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ABSTRACT Modern vehicles are equipped with a number of electronic control units (ECUs), which control
vehicles efficiently by communicating with each other through the controller area network (CAN). However,
the CAN is known to be vulnerable to cyber attacks because it does not have any security mechanisms.
To find vulnerable CANmessages that can control safety-critical functions in ECUs, researchers have studied
CAN fuzzing methods. In existing CAN fuzzing methods, fuzzing input values are generally generated at
random without considering the structure of CAN messages, resulting in non-negligible CAN fuzzing time.
In addition, existing fuzzing solutions have limited monitoring capabilities of the fuzzing results. In this
paper, we propose a Structure-aware CAN Fuzzing protocol, in which the structure of CAN messages is
considered and fuzzing input values are systematically generated to locate vulnerable functions in ECUs.
Our proposed Structure-aware CAN Fuzzing system takes less time to run than existing solutions, meaning
that problematic CAN messages that may have originated from SW implementation errors or CAN DBC
(database CAN) design errors can be found quickly and, subsequently, appropriate action can be taken.
Finally, we evaluated the performance of our Structure-aware CAN Fuzzing system on two real vehicles.
We proved that our proposed method can find CAN messages that control safety-critical functions in ECUs
faster than existing fuzzing solutions.

INDEX TERMS ECU, CAN, vehicle hacking, CAN fuzzing, structure-aware CAN fuzzing.

I. INTRODUCTION
Modern vehicles are equipped with a number of electronic
control units (ECUs) that control electronic systems such as
the engine, airbags, brake, and so on. ECUs communicate
with each other through several in-vehicle networks (IVNs),
such as the controller area network (CAN), FlexRay, local
interconnect network (LIN), CAN with flexible data rate
(CAN-FD), and automotive ethernet. In 1993, the Interna-
tional Organization for Standardization (ISO) adopted CAN
as a de-facto standard (i.e., ISO 11898) for communica-
tion between ECUs [1] for its prime suitability with vehicle
features.

A vehicle can be efficiently controlled by CAN com-
munications, but the following security issues remain prob-
lematic. First, attackers can eavesdrop on all messages on
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the CAN-bus because the messages are broadcast without
encryption. Second, attackers can gain control of a vehicle
by injecting malicious messages because there are no access
controls or authentication procedures on the network [2]–[8].
This can be illustrated by one key vehicle hacking result,
in which Miller and Valasek were able to remotely control
critical operations such as engine and brake function of a Jeep
Cherokee [6]. In addition to remote attacks using wireless
interfaces (e.g., Bluetooth orWi-Fi), as in the aforementioned
Jeep Cherokee attack, attacks based on wired interfaces
(e.g., On-Board Diagnostics (OBD)-II port) have also been
conducted [3].

To deal with cyber attacks, attack surfaces on a vehicle
should be analyzed in advance before they can be exploited
by a potential attacker. Analysis of attack surfaces can be
divided into two parts: 1) vulnerability research on exter-
nal networks (e.g., vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), etc.) and 2) vulnerability research on
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in-vehicle networks. Vulnerabilities of external networks can
be analyzed with several open-source tools, such as NMAP
and ubertooth, and vulnerabilities of in-vehicle networks can
be analyzed with reverse engineering methods [3], [4] that
analyze ECU firmware and CAN fuzzing methods1,2,3,4,5

that analyze CAN messages related to safety-critical ECU
control.

While there is much active research that analyzes the vul-
nerabilities of external networks, research on the vulnera-
bilities of in-vehicle networks has several limitations. First,
the reverse engineering of ECU firmware requires physical
access to a target ECU to locate a debugging port and obtain
the corresponding firmware. Second, CAN fuzzing requires
non-negligible analysis time to randomly transmit fuzzing
input values to the CAN-bus. In addition, it is difficult to
monitor the responses corresponding to brute force fuzzing
input values because CAN DBC (database CAN) is securely
managed and undisclosed, so there is a limit to how much the
meaning of CAN messages can be analyzed.

To overcome these limitations in analysis methods for
in-vehicle networks, we herein propose a Structure-aware
CAN Fuzzing system as a protocol that minimizes fuzzing
time by considering the structure of a CANmessage. In other
words, our goal is not to identify all CAN messages that
can cause misbehavior of the target vehicle but rather it is
to identify some CAN messages that can cause misbehavior
of the target vehicle in a short period of time. Additionally,
the proposed method involves network-based fuzzing, which
does not need to reverse engineer ECU firmware through a
debugging port.

The proposed method consists of three phases: 1) CAN
message analysis, 2) fuzzing input value generator, and
3) monitoring. In the CANmessage analysis phase, the struc-
ture of the CAN message is analyzed. In the fuzzing input
value generator phase, the fuzzing rules based on analysis
results are defined, and structure-aware CAN messages are
generated and injected into the vehicle. Finally, in the mon-
itoring phase, the corresponding responses are monitored
using side information.

The contributions of this paper are as follows.
1) We are the first to present a methodology that generates

Structure-aware CAN Fuzzing input values based on
the structure of a CAN message. The proposed method
takes less fuzzing time than existing brute force CAN
fuzzingmethods. In our experiment, we found ten CAN
IDs related to the engine of two real vehicles (i.e., we
found four CAN IDs in one vehicle and six in the other).
The number of fuzzing input values in our method
is less than 28 while that of the existing brute force
CAN fuzzing methods is greater than 266 for each test
vehicle.

