
Research Article
Compact Implementations of HIGHT Block Cipher on
IoT Platforms

Bohun Kim ,1 Junghoon Cho,1 Byungjun Choi,1 Jongsun Park,1 and Hwajeong Seo 2

1Korea University, Electrical Engineering, Seoul 136-701, Republic of Korea
2Hansung University, IT Engineering, 116 Samseong-Yoro-16-Gil Seongbuk-gu, Seoul 136-792, Republic of Korea

Correspondence should be addressed to Hwajeong Seo; hwajeong84@gmail.com

Received 12 July 2019; Revised 22 November 2019; Accepted 7 December 2019; Published 31 December 2019

Academic Editor: Petros Nicopolitidis

Copyright © 2019 Bohun Kim et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recent lightweight block cipher competition (FELICS Triathlon) evaluates e�cient implementations of block ciphers for Internet
of things (IoT) environment. In the competition, the implementation of HIGHT block cipher achieved the most e�cient
lightweight block cipher, in terms of code size (ROM), memory (RAM), and execution time. In this paper, we further investigate
lightweight features of HIGHT block cipher and present the optimized implementations of both software and hardware for low-
end IoT platforms, including resource-constrained devices (8-bit AVR and 32-bit ARM Cortex-M3) and application-speci�c
integrated circuit (ASIC). By using proposed optimization methods, the implemented HIGHT block cipher shows better
performance compared to previous state-of-the-art implementations.

1. Introduction

Internet of things (IoT) infrastructure consists of heteroge-
neous devices, ranging from low-end resource-constrained
devices to high-end server computers. �e devices are usually
located in remote area and transmit the collected sensor data
to server platforms. However, low-end platforms only support
very limited computation power and storage capacity (i.e.,
RAM and ROM), due to production costs and battery life.
Under this condition, block cipher implementations should
perform fast encryption operations for target applications. For
some lightweight IoT hardware architectures, such as passive
RFID tags, a key aspect of implementation is minimization of
the chip area. According to previous works, the maximum
layout area for security part of the RFID tags was limited to
2,000 gate equivalents (GEs) [1]. Although the precise con-
straint �gure might be mitigated a little, the chip area is still an
essential point of lightweight implementation and smaller area
is bene�cial in terms of production cost. In particular, these
IoT applications may use user’s private and sensitive infor-
mation.�is information should be handled securely. In order
to keep the information secret, every network packet should be
encrypted before packet transmissions. To meet lightweight

requirements of block cipher, the block cipher implementa-
tions for low-end IoTdevices are actively studied. In 2015, the
University of Luxembourg held lightweight block cipher
competition for IoT devices. �e purpose of competition was
to �nd the best block cipher implementation for IoT envi-
ronment, in terms of code size, memory, and execution time.
In the competition, HIGHT block cipher was selected as the
e�cient block cipher for low-end IoT devices [2]. However,
very few software and hardware implementations have pre-
viously evaluated the HIGHT block cipher. �ere is a room to
improve the performance of HIGHT implementations. In this
paper, we present e�cient implementations of HIGHT block
cipher, in terms of software and hardware aspects. �e
implementation results show that HIGHT block cipher is very
lightweight.�is feature is suitable for applications on the low-
end devices. �e main contributions of this paper are sum-
marized as follows.

1.1. Contribution

1.1.1. Size-Optimized Bit/Digit-Serial HIGHT Implementa-
tion on ASIC. We implemented the �rst serial HIGHT
implementation on ASIC. Text and key registers are replaced

Hindawi
Security and Communication Networks
Volume 2019, Article ID 5323578, 10 pages
https://doi.org/10.1155/2019/5323578

mailto:hwajeong84@gmail.com
https://orcid.org/0000-0003-2858-571X
https://orcid.org/0000-0003-0069-9061
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5323578
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2019%2F5323578&domain=pdf&date_stamp=2019-12-31


by shift register to eliminate multiplexers (MUXs) for data
control. Exploiting only one 1-byte shift register, auxiliary
functions F0 and F1 in units of 1 byte are implemented in
units of 1 bit. In order to support bit/digit-serial modes, the
dataflow of text register and key register is efficiently
scheduled. As a result, the size of bit-serial implementation is
reduced to half of the round-based implementation.

1.1.2. Speed- and Size-Optimized HIGHT Implementation on
8-Bit AVR Devices. For the speed optimization, bitwise
operations in delta update, F0 function, and F1 function are
replaced into the Look-Up-Table (LUT). In order to ensure
efficient memory access, the LUT is stored in 8-bit align-
ment. .e available registers are efficiently allocated to re-
duce the number of memory access. For the size
optimization, delta update, F0 function, and F1 function are
implemented in bitwise operations, rather than LUT. .e
on-the-fly method reduces the code size. During key
scheduling, the master key management scheme is intro-
duced. .is scheme rotates the master keys and selects the
suitable keys in each round.

1.1.3. Speed-Optimized HIGHT Implementation on 32-Bit
ARMCortex-M3 Devices. .e8-bitwise operations ofHIGHT
are implemented in instruction-level parallel way on the 32-bit
word. .is technique performs two or four bytes operations
simultaneously. For key scheduling, the novel approach to
perform the addition of 7-bit and 8-bit operands is presented.
For encryption and decryption functions, all available registers
are efficiently allocated to reduce the number of memory access.

