
mathematics

Article

ASIC-Resistant Proof of Work Based on Power
Analysis of Low-End Microcontrollers

Hyunjun Kim, Kyungho Kim, Hyeokdong Kwon and Hwajeong Seo *

Division of IT Convergence Engineering, Hansung University, Seoul 02876, Korea;
amdjd0704@hansung.ac.kr (H.K.); pgmkkh@hansung.ac.kr (K.K.); hyeok@hansung.ac.kr (H.K.)
* Correspondence: hwajeong@hansung.ac.kr; Tel.:+82-2-760-8033

Received: 27 July 2020; Accepted: 8 August 2020; Published: 12 August 2020
����������
�������

Abstract: Application-Specific Integrated Circuit (ASIC)-resistant Proof-of-Work (PoW) is widely
adopted in modern cryptocurrency. The operation of ASIC-resistant PoW on ASIC is designed to
be inefficient due to its special features. In this paper, we firstly introduce a novel ASIC-resistant
PoW for low-end microcontrollers. We utilized the measured power trace during the cryptographic
function on certain input values. Afterward, the post-processing routine was performed on the power
trace to remove the noise. The refined power trace is always constant information depending on
input values. By performing the hash function with the power trace, the final output was obtained.
This framework only works on microcontrollers and the power trace depends on certain input values,
which is not predictable and computed by ASIC.

Keywords: ASIC-resistant; proof of work; power analysis; microcontroller; blockchain

1. Introduction

Modern cryptocurrency, such as Bitcoin, Ethereum, and Monero, uses a Proof-of-Work (PoW)
consensus algorithm in order to ensure the integrity of blocks [1–3]. The work must be hard on the
requester side, and should be easy for the service provider. Bitcoin utilizes the hash function to
satisfy the special condition. The hash function can be efficiently computed on an Application-Specific
Integrated Circuit (ASIC). Since the ASIC is designed for PoW, most applications are dominated by the
ASIC machine, which threatens the decentralization of blockchain networks (i.e., Bitcoin). In order to
overcome the domination of ASIC machine on the consensus, modern cryptocurrency uses multi-hash
PoW, memory hard PoW, and programmatic PoW. Since the ASIC is the targeted chip, the irregular
pattern can lead to inefficient computation on ASIC.

In this paper, we present a new technique to prevent a mining monopoly caused by special mining
devices, such as ASIC and the field-programmable gate array (FPGA). The proposed methods allow
anyone to work on performing a cryptographic module on a microcontroller. In the microcontroller,
the power trace generated during the execution of the crypto-module shows different values depending
on the input parameters. With this unique power trace, the PoW consensus is performed with
ASIC-resistance feature.

Research Contributions

• We introduce a novel ASIC-resistant proof of work based on a power analysis: Previous ASIC-resistant
PoW methods are based on multi-hash, memory hard, and programmatic approaches. The proposed
method presents the first ASIC-resistant PoW based on a power analysis. The power trace during
cryptography encryption (e.g., AES) on the microcontroller is utilized for the source of PoW. Since the
power trace depends on the target microcontroller, cryptography encryption, and input values,

Mathematics 2020, 8, 1343; doi:10.3390/math8081343 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-0069-9061
http://www.mdpi.com/2227-7390/8/8/1343?type=check_update&version=1
http://dx.doi.org/10.3390/math8081343
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 1343 2 of 13

the proposed PoW cannot be emulated by ASIC and FPGA. For this reason, we achieved the
ASIC-resistant feature.

• Post-processing for noise elimination: The raw power trace contains noise information. Small noise
can significantly alter the result of cryptography operations. In order to filter out the noise from the
raw power trace, a Fast Fourier Transform (FFT) is performed. This method efficiently removes the
high frequency. After the post-processing, the refined information is used as a source for PoW.

• In-depth analysis of novel PoW based on various block ciphers: The performance was evaluated
on a microcontroller. We performed the experiment with various block ciphers. The result shows
that the novel PoW works on all block ciphers without difficulty.

The paper is organized as follows. In Section 2, the background of ASIC-resistance PoW algorithm
and power analysis is described. In Section 3, the proposed technique is described. In Section 4 the
evaluation of PoW method is given. Section 5 concludes the paper.

2. Related Works

2.1. Proof-of-Work

Since 1992, many PoW-based applications have been developed to resolve many real-world
problems. In [4], the PoW technique was utilized to block junk emails by requesting that the sender
compute some function of the message. Similarly, the PoW technique was applied to an uncheatable
benchmark, metering web-sites accesses, lottery schemes, and PoW-puzzles [5–9].

In 1993, the first PoW algorithm was suggested by Cynthia and Moni [4]. Afterward, the PoW
method was applied to Bitcoin in 2009 [1]. In order to add a new block in Bitcoin, the value using
SHA-256 must be smaller than the target difficulty. Bitcoin is one of the most popular and successful
hash cash, which was conceived of in 1997 and detailed in 2002 [10].

