
mathematics

Article

Efficient Implementation of ARX-Based Block
Ciphers on 8-Bit AVR Microcontrollers

YoungBeom Kim 1 , Hyeokdong Kwon 2, SangWoo An 3, Hwajeong Seo 2 and
and Seog Chung Seo 1,*

1 Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 02707, Korea;
darania@kookmin.ac.kr

2 Division of IT Convergence Engineering, Hansung University, lSeoul 136792, Korea;
hyeok@hansung.ac.kr (H.K.); hwajeong@hansung.ac.kr (H.S.)

3 Department of Financial Information Security, Kookmin University, Seoul 02707, Korea;
pinksnail06@kookmin.ac.kr

* Correspondence: scseo@kookmin.ac.kr; Tel.: +82-02-910-4742

Received: 24 August 2020; Accepted: 13 October 2020; Published: 19 October 2020
����������
�������

Abstract: As the development of Internet of Things (IoT), the data exchanged through the network has
significantly increased. To secure the sensitive data with user’s personal information, it is necessary
to encrypt the transmitted data. Since resource-constrained wireless devices are typically used
for IoT services, it is required to optimize the performance of cryptographic algorithms which are
computation-intensive tasks. In this paper, we present efficient implementations of ARX-based Korean
Block Ciphers (HIGHT and LEA) with CounTeR (CTR) mode of operation, and CTR_DRBG, one of
the most widely used DRBGs (Deterministic Random Bit Generators), on 8-bit AVR Microcontrollers
(MCUs). Since 8-bit AVR MCUs are widely used for various types of IoT devices, we select it
as the target platform in this paper. We present an efficient implementation of HIGHT and LEA
by making full use of the property of CTR mode, where the nonce value is fixed, and only the
counter value changes during the encryption. On our implementation, the cost of additional function
calls occurred by the generation of look-up table can be reduced. With respect to CTR_DRBG,
we identified several parts that do not need to be computed. Thus, precomputing those parts in
offline and using them online can result in performance improvements for CTR_DRBG. Furthermore,
we applied several optimization techniques by making full use of target devices’ characteristics
with AVR assembly codes on 8-bit AVR MCUs. Our proposed table generation way can reduce
the cost for building a precomputation table by around 6.7% and 9.1% in the case of LEA and
HIGHT, respectively. Proposed implementations of LEA and HIGHT with CTR mode on 8-bit
AVR MCUs provide 6.3% and 3.8% of improved performance, compared with the previous best
results, respectively. Our implementations are the fastest compared to previous LEA and HIGHT
implementations on 8-bit AVR MCUs. In addition, the proposed CTR_DRBG implementations on
AVR provide better performance by 37.2% and 8.7% when the underlying block cipher is LEA and
HIGHT, respectively.

Keywords: LEA block cipher; HIGHT block cipher; counter mode of operation; 8-bit AVR MCUs;
CTR_DRBG; random bit; Internet of Things

1. Introduction

With the advent of Internet of Things (IoT), new types of services have become available. In these
IoT services, a number of small and wireless devices around users collect the user data or surrounding
information. Since the collected data are transmitted through wireless communication, the data can

Mathematics 2020, 8, 1837; doi:10.3390/math8101837 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-4715-8393
https://orcid.org/0000-0003-0069-9061
https://orcid.org/0000-0001-8016-2808
http://dx.doi.org/10.3390/math8101837
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/10/1837?type=check_update&version=2

Mathematics 2020, 8, 1837 2 of 22

be easily revealed to attackers. For this reason, the sensitive data should be properly encrypted
by a secure cryptographic algorithm before the transmission. Since it is required to transmit the
data in an encrypted form rather than the original form, applying cryptographic algorithms is a
fundamental building block for providing robust and secure communication in these IoT services.
However, the implementing cryptographic algorithm on low-end IoT devices is not an easy task
because typical client devices for these IoT services equip only limited resources, in terms of CPU,
RAM, and ROM. For example, 8-bit AVR-based sensor nodes use in wireless sensor networks (WSNs),
which is one of the representative IoT services, have only 4 KB of RAM, 128 KB of ROM, and 7.3728 MHz
of computing frequency.