.e remainder of this paper is organized as follows. In
Section 2, FELICS Triathlon competition, HIGHT block
cipher, and target platforms are introduced. In Section 3,
optimization techniques for HIGHT block cipher in hard-
ware and implementations of HIGHT block cipher on 8-bit
AVR devices are covered. In Section 5, we present HIGHT
implementations on 32-bit ARM Cortex-M3 devices. Fi-
nally, Section 6 concludes the paper.

2. Related Works

2.1. FELICS Triathlon. In 2015, the software-based block
cipher implementation benchmarking framework named
Fair Evaluation of Lightweight Cryptographic Systems
(FELICS) was held by the University of Luxembourg. .e
system provides similar evaluation features and functions to
SUPERCOP framework, but the FELICS framework targets
specific devices, which are main low-end IoT platforms.
.ree platforms, including 8-bit AVR, 16-bit MSP, and 32-
bit ARM, were evaluated, in terms of three metrics: exe-
cution time, RAM, and code size. .e optimized block ci-
pher implementations were tested in three scenarios: cipher
operation, communication protocol, and challenge-hand-
shake authentication protocol. In the competition, one
hundred implementations were submitted from interna-
tional researchers. In the competition, LEA won the first
round and HIGHTwon the second round (see Table 1). .e
other block ciphers, including SPECK and Chaskey, also

showed notable features [3, 4]. .e one interesting insight is
that the top-ranked block cipher implementations usually
follow the Addition, Rotation, and bitwise eXclusive-or
(ARX) architecture rather than traditional Substitution-
Permutation-Networks (SPN). .e ARX operations are
relatively fast and cheap in both hardware and software
implementations than SPN. Furthermore, ARX operations
are performed in constant time, which even makes it im-
mune to timing attacks and simple power analysis. FELICS
results also showed that 32-bit word size is optimal for 8-bit,
16-bit, and 32-bit devices since 32-bit word operation can be
easily computed on these devices but 8-bit word is inefficient
for 16-bit and 32-bit devices.

2.2. HIGHT Block Cipher. In CHES’06, lightweight block ci-
pher, HIGHT, was introduced in South Korea and was enacted
as ISO/IEC 18033-3 international block cryptographic algo-
rithm standard [2]. HIGHT block cipher targets low-end de-
vices and low-cost hardware implementations. It has the ARX
architecture, which supports 64-bit block size and 128-bit key
size. HIGHT algorithm consists of Initial Transformation,
Round Function, and Final Transformation. .e number of
round is 32, except for the transformations. .e detailed de-
scriptions of the round function and key generation are given in
Figure 1. .e basic operations of round function are 8-bit wise
addition (+in square), exclusive-or (+in circle), and rotation.
.e notation (<<<n) in F0 function and F1 function means n-
bit left rotation of 8-bit value. .ere is no rotation in the last
round. .e key scheduler produces 32-bit whitening keys for
the transformation and 32-bit subkeys for the round functions.
.e whitening keys are extracted from the master key, and the
subkeys are generated by adding the part of the master key and
the output of the 7-bit linear feedback shift register (LFSR).

2.3. Previous Works on ASIC. For ASIC implementation of
block ciphers, the round-based architectures, performing a
round function in a clock, have been widely adopted. .e
hardware implementation offers a reasonable trade-off be-
tween the area and the throughput. Existing implementa-
tions of HIGHT block cipher in ASIC also strike the balance
between both features [2, 5]. In [2], a round-based hardware
implementation for HIGHT encryption mode was imple-
mented. To support both encryption and decryption oper-
ations, the unified architecture sharing common datapath
for both encryption and decryption operations was proposed
in [5]. However, the implementations may not be suitable
for low-end devices, such as passive RFID tags, where the
area and power consumption are limited [6, 7]. In order to
dramatically reduce the area and power consumption of the
circuit, serial implementation is considered. Although ARX
ciphers other than HIGHT have been implemented in serial

Table 1: Winners of FELICS Triathlon (block size/key size).

Rank First Triathlon Second Triathlon
1 LEA (128/128) HIGHT (64/128)
2 SPECK (64/96) Chaskey (128/128)
3 Chaskey (128/128) SPECK (64/128)

2 Security and Communication Networks

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/5323578 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



architecture, HIGHTneeds more dedicated optimization for
the serial implementation.

2.4. Previous Works on 8-Bit AVR Processors. 8-bit AVR
embedded processor is clocked at 7.37MHz and provides
128KB EEPROM chip and 4KB RAM [8]. 8-bit AVR
processor has the RISC architecture and only 32 registers are
available. Among the registers, 6 registers are used to in-
dicate the indirect address. Remaining 26 general purpose
registers are utilized to perform the instructions, where one
arithmetic instruction requires 1 clock cycle and memory
instruction requires 2 clock cycles. On the 8-bit AVR
processor, many block cipher algorithms are evaluated. �e
encryption of AES was performed and ARX-based block
ciphers including LEA, SPECK, and SIMON are also e�-
ciently implemented [3, 9, 10, 11]. In WISA’18, the opti-
mized HIGHT implementation on 16-bit MSP processors is
suggested [12]. However, the implementation uses the 16-bit
MSP instruction set-based optimization which is not
available in 8-bit AVR processors. HIGHT implementation
on 8-bit AVR processor is also suggested but previous works
missed several optimization techniques covered in our paper
[13].