The primitive function of hash cash is a hash function. A number of hash functions are employed
by modern cryptocurrency to improve both performance and security. SHA-256 is designed in 2001
by the NSA and chosen by NIST as U.S FIPS. SHA-256 generates 256-bit wise output, which is used
in Bitcoin and Bitcoin Cash. Ethash is the hash function for the Ethereum consensus protocol. The hash
function is combination of Keccak, Hashimoto, and Dagger algorithms to ensure ASIC-resistance [11–13].
Scrypt is a password-based key-derivation function, which uses a large amount of memory than
others [14]. The memory-hardness ensures the ASIC-resistant feature. The hash function is used in
Litecoin. Random memory access based protocol, namely Cryptonote, is used in the CryptoNight PoW
algorithm for Monero [15]. The details of ASIC-resistant PoW are covered in Section 2.2.

The hash cash-based PoW is efficient and easy to implement on any platforms. However, the scheme
requires huge computational power to generate the valid block. An unintended consequence of PoW is the
centralization of mining power. The large-scale PoW blockchain systems inhibits decentralization [16,17].

According to [18], Bitcoin miners consume 0.33% of the world’s electricity. In order to save the wasted
electricity, the PoW side of consensus for useful results through PoW was presented (i.e., Bread Pudding
Protocols). One example is a solving scientific problems. In 2013, a PoW protocol for Cunningham chains
of primes was proposed [19]. Furthermore, a PoW protocol was also designed for other problems such
as DNA and RNA sequencing. Alternatively, MicroMint and data handling have been also actively
investigated [20,21].

In the PoW protocol, the miner firstly solves the problem and then broadcasts the new block.
When the block is valid, the miner receives a certain reward. With above principle, the protocol
constructs huge distributed networks under trust. However, unexpected conditions can lead to trouble.
In order to resolve this issue, there are certain criteria to select the fork block. First, the oldest fork
block is selected. Second, the longest fork block is selected. Third, the chain with the greatest amount
of computational power spent is selected [22].

As the PoW is widely used in practice, a number of attacks have been performed on it. The most
well-known attacks on blockchain with PoW protocol is 51% attacks. This attack can be triggered when

Mathematics 2020, 8, 1343 3 of 13

the malicious user controls more than half of the network’s computing power. This attack occurred in
2018 for BTC Gold and ZenCash [23]. Moreover, a number of attacks on the PoW protocol, such as
selfish mining attacks, network-level attacks, pool related attacks, and goldfinger attacks have been
investigated [24–27].

As we explored the blockchain technology with PoW protocol above, we found that it has many
new features together with many open problems. In this paper, we focused on the ASIC-resistant PoW
for the low-end Internet of Things.

2.2. ASIC-Resistant PoW

In 1993, the first PoW algorithm was suggested by Cynthia and Moni [4]. Afterward, the PoW
method was applied to Bitcoin in 2009 [1]. In order to add a new block in Bitcoin, the value using
SHA-256 must be smaller than the target difficulty.

Recently, Application-Specific Integrated Circuits (ASICs) designed for PoW calculation dominate
the crypto-mining world, threatening the decentralization of blockchain. In order to prevent the ASIC
approach, the ASIC-resistant PoW algorithm was introduced.

2.2.1. Multi-Hash PoW

Multi-hash PoW achieves ASIC immunity by using multiple hashing functions linked together in
successive steps to resolve the dependency on a single hashing function, one of the weaknesses
of the PoW algorithm. These include Quarkcoin (http://www.quarkcoins.com) and LYRA2RE
(https://en.bitcoinwiki.org/wiki/Lyra2RE).However, the multiple hash PoW mechanism is not
sufficient to prevent ASIC-based mining. The ASIC resistance is analyzed by implementing a
multi-hash PoW in a field-programmable gate array (FPGA). As a result, the multi-hash PoW showed
ASIC resistance at a level similar to the PoW mechanism that could not block the ASIC.

2.2.2. Memory-Hard PoW

The memory-hard PoW is a PoW where the proofer uses a lot of memory capacity for
the proof and the verifier uses a small amount of memory space and time to verify the work.
With this bounding, it makes no sense to use ASICs to speed up computation. Ethereum’s
Ethash (https://github.com/ethereum/wiki/wiki/Ethash) and CryptNight [15] are memory-hard
Pow.However, an ASIC system targeting such a memory-hard PoW algorithm was also introduced.

2.2.3. Memory-Bound PoW

Memory-bound PoW [28–30] traverses a random path on a large table of random numbers,
making multiple memory accesses. Memory-bound PoWs have the risk of having a memory access
pattern in cryptographic hashing, and have the disadvantage of having to send a large random table
between the attestor and the verifier over the network [31].

2.2.4. Programmatic PoW

Programmatic PoW is a new way to increase the versatility of calculations by executing arbitrary
code. A randomly generated program [32,33] can be part of the operation. It is impractical to
build special hardware modules that target each computational task. Therefore, ASICs perform
less than general purpose computers in random programs. RandomX utilized this method approach
(https://github.com/tevador/RandomX).