1[Accessed: Feb. 1, 2022] https://github.com/CANToolz/CANToolz
2[Accessed: Feb. 1, 2022] https://github.com/TianTianlove/ATG-python
3[Accessed: Feb. 1, 2022] https://github.com/bhass1/pyfuzz_can
4[Accessed: Feb. 1, 2022] https://github.com/zombieCraig/UDSim
5[Accessed: Feb. 1, 2022] https://github.com/CaringCaribou/caringcaribou

FIGURE 1. The structure of CAN data frame.

2) By monitoring side information (e.g., IMU sensor
values) of the fuzzing target vehicles, this method auto-
matically finds misbehavior caused by injected fuzzing
input values.

3) To validate the efficiency and practicality of the pro-
posed method, we conducted experiments with two
real vehicles and several vulnerable CAN messages
(e.g., controlling steering and engine acceleration) that
could be exploited as attack messages.

This paper is organized as follows. We introduce back-
ground knowledge and related works in Section II, and
Section III describes the system design of our Structure-aware
CAN Fuzzing system in detail. In Section IV, we evaluate our
method through experiments on real vehicles and discuss the
limitations of our proposal in Section V. Finally, we present
our conclusion and offer direction for future research
in Section VI.

II. BACKGROUND AND RELATED WORKS
A. BACKGROUND
1) CONTROLLER AREA NETWORK
Robert Bosch developed the CAN based on a bus topology
(CAN-bus) and released the technology in 1986. In the CAN
physical layer, wires are a twisted pair of cables to provide
protection against electrical noise. The maximum speed of
the CAN-bus is 1Mbit/s, but the actual baud-rate on a vehicle
is 500Kbit/s. The maximum length of data is 8 bytes [9].

Fig. 1 shows the structure of a CAN Data Frame. Start of
Frame (SOF) denotes the start of the frame, while Identi-
fier (ID) is used to arbitrate the frame priority and Remote
Transmission Request (RTR) identifies whether the frame
is a data frame or a remote frame. The Identifier Exten-
sion Bit (IDE) distinguishes whether a frame is standard
or extended, and Reserved (R) area is a pre-designation
for an extended frame. Data Length Code (DLC) indicates
the length of the data field, and the data field contains the
data transmitted by ECUs. Cyclic Redundancy Check (CRC)
field checks frame errors, and the Acknowledgement (ACK)
field recognizes reception of a valid frame. Finally, End of
Frame (EOF) denotes the end of a frame. In this paper,
we focus on the ID, DLC, and data field of the CAN data
frame.

2) OBD-II PID
OBD-II is a vehicle diagnostic service used to diagnose vehi-
cle status. Parameter identifiers (PIDs) are codes that check
the vehicle status, and all modern vehicles follow the OBD-II
PID standard defined by SAE J1962.6 However, not all

6[Accessed: Feb. 1, 2022] https://en.wikipedia.org/wiki/OBD-II_PIDs
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vehicles support all standard PIDs, and vehicle manufacturers
can create customize their own identifiers. Therefore, it is
important to find the supported PIDs for each vehicle, which
can be confirmed via a request and response process included
in PID services. When PIDs make a request query using CAN
ID 0 × 7DF with PID, a code is sent to the CAN-bus of the
vehicle connected to the OBD-II port, and the vehicle then
sends a response query with the CAN ID in the range 0×7E8
to 0 × 7EF. The response query includes a return value that
represents the vehicle status or supported PIDs.

B. RELATED WORKS
1) CAN MESSAGE ANALYSIS METHODS
Vehicle manufacturers keep Database CAN, called CAN
DBC files, secret because attackers may cause a vehicle to
misbehave using knowledge obtained from the DBC files.
However, researchers have already discovered that DBC files
can be extrapolated through a CANmessage analysis method
(e.g., CAN message reverse engineering [10]–[17].

References [10] and [11] proposed the ACA algorithm,
which effectively analyzes CAN messages to solve the
problem of CAN message reverse engineering taking non-
negligible time. The ACA algorithm finds supported PIDs
using the OBD-II PID standard, and then requests a PID
diagnostic query from a test vehicle with the PID code that it
wants to analyze. By analyzing the relationship between the
response data of the PID query and the CAN messages, the
ACA algorithm finds both the CAN IDs and the correspond-
ing data fields related to the requested PID code.

Alternatively, an automatic reverse engineering method
uses the READalgorithm [13] to extract the signal boundaries
of the CAN data frame. READ logs CAN messages received
from the vehicle and creates sub-files of CAN messages with
the same ID. READ calculates the bit-flip rate, which indi-
cates how often the bit value changes at each bit position in
the data field (64-bit) of each sub-file. Finally, READ extracts
signal boundaries and labels the signals (e.g., Counter, CRC,
etc.) encoded in the data field using the bit-flip rate. In this
research, a comparison of the formal CAN message specifi-
cations for the test vehicle confirmed the results of READ to
be highly accurate.

LibreCAN [15] subsequently proposed a framework that
analyzes CAN message signals of a vehicle’s powertrain
and body using the OBD-II PID protocol and the built-in
Inertial Measurement Unit (IMU) sensor on a smartphone.
LibreCAN adopts the methodology of READ [13] (i.e., bit-
flip rate-based signal extraction) for signal extraction from
CAN messages. After extracting signals from CAN mes-
sages, it identifies the signal boundaries more accurately than
READ [13] via a heuristic method. Finally, LibreCAN trans-
lates the meaning of CAN messages by using the identified
signals obtained from the OBD-II PID and the IMU sensor.

