi, Y. I. Cho, and H. I. Christensen, ‘‘Black
block recorder: Immutable black box logging for robots via blockchain,’’
IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 3812–3819, Oct. 2019.

[18] A. Shamir, ‘‘Identity-based cryptosystems and signature schemes,’’ in
Proc. CRYPTO, 1984, pp. 47–53.

[19] D. Boneh and M. Franklin, ‘‘Identity-based encryption from the Weil
pairing,’’ SIAM J. Comput., vol. 32, no. 3, pp. 586–615, Jan. 2003.

[20] A. Sahai and B. Waters, ‘‘Fuzzy identity-based encryption,’’ in Proc.
EUROCRYPT, 2005, pp. 457–473.

[21] J. Bethencourt, A. Sahai, and B. Waters, ‘‘Ciphertext-policy attribute-
based encryption,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2007,
pp. 321–334.

[22] J. Eom, D. H. Lee, and K. Lee, ‘‘Patient-controlled attribute-based encryp-
tion for secure electronic health records system,’’ J. Med. Syst., vol. 40,
no. 12, pp. 253:1–253:16, Dec. 2016.

[23] J. Li, Y. Zhang, J. Ning, X. Huang, G. S. Poh, and D. Wang,
‘‘Attribute based encryption with privacy protection and accountability for
CloudIoT,’’ IEEE Trans. Cloud Comput., to be published.

[24] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ‘‘Attribute-based encryption
for fine-grained access control of encrypted data,’’ inProc. 13th ACMConf.
Comput. Commun. Secur. (CCS), 2006, pp. 89–98.

[25] The OpenABE Design Document Version 1.0, Zeutro, 2018, p. 29.
[26] IEEE Standard for Motor Vehicle Event Data Recorders (MVEDRs)

Amendment 1: MVEDR Connector Lockout Apparatus (MVEDRCLA),
IEEE Standard 1616-2004, 2004.

[27] S. Lee, W. Choi, H. J. Jo, and D. H. Lee, ‘‘T-box: A forensics-
enabled trusted automotive data recording method,’’ IEEE Access, vol. 7,
pp. 49738–49755, 2019.

[28] S. Lee, W. Choi, H. J. Jo, and D. H. Lee, ‘‘How to securely record logs
based on ARM TrustZone,’’ in Proc. ACM Asia Conf. Comput. Commun.
Secur., Jul. 2019, pp. 664–666.

[29] H. Alzaid, D. Park, J. M. G. Nieto, C. Boyd, and E. Foo, ‘‘A forward
and backward secure key management in wireless sensor networks for
PCS/SCADA,’’ in Proc. S-CUBE, 2009, pp. 66–82.

[30] (ARM).ARMTrusted FirmwareGitHub. Accessed:Mar. 5, 2020. [Online].
Available: https://github.com/ARM-software/arm-trusted-firmware

[31] OP-TEE. OP-TEE GitHub. Accessed: Mar. 5, 2020. [Online]. Available:
https://github.com/OP-TEE

[32] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ IACR Cryptol. ePrint
Arch., vol. 2016, p. 86, 2016.

[33] Cortex-A53MPCore Processor, Technical ReferenceManual, ARM,Cam-
bridge, U.K., 2014.

[34] Security Technology Building a Secure System Using Trustzone Technol-
ogy, ARM Ltd., Cambridge, U.K., 2009.

[35] GlobalPlatform.GlobalPlatform. Accessed: Mar. 5, 2020. [Online]. Avail-
able: https://globalplatform.org

[36] Adiscon. The Rocket-Fast Syslog Server. Accessed:Mar. 5, 2020. [Online].
Available: https://www.rsyslog.com/

[37] Syslog-NG. The Foundation of Log Management. Accessed: Mar. 5, 2020.
[Online]. Available: https://www.syslog-ng.com

[38] Debian. Debian Rsyslog. Accessed: Mar. 5, 2020. [Online]. Available:
https://wiki.debian.org/Rsyslog

[39] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, ‘‘Armaged-
don: Cache attacks on mobile devices,’’ in Proc. USENIX Secur., 2016,
pp. 549–564.

[40] GDPR. (2018). GDPR Key Changes. Accessed: Mar. 5, 2020. [Online].
Available: https://gdpr.eu/tag/gdp

[41] A. Beimel, Secure Schemes for Secret Sharing Key Distribution. Haifa,
Israel: Technion-Israel Institute of Technology, Faculty of Computer Sci-
ence, 1996.

[42] S. Josefsson, RFC 4648: The Base16, Base32, and Base64 Data Encod-
ings, document RFC 4648, Request for Comments IETF, 2006, pp. 1–18.

[43] E. Casey,Digital Evidence and Computer Crime—Forensic Science, Com-
puters and the Internet, 3rd Ed. New York, NY, USA: Academic, 2011.