2.5. Previous Works on 32-Bit ARM Cortex-M3 Processors.
�eCortex-M is a family of 32-bit devices used in embedded
environments. �e device is designed to be energy e�cient,
while being fast enough to provide high performance in
applications. ARM Cortex-M3 is a 32-bit device based on
ARMv7-M architecture developed by ARM Holdings.
Cortex-M3 was announced in 2004. Cortex-M3 has 32-bit
registers and a �umb/�umb-2 instruction set that sup-
ports both 16-bit and 32-bit operations. Arithmetic in-
structions take one clock cycle, but memory access
instructions take more. �e devices support a barrel-shifter
feature, which performs rotated or shifted registers without
additional cost. In [14], the LEA implementations through
on-the-©y method over ARM Cortex-M3 devices were
proposed. �ey utilized available registers to retain many
parameters as possible and optimized the rotation operation
with the barrel-shifter feature. In [15], the lightweight block
cipher CHAM was implemented on ARM Cortex-M3 de-
vices. Compared with the SPECK block cipher, the CHAM
block cipher showed better performance. In [16], highly
optimized AES-CTR assembly implementations for the
ARM Cortex-M3 and M4 devices were introduced. �e
implementations were about twice as fast as the existing

Xi[6] Xi[5] Xi[4]Xi[7] Xi[2] Xi[1] Xi[0]Xi[3]

Xi[6] Xi[5] Xi[4]Xi[7] Xi[2] Xi[1] Xi[0]Xi[3]

F0 F1 F0 F1

SK4i+3 SK4i+2 SK4i+1 SK4i

F0(X) = X<<<1 X<<<7X<<<2

F1(X) = X<<<3 X<<<6X<<<4

(a)

Ki
[15]

Ki
[14]

Ki
[13]

Ki
[12]

Ki
[11]

Ki
[10]

Ki
[9]

Ki
[8]

Ki
[7]

Ki
[6]

Ki
[5]

Ki
[4]

Ki
[3]

Ki
[2]

Ki
[1]

Ki
[0]

Bytewise left rotation

Ki+1
[15]

Ki+1
[14]

Ki+1
[13]

Ki+1
[12]

Ki+1
[11]

Ki+1
[10]

Ki+1
[9]

Ki+1
[8]

Ki+1
[7]

Ki+1
[6]

Ki+1
[5]

Ki+1
[4]

Ki+1
[3]

Ki+1
[2]

Ki+1
[1]

Ki+1
[0]

Bytewise left rotation

LFSR

{SK4i+3, SK4i+2,
SK4i+1, SK4i}

δ 

(b)

Figure 1: (a) Round function and (b) subkey generation of HIGHT encryption, where X, K, and SK represent input data, master key, and
subkey, respectively.

Security and Communication Networks 3

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/5323578 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



implementations. �e implementations included an archi-
tecture-speci�c instruction scheduler and register allocator.
In [13], LEA and HIGHT block ciphers were evaluated on
ARMCortex-M3 devices. Pseudo-SIMD technique was used
for HIGHT implementation on ARM Cortex-M3. �is
technique could perform two 8-bit words at once on a 32-bit
ARM processor.

3. Hardware Implementation

3.1. Serial Implementation. In this section, we present novel
bit-serial and digit-serial hardware implementations of
HIGHT block cipher. �e serial hardware operates in units

of one bit or a few bits. �is compact hardware is suitable for
resource-constrained devices such as passive RFID tags with
limited chip area and peak power consumption [7, 15, 17].

3.1.1. Bit-Serial Implementation. �e proposed bit-serial
architecture is shown in Figure 2. �e top architecture
consists of the round functionmodule and key scheduler like
conventional round-based architecture of [5]. �e round
function module performs the round function as well as the
initial and �nal transformations. �e key scheduler provides
subkey and whitening key for the round function module. In
the bit-serial architecture, round function module and key

Type
A

Type
B

Subkey

F0

F1

Plain text

Cypher text

Controller

Whitening key

(a)

Master key

Subkey

Whitening 
key

‘0’ LSFR

7

Master key

(b)

Figure 2: Bit-serial architecture: (a) round function; (b) key scheduler.

4 Security and Communication Networks

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/5323578 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



scheduler have 1-bit datapath and performs bitwise oper-
ations. �e text and key registers are shift registers which
perform shift operation every clock cycle without exception.
Since this type of shift register does not have MUX for input
selection of ©ip-©op, the area of the ©ip-©op is reduced to
approximately 60–70% of the conventional ©ip-©op [7].�is
scheme is e¬ective for overall area reduction because reg-
isters occupy a large portion of HIGHT hardware.