2.3. Power Analysis and Its New Applications

Side-channel analysis is an attack technique that identifies confidential information from side
information [34]. The known power consumption and the dependencies of the codes executed can
be used as techniques for determining the similarity of the codes [35]. In [36], IP protection through

http://www.quarkcoins.com
https://en.bitcoinwiki.org/wiki/Lyra2RE
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/tevador/RandomX

Mathematics 2020, 8, 1343 4 of 13

similar power trace is suggested. According to previous works, the power trace can be utilized for the
identification of target program. We were motivated from previous works and present a novel PoW
method based on a power trace.

3. Proposed Method

Special mining devices, such as ASIC and FPGA, hinder the safety of the blockchain network,
which decreases the participation rates and increases entry barriers. The proposed technique attempts
to solve the problem by utilizing the power trace of microcontrollers during the cryptography function
to ensure the ASIC-resistant PoW. The main idea is based on the PoW of Bitcoin and the source code
classification by analyzing power traces [35,36].

The working flow of proposed method is described in Figure 1. First, the block header information is
filled with the version, previous blockhash, merklehash, time, bits, and nonce. Afterward the hash function
(e.g., SHA-256) is performed on the block header. The output is used for the key value of the encryption
module (e.g., AES). For the text part, the nonce is utilized. With these input values, the encryption
module is executed on the target microcontroller. By performing the encryption, the microcontroller
generates certain power traces. These power traces may contain the noise. In order to remove the
noise, the post-processing is performed on it. Then the refined power trace and block header is
added together. The output of addition is used for the input value of hash function (e.g., X16R).
Finally, the evaluator checks whether the output of hash function meets the target value. If it satisfies the
target value, the valid block is generated. Otherwise, the nonce increases and the routine is performed
again. Detailed descriptions of the proposed PoW method are given in Algorithm 1. In Step 2, the nonce
value is updated. In Step 3 and 4, the output of SHA-256 on block header and nonce are used for key
and text of AES-256 encryption, respectively. In Step 5 and 6, the power consumption is measured and
post-processed. In Step 7, the block header and the power trace are added together. Finally, the information
is used for the generation of target value. If the value is lower than the target, the block is generated,
successfully. Otherwise, the computation is performed again after increasing the nonce value.

version
previous
blockhash

merklehash

time bits nonce

block header

key

text

+

AES-256

SHA-256

X16R
power trace

collector
post-

processor
evaluator

failpass
block

nonce++

Figure 1. Working flow of proposed Proof-of-Work (PoW).

Mathematics 2020, 8, 1343 5 of 13

Algorithm 1 Proposed PoW algorithm

Input: Block, Power Trace.
Output: Block.

1: while H < Target do

2: Block.header.nonce← Block.header.nonce + 1
3: AES256.key← SHA256(Block.header)
4: AES256.text← Block.header.nonce
5: Block.header.trace← PowerCapture(AES256)
6: Block.header.trace← PostProcessor(Block.header.trace)
7: Block.header ← Block.header + Block.header.trace
8: H ← X16R(Block.header)
9: end while

10: return Block

3.1. Power Trace Based Proof-of-Work

This section describes the power trace based Proof of Work. The benefit of each step is discussed
in detail.

3.1.1. Collection of Power Trace from Microcontrollers

In this step, AES-256 encryption is performed with the key and nonce. The output of power trace
is stored in the block header. We ensure that the output of power trace contains the key and nonce
information, since the power trace is varied depending on the input and algorithm. The power trace is
post-processed and then used for the input value of the hash function (i.e., X16R). Since the power trace
information is unique, the hash function cannot be performed without previous steps. This is the main
purpose of forcing the use of the microcontroller to generate the power trace through above steps.

3.1.2. Features of Power Consumption Trace

The power trace produced by operating the microcontroller exhibits different characteristics
depending on the program being operated with certain input values. This feature indicates that
the output of each trace is different for each active program, even if the same program is operated.
Different output power traces are generated according to the input values of the active program.
This unique characteristic of the power consumption is utilized to prove the work. It prevents an
attacker from entering an arbitrary trace without rapidly changing or executing code to perform the
high-speed mining.

3.1.3. Post-Processing for Noise Filtering

The trace of power consumption from the microcontroller may contain noise. To prevent false
positives due to noise, Fast Fourier Transform (FFT) is applied to noise filtering from the power trace.
FFT is applied to the acquired power trace, which removes the high frequency, and then converted
back to signal at frequency. Power traces with noise and without noise are displayed at the top and
bottom of Figure 2, respectively. The power trace with noise shows clearer information than the power
trace without.

3.1.4. High Entropy for Input Value

The proposed PoW generates the block depending on valid input value. With the input value,
the AES-256 encryption is performed on the microcontroller. The AES-256 cipher uses 32-byte keys
and 16-byte plain text, respectively. The key uses the hash (i.e., SHA-256) value of the block header.
The plaintext is a 16-byte nonce value. The complexity of key and plain text is 2384 since key and

Mathematics 2020, 8, 1343 6 of 13

plaintext are 256-bit and 128-bit, respectively. For this reason, it is impossible to perform the brute-force
attack and make a table through pre-computation in advance. Since the block header contains a nonce,
the key changes whenever the nonce value changes. The key has randomness due to hash function.
This randomness does not allow the attacker to operate the microcontroller in advance to generate a
power consumption trace. Since the power consumption trace is output differently depending on the
function and input value operated by the microcontroller, it is difficult to predict the power trace value.