[44] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[45] Y. Zheng, ‘‘Privacy-preserving personal health record system using
attribute-based encryption,’’ M.S. thesis, Worcester Polytech. Inst.,
Worcester, MA, USA, 2011.

[46] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy Attribute-
Based Encryption. Accessed: Mar. 5, 2020. [Online]. Available:
http://acsc.cs.utexas.edu/cpabe

[47] J. Forissier. Send Traces to Tee-Supplicant. Accessed: Mar. 5, 2020.
[Online]. Available: https://github.com/jforissier/optee_os/tree/syslog

[48] S. Lee,W. Choi, H. J. Jo, andD. H. Lee, ‘‘Poster: Secure logging infrastruc-
ture employing heterogeneous trusted execution environments,’’ in Proc.
Symp. Netw. Distrib. Syst. Secur. (NDSS), 2020.

[49] D. Boneh and M. K. Franklin, ‘‘Identity-based encryption from the Weil
pairing,’’ in Advances in Cryptology CRYPTO (Lecture Notes in Com-
puter Science), vol. 2139, J. Kilian, Ed. Berlin, Germany: Springer, 2001,
pp. 213–229.

[50] M. Bellare and P. Rogaway, ‘‘Random oracles are practical: A paradigm
for designing efficient protocols,’’ in Proc. ACM Conf. Comput. Commun.
Secur. (ACM CCS), New York, NY, USA, 1993, pp. 62–73.

[51] R. Canetti, S. Halevi, and J. Katz, ‘‘Chosen-ciphertext security from
identity-based encryption,’’ in Advances in Cryptology EUROCRYPT
(Lecture Notes in Computer Science), vol. 3027, C. Cachin and
J. Camenisch, Eds. Berlin, Germany: Springer, 2004, pp. 207–222.

[52] Linaro. Platforms Supported. Accessed: Mar. 5, 2020. [Online]. Available:
https://optee.readthedocs.io

[53] Linaro Security Working Group Linux GitHub. Accessed: Mar. 5, 2020.
[Online]. Available: https://github.com/linaro-swg/linux

[54] Sequitur. (2016). Easing Access to ARM TrustZone, OP-TEE
and Raspberry Pi3. Accessed: Mar. 5, 2020. [Online]. Available:
https://connect.linaro.org/resources/las16/las16-111

[55] D. Vlasenko. (2012). BusyBox. Accessed: Mar. 5, 2020. [Online]. Avail-
able: https://busybox.net

[56] Debian. Debootstrap. Accessed: Mar. 5, 2020. [Online]. Available:
https://wiki.debian.org/Debootstrap

[57] Antonio. Linux Bootstrap for Raspberry Pi3 With Trusted
Firmware-A. Accessed: Mar. 5, 2020. [Online]. Available:
https://github.com/AntonioND/rpi3-arm-tf-bootstrap

[58] ARM. OP-TEE Frequently Asked Questions. Accessed: Mar. 5, 2020.
[Online]. Available: https://optee.readthedocs.io/en/latest/faq/faq.html

[59] B. Lynn. The Pairing-Based Cryptography Library. Accessed:
Mar. 5, 2020. [Online]. Available: https://crypto.stanford.edu/pbc

[60] OpenSSL. The OpenSSL Project. Accessed: Mar. 5, 2020. [Online]. Avail-
able: http://www.openssl.org

[61] GNU. The GNU Multiple Precision Arithmetic Library. Accessed:
Mar. 5, 2020. [Online]. Available: https://gmplib.org

[62] A. Danial. Count Lines of Code. Accessed: Mar. 5, 2020. [Online]. Avail-
able: https://github.com/AlDanial/cloc

[63] E. Barker, ‘‘NIST special publication 800-57 part 1, revision 4,’’ NIST
Special Publication, Gaithersburg, MD, USA, Tech. Rep. 800-57, 2016.

[64] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[65] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, Jan. 2017.

[66] S. Kumar, Y. Hu, M. P. Andersen, R. A. Popa, and D. E. Culler, ‘‘JEDI:
Many-to-many end-to-end encryption and key delegation for IoT,’’ in Proc.
USENIX Secur., 2019, pp. 1519–1536.

[67] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, ‘‘Flexible and fine-grained
attribute-based data storage in cloud computing,’’ IEEE Trans. Services
Comput., vol. 10, no. 5, pp. 785–796, Sep. 2017.

VOLUME 8, 2020 81363

S. Lee et al.: Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone

[68] J. Li, Q. Yu, Y. Zhang, and J. Shen, ‘‘Key-policy attribute-based encryption
against continual auxiliary input leakage,’’ Inf. Sci., vol. 470, pp. 175–188,
Jan. 2019.

[69] J. Pan, J. Wang, A. Hester, I. Alqerm, Y. Liu, and Y. Zhao, ‘‘EdgeChain:
An edge-IoT framework and prototype based on blockchain and smart con-
tracts,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4719–4732, Jun. 2019.