Since the 64-bit text shifts 1 bit at every clock cycle, a
round function is performed for 64 clock cycles. In this
section, we de�ne a step as the process of one byte operation
(i.e., one round takes 8 steps and one step takes 8 clock cycles
in the bit-serial architecture). �e 64-bit text is divided into
eight 1-byte words as shown in Figure 1. �e even words (X
[0], X[2], X[4], and X[6]) are processed in even steps and the
odd words (X[1], X[3], X[5], and X[7]) are processed in odd
steps. To perform the round function of bit-serial encryp-
tion, one of the eight indices in the text register is selected for
each round. �e process is performed from the least sig-
ni�cant bit (LSB) of the selected index, while the text is
shifting. In the even steps, the selected even word is fed to the
next index of text register and the additional 1-byte shift
register, which exists to support F functions, simultaneously
without any operations. In the odd steps, the additional
register generates the outputs of F functions by 1 bit while
performing cyclic shift. Due to this scheme, the bitwise
processing is allowed even though F functions have a de-
pendency on a byte. Consequently, the fundamental oper-
ation of the round function is performed with the output of F
function, the subkey, and the selected odd word in 1-bit unit.
�e round operation in odd step is classi�ed into two types.
In Figure 2(a), Type A is selected for the operation of X[1]
and X[5] while type B is selected for that of X[3] and X[7]. To
support 1-bit addition, 1-bit ©ip-©ops are used to store
carries. One output of two types of operation is selected
properly and fed to the next index of text register. Figure 3
shows the data©ow of bit-serial round operation at each step.
�e index of the register that receives the text after the round
operation is indicated by the dotted box in the text register.
�e dark box in the text register indicates the text where the
round operation is done. After 64-bit round operation is

completed, another index is selected to perform next round.
�is change of the processing index acts as a virtual bytewise
rotation after a round of HIGHT algorithm is shown in
Figure 3. When initial or �nal transformation is performed
instead of round function, the data are processed with the
whitening key in the even step. �e transform functions
share the XOR gates and the adders with the round function.

In the key register in Figure 2(b), 128-bit key register
consists of two 64-bit shift registers. LFSR for subkey
generation is also 7-bit shift register. �e LFSR is updated to
the value of the next order in even step and it provides the
output by one bit in odd step.�e output of LFSR is added to
the selected key to produce a subkey. �e index of selected
key is marked as dark box in the key register in Figure 3. �e
whitening keys for transformations are extracted at the �xed
positions of the key register.�e key register can perform the
virtual bytewise rotation similar to the text register.

In case of decryption, since HIGHT is a Feistel structure,
round function of decryption is similar to that of encryption
while some additions are replaced by subtractions and the
direction of the rotation is the opposite of encryption. In the
key scheduling, the direction of the rotation and the order of
LFSR is also the opposite of encryption. In order to im-
plement LFSR compactly, the order of LFSR has to be se-
quentially decreased from the last order. Meanwhile, for the

0 7 6 5 4 3 2 1

0 7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7
7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1

1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7
7 6 5 4 3 2 1 0

0 7 6 5 4 3 2
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7
7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7
7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7
7 6 5 4 3 2 1 0

Text register
(index)

1 0

Key register
(index)

Step

7
6
5
4
3
2
1
0

Round 1

7
6
5
4
3
2
1
0

Round 2

LFSR
(order)

0

1

2

3

4

5

6

7

Virtual Rotation

(a)

Virtual Rotation
6 5 4 3 2 1 0 7

0 7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7
7 6 5 4 3 2 1 0

6 5 4 3 2 1 0 7

7 6 5 4 3 2 1 0
0 7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6

0 7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7

7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7

7 6 5 4 3 2 1 0

127

126

125

124

123

122

121

120

Text register
(index)

LFSR
(order)

0 7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7
7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1
1 0 7 6 5 4 3 2
2 1 0 7 6 5 4 3
3 2 1 0 7 6 5 4
4 3 2 1 0 7 6 5
5 4 3 2 1 0 7 6
6 5 4 3 2 1 0 7
7 6 5 4 3 2 1 0

Key register
(index)

Step

7
6
5
4
3
2
1
0

Round 1

7
6
5
4
3
2
1
0

Round 2

(b)

Figure 3: Bit-serial data©ow: (a) encryption; (b) decryption.

Table 2: Comparison results of serial architectures @ 80MHz.

Mode Bits Area (GEs) Power (uW) Latency Tech.

Enc

1 1111/1625 5.412/0.303 2176

250/65
2 1180/1738 6.498/0.337 1088
4 1312/1926 8.234/0.392 544
8 1604/2282 7.713/0.346 272
64 2269/3033 9.394/0.383 34

64 [2] 3048 — 34 250

Enc/Dec

1 1172/1711 5.538/0.308 2176

250/65
2 1237/1809 6.534/0.338 1088
4 1385/2004 8.462/0.391 544
8 1695/2386 8.663/0.357 272
64 2560/3322 12.58/0.454 34

64 [5] 2608 10.8∗ 34 350
∗Power consumption measured @ 100KHz.

Security and Communication Networks 5

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/5323578 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



operation of odd words, the output of F function is needed.
.erefore, the process of even word which corresponds to
the odd word must be done beforehand. .erefore, the
processing index is changed every other steps as shown in
Figure 3(b).

3.1.2. Digit-Serial Implementation. Digit-serial architecture
is a serial architecture that the unit of processing is in a few
bits. .e size of text and key register is the same as the bit-
serial architecture. .e difference is that n-bit datapath is
used and shift registers perform n-bit shift in n-bit-serial
architecture. Processed data are n-bit from LSB of each 8-bit
word..e option for the unit bit-width of process provides a
trade-off between area, power, and throughput. .e larger
unit induces larger area, power, and higher throughput.