2) CAN FUZZING METHODS
Some studies on ECU vulnerability analysis methods based
on CAN fuzzing do not need to reverse engineer the ECU
firmware through a debugging port. In general, existing CAN

fuzzing methods1,2,3,4,5 run their own fuzzing algorithms
using random input values without considering the meaning
of the CAN IDs and the data fields [18]–[23].

Therefore, existing fuzzing methods tend to take non-
negligible time because these methods are required to inject
all possible values of the CAN data field (i.e., if DLC is 8,
the number of input values that will be injected to CAN
is 264). In addition, there is no published work on monitoring
methods for the responses to fuzzing input values.

III. THE PROPOSED SYSTEM: STRUCTURE-AWARE
CAN FUZZING
In this section, we introduce our proposed system that can
systematically generate fuzzing input values and automati-
cally monitor responses triggered by fuzzing input values.

A. OVERVIEW
Fig. 2 shows an overview of our Structure-aware CAN
Fuzzing system, which consists of three phases. We outline
these phases next.

1) PHASE 1: CAN MESSAGE ANALYSIS
Phase 1 is composed of three parts: bit-flip rate analysis,
OBD-II PID analysis, and correlation analysis.
• Bit-flip rate analysis: Signal boundaries are identified by
calculating the bit-flip rate of the CAN data field. Then,
the identified signal boundaries are mapped to seven
signal types–Unused , Constant , Multi-value, Sensor ,
Counter ,Checksum, andUndefined field–via a heuristic
method.

• OBD-II PID analysis: By checking the supported PIDs
provided by the OBD-II PID standard, CAN IDs related
to a specific function (e.g., engine RPM, throttle posi-
tion, etc.) can be identified.

• Correlation analysis: The relationships between CAN
IDs are analyzed by calculating the correlation of signals
identified as being in the Sensor field, which is one of
the defined seven signals.

2) PHASE 2: FUZZING INPUT VALUE GENERATOR
Phase 2 is composed of three parts: CAN fuzzing rule defini-
tion, CAN fuzzing input value generation, and CAN fuzzing
input value injection.
• CAN fuzzing rule definition: By using the analysis
results in Phase 1, the system can define the fuzzing rules
that can cause vehicles to misbehave.

• CAN fuzzing input value generation: The fuzzing input
values are generated by using fuzzing rules. In our pro-
posed process, if a fuzzing input value is inferred to have
the Checksum field, the checksum value corresponding
to the fuzzing input should be generated in two ways.
If the fuzzing input value to be injected exists in the CAN
log recorded in a fuzzing target vehicle, the checksum
value obtained from the CAN log can be used as is.
Otherwise, a deep learning algorithm infers a new check-
sum value.
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FIGURE 2. System design of our structure-aware CAN fuzzing system.

• CAN fuzzing input value injection: The generated input
values are injected into CAN by considering the error
states of the CAN-bus. Note that bus-off [9] issues occur
due to message collisions caused by fuzzing input value
injection.

3) PHASE 3: MONITORING
Phase 3 is composed of two parts: CAN message monitoring
and side information monitoring.
• CANmessage monitoring: After injection of the fuzzing
input values, the system monitors violations of signal
properties as defined in Phase 2.

• Side information monitoring: After injection of the
fuzzing input values, the system monitors incidents of
misbehavior in a fuzzing target vehicle caused by the
injected input values using the side information obtained
from the monitoring sensors installed on the target vehi-
cle (e.g., IMU sensors).

Next, we provide a detailed explanation of each phase.

B. PHASE 1: CAN MESSAGE ANALYSIS
1) BIT-FLIP RATE ANALYSIS
Two existing studies, [13] and [15], analyze the signal of each
CAN ID data field based on the bit-flip rate. Our proposed
Structure-aware CAN Fuzzing method also adopts the bit-
flip rate-based analysis approach. The bit-flip rate is the fre-
quency of changes in each bit position (from 0 to 1, and vice
versa) and can be calculated with the following Equation (1):

BFRc,k =
1
nc

nc∑
i=2

bc,k,i (1)

• BFRc,k : The bit-flip rate for the k th position in the data
field of an arbitrary CAN ID (c).

• nc: The number of CAN messages with CAN ID (c) in
a set of CAN messages that has been logged over a pre-
determined time (e.g., 10 minutes).

• bc,k,i: Among the nc CAN messages with CAN ID (c),
if the values of k th bit position of the ith and (i − 1)th

CAN message’s data field are the same value, bc,k,i is 1.
Otherwise, bc,k,i is 0.

The boundaries of the signals are identified by calculating
the bit-flip rate of the CAN data field. Then, the identified
signal boundaries are mapped to seven signal types by using
the bit-flip rate-based heuristic rules as follows.
• Unused field: A signal with bit values of 0 and a corre-
sponding bit-flip rate of 0, and has a size of 4 or 8 bits.

• Constant field: A signal with fixed bit values of a spe-
cific value that is not 0 and a corresponding bit-flip rate
of 0, and has a size of 4 or 8 bits.

• Multi-value field: A signal with bit values of only a few
constant values and a corresponding bit-flip rate that
converges to 0, and has a size of 2 or 4 bits.