Recently, several lightweight block ciphers have been developed for efficient performance on
IoT devices. Lightweight block ciphers ensure low-cost and simple computations. The computational
structure is based on ARX (Addition, Rotation, and XOR) architecture. In South Korea, two ARX-based
lightweight block ciphers, HIGHT [1] and LEA [2], have been developed and have been widely used.
When data are larger than basic processing blocks (64-bit in HIGHT and 128-bit in LEA), the mode
of operation needs to be applied. There are several modes of operations and CTR mode is the most
popular among them. Until now, these ARX-based lightweight block ciphers have been optimized on
resource-constrained 8-bit AVR Microcontrollers [1,3–5], which are widely used as sensor nodes in
wireless sensor networks that are representative IoT services.

In addition to applying block ciphers to data to be transmitted, it is also important to securely
generate secret keys used in block ciphers. If a weak key is used in a block cipher, the ciphertext can
be revealed to attackers even if the underlying block cipher is secure. DRBGs (Deterministic Random
Bit Generators) are widely used to generate secret information including keys. Among standardized
DRBGs [6], CTR_DRBG provides strong resistance against backward security and forward security.
Since CTR_DRBG makes use of CBC-MAC and CTR mode of operation in its derivation function and
output generation function, it takes a larger execution time than executing block cipher algorithms.
Thus, optimizing the performance of CTR_DRBG on the resource-constrained AVR-based devices is
important for constructing secure and robust communications in IoT services [7].

In this paper, using a look-up table, we present optimized implementation of ARX-based
lightweight block ciphers (HIGHT and LEA) on CTR mode and optimized CTR_DRBG implementation
in an 8-bit AVR Microcontroller.

The contribution of this paper is as follows:

1. Fast implementation for CTR mode of operation for LEA and HIGHT on 8-bit AVR MCUs
As nonce is repeatedly used in CTR mode, the result has an identical value when the nonce part
is encrypted. Therefore, look-up tables can be generated using the results of encryption data
of nonce. In this paper, we present efficient methods that generate look-up tables. Using the
optimal implementation, we proposed, in a fixed key scenario, the performance of encryption
can be improved by skipping the calculation procedure while loading only the calculation result
from the look-up table. For better performance, optimizations of rotation operation and memory
access are utilized. Finally, the implementation of LEA-CTR and HIGHT-CTR outperforms
previous works by 6.3% and 3.8% than previous works, respectively. Our implementations of
LEA and HIGHT are the fastest implementation compared to the previous implementation on
8-bit AVR MCUs. Furthermore, unlike the typical look-up table generation using a separated way,
our implementation generates the look-up table, simultaneously, while executing the encryption
process. Therefore, in our implementation, the cost of additional function calls that occurred
from the generation of look-up table can be reduced. By using this, we obtained performance
improvement of 6.7% and 9.1% compared to the previous separated encryption process which
generates the look-up table, respectively.

2. Optimized CTR_DRBG implementations on 8-bit AVR MCUs for fast random bit generation
The implementation of CTR_DRBG is optimized with the look-up table. In CBC-MAC of the
Derivation Function, the look-up table is created for the encryption result of data depending

Mathematics 2020, 8, 1837 3 of 22

on the initial block bit. The optimization of the Update Function is achieved with the look-up
table by taking advantage of the condition that the initial Operational Status is zero. In addition,
the look-up table does not require an update, but also requires a low cost of 96 bytes, making it
effectively applicable to 8-bit AVR Microcontrollers. Moreover, we presented methods to optimize
Korean block cipher in the Extract Function on 8-bit AVR Microcontrollers. The Extract Function
is optimized by utilizing the table for the CTR mode that uses fixed keys to reduce the execution
timing. Our works of Derivation Function and Update Function outperform previous works
by 13.3% and 72.4%, respectively. By applying CTR optimization methods, implementations of
Extract Function using LEA and HIGHT outperform the standard implementation of Extract
Function by 36.4% and 3.5%, respectively. By combining the proposed Derivation Function,
Update Function, and Extract Function, overall, our CTR_DRBG implementation provides 37.2%
and 8.7% of performance improvement compared with the native CTR_DRBG implementation
using the works from [3–5] as an underlying block cipher of Extract Function.