3.1.3. Evaluation. .e proposed architectures are coded in
Verilog. .e programmed codes are synthesized, and the
area is measured using Synopsys Design Compiler. .e
power consumption is measured using Primetime PX at
frequency of 80MHz. For a variety of comparisons, we used
two standard cell libraries, including Samsung 65 nm and
TSMC 250 nm CMOS technology. Gate equivalents (GEs)
can vary depending on the standard cell libraries, which have
different relative sizes of 2-input NAND gate compared to
other gates. In Table 2, the measurements of area and power
consumption of the proposed bit-serial and digit-serial
implementations are given. .e round-based implementa-
tion has been added to be compared only with serial
implementations. In the table, “Enc” mode indicates the
architecture supports encryption only while “Enc/Dec”
mode indicates that it supports both encryption and de-
cryption. 64-bit unit means round-based architecture. .e
area of the bit-serial architectures is 45.8%–53.6% of that of
the round-based architectures. Most of the area of the serial
architectures is occupied by registers that are essential for
storing key and text, and a little combinational logic takes
up. .e latency of the bit-serial architecture is 2176 clocks
and those of the digit-serial architectures are in inverse
proportion to operation bits. We can choose one of the
architectures relying on the implementation condition. Note
that 8-bit-serial architectures consume less power than 4-bit-
serial architectures in general because bytewise operation is
more efficient for HIGHT algorithm. In conclusion, these
serial architectures achieve much smaller area and power
consumption with the expense of the throughput compared
to the conventional round-based architectures.

4. Software Implementation on 8-Bit AVR

.e compact HIGHT implementation on 8-bit AVR devices
requires efficient 8-bit ARX operations. Particularly, 8-bit
AVR devices efficiently perform the 8-bit addition and 8-bit
bitwise exclusive-or instructions since the device has 8-bit
word size. For the rotation operation, 8-bit AVR devices
only provide rotation with 1-bit offset. .e efficient offset
and direction of rotation is determined by each case. For the
1-bit left rotation, two instructions (LSL X1; ADC X1,
ZERO) are performed in 2 clock cycles. For the 1-bit right
rotation, three instructions (BST X1, 0; LSR X1; BLD X1, 7)
are performed in 3 clock cycles.

4.1. Speed-Optimized Implementation. .e speed-optimized
implementation emphasized the fast execution timing rather
than code size. Part of routines is unrolled to achieve the
speed-optimal result.

4.1.1. Key Scheduling. .e computation intensive part of key
scheduling operation is an update of delta variable. .e
update of delta variable requires a series of bitwise opera-
tions, and this is inefficient for the bytewise machine or
software implementation. For the high-speed implementa-
tion, the bitwise operations are simply replaced into the
Look-Up-Table (LUT). .e delta update is efficiently per-
formed in one memory access. In order to ensure the fast
memory access, the LUT is stored in 8-bit aligned format
where the address pointer is 16-bit wise. When the address is
8-bit aligned, we only need to update 8-bit offset only for
memory access. .e registers are also efficiently allocated to
reduce the number of memory access. Sixteen registers for
master keys, four registers for delta and round key pointers,
and one register for temporary storage are allocated,
respectively.

Table 3: Comparison of speed-optimized HIGHT block cipher implementations on 8-bit AVR in terms of code size (bytes), RAM (bytes),
and execution time (cycles per byte).

Impl.
Code size (bytes) RAM (bytes) Execution (cycles per bytes)

EKS ENC DEC SUM EKS ENC DEC EKS ENC DEC
[18] — — — — — — — — 371 371
[13] 386 1090 1096 2060 302 682 682 58 160 161
.is work 886 1920 1920 4726 294 666 666 47 157 157
AES [19] 808 918 1118 2588 219 226 226 95 177 231

Table 4: Delta update process in 8-bit AVR instruction sets.

Input: temporal storage (TEMP), input delta (DELTA)
Output: output delta (DELTA)
1: CLR TEMP
2: BST DELTA, 0
3: BLD DELTA, 7
4: BST DELTA, 3
5: BLD TEMP, 7
6: EOR DELTA, TEMP
7: LSR DELTA

6 Security and Communication Networks

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/5323578 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.1.2. Encryption and Decryption. Each F0 function and F1
function requires 8-bit wise 3 rotations and 2 XOR oper-
ations. Similarly, these functions are e�ciently computed
with 1-time LUT access. Each LUT requires 256 bytes. In
total, 512-byte RAM is used to store the 2 LUTs.�e registers
are also e�ciently allocated. Eight registers for the plaintext,
four registers for the round keys, one register for the zero
value, four registers for the F0 and F1 memory addresses,
one register for temporal storage, two registers for round
key, and two registers for temporal pointer are allocated,
respectively.

4.1.3. Evaluation. In Table 3, comparison results of speed-
optimized HIGHT block ciphers on 8-bit AVR micropro-
cessors are given. �e previous fastest implementation
achieved 58, 160, and 161 clock cycles for key scheduling,
encryption, and decryption operations, respectively [13].
�e proposed implementation only requires 47, 157, and 157
clock cycles. �e performance improvements are 18.9%,
1.8%, and 2.4% for key scheduling, encryption, and de-
cryption, respectively. On the other hand, the proposed
implementation consumes double code size compared with
[13]. In total, 2.7 KB ROM is more consumed than previous
works but this is only 2% of 8-bit AVRROM. For this reason,
this is not critical issue on this target platform.�e RAM size
is similar to the previous works.

4.2. Size-Optimized Implementation. In order to minimize
the code size, fully looped implementation is considered.�e
size minimization rolls the source codes by the number of
iteration (N). If the size of source code is (S), the size of
looped version is calculated in (NS+A), where (A) repre-
sents overheads including counter, o¬set, and branch op-
erations. Since the execution timing and code size are trade-
o¬ relation, the performance of rolled implementation is
relatively slower than unrolled implementation.