• Sensor field: A signal whose bit-flip rates decrease from
the Least Significant Bit (LSB) to the Most Significant
Bit (MSB), and has a size of 4, 8, or 16 bits. In gen-
eral, the sensor field representing a physical value has
a high bit-flip rate on the LSB, as the bit value changes
frequently, while the bit-flip rate on the MSB is smaller
than on the LSB. Therefore, we can infer that the field
where the bit-flip rate decreases from the MSB to the
LSB is related to the physical value generated by the
sensor in the vehicle.
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FIGURE 3. OBD-II PID diagnostic query request and response.

• Counter field: A signal with a 2, 4, or 8-bit value, and
bit-flip rates decrease by 1/2 from the LSB to the MSB.

• Checksum field: A signal whose bit-flip rates of 2, 4,
or 8-bit values are distributed between 0.3 and 0.6.

• Undefined field: Any signal that is not classified into the
above six fields.

2) OBD-II PID ANALYSIS
a: FINDING SUPPORTED PIDs
In this step, we adopt the existing ACA-proposed method
[10], [11], to find supported PIDs provided by a target vehicle.
The OBD-II PID diagnostic query is requested through the
OBD-II port, and supported PIDs are checked using response
query data. When PID request queries with a CAN ID of
0× 7DF are transmitted to the target vehicle after setting the
PID codes (e.g., 0 × 00, 0 × 20, 0 × 40, 0 × 60, 0 × 80,
0 × A0, 0 × C0), we can check the supported PIDs repre-
sented in the 4-byte return values of the PID requests. For
example, as shown in Fig. 3, if the PID code of 0 × 20 is
injected into a target vehicle as a PID request query, each
bit position of the 4-byte return values indicates a supported
PID of the vehicle. As such, the supported PIDs are 0 × 21
(Distance traveled with malfunction indicator lamp (MIL)
on), 0×23 (Fuel Rail Gauge Pressure), 0×2E (Commanded
evaporative purge), 0 × 2F (Fuel Tank Level Input), 0 × 30
(Warm-ups since codes cleared), 0 × 31 (Distance traveled
since codes cleared), 0× 32 (EVAP System Vapor Pressure),
0×33 (Absolute Barometric Pressure), 0×34 (Oxygen Sen-
sor 1), and 0× 3C (Catalyst Temperature: Bank1, Sensor 1).

b: CAN ID-PID MATCHING
In order to analyze the relationship between the CAN IDs and
the PIDs of a test vehicle, we adopted the existing methods
proposed in [10] and [11] for the following matching step
process. First, the diagnostic query with a PID is periodi-
cally requested from a test vehicle, and the corresponding
diagnostic response packets along with normal CAN pack-
ets are recorded during a pre-defined time called a window
time. Then, by comparing the diagnostic response packets
and data field of the normal CAN packet recorded during
the window time, the frequencies of CAN IDs that have the
same value as the diagnostic response results are counted.
By repeatedly performing the above described processes, the
CAN ID-PID matching step can identify the CAN ID with
the highest number of counts in all time windows as being
highly correlated with the PID used in the diagnostic queries.

For details on the CAN ID-PID matching algorithm, please
refer to [10] and [11].

3) CORRELATION ANALYSIS
In order to identify correlating CAN IDs, we analyze the
data field of each CAN ID. Since ECUs in a vehicle broad-
cast CAN messages to share a specific vehicle status, some
Sensor signals representing the vehicle’s physical status may
have negatively or positively correlate. Therefore, we identify
CAN IDs that have a high correlation with each other via a
correlation analysis between all Sensor fields.

C. PHASE 2: FUZZING INPUT VALUE GENERATION
1) CAN FUZZING RULE DEFINITION
In this section, we define the Structure-aware CAN Fuzzing
rules used to check a real vehicle that is misbehaving—a
problem that could be originating from SW implementation
errors or CAN DBC design errors. The rules include the
following two violations.
• Signal violation: Signal violations generate fuzzing
input values that include abnormal fields and consist of
two violations.
– U.C.M. violation: U.C.M. violations generate

fuzzing input values that include abnormalUnused ,
Constant , and Multi-value fields by setting abnor-
mal signal values that have not appeared in these
fields. Through this rule, it is possible to check the
misbehavior caused by abnormal values inUnused ,
Constant , and Multi-value fields that are not orig-
inally used or where only certain specific values
are used. For efficient U.C.M. violation input value
injections, a value in the form of 2k is injected into
the target field where the U.C.M. violation will be
located. k is an integer that increases by 1 from 0 to
l. (l is the bit length of the target field.)

– Sensor violation: Sensor violations generate
fuzzing input values that include an abnormal
Sensor field that is greater than the maximum value
or less than the minimum value of the Sensor
field to observe the misbehavior causing abnormal
Sensor signals; the maximum value and the mini-
mum value of the Sensor field are obtained from
the CAN log.

• Field violation: Field violations generate fuzzing input
values that are set to the same value at each byte position
of the data field to observe misbehavior caused by the
abnormal structure of a CAN message that has not been
inferred by bit-flip rates. For efficient field violation
input value injection, a value in the form 2k is injected
into each byte of the CAN data field. k is an integer that
increases by 1 from 0 to 7.