3. Proposing optimization methods that can be applied to various platforms
In this paper, we propose general optimization methods for ARX-based block ciphers using the
CTR mode. These methods have the advantage to be extended to other Addition-Rotation-XOR
(ARX) based ciphers such as CHAM, Simon, and Speck [8,9]. While the significance of DBRG is
increasing with the advent of the IoT era, there have been a few academic papers on optimization
for CTR_DRBG that are popular to use. In this paper, we present CTR_DRBG optimization
methods on 8-bit AVR Microcontrollers, the most limited IoT device. Our work is meaningful as
it is the first attempt to optimize CTR_DRBG. Furthermore, our proposed Korean block cipher
optimization methods and CTR_DRBG optimization methods are not only applicable to 8-bit
AVR Microcontroller, but also to other low-end-processors and high-end-processors such as 16-bit
MSP430, 32-bit ARM, and the CPU environment.

The rest of this paper is organized as follows. In Section 2, target platform, target ARX ciphers
(LEA and HIGHT), target mode of operation, CTR_DRBG, and previous implementations are given.
In Section 3, related work of Korean block ciphers (LEA and HIGHT) and CTR_DRBG is presented.
In Section 4, optimized implementation of counter mode of operation is presented. In Section 5,
optimized implementation of CTR_DRBG is presented. In Section 6, the performance is evaluated.
Finally, Section 7 concludes the paper.

2. Background

2.1. 8-Bit AVR Microcontroller

AVR Microcontroller is based on Harvard architecture. All AVR commands require less than
four clock cycles to execute. Table 1 shows operand and clock cycles of commands used in this
paper. Currently, there are various types of AVR Microcontrollers, and they have various peripherals
and memory sizes. This structure ensures that instructions always can be executed in a single cycle.
There are 32 general-purpose registers with a single clock cycle. Of the 32 registers, six registers
used for 16-bit indirect address register pointer for addressing, which these registers called X,
Y, and Z registers [10]. These address pointers can also be used as a pointer for Flash Program
memory. Our target device, in this paper, is ATmega128, which is used worldwide in the IoT era [11].
ATmega128 has a 128 KB of programmable flash memory, 4 KB SRAM, and 4 KB EEPROM.

Mathematics 2020, 8, 1837 4 of 22

Table 1. 8-bit AVR Assembly Instruction, cc means clock cycle [10,12].

Asm Operands Description Operation cc

ADD Rd, Rr Add without Carry Rd ← Rd+Rr 1

ADC Rd, Rr Add with Carry Rd ← Rd+Rr+C 1

EOR Rd, Rr Exclusive OR Rd ← Rd⊕Rr 1

LSL Rd Logical Shift Left C|Rd ← Rd«1 1

LSR Rd Logical Shift Right Rd|C ← 1»Rd 1

ROL Rd Rotate Left Through Carry C|Rd ← Rd«1||C 1

ROR Rd Rotate Right Through Carry Rd|C ← C||1»Rd 1

BST Rd, b Bit store from Bit in Reg to T Flag T ← Rd(b) 1

BLD Rd, b Bit load from T Flag to a Bit in Reg Rd(b) ← T 1

MOV Rd, Rr Copy Register Rd ← Rr 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr 1