0.20

0.15

0.10

0.05

'° 0.00

'°

-0.05

-0.10

-0.15

-0.20

-0.25

0.15

0.10

0.05
(1)

::l 0.00
µ

C
0')-0.05
'°

-0.10

-0.15

-0.20

0 2000 4000 6000 8000 10000 12000

-0.25 +---<
2000 4000 6000 8000 10000 12000

Figure 2. Power consumption traces (top) with noise and (bottom) without noise.

3.1.5. Finding the Target with Hash Function

In PoW of Bitcoin, the hash value of a block is generated by combining the creation time, version,
bit, root hash, hash of the previous block, and a temporary value called nonce. If the newly created
hash value is smaller than a certain target value, a new block is created and connected to the existing
blockchain network. In the proposed method, the block generation time, version, bit, root hash,
previous block hash, nonce, and power consumption trace are combined together to generate the block
hash value. This step is used to ensure the unique power trace is unpredictable.

3.1.6. AI-Resistant Hash Function

The hash uses X16R. The X16R is a newly designed algorithm to avoid AI-style mining in
Ravencoin, consisting of 16 hashing algorithms that work in chain fashion according to the last 8 bytes
of the hash of the previous block. ASIC development is difficult due to the random nature of this
algorithm. For this reason, the proposed method achieved the highest level of ASIC-resistance.

3.1.7. Verification with Power Trace

Blocks created in the blockchain are propagated to other nodes and verified whether the hash
values match to certain level. In the proposed method, the power consumption trace is checked in
addition to the existing method to verify that the creator of the block worked on the microcontroller
with the correct code and input values.

Trace verification. Even if the same program code and input value are used in the microcontroller,
the power trace does not appear due to the noise generated during collection. Therefore, simply comparing
the values of the power consumption trace cannot confirm whether the power consumption trace uses the
same code and input value. For this reason, filtering with FFT is performed on the power trace to remove

Mathematics 2020, 8, 1343 7 of 13

the noise. Afterward, each of the same input values are characterized by a high correlation coefficient
compared to other input values. In Figure 3, the distribution of the correlation coefficient is narrow for the
same input value when FFT is applied to the power trace. This experiment confirmed that filtering with
FFT function is working, properly. Differences in correlation coefficients are confirmed during experiments.
Detailed descriptions of proposed Trace verification method are given in Algorithm 2. In Step 1, the power
trace is captured during the AES256 encryption. In Step 2, the power trace is post-processed. In Step 3,
the correlation coefficient between refined power trace and valid power trace is calculated. In Step 4∼ 8,
the correlation is compared with certain threshold. If the value is over the threshold, the verification
is confirmed.

C
o
rr
el
at
io
n
C
o
ef
fi
ci
en
t

Figure 3. Comparison of correlation coefficient for power traces (left) without post-processing and
(right) with post-processing.

Algorithm 2 Power Consumption Trace Verification algorithm

Input: key, nonce, validate_trace.
Output: Verification result.

1: trace← Power_capture(AES256(key, nonce))
2: re f ined_trace← Post_processing(trace)
3: col ← Correlation_coe f f icient(re f ined_trace, valid_trace)
4: if col > Threshold then
5: return True
6: else
7: return False
8: end if

Power trace based verification process. First, the cryptographic program works on the microcontroller
using the key and nonce values stored in block values. During the execution, the power consumption
trace is generated and captured. The power consumption trace is then filtered using FFT function.
Afterward, the correlation coefficient between filtered trace and the valid trace is calculated. If the
value exceeds the threshold, the verification is confirmed. This is novel approach to utilize the power
trace for verification.

3.2. Advantages of the Proposed Method

This section shows that the above-mentioned proposed technique is faithfully satisfied with the
requirements of the PoW technique. In particular, it describes how to solve the problem, unlike the
previous known methods.

Mathematics 2020, 8, 1343 8 of 13

3.2.1. PoW Requirements

PoW is designed to prevent blockchain network attacks like Sybil Attack. There are several
requirements to achieve the safe PoW. The PoW is difficult to prove. However, the verification should
be an easy problem for provers. Bitcoin uses a hash to satisfy these requirements. However, Bitcoin
is vulnerable to ASIC attack. The proposed method satisfies asymmetry by using the same hash
function. PoW should be impossible to optimize depending on certain conditions. If someone finds
an optimization method, they will take advantage of it. This creates the centralization problem of the
blockchain network. Bitcoin is a cryptocurrency that is difficult for ordinary miners to participate in,
as it is a miner that can perform fast calculations such as ASIC using SHA256. In the proposed method,
X16R hash function is used to resist the ASIC.

3.2.2. ASIC Resistance

Previous methods can be optimized with ASICs. In the proposed method, the step of using the
designated code in the microcontroller must be performed by adding the verification step that the
microcontroller performed the same code and input value. Therefore, ASIC is meaningless in our
scenario because optimization with ASIC is impossible. Since the output power consumption trace
information is used as the input value of the hash calculation (X16R), the hash calculation using parallel
processing is impossible. Due to non-optimization and parallelism constraints, the proposed method
achieved the ASIC resistance.