2) CAN FUZZING INPUT VALUE GENERATION
a: SIGNAL VIOLATION INPUT
Before input values corresponding to a U.C.M. violation or
a sensor violation are generated, the target CAN message
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FIGURE 4. Pre-processing of the CAN log for checksum inference.

should first be checked to see whether it has a Checksum
field in the data field. If a Checksum field exists in the target
CAN message, the checksum of the injected input value
should be set. According to [4], if a CAN message is injected
into the vehicle without consideration to the checksum, the
corresponding CAN message may be ignored because of
the checksum verification process. In addition, some vehicle
manufacturers use private keys stored in an ECU when gen-
erating the checksum.

In the proposed method, there are two ways that the check-
sum value can be obtained. These processes are known as
defined checksum and inferred checksum. If the input value
already exists in the CAN log, the checksum does not need
to be inferred. In this case, the checksum is set to a defined
value in the fuzzing input value that is equal to the existing
CAN log. Otherwise, to set the checksum for new input
values without reverse engineering the ECU, the checksum
value is inferred using a deep learning method. The proposed
checksum inferring process is described below.

• Pre-processing the CAN log for checksum inference:
After extracting all CAN IDs that have values inferred
by the Checksum field in the data field, values of the
Checksum field are set as the output of the checksum
inferring process, and the remaining values are set as
input. Then, the input is converted from hexadecimal to
binary, and the output is encoded by a one-hot vector. For
example, if the data field ism-bit and theChecksum field
is n-bit, the input data, as binary data, consists of an array
of size (m− n), and the output data consists of an array
of size 2n. The reason why the number of neurons in
the output layers is 2n is that the checksum value can be
any value in a range of numbers that can be represented
using the corresponding bit. Fig. 4 shows the process of
encoding the CAN data field with a one-hot vector. If the
Checksumfield is 4 bits and the corresponding value is 8,
a one-hot-vector with an array of size 24 sets 1 in the
8th position of the array and the other positions of the
array to 0.

• Designing amodel for checksum inference: A checksum
inference model is designed to adopt a deep neural net-
work (DNN) [24]. For example, if the Checksum field
is n-bit, the input layer consists of (m − n) nodes and

FIGURE 5. DNN model for checksum inference.

accepts the input data that has been converted to binary
data. The output layer consists of 2n nodes and takes the
output data encoded with a one-hot vector. The hidden
layer consists of a fully connected layer, and the design
of the DNN model is shown in Fig. 5.

We use precision, recall, and F1-score to verify the perfor-
mance of themodel that infers checksum values. Experiments
and evaluations of the model are described in Section IV in
detail.

b: FIELD VIOLATION INPUT
In a field violation, input values are generated regardless of
the Checksum field because the field violation ignores the
identified signal boundaries.

3) CAN FUZZING INPUT VALUE INJECTION
In this section, CANmessages are generated according to the
Structure-aware CAN Fuzzing rules, and they are injected
into a fuzzing target vehicle. When CAN messages are
injected, the transmitter node may enter bus-off mode, which
means that the node is unable to participate in the CAN-bus
within a pre-defined time (i.e., bus-off recovery time) due
to message collisions resulting from injected CAN messages
and CANmessages generated from the test vehicle. Owing to
this, our fuzzing input injection process is designed to reset
the CAN controller of the transmitter when it detects the bus-
off state and then performs the fuzzing process without any
delay originating from bus-off recovery. In addition, if the
fuzzing input injection process finds any fuzzing input that
can trigger misbehavior in the target vehicle, this input is
injected several times. We can then confirm through exper-
iments that the target vehicle is responded to in the same way
according to the fuzzing input, not the bus-off event.

D. PHASE 3: MONITORING
1) CAN MESSAGE MONITORING
In order to monitor misbehavior in a vehicle caused by
CAN fuzzing input, we can monitor changes in the following
values.
• CAN ID monitoring: Check for existence of invalid
CAN IDs.
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FIGURE 6. Experiment environment for Structure-aware CAN Fuzzing.

• CAN DLC monitoring: Check for changes in DLC val-
ues of any CAN ID.

• U.C.M. violation monitoring: Check for increases in
the bit-flip rates of Unused , Constant , and Multi-value
fields defined in Phase 1 that exceed the U.C.M. viola-
tion threshold (e.g., 0.1).

• Sensor violation monitoring: Check whether or not the
values of the Sensor field are outside the maximum or
minimum values.

• Correlation monitoring: Check for changes in the cor-
relation between the Sensor field values over a certain
threshold.

2) SIDE INFORMATION MONITORING
An IMU sensor, an inertial measurement device that
integrates accelerometers and gyroscopes, is used to moni-
tor misbehavior caused by CAN fuzzing. The accelerome-
ter measures velocity changes, and the gyroscope measures
angular velocity for three axes: pitch (x-axis), roll (y-axis),
and yaw (z-axis).

IV. EXPERIMENT AND EVALUATION
In this section, we evaluate the proposed Structure-aware
CANFuzzing system on two different vehicles to consider the
environment of the functions provided in a range of vehicles;
According to the year of production and the price of the
vehicle, the functions provided in each vehicle are differ-
ent. VehicleA is a 2014 Kia Soul, a subcompact crossover
SUV,7 and VehicleB is a 2018 Genesis EQ900, a premium
luxury sedan.8 To send and receive CAN messages, we used
a CAN monitoring tool called RAD GALAXY as shown in
Fig. 6. We also used the Raspberry Pi 3 with an IMU sensor
(e.g., MPU-6050) to test the Side Information Monitoring.
The CAN monitoring tool and the IMU sensor collect data
separately. RAD GALAXY collects CAN messages from the
target vehicle, and Raspberry Pi collects the vehicle’s vibra-
tion through IMU sensors. The data collected from the two
devices helps monitor the vehicle’s state transitions triggered
by fuzzing input injection.