LDI Rd, K Load Immediate Rd ← K 1

LD Rd, X Load Indirect from Rd ← (X) 2

LPM Rd, Z Load Program Memory Rd ← (Z) 3

ST Z, Rr Store Indirect (Z) ← Rr 2

2.2. Target Block Ciphers

2.2.1. LEA Block Cipher

In WISA’13, lightweight block cipher LEA was presented [2]. With the development of IoT, it was
developed to provide confidentiality in various embedded devices, cloud service, mobile environments,
and so on. LEA is an algorithm that encrypts 128-bit data blocks. It can use 128, 192, and 256-bit secret
keys, and its uses are classified according to required safety standards. LEA-128/128, LEA-128/192,
and LEA-128/256 require 24, 28, and 32 rounds, respectively. While ensuring safety, it is possible to
implement lightweight by eliminating the use of S-box. More information on parameters are shown in
Table 2.

Table 2. Parameters of LEA block cipher, where n, k, rk, and r represent block size (bit), key size (bit),
round key size (bit), and the number of rounds, respectively [2].

Cipher n k rk r

LEA-128/128 128 128 192 24

LEA-128/192 128 192 192 28

LEA-128/256 128 256 192 32

LEA block cipher performs encryption for 3 32-bit words in one round that represented in Figure 1.
In the figure, the Xi[0] word of round i directly becomes the input value to Xi+1[3] word of round i + 1.
All words are moved to the left every end of rounds.

Mathematics 2020, 8, 1837 5 of 22

Round i

Xi[3]

Xi[2]

Xi[1]

Xi[0]

Round i+1

RKi
enc[5]

Xi+1[3] Xi+2[3]

Xi+1[2]

Xi+1[1]

Xi+1[0]

Xi+2[2]

Xi+2[1]

Xi+2[0]

ROR3

RKi
enc[3]

ROR5

RKi
enc[1]

ROL9

RKi
enc[0]

RKi
enc[2]

RKi
enc[4]

RKi
enc[5]

ROR3

RKi
enc[3]

ROR5

RKi
enc[1]

ROL9

RKi
enc[0]

RKi
enc[2]

RKi
enc[4]

Figure 1. Encryption process of LEA block cipher [2].

2.2.2. HIGHT Block Cipher

HIGHT is a transformed Feistel ARX structure that encrypts 64-bit plaintext with a 128-bit secret
key. The encryption process comprises of initial conversion, round functions, and final conversion.
The key scheduling generates a round key of 136 bytes to be used for encryption with a 128-bit
secret key. HIGHT performs encryption using 8-bit wise addition, rotate–shift, and XOR operation.
Both encryption and decryption consist of 32 rounds. The structure of Round function in HIGHT block
cipher is shown in Figure 2. During every single round, eight 8-bit words are encrypted. In each round
in HIGHT, the four words are through by the F0 or F1 function. F0 and F1 functions perform left shift
operation that is expressed in the following equations:

F0(X) = X≪1 ⊕ X≪2 ⊕ X≪7

F1(X) = X≪3 ⊕ X≪4 ⊕ X≪6

In each round, HIGHT uses a 64-bit round key. Since the number of round of HIGHT is 32, 2048-bit
memory space is needed for storing roundkeys of each round. HIGHT parameters are represented in
Table 3.

Table 3. Parameters of HIGHT block cipher, where n, k, rk, and r represent block size (bit), key size
(bit), round key size (bit), and the number of rounds, respectively [1].

Cipher n k rk r

HIGHT-64/128 64 128 64 32

Mathematics 2020, 8, 1837 6 of 22

Round i

Xi[0]

Xi[1]

RK[4i - 4]

F1

Xi[2]

Xi[3]

RK[4i - 3]

F0

Xi[4]

Xi[5]

Xi[6]

Xi[7]

Round i+1

Xi+1[0]

Xi+1[1]

Xi+1[2]

Xi+1[3]

Xi+1[4]

F1

Xi+1[5]

Xi+1[6]

Xi+1[7]

F0

RK[4i - 2]

RK[4i - 1]

RK[4i - 4]

F1

RK[4i - 3]

F0

Xi+2[0]

Xi+2[1]

Xi+2[2]

Xi+2[3]

Xi+2[4]

F1

Xi+2[5]

Xi+2[6]

Xi+2[7]

F0

RK[4i - 2]

RK[4i - 1]

Figure 2. Round function scheme for the HIGHT block cipher [1].

2.3. CTR_DRBG

With the development of IoT, it is important to securely generate security keys when
communicating with each other in WSNs (Wireless Sensor Network). For generating a security
key safely, a true random bit generator should be used; however, in reality, the creation of a true
random bit is almost impossible. Therefore, in the field, we use pseudo-random bits that are difficult
to distinguish from true random bits. As pseudo-random bit generators, DRBGs (Deterministic
Random Bit Generators) are used to securely generate random bit information, including secret
keys, initial vectors, nonces, and so on [6,7]. There are CTR_DRBG based on a block cipher algorithm,
HASH_DRBG using HASH Function, and HMAC_DRBG using HMAC among various types of
pseudo-random number generators. HASH Function used in HASH_DRBG and HMAC_DRBG is
mainly the SHA-2 Family. However, it is difficult to maintain the internal status of SHA-2 Family in
the general-purpose register on 8-bit AVR MCUs. Note that internal states of SHA-256 and SHA-512

Mathematics 2020, 8, 1837 7 of 22

are 512-bit and 1024-bit, respectively [13,14]. However, with respect to the lightweight cryptography,
blocks of LEA and HIGHT are 128-bit and 64-bit, respectively. Therefore, these blocks (states of LEA
and HIGHT) can be stored in a general-purpose register.

Table 4 defines notations used in this paper and Table 5 shows parameters based on the block
ciphers used in CTR_DRBG. Seed Bit is the addition of Key bit and Block Bit, and N is the representation
of Seed Bit in bytes. Len_seed is the value of Seed Bit divided by Block Bit.

Figure 3 shows the detailed operational process of CTR_DRBG. Instantiate Function generates seed
with Derivation Function. In addition, Instantiate Function updates Internal State, using the seed and
Update Function. Reseed Function consists of Derivation Function and Update Function, and Generate
Function consists of Reseed Function, Extract Function, and Update Function. Note that Update
Function is called Instantiate Function, Generate Function, and Reseed Function. Generate Function
outputs the random bits based on the internal state by using Extract Function. Before Extract Function
is executed, if it supports Prediction Resistance or if Reseed Counter is greater than Reseed Interval,
Generate Function calls Reseed Function to update Operational Status. In the opposite case, Generate
Function calls an Extract Function to generate a random number, and calls the Update Function to
update the Operational Status. When additional requests occur for random bit generations, a series of
functions except for Instantiate Function are repeated.

Table 4. Notations for CTR_DRBG [6,7].

Notation Descriptions

Personalization String
Information for differentiating the instances being created, non-confidential
input (optional).

Nonce Input information used to generate a seed during instance Function.

Internal State
Information used during CTR_DRBG. It consists of Operational Status and
Control Information.

Operational Status
Information directly used for random number output. Consisting of C and V, C
is the key used for block cipher, and V is the plain text used for block cipher.

Control Information
Information consists of security strength, Prediction Resistance flag and
Derivation Function flag.

Prediction Resistance
Characteristics of the exposure of internal status information of CTR_DRBG
without affecting future output.

Instantiate Function Function to create and initialize CTR_DRBG instances as needed.

Derivation Function
Function called from an Instantiate Function to generate a seed using entropy
input, Nonce and Personalization String.

Update Function Function to update Internal State, using the CTR mode encryption

Reseed Function
Function to update Internal State using entropy and additional input.
This function is affected by Reseed Counter.

Generate Function
Function to generate an output(random number) using Internal State and update
Internal State.