3.2.3. Operation Time

The proposed proof-of-work execution time is the microcontroller multiplied by the number of
iterations times the sum of the cryptographic module execution time and the hash operation time.
Since the number of repetitions cannot be adjusted, the execution time of the cryptographic module in
the microcontroller is fixed. Since the parallel operation is impossible, the only way to reduce execution
time is to compute the hash algorithm quickly on the microcontroller. However, the computation
speed cannot be enhanced, because the target microcontroller has certain resource-constrained features.
Therefore, it is expected that miners will use a general-purpose microcontroller capable of hashing at
an appropriate speed because there is no reason to purchase special mining equipment at a high cost.

3.2.4. Flexibility of Encryption Module on Microcontrollers

The encryption module operated by the microcontroller is changeable. The reason for using
the AES-256 encryption module is that it is international standard. Furthermore, if the input value
is the same, the intermediate value and the output value are the same. With this feature the power
consumption trace can be verified. The proposed method uses AES-256 in the microcontroller, but other
block ciphers can be used for this function if it has good cryptography features and efficiency.

4. Evaluation

In this section, we evaluate the proposed method on the microcontroller. We firstly introduce the
experiment environment and results in detail.

4.1. Experiment Environment

The proposed method relies on the power trace information. For this reason, a high-quality of power
trace information is important. We collected the power consumption of the microcontroller through
ChipWhispererLite XMEGA (8-bit processor). The sampling rate was 7.38 million samples per second
(MS/s) and this was the working frequency of target processor. The source code of the microcontroller
was written in the C language and compiled with the AVR-GCC. For the power trace collection, we used
the ChipWhispererLite API version 5.1. The experiment code was written in Python.

Mathematics 2020, 8, 1343 9 of 13

4.2. Uniqueness of Power Consumption

We ran the AES-256 encryption module on the microcontroller to collect the power consumption
traces generated from the same input value, and collected two 2000 traces of 1000 in order to confirm
that the power consumption was unique according to the input variable when the encryption module
was executed on the microcontroller. The correlation coefficient between the two groups was obtained.
Cases include different plaintext, different key, and different both values. Two-thousand traces of power
consumption were collected. All the collected trace were filtered using the FFT function. Afterward,
two groups of 1000 were created and correlation coefficients between the two groups were obtained.
Table 1 shows the statistical values of the results. Both the key and input showed a relatively higher
correlation coefficient than the other case. In particular, the minimum value when the key and input
are the same is larger than the maximum value when only the key is different. This is clearly seen in
Figure 4. There is no common value for the same input value and different input values. Between the
minimum value in the same case and the maximum value in the other case, there is large gap. For this
reason, we can classify this, correctly.

S/D D/S S/S D/D
0.98

0.99

1

1.01

Measurement (key/plaintext)

C
or

re
la

ti
on

AES
LEA
ARIA
SEED

Figure 4. Correlation coefficient between power consumption traces, S/D, D/S, S/S, and D/D represent
same key/different plaintext, different key/same plaintext, same key/same plaintext, and different
key/different plaintext, respectively.

The same experiment was performed for LEA, ARIA, and SEED [37–39] to confirm that other
ciphers with the same intermediate value and output value also have these characteristics.

LEA showed a wider range of correlation coefficients than the results of AES. In addition, AES is
less than the minimum value of 0.0005 for the same input value. There is no common value for the
same input value and different input values. Therefore, it was confirmed that LEA can also be used as
a working cryptographic module.

ARIA showed a higher correlation coefficient than AES for other input values. In addition,
there was a difference between the minimum value for the same input value and the maximum value
for other inputs, such as 0.0017. The ARIA does not have a common value for the same input value
and different input values. Therefore, we confirmed that the ARIA can also be used as a working
cryptographic module.

SEED is similar to the result of AES. This confirmed that the block cipher can be used as a
cryptographic module that works. There is no common value for the same input value and different
input values.

Mathematics 2020, 8, 1343 10 of 13

Table 1. Correlation coefficient between power consumption traces with different block ciphers.