A. CAN MESSAGE ANALYSIS
1) BIT-FLIP RATE ANALYSIS
In order to analyze the signal of each CAN ID data field,
we collected CAN logs of varying conditions (e.g., stop,

7[Accessed: Feb. 1, 2022] https://www.kia.com/us/en
8[Accessed: Feb. 1, 2022] https://www.genesis.com/kr/ko/main.html

TABLE 1. Supported PIDs of VehicleA and VehicleB.

normal driving, and driving with various vehicle functions
operating). Fig. 7 shows the bit-flip rate analysis results and
representative CAN ID signals in the two vehicles.

2) OBD-II PID ANALYSIS
a: FINDING SUPPORTED PIDs
In this experiment, we can find supported PIDs using the
OBD-II PID query. As shown in Table 1, VehicleA sup-
ports 37 PIDs and VehicleB supports 38 PIDs.

b: CAN ID-PID MATCHING
In this experiment, we identified supported PIDs related to
the engine by checking the list of supported PIDs. With
this information, we could identify which CAN IDs have a
high correlation with engine-related PIDs. Table 2 shows the
matching results.

In VehicleA, we discovered the following relationships:
1) CAN ID 0× A0 seems to be related to PID 0×04 (Calcu-
lated Engine Load) and 0×05 (Engine Coolant Temperature);
2) CAN ID 0×80, 0× A0, and 0×316 seem to be related to
PID 0×0C (Engine RPM); 3) CAN ID 0× A0, 0×316, and
0×440 seem to be related to PID 0×0D (Vehicle Speed); and
4) CAN ID 0×A0 seems to be related to PID 0×11 (Throttle
Position). In VehicleB, we find that: 1) CAN ID 0×556 seems
to be related to PID 0 × 04 (Calculated Engine Load) and
0 × 05 (Engine Coolant Temperature); 2) CAN ID 0 × 316,
0 × 366, 0 × 368, 0 × 374, and 0 × 556 seem to be related
to PID 0× 0C (Engine RPM); 3) CAN ID 0× 112, 0× 316,
0× 366, 0× 368, and 0× 556 seem to be related to 0× 0D;
and 4) CAN ID 0 × 556 seems to be related to PID 0 × 11
(Throttle Position).

We verified our results using the open resource file9 and
confirmed that the identified results are correct except for
offset 7 of CAN ID 0 × 440 in VehicleA and offsets 5, 6 of
CAN ID 0 × 368 and offsets 0, 1 of CAN ID 0 × 374 in
VehicleB. We organized these findings in Table 2.

3) CORRELATION ANALYSIS
First, we calculated correlation using the Sensor fields of
each CAN ID and used the Pearson correlation coefficient
to measure the degree and strength of the positive or neg-
ative correlation. In this step, we set correlation thresholds

9[Accessed: Feb. 1, 2022] https://github.com/commaai/opendbc

VOLUME 10, 2022 23265



H. Kim et al.: Efficient ECU Analysis Technology Through Structure-Aware CAN Fuzzing

TABLE 2. Matching results between PID codes and CAN IDs related to the engines of VehicleA and VehicleB (
√

: CAN signals analyzed by PID code
requests, Red tagging: CAN signals provided by the open resource file9).

FIGURE 7. Signal classification using bit-flip rate.

to 0.7 and −0.7 to indicate high correlation fields with the
target Sensor field. If a correlation score of a Sensor field
with the target Sensor field is greater than 0.7 or less than
−0.7, we can infer that the Sensor field is highly correlated
with the target Sensor field. Table 3 shows the results of our
correlation analysis, in which the Sensor fields related to the
engine were set to the target Sensor fields.

B. FUZZING INPUT VALUE GENERATOR
1) INPUT VALUE GENERATION AND CHECKSUM INFERENCE
In this section, we generated fuzzing input values for
each CAN ID related to the engine using signal violation
(i.e., U.C.M. violation and sensor violation) and field viola-
tion rules as defined in Section III.

While generating the fuzzing input values based on a signal
violation, we must check whether or not a Checksum field
exists. In our engine-related fuzzing experiments, we found

that the Checksum field exists in the data field of CAN ID
0 × 80 of VehicleA and CAN ID 0 × 112 of VehicleB. Thus,
checksum values of these fuzzing input values, which are
related to CAN ID 0× 80 of VehicleA and CAN ID 0× 112
of VehicleB, were inferred using our checksum inference
model. We confirmed that the identified checksum fields of
the two CAN IDs are correct by comparing them with the
open resource file9. The hyperparameters of our checksum
inference model are listed in Table 4, and the input and output
values for the checksum inference model become processed
as follows. For example, since CAN ID 0× 80 is expected to
have a Checksum field of 4 bits, the input layer for the check-
sum inferencemodel consists of 60 nodes and the output layer
consists of 24 nodes. Likewise, since CAN ID 0 × 112 is
expected to have aChecksumfield of 2 bits, the input layer for
the checksum inference model consists of 62 nodes and the
output layer consists of 22 nodes. Then, in order to train and
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TABLE 3. Sensor field value-based CAN ID correlation.