SEUNGHO LEE received the B.S. and M.S.
degrees in computer science from Pukyong
National University, Busan, South Korea, in 2006
and 2010, respectively. He is currently pursuing
the Ph.D. degree in information security with the
Graduate School of Information Security, Korea
University, Seoul, South Korea. In the past, he
has worked on embedded system security projects
for the Internet of Things (IoT). Since 2006, he
has been working with the Samsung Advanced

Institute of Technology, Samsung Electronics Corporation, Yongin, South
Korea. His research interests are embedded system security, secure logs, and
applied cryptography.

HYO JIN JO received the B.S. degree in indus-
trial engineering and the Ph.D. degree in infor-
mation security from Korea University, Seoul,
South Korea, in 2009 and 2016, respectively.
From 2016 to 2018, he was a Postdoctoral
Researcher with the Department of Computer and
Information Systems, University of Pennsylva-
nia, USA. In 2018, he joined the Department of
Software Convergence, Hallym University, Chun-
cheon, South Korea, as an Assistant Professor.

His research interests include security for cyber physical systems, applied
cryptography, and privacy-preserving methods.

WONSUK CHOI received the B.S. degree in
mathematics from the University of Seoul, Seoul,
South Korea, in 2008, and the M.S. and Ph.D.
degrees in information security from Korea Uni-
versity, Seoul, in 2013 and 2018, respectively. He
was a Postdoctoral Researcher with the Graduate
School of Information Security, Korea University.
In 2020, he joined the Division of IT Convergence
Engineering, Hansung University, Seoul, as an
Assistant Professor. His research interests include

security for body area networks, usable security, applied cryptography, and
smart car security.

HYOSEUNG KIM received the B.S. degree in
mathematics from Korea University, Seoul, South
Korea, in 2010, where he is currently pursuing
the Ph.D. degree in information security with
the Graduate School of Information Security. His
research interests include functional encryption,
functional signature, and anonymous attestation.

JONG HWAN PARK received the B.S. degree
from the Department of Mathematics, Korea
University, Seoul, South Korea, in 1999, and
the M.S. and Ph.D. degrees from the Gradu-
ate School of Information Security, Korea Uni-
versity, in 2004 and 2008, respectively. From
2009 to 2011, he was a Research Professor with
Kyung Hee University. From 2011 to 2013, he
was a Research Professor with Korea University.
Since 2013, he has been an Assistant Professor

with the Department of Computer Science, Sangmyung University, Seoul.
His research interests include functional encryption, broadcast encryption,
authenticated encryption, and various cryptographic protocols.

DONG HOON LEE (Member, IEEE) received
the B.S. degree from the Department of Eco-
nomics, Korea University, Seoul, South Korea,
in 1985, and the M.S. and Ph.D. degrees in com-
puter science from The University of Oklahoma,
USA, in 1988 and 1992, respectively. He is cur-
rently a Professor and the Director of the Graduate
School of Information Security, Korea University.
He has been with the Faculty of Computer Science
and Information Security, Korea University, since

1993. His research interests include cryptographic protocol, applied cryptog-
raphy, functional encryption, software protection, mobile security, vehicle
security, and ubiquitous sensor networks (USNs) security.

81364 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORKS
	BACKGROUND
	PAIRING-BASED CRYPTOGRAPHY AND KP-ABE
	BILINEAR MAPS
	COMPUTATIONAL BILINEAR DIFFIE-HELLMAN ASSUMPTION
	KEY-POLICY ATTRIBUTE-BASED ENCRYPTION

	TRUSTED EXECUTION ENVIRONMENT
	SYSLOG

	OVERVIEW
	SYSTEM MODEL
	ADVERSARY MODEL
	REQUIREMENTS

	DESIGN
	MAIN CONSIDERATIONS FOR DESIGNING T-LOG
	ARCHITECTURE
	ENTRY STRUCTURE
	LOG PUBLISHER
	FORENSICS-ENABLED KEY DERIVATION
	ENCRYPTING A BKey BY ABE AND SET ATTRIBUTES
	KEY CHAINING FOR IMMUTABILITY
	EXTENDED TEE INTERNAL API
	T-LOG ALGORITHM FOR A PUBLISHER

	TRUSTED OPERATOR
	LOG SUBSCRIBER
	PROTOCOL

	ANALYSIS
	APPLIED MECHANISMS
	SECURITY GUARANTEE OF KP-ABE IN T-LOG

	IMPLEMENTATION
	DEVELOPMENT ENVIRONMENT
	MIGRATION OF KP-ABE TO TEE
	INTERACTION WITH RSYSLOG

	EVALUATION
	DISCUSSION AND FUTURE RESEARCH
	DISCUSSION
	FUTURE RESEARCH

	CONCLUSION
	REFERENCES
	Biographies
	SEUNGHO LEE
	HYO JIN JO
	WONSUK CHOI
	HYOSEUNG KIM
	JONG HWAN PARK
	DONG HOON LEE