Measurement (Key/Plaintex) Maximum Minimum Mean First Quartile Third Quartile

AES

Same key/Different plaintext 0.99656 0.99433 0.99549 0.99519 0.99578

Different key/Same plaintext 0.99619 0.99406 0.99516 0.99488 0.99542

Same key/Same plaintext 0.99965 0.99820 0.99884 0.99859 0.99903

Different key/Different plaintext 0.99605 0.99361 0.99493 0.99461 0.99524

LEA

Same key/Different plaintext 0.99495 0.99093 0.99288 0.99236 0.99337

Different key/Same plaintext 0.99502 0.99114 0.99283 0.99231 0.99331

Same key/Same plaintext 0.99980 0.99670 0.99809 0.99756 0.99854

Different key/Different plaintext 0.99471 0.99093 0.99271 0.99221 0.99317

ARIA

Same key/Different plaintext 0.99612 0.99417 0.99505 0.99483 0.99526

Different key/Same plaintext 0.99611 0.99409 0.99498 0.99476 0.99518

Same key/Same plaintext 0.99987 0.99872 0.99919 0.99900 0.99937

Different key/Different plaintext 0.99594 0.99401 0.99492 0.99469 0.99514

SEED

Same key/Different plaintext 0.99222 0.98817 0.99034 0.98990 0.99080

Different key/Same plaintext 0.99263 0.98849 0.99050 0.99005 0.99097

Same key/Same plaintext 0.99993 0.99834 0.99901 0.99875 0.99927

Different key/Different plaintext 0.99218 0.98801 0.99023 0.98976 0.99068

4.3. Lightweight PoW for Low-End Microcontrollers

In Table 2, the comparison result is given. Previous methods suggested the hard problem not to
be solved by ASIC. However, the problem is even hard for the users. On the other hand, the proposed
method is efficient even for the low-end IoT devices, because the hard problem comes from varied
power trace features related with microcontrollers, cryptographic modules, and input values. This is
easy for microcontrollers but it is hard to emulate. We ensure that this is the first practical PoW method
for low-end IoT devices.

Table 2. Comparison of the PoW method.

Method Overhead Low-End IoT

Multi-hash PoW HIGH -
Memory-hard PoW [15] HIGH -

Memory-bound PoW [28–30] HIGH -
Programmatic PoW [32,33] HIGH -

This work (Power-trace PoW) LOW
√

Mathematics 2020, 8, 1343 11 of 13

5. Conclusions

In this paper, we presented the novel ASIC-resistant PoW based on the power analysis of low-end
microcontrollers. This approach is based on the unique power consumption pattern performing the
cryptography function on the microcontroller. The power trace is post-processed with FFT to meet
the certain quality of PoW source. Finally, the refined information is used for the block generation.
In order to confirm the practicality of proposed method, we implemented the method on the low-end
microcontroller and four different block ciphers were evaluated. The result shows that the proposed
method works efficiently on target microcontrollers.

As a future work, we want to apply the proposed method to other platforms ranging from
high-end processors to medium-end processors. In terms of attack scenarios, we will investigate
the ASIC-based emulation for power trace. Furthermore, we will also explore deep-learning-based
emulation to break through the proposed method.

Author Contributions: Software, H.K. (Hyunjun Kim) and K.K.; validation, H.K. (Hyeokdong Kwon); investigation,
K.K. and H.K. (Hyeokdong Kwon); writing–original draft preparation, H.K. (Hyunjun Kim) and K.K.; writing–review
and editing, H.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported as part of the Military Crypto Research Center (UD170109ED) funded
by the Defense Acquisition Program Administration (DAPA) and Agency for Defense Development (ADD) and
this work was supported by the Institute for Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korean government (MSIT) (< Q | Crypton >, No.2019-0-00033, Study on Quantum
Security Evaluation of Cryptography based on Computational Quantum Complexity) and this work was partly
supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the
Korea government (MSIT) (No.2018-0-00264, Research on Blockchain Security Technology for IoT Services).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.
pdf (accessed on 8 August 2020).

2. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap.
2014, 151, 1–32.

3. Noether, S.; Mackenzie, A. Ring Confidential Transactions. Available online: http://ledger.pitt.edu/ojs/le
dger/article/view/34 (accessed on 8 August 2020).

4. Dwork, C.; Naor, M. Pricing via processing or combatting junk mail. In Annual International Cryptology
Conference; Springer: Berlin/Heidelberg, Germany, 1992; pp. 139–147.

5. Cai, J.Y.; Lipton, R.J.; Sedgewick, R.; Yao, A.C. Towards uncheatable benchmarks. In Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, San Diego, CA, USA, 18–21 May 1993; pp. 2–11.

6. Ar, S.; Cai, J.Y. Reliable Benchmarks Using Numerical Instability. 1994. pp. 34–43. Available online:
https://books.google.com.hk/books?hl=zh-TW&lr=&id=SYEy8nTSkMYC&oi=fnd&pg=PA34&dq=Relia
ble+Benchmarks+Using+Numerical+Instability&ots=5Ujh83NE-k&sig=DRCARrjKZm7LW9KkLtV3PC
DRQmY&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=ReliableBenchmarksUsingNumericaIn
stability&f=false (accessed on 8 August 2020).

7. Franklin, M.K.; Malkhi, D. Auditable metering with lightweight security. In International Conference on
Financial Cryptography; Springer: Berlin/Heidelberg, Germany, 1997; pp. 151–160.

8. Goldschlag, D.M.; Stubblebine, S.G. Publicly verifiable lotteries: Applications of delaying functions.
In International Conference on Financial Cryptography; Springer: Berlin/Heidelberg, Germany, 1998;
pp. 214–226.

9. Rivest, R.L.; Shamir, A.; Wagner, D.A. Time-Lock Puzzles and Timed-Release Crypto; Massachusetts Institute of
Technology, Laboratory for Computer Science: Cambridge, MA, USA, 1996. Available online: http://bitsavers.
trailing-edge.com/pdf/mit/lcs/tr/MIT-LCS-TR-684.pdf (accessed on 8 August 2020).