FIGURE 8. Performance of our model for checksum inference.

evaluate the checksum inference model, we dedicated 70%
of the CAN log for training, 20% for validation, and 10% for
testing.

As shown in Fig. 8, our model achieves an accuracy rate
over 98% and converges the loss to 0.01 in the training
process for both CAN IDs 0× 80 and 0× 112. From Table 5,
we can observe that the precision, recall, and F1-score for
CAN IDs 0 × 80 and 0 × 112 are about 98% and 99%,
respectively.
• Precision

=
TruePositives

TruePositives+ FalsePositives
(2)

• Recall

=
TruePositives

TruePositives+ FalseNegatives
(3)

TABLE 4. Hyperparameters of our model.

TABLE 5. Evaluation metrics for our model.

• F1-Score

= 2×
Precision× Recall
Precision+ Recall

(4)

C. MONITORING RESULTS
After injecting CAN fuzzing input values, the corresponding
results are monitored via CAN logs and side information.

1) CAN MESSAGE MONITORING
Since vehicle misbehavior can be reflected in CANmessages,
these are monitored using the following rules: 1) CAN ID
monitoring, 2) CANDLCmonitoring, 3) U.C.M. monitoring,
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FIGURE 9. Vehicle misbehavior caused by CAN fuzzing.

FIGURE 10. Side information monitoring results.

4) sensor monitoring, and 5) correlation monitoring. When
monitoring CAN messages according to these five rules,
we observed no noticeable changes.

2) SIDE INFORMATION MONITORING
In this step, we compared sensor values obtained from each
vehicle’s normal state without CAN fuzzing, which was done
using sensor values obtained from each vehicle’s fuzzing state
with CAN fuzzing. By monitoring side information obtained
from engine-related CAN fuzzing experiments, we were able
to detect misbehavior caused by CAN fuzzing in the steering
control in both vehicles, engine acceleration in VehicleA, and
brake control in VehicleB.
Fig. 10 shows CAN IDs that have abnormal side informa-

tion. In the figure, blue, orange, and green indicate x, y, and z
axes of the IMU sensor value, respectively. When comparing

graph (a) Normal state of the Soul with (d) Fuzzing state of
the Soul using a U.C.M. violation with CAN ID 0× 370, the
amplitude increases for IMU sensor values found in (d). This
vibration checked by the IMU sensor means that the test vehi-
cle’s engine accelerated. Also, we confirmed that the RPM of
the dashboard changed as shown in Fig. 9 (a) RPM instrument
panel. In addition, when the CAN fuzzing input value for
CAN ID 0 × 316 was injected, the RPM of the dashboard
changed.When comparing graph (b) Normal state of the Soul
with (e) Fuzzing state of the Soul using the field violation
role for CAN ID 0 × 164, a periodic change of IMU sensor
values was found in (e). This periodical change is caused by
the vehicle’s steering control that actuates steering by 5∼10◦

to the right as shown in Fig. 9 (a) Movement of steering in
the Soul. Likewise, the difference between graph (c) Normal
state of the EQ900 and (f) Fuzzing state of the EQ900 using

23268 VOLUME 10, 2022



H. Kim et al.: Efficient ECU Analysis Technology Through Structure-Aware CAN Fuzzing

TABLE 6. Comparison of number of CAN fuzzing input values (engine-related CAN IDs: VehicleA (0× 80, 0xA0, 0× 316, 0× 440), VehicleB (0× 112,
0× 316, 0× 366, 0× 368, 0× 374, 0× 556)).

a U.C.M. violation with CAN ID 0× 340 shows the steering
control for VehicleB as shown in Fig. 9 (b) Movement of
steering in the EQ900.

Furthermore, brake control was monitored as shown in
Fig. 9 (b) AEB, in which the autonomous emergency brak-
ing (AEB) is actuated by CAN ID 0 × 48A. Although the
brake control was not monitored via the IMU sensor in the
vehicle’s stop status, it can be monitored during the vehicle’s
driving status.

D. NUMBER OF CAN FUZZING INPUT VALUES
As shown in Table 6, we compared the number of fuzzing
input values between existing brute force CAN fuzzing meth-
ods and our proposed Structure-aware CAN Fuzzing method.
For a fair comparison, we used CAN IDs that we identified
as being related to the engine in the test vehicles (e.g., CAN
ID 0×80, 0xA0, 0×316, and 0×440 in VehicleA, and CAN
ID 0×112, 0×316, 0×366, 0×368, 0×374, and 0×556 in
VehicleB). The process of calculating the number of fuzzing
input values for each CAN ID is as follows.
• Number of signal violations

– Number of U.C.M. violations: If the Unused ,
Constant , andMulti-value are 4 bits, the number of
input values for each field is 4 because each field
is injected in units of 2k , meaning that k increases
by 1 from 0 to 4. By using this fact, the number
of fuzzing input values related to U.C.M. violations
can be calculated in the following way: if the num-
ber of Unused , Constant , and Multi-value fields is
n1 in the data field of the specific CAN ID, the
corresponding number of fuzzing input values is
(4 × n1). Therefore, since the number of Unused ,
Constant , andMulti-valuefields for CAN ID 0×80,
0xA0, 0 × 316, and 0 × 440 in VehicleA is 2, 5,
4, and 7, respectively, the number of fuzzing input
values is 8, 20, 16, and 28, respectively. Likewise,
since the number of Unused , Constant , and Multi-
value fields for CAN ID 0× 112, 0× 316, 0× 366,
0 × 368, 0 × 374, and 0 × 556 in VehicleB is 4, 2,
2, 8, 8, and 4, respectively, the number of fuzzing
input values is 16, 8, 8, 32, 32, and 16, respectively.