Extract Function Function to generate random number sequence, using the CTR mode encryption.

Figure 4 shows the structure of Derivation Function of CTR_DRBG. Derivation Function makes
use of CBC-MAC in order to produce an output of seed length by inputting variable data S.
Derivation Function is called in Instantiate Function and Reseed Function. Step 1 is a CBC-MAC
encryption process by using counter value C. Step 2 is the process of CBC mode which encrypts V
with Key generated from Step 1. First, it formats input S for CBC-MAC using Input Data consisting of
Entropy, Nonce, and Personalization String. C, L, and N are 32-bit data. The initial C is zero, and padded
to zero after C by the length of Block Bit minus 32-bit. L and N are byte lengths of Input Data and
seed. Derivation Function makes S using C, L, N and Input Data. At this sequence of generating S,

Mathematics 2020, 8, 1837 8 of 22

the length of S is padded to 0 so that it is a multiple of Block Bit. Then, Derivation Function increases C
of S by 1 and repeats CBC-MAC as many times as Len_seed. Using the results of CBC-MAC as key and
V, Derivation Function performs CBC mode encryption as many times as Len_seed to generate seed.

Table 5. Constant parameters of CTR_DRBG depending on block cipher [6,7].

Parameters HIGHT-64/128 LEA-128/128 LEA-128/192 LEA-128/256

Key Bit 128 128 192 256

Block Bit 64 128 128 128

Seed Bit 192 256 320 384

N 0 × 18 0 × 20 0 × 30 0 × 40

Len_seed 3 2 3 3

Entropy Nonce
Personalization

String

Derivation Function

Update Function

Reseed Function

Derivation Function

Update Function

Extract Function

Update Function

Additional Input

Generate Function

Random Number Extract

Instantiate Function

Figure 3. Detailed procedures of CTR_DRBG [6,7].

Mathematics 2020, 8, 1837 9 of 22

0(Pad) L Input DataNC 0(Pad)0x80

S

Step 1

Step 2
KEY V

0x001020..

Seed

. . .

. . .

. . .

. . .

E E EE

E E E

Figure 4. Overview of Derivation Function [6,7].

Figure 5 shows the structure of the Update Function in CTR_DRBG. Update Function updates C
and V of Operational Status using CTR mode and Input data. Update Function performs with CTR
mode encryption as many times as Len_seed. Update Function executes XOR operation on Input data
and results generated in CTR mode encryption. Note that Update Function is called by Instantiate
Function, Generate Function, and Reseed Function.

V + 1 V + nV + 2

C V
Input data

. . .

E E E. . .

C V

. . .

Figure 5. Overview of Update Function [6,7].

Generate Function consists of Reseed Function, Extract Function, and Update Function. As shown
in Figure 3, Generate Function generates a random number using Extract Function. Figure 6 shows the
structure of Extract Function called in Generate Function. Extract Function is a function that uses the
same CTR mode as Update Function. Therefore, using Operational Status C as the key and V as the
counter, Extract Function generates a random number by using CTR mode.

Mathematics 2020, 8, 1837 10 of 22

V + 1 V + nV + 2

C V

. . .

E E E. . .

. . .

Extract

Figure 6. Overview of Extract Function [6,7].

3. Related Works

3.1. Block Cipher Implementations on AVR

Various studies have been conducted to improve performance for block ciphers in 8-bit AVR
Microcontrollers. In 8-bit AVR MCUs, which are low-end-processors, the study of optimization has
been mainly done using minimize memory access and pre-computation tables.

There are two main categories of block ciphers: Addition, Rotation, and eXclusive-or (ARX) based
block ciphers and Substitution Permutation Network (SPN) based block ciphers.

Efficient implementations of ARX-based ciphers have been studied in various ways in an 8-bit
AVR MCUs environment [1–5,8,15–21].

In WISA’13, the Institute of Electronics and Telecommunications Research Institute (ETRI)
presented a light-weight LEA block cipher. In