10. Back, A. Hashcash-A Denial of Service Counter-Measure. Technical Report. 2002. Available online:
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf (accessed on 8 August 2020).

11. Bertoni, G.; Daemen, J.; Peeters, M.; Van Assche, G. Keccak. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 313–314.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://ledger.pitt.edu/ojs/ledger/article/view/34
http://ledger.pitt.edu/ojs/ledger/article/view/34
https://books.google.com.hk/books?hl=zh-TW&lr=&id=SYEy8nTSkMYC&oi=fnd&pg=PA34&dq=Reliable+Benchmarks+Using+Numerical+Instability&ots=5Ujh83NE-k&sig=DRCARrjKZm7LW9KkLtV3PCDRQmY&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Reliable Benchmarks Using Numerica Instability&f=false
https://books.google.com.hk/books?hl=zh-TW&lr=&id=SYEy8nTSkMYC&oi=fnd&pg=PA34&dq=Reliable+Benchmarks+Using+Numerical+Instability&ots=5Ujh83NE-k&sig=DRCARrjKZm7LW9KkLtV3PCDRQmY&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Reliable Benchmarks Using Numerica Instability&f=false
https://books.google.com.hk/books?hl=zh-TW&lr=&id=SYEy8nTSkMYC&oi=fnd&pg=PA34&dq=Reliable+Benchmarks+Using+Numerical+Instability&ots=5Ujh83NE-k&sig=DRCARrjKZm7LW9KkLtV3PCDRQmY&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Reliable Benchmarks Using Numerica Instability&f=false
https://books.google.com.hk/books?hl=zh-TW&lr=&id=SYEy8nTSkMYC&oi=fnd&pg=PA34&dq=Reliable+Benchmarks+Using+Numerical+Instability&ots=5Ujh83NE-k&sig=DRCARrjKZm7LW9KkLtV3PCDRQmY&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Reliable Benchmarks Using Numerica Instability&f=false
http://bitsavers.trailing-edge.com/pdf/mit/lcs/tr/MIT-LCS-TR-684.pdf
http://bitsavers.trailing-edge.com/pdf/mit/lcs/tr/MIT-LCS-TR-684.pdf
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf

Mathematics 2020, 8, 1343 12 of 13

12. Dryja, T. Hashimoto: I/O Bound Proof of Work. Technical Report. 2009. Available online: https://mirrorx.
com/files/hashimoto.pdf (accessed on 8 August 2020).

13. Buterin, V. Dagger: A Memory-Hard to Compute, Memory-Easy to Verify Scrypt Alternative. Technical Report.
2013. Available online: http://www.hashcash.org/papers/dagger.html (accessed on 8 August 2020).

14. Percival, C. Stronger Key Derivation via Sequential Memory-Hard Functions. Technical Report. 2009.
Available online: https://pdfs.semanticscholar.org/7c74/956d21f0466c9771bb583e2fdf854c2aedbf.pdf
(accessed on 8 August 2020).

15. Van Saberhagen, N. CryptoNote v 2.0. Technical Report. 2013. Available online: https://decred.org/researc
h/saberhagen2013.pdf (accessed on 8 August 2020).

16. Gencer, A.E.; Basu, S.; Eyal, I.; Van Renesse, R.; Sirer, E.G. Decentralization in bitcoin and ethereum networks.
In International Conference on Financial Cryptography and Data Security; Springer: Berlin/Heidelberg, Germany,
2018; pp. 439–457.

17. Ruoti, S.; Kaiser, B.; Yerukhimovich, A.; Clark, J.; Cunningham, R. SoK: Blockchain technology and its
potential use cases. arXiv 2019, arXiv:1909.12454.

18. De Vries, A. Bitcoin’s growing energy problem. Joule 2018, 2, 801–805. [CrossRef]
19. Primecoin, K.S. Cryptocurrency with Prime Number Proof-of-Work. Technical Report. 2013. Available online:

https://primecoin.io/bin/primecoin-paper.pdf (accessed on 8 August 2020).
20. Rivest, R.L.; Shamir, A. PayWord and MicroMint: Two simple micropayment schemes. In International Workshop

on Security Protocols; Springer: Berlin/Heidelberg, Germany, 1996; pp. 69–87.
21. Miller, A.; Juels, A.; Shi, E.; Parno, B.; Katz, J. Permacoin: Repurposing bitcoin work for data preservation.

In Proceedings of the 2014 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014;
pp. 475–490.

22. Sompolinsky, Y.; Zohar, A. Secure high-rate transaction processing in bitcoin. In International Conference on
Financial Cryptography and Data Security; Springer: Berlin/Heidelberg, Germany, 2015; pp. 507–527.

23. Jang, J.; Lee, H.N. Profitable double-spending attacks. arXiv 2019, arXiv:1903.01711.
24. Eyal, I.; Sirer, E.G. Majority is not enough: Bitcoin mining is vulnerable. In International Conference on Financial

Cryptography and Data Security; Springer: Berlin/Heidelberg, Germany, 2014; pp. 436–454.
25. Heilman, E.; Kendler, A.; Zohar, A.; Goldberg, S. Eclipse attacks on bitcoin’s peer-to-peer network.