– Number of sensor violations: Sensor violation
fuzzing generates two input values per Sensor field.
One is greater than the maximum value of the
Sensor field, while the other is less than the min-
imum value. By using this fact, the number of
fuzzing input values related to sensor violations can

be calculated in the following way: if the number
of Sensor fields is n2 in the data field of the spe-
cific CAN ID, the corresponding number of fuzzing
input values is (2×n2). Therefore, since the number
of Sensor fields for CAN ID 0×80, 0xA0, 0×316,
and 0×440 inVehicleA is 6, 4, 5, and 3, respectively,
the number of fuzzing input values is 12, 8, 10,
and 6, respectively. Likewise, since the number of
Sensor fields for CAN ID 0×112, 0×316, 0×366,
0 × 368, 0 × 374, and 0 × 556 in VehicleB is 5, 6,
5, 3, 1, and 5, respectively, the number of fuzzing
input values is 10, 12, 10, 6, 2, and 10, respectively.

• Number of field violations: After dividing the data field
(64 bits) by 8 bits, each field is injected with units of 2k ,
such that k increases by 1 from 0 to 7. In short, all eight
fields have the same value according to k . Therefore, the
number of fuzzing input values for engine-related CAN
IDs in both VehicleA and VehicleB is 8.

As shown in Table 6, the total number of fuzzing input val-
ues of our method for VehicleA is 140 and 226 for VehicleB,
which are the summations of the number of fuzzing input
values for engine-related CAN IDs. We confirmed that the
total number of fuzzing input values in our method is less than
28, whereas the number in existing brute force CAN fuzzing
methods is greater than 266. As a result, we confirmed that
our method takes less fuzzing time than existing brute force
CAN fuzzing methods.

V. LIMITATIONS AND DISCUSSION
The efficiency of our proposed Structure-aware CAN
Fuzzing system was validated on a 2014 Kia Soul and
a 2018 Genesis EQ900. However, this study still faces some
limitations.

First, the proposed Structure-aware CAN Fuzzing system
was validated on vehicles produced by the same manufac-
turer. Therefore, in order to extensively validate our method,
we must evaluate our method using vehicles from other mak-
ers in future research. Additionally, if the manufacturer offers
vehicles equipped with an intrusion detection system (IDS),
new fuzzing methods should be studied because it might
be difficult to inject fuzzing input values into the vehicle.
Second, the proposed Structure-aware CAN Fuzzing system
does not contain feedback-directed fuzzing that is generally
included in software fuzzing. When generating fuzzing input
values, there are cases where the vehicles do not respond
even if the checksum values of the fuzzing input values are
correctly inferred. We think that the root of these issues may

VOLUME 10, 2022 23269



H. Kim et al.: Efficient ECU Analysis Technology Through Structure-Aware CAN Fuzzing

lie in the contexts of the CAN-bus. For example, a correct
counter value may need to be set if a CAN message has a
counter field. Third, we use only the IMU sensor to obtain
side information. However, it is possible to obtain additional
side information from the vehicle’s black box video data,
sound sensor, and so on. By adding such additional sensors,
we can monitor vehicular misbehavior more specifically.
Last, we did not consider unusual situations (e.g., a collision
event or a debug mode). However, our method generates
unusual fuzzing input values by modifying the unused field
and constant field values, which are known to contain a fixed
value or some multi-values during normal driving conditions.
Even if modifying the values included in these fields could
solve unusual situations to some extent, more tests must be
performed to cover unusual situations.

In future work, we will improve our Structure-aware CAN
Fuzzing method by adopting feedback-directed fuzzing input
generation, which enables us to control the vehicle more
critically by adjusting the field, such as the counter field of
the control message. In addition, a variety of sensors other
than the IMU sensor will be adopted to monitor vehicular
misbehavior, and more fuzzing tests will be conducted on
vehicles made by various manufacturers.

VI. CONCLUSION
With the increase in the number of connected and
autonomous vehicles (CAVs), cyber attacks on such vehicles
are increasing. To deal with vehicular cyber attacks, ECU
reverse engineering and CAN fuzzing have been studied to
analyze ECU vulnerabilities. However, ECU reverse engi-
neering needs physical access to a target ECU, and existing
CAN fuzzing techniques require non-negligible analysis time
to randomly transmit fuzzing input values to the CAN-bus.
Additionally, monitoring responses corresponding to random
fuzzing input values is notoriously difficult. To overcome the
limitations of existing analysis methods, we proposed our
Structure-aware CAN Fuzzing system, which considers the
structure of CAN messages. Additionally, to our knowledge,
this is the first method of its kind developed for the Structure-
aware CAN Fuzzing method. In comparison with brute force
CAN fuzzing, the proposed Structure-aware CAN Fuzzing
system can minimize fuzzing time and monitor the response
results of CAN fuzzing. Our method was validated on real
vehicles, a 2014 Kia Soul and a 2018 Genesis EQ900.
In future work, we will apply our method to various real
vehicles and validate efficiency.
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