4.2.1. Key Scheduling. In the key scheduling process, 22
general purpose registers out of 32 general purpose registers
are utilized. In particular, 16, 1, 1, 2, and 2 general purpose
registers are assigned to master key variables, delta variable
(d), temporal storage, counter variables, and memory
pointer, respectively. �e key scheduling process requires
the update of delta variable as follows:

d[i + 6] � d[i + 2]XOR d[i − 1]. (1)

For the update, (i − 1) and (i+ 2)-th bits are bitwise
exclusive-ored and assigned to the (i+ 6)-th bit. Since the
minimum word size of AVR devices is a byte, the optimized
bitwise operation is required.�e detailed process is given in
Table 4. First temporal register is initialized to zero (TEMP).
Afterward, 1st and 4th bits are extracted with BST in-
struction sets and stored to 8th bit with BLD instruction sets.
Lastly, both bits are exclusive-ored and shifted to the right by
1 bit.

�e key scheduling is performed in two routines. First,
lower round keys from 1st to 8th and higher round keys
from 9th to 16th are separately performed. In each loop, the

MK0 MK1 MK2 MK3 MK4 MK5 MK6 MK7

MK8 MK9 MK10 MK11 MK12 MK13 MK14 MK15

Figure 4: Key management in key scheduling of HIGHT block cipher.

Table 5: F0 operation in 8-bit AVR instruction sets.

Input: input data (X)
Output: output data (F0�X<<<1 XOR X<<<2 XOR X<<<7)
1: MOV TMP, X
2: LSL TMP
3: ADC TMP, ZERO//X<<<1
4: MOV F0, TMP
5: LSL TMP
6: ADC TMP, ZERO//X<<<2
7: EOR F0, TMP//X<<<1 XOR X<<<2
8: LSL TMP
9: ADC TMP, ZERO
10: SWAP TMP//X<<<7
11: EOR F0, TMP//X<<<1 XOR X<<<2 XOR X<<<7

Table 6: F1 operation in 8-bit AVR instruction sets.

Input: input data (X)
Output: output data (F1�X<<<3 XOR X<<<4 XOR X<<<6)
1: MOV TMP, X
2: LSL TMP
3: ADC TMP, ZERO
4: LSL TMP
5: ADC TMP, ZERO
6: MOV F1, TMP
7: SWAP F1//X<<<6
8: LSL TMP
9: ADC TMP, ZERO//X<<<3
10: EOR F1, TMP//X<<<3 XOR X<<<6
11: LSL TMP
12: ADC TMP, ZERO//X<<<4
13: EOR F1, TMP//X<<<3 XOR X<<<4 XOR X<<<6

Security and Communication Networks 7

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/5323578 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



round keys are rotated by 1 byte to order the round key. For
the size optimization, only 1-byte calculation is imple-
mented and the calculation is repeated by the number of
computation words. .e detailed descriptions are given in
Figure 4. First, one round key group between lower and
higher parts is selected and rotated by 1 byte in each time.
Afterward, the round key group is exchanged. To align the
byte order, MOV and MOVW instruction sets are utilized.
.e MOV is useful for 1-byte rotation and MOVW is useful
for 2-byte rotation.

4.2.2. Encryption and Decryption. .e encryption of
HIGHT block cipher consists of Initial Transformation,
Round Function, and Final Transformation. Among them,
Round Function consists of 32 rounds. For the size-opti-
mized implementation, Initial Transformation, Round
Function, and Final Transformation are only implemented
once. In particular, Round Function is iterated by 32 times.
In Round Function, the expensive operations are F0 and F1
functions. .e detailed descriptions of F0 and F1 functions
in 8-bit AVR instruction sets are given in Tables 5 and 6,
respectively. .e F0 operation requires three rotation op-
erations by different offsets. Since the rotation operations
share similar computation routines, the minimum number
of rotation routine is generated as follows:

X[1] � X≪<1;

X[2] � X[1]≪<1;

X[3] � X[2]≪<1;

X[7] � X[3]≪<4.

(2)

Similarly, the F1 function is implemented as follows:

X[2] � X≪<2;

X[6] � X[2]≪<4;

X[3] � X[2]≪<1;

X[4] � X[3]≪<1.

(3)

For high-speed computations, register usages are also
optimized. Only total 16 registers are utilized. Among them,
3 registers are only set to callee-saved registers, which avoids
the stack push/pop operations before/after function call.
Particularly, 8 registers for plaintext, 1 register for zero value,
2 registers for temporal storage, 1 register for counter, and 4
registers for pointers are allocated, respectively. .e de-
cryption operation can be implemented in a reversed order
of encryption operation. Detailed implementations are
similar to the encryption operation.

4.2.3. Evaluation. In Table 7, comparison results of size-
optimized HIGHT block cipher implementations on 8-bit
AVR devices are given. .e previous smallest imple-
mentation achieved 386, 716, and 722 bytes for key
scheduling, encryption, and decryption operations, re-
spectively [13]. .e proposed implementation only requires
188, 234, and 234 bytes and optimizes the code size by 51.2%,
67.3%, and 67.5% for key scheduling, encryption, and de-
cryption operations, respectively. On the other hand, the
proposed implementation requires more clock cycles for
computations than [13]. Particularly, the proposed imple-
mentation requires 213, 317, and 317 clock cycles for key
scheduling, encryption, and decryption operations, re-
spectively. .e execution timing is still competitive enough
to support efficient encryption computations.

5. Software Implementation on 32-Bit
ARM Cortex-M3

.e word size of HIGHT block cipher is 8 bit, while 32-bit
ARM Cortex-M3 performs the operation in 32-bit wise. In
order to efficiently utilize the 32-bit word, two or four 8
bytes are computed in parallel way. .is approach im-
proves the performance by reducing the unused space in
registers.

5.1. Speed-Optimized Implementation. .e implementation
on ARM Cortex-M3 focused on the fast execution timing
rather than code size. Part of routines is unrolled to achieve
the optimal performance.

5.1.1. Key Scheduling. We used 13 general purpose registers
to maintain several variables. In particular, 1 register for
master key pointer, 1 register for round key pointer, 4 delta
variables, 1 register for counter, 2 registers for temporal
variables, and 4 registers for round keys are allocated, re-
spectively. In terms of computations, the key scheduling
requires 7-bit or 8-bit wise ARX computations. Since ro-
tation and XOR are linear operations, it can be easily

Table 7: Comparison of size-optimized HIGHT block cipher implementations on 8-bit AVR in terms of code size (bytes), RAM (bytes), and
execution time (cycles per byte).

Impl.
Code size (bytes) RAM (bytes) Execution (cycles per bytes)

EKS ENC DEC SUM EKS ENC DEC EKS ENC DEC
[20] — — — — — — — — 2,438 2,520
[13] 386 716 722 1,824 302 682 682 58 210 211
.is work 188 234 234 656 162 147 147 213 317 317

Table 8: Optimized key scheduling.

Input: four 7-bit delta (A), four 8-bit operand (B)
Output: four 8-bit result (A)
1: AND TEMP, B, 0× 7F7F7F7F
2: ADD TEMP, A, TEMP
3: AND A, B, 0× 80808080
4: EOR A, A, TEMP
5: Return A

8 Security and Communication Networks

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/5323578 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



computed on 32-bit word machine. However, the addition
operation is nonlinear operation, so performing 8-bit wise
nonlinear operation on 32-bit word is inefficient. In Table 8,
the 4-way addition with 7-bit delta and 8-bit operand is
described. First, the lower 7-bit of operand is stored in the
temporal register (i.e., TEMP). Next, two 7-bit variables are
added, which may generate the 8th bit setting. In line 3 and
4, the most significant bit of operand is extracted and added
to the results of 7-bit addition.

5.1.2. Encryption and Decryption. For encryption and de-
cryption operations, we used 13 general registers. In par-
ticular, 1 register for block pointer, 1 register for round key
pointer, 4 delta variables, 1 register for MASK, 1 register for
counter, 2 registers for round key, and 3 registers for
temporal variables are allocated, respectively. For the parallel
computation, eight 8-bit bytes are stored in four 32-bit
words with the margin. .is representation efficiently
performs the round function since in each round function
two 8-bit operations are paired. .e rotation operations for
F0 and F1 functions are computed with the barrel-shifter
feature, where the barrel-shifter does not consume addi-
tional execution timing. Same techniques are applied to the
implementation of decryption.

5.1.3. Evaluation. Implementation of HIGHT block cipher
on 32-bit ARM Cortex-M3 devices is previously suggested
by Seo et al. [13]..e comparison results are given in Table 9.
Compared with previous works, we improved the key
scheduling operation with parallel addition techniques. .is
method handles four-byte addition in parallel way. .e code
size is reduced by 51% and execution time is improved by 1
cycle per byte. For encryption and decryption operations, we
utilized general purpose registers to efficiently handle the
data. .e code size shows similar size but we achieved better
performance than previous works by 23% and 18% for
encryption and decryption operations, respectively.

6. Conclusion

One of the biggest challenges for IoT is secure and robust
transactions between low-end IoT devices. In order to es-
tablish the secure communication channel, all message
packets should be encrypted by using secure block ciphers.
Block cipher operations should be performed without delays
to increase the service availability. In terms of chip size, the
low area implementation reduces production cost and peak

power consumption. In this paper, we presented compact
implementations of promising lightweight block cipher,
namely, HIGHT, in software (i.e., 8-bit AVR and 32-bit
ARM Cortex-M3) and hardware (i.e., ASIC). For high
performance or low cost, several software and hardware
optimization techniques are presented. Proposed methods
are not limited to the HIGHT block cipher since themethods
are generic approaches and can be easily used for other ARX
block ciphers.

Data Availability

.e source codes are available from the corresponding
author upon request.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is work was supported in part by the Military Crypto
Research Center (UD170109ED) funded by the Defense
Acquisition Program Administration (DAPA) and Agency
for Defense Development (ADD).

References

[1] A. Juels and S. A. Weis, “Authenticating pervasive devices
with human protocols,” in Proceedings of the Annual Inter-
national Cryptology Conference, pp. 293–308, Springer, Santa
Barbara, CA, USA, August 2005.

[2] D. Hong, J. Sung, S. Hong et al., “HIGHT: a new block cipher
suitable for low-resource device,” in Cryptographic Hardware
and Embedded Systems—CHES, pp. 46–59, Springer, Berlin,
Germany, 2006.

[3] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers, “.e SIMON and SPECK lightweight block
ciphers,” in Proceedings of the 52nd Annual Design Auto-
mation Conference, p. 175, ACM, San Francisco, CA, USA,
June 2015.

[4] N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe,
B. Preneel, and I. Verbauwhede, “Chaskey: an efficient MAC
algorithm for 32-bit microcontrollers,” in Selected Areas in
Cryptography–SAC, pp. 306–323, Springer, Berlin, Germany,
2014.

[5] Y.-I. Lim, J.-H. Lee, Y. You, and K.-R. Cho, “Implementation
of HIGHT cryptic circuit for RFID tag,” IEICE Electronics
Express, vol. 6, no. 4, pp. 180–186, 2009.

Table 9: Comparison of speed-optimized HIGHT block cipher implementations on 32-bit ARM Cortex-M3 in terms of code size (bytes),
RAM (bytes), and execution time (cycles per byte).

Impl.
Code size (bytes) RAM (bytes) Execution (cycles per

bytes)
EKS ENC DEC SUM EKS ENC DEC EKS ENC DEC

Reference [13] w/LUT 316 860 896 1560 324 704 704 34 269 298
Reference [13] w/o LUT 316 344 384 1044 324 180 180 37 258 287
.is work 154 352 352 858 316 180 180 33 197 234
AES [19] 410 1116 1564 2834 264 268 268 55 222 298

Security and Communication Networks 9

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/5323578 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



[6] P. Israsena and S.Wongnamkum, “Hardware implementation
of a tea-based lightweight encryption for rfid security,” in
RFID Security, pp. 417–433, Springer, Berlin, Germany, 2008.

[7] J. Jean, A. Moradi, T. Peyrin, and P. Sasdrich, “Bit-sliding: a
generic technique for bit-serial implementations of SPN-
based primitives,” Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 687–707, 2017.

[8] A. Corporation, “ATmega128(L) datasheet (rev. 2467O–
AVR–10/06),” October 2006, http://www.atmel.com/dyn/
resources/proddocuments�doc2467:pdf.

[9] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers, “.e SIMON and SPECK block ciphers on
AVR 8-bit microcontrollers,” in Lightweight Cryptography for
Security and Privacy, pp. 3–20, Springer, Berlin, Germany,
2014.

[10] D. Hong, J. Lee, D. Kim, D. Kwon, K. H. Ryu, and D. Lee,
“LEA: a 128-bit block cipher for fast encryption on common
processors,” in Information Security Applications, pp. 3–27,
Springer, Berlin, Germany, 2013.

[11] D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright, “Fast
software AES encryption,” in Fast Software Encryption,
pp. 75–93, Springer, Berlin, Germany, 2010.

[12] H. Seo, K. An, and H. Kwon, “Compact LEA and HIGHT
implementations on 8-bit AVR and 16-bit MSP processors,”
in Proceedings of the International Workshop on Information
Security Applications, pp. 253–265, Springer, Jeju Island,
Korea, August 2018.

[13] H. Seo, I. Jeong, J. Lee, and W.-H. Kim, “Compact imple-
mentations of ARX-based block ciphers on IoT processors,”
ACM Transactions on Embedded Computing Systems (TECS),
vol. 17, no. 3, p. 60, 2018.

[14] H. Seo, “High speed implementation of LEA on ARMCortex-
M3 processor,” Journal of the Korea Institute of Information
and Communication Engineering, vol. 22, no. 8, pp. 1133–
1138, 2018.

[15] B. Koo, D. Roh, H. Kim, Y. Jung, D. Lee, and D. Kwon,
“CHAM: a family of lightweight block ciphers for resource-
constrained devices,” in Proceedings of the International
Conference on Information Security and Cryptology, pp. 3–25,
Springer, Seoul, Korea, December 2017.

[16] P. Schwabe and K. Stoffelen, “All the AES you need on Cortex-
M3 andM4,” in Proceedings of the International Conference on
Selected Areas in Cryptography, pp. 180–194, Springer, St.
John’s, Canada, August 2016.

[17] G. Yang, B. Zhu, V. Suder, M. D. Aagaard, and G. Gong, “.e
SIMECK family of lightweight block ciphers,” in Proceedings
of the International Workshop on Cryptographic Hardware
and Embedded Systems, pp. 307–329, Springer, Saint Malo,
France, September 2015.

[18] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and
L. Uhsadel, “A survey of lightweight-cryptography imple-
mentations,” IEEE Design & Test of Computers, vol. 24, no. 6,
pp. 522–533, 2007.

[19] D. Dinu, A. Biryukov, J. Großschädl, D. Khovratovich, Y. Le
Corre, and L. Perrin, “FELICS–fair evaluation of lightweight
cryptographic systems,” in Proceedings of the NIST Workshop
on Lightweight Cryptography, Gaithersburg, MA, USA, July
2015.

[20] T. Eisenbarth, Z. Gong, T. Güneysu et al., “Compact
implementation and performance evaluation of block ciphers
in ATtiny devices,” in Proceedings of the Inter-national
Conference on Cryptology in Africa, pp. 172–187, Springer,
Rabat, Morocco, July 2012.

10 Security and Communication Networks

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/5323578 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.atmel.com/dyn/resources/proddocuments=doc2467:pdf
http://www.atmel.com/dyn/resources/proddocuments=doc2467:pdf