In Proceedings of the 24th USENIX Security Symposium (USENIX Security 15), Washington, DC, USA,
12–14 August 2015, pp. 129–144.

26. Daian, P.; Eyal, I.; Juels, A.; Sirer, E.G. (Short paper) Piecework: Generalized outsourcing control for proofs
of work. In International Conference on Financial Cryptography and Data Security; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 182–190.

27. Kroll, J.A.; Davey, I.C.; Felten, E.W. The economics of Bitcoin mining, or Bitcoin in the presence of adversaries.
In Prcoceedings of the WEIS, Washington, DC, USA, 11–12 June 2013; Volume 2013, p. 11.

28. Abadi, M.; Burrows, M.; Manasse, M.; Wobber, T. Moderately hard, memory-bound functions. Acm Trans.
Internet Technol. (Toit) 2005, 5, 299–327. [CrossRef]

29. Dwork, C.; Goldberg, A.; Naor, M. On memory-bound functions for fighting spam. In Annual International
Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2003; pp. 426–444.

30. Dwork, C.; Naor, M.; Wee, H. Pebbling and proofs of work. In Annual International Cryptology Conference;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 37–54.

31. Ren, L.; Devadas, S. Bandwidth hard functions for ASIC resistance. In Theory of Cryptography Conference;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 466–492.

32. Bradley, W.F. Superconcentration on a Pair of Butterflies. arXiv 2014, arXiv:1401.7263.
33. Cook, S.A. An observation on time-storage trade off. In Proceedings of the Fifth Annual ACM Symposium on

Theory of Computing; Association for Computing Machinery: New York, NY, USA, 1973; pp. 29–33.[CrossRef]
34. Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Annual International Cryptology Conference; Springer:

Berlin/Heidelberg, Germany, 1999; pp. 388–397.
35. Durvaux, F.; Gerard, B.; Kerckhof, S. Intellectual Property Protection for Integrated Systems Using

Soft Physical Hash Functions. In International Workshop on Information Security Applications; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 208–225.

https://mirrorx.com/files/hashimoto.pdf
https://mirrorx.com/files/hashimoto.pdf
http://www.hashcash.org/papers/dagger.html
https://pdfs.semanticscholar.org/7c74/956d21f0466c9771bb583e2fdf854c2aedbf.pdf
https://decred.org/research/saberhagen2013.pdf
https://decred.org/research/saberhagen2013.pdf
http://dx.doi.org/10.1016/j.joule.2018.04.016
https://primecoin.io/bin/primecoin-paper.pdf
http://dx.doi.org/10.1145/1064340.1064341
http://dx.doi.org/10.1145/800125.804032

Mathematics 2020, 8, 1343 13 of 13

36. Samarin, P.; Lemke-Rust, K. Detecting similar code segments through side channel leakage in microcontrollers.
In International Conference on Information Security and Cryptology; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 155–174.

37. Kwon, D.; Kim, J.; Park, S.; Sung, S.H.; Sohn, Y.; Song, J.H.; Yeom, Y.; Yoon, E.J.; Lee, S.; Lee, J.; et al. New block
cipher: ARIA. In International Conference on Information Security and Cryptology; Springer: Berlin/Heidelberg,
Germany, 2003; pp. 432–445.

38. Hong, D.; Lee, J.K.; Kim, D.C.; Kwon, D.; Ryu, K.H.; Lee, D.G. LEA: A 128-bit block cipher for fast
encryption on common processors. In International Workshop on Information Security Applications; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 3–27.

39. Park, J.; Lee, S.; Kim, J.; Lee, J. The SEED Encryption Algorithm; KISA: Seoul, Korea, 2005. Available online:
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=53A7C173E093671AB34C78C08C2943DB?doi=10.
1.1.374.1600&rep=rep1&type=pdf (accessed on 8 August 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=53A7C173E093671AB34C78C08C2943DB?doi=10.1.1.374.1600&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=53A7C173E093671AB34C78C08C2943DB?doi=10.1.1.374.1600&rep=rep1&type=pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Proof-of-Work
	ASIC-Resistant PoW
	Multi-Hash PoW
	Memory-Hard PoW
	Memory-Bound PoW
	Programmatic PoW

	Power Analysis and Its New Applications

	Proposed Method
	Power Trace Based Proof-of-Work
	Collection of Power Trace from Microcontrollers
	Features of Power Consumption Trace
	Post-Processing for Noise Filtering
	High Entropy for Input Value
	Finding the Target with Hash Function
	AI-Resistant Hash Function
	Verification with Power Trace

	Advantages of the Proposed Method
	PoW Requirements
	ASIC Resistance
	Operation Time
	Flexibility of Encryption Module on Microcontrollers

	Evaluation
	Experiment Environment
	Uniqueness of Power Consumption
	Lightweight PoW for Low-End Microcontrollers

	Conclusions
	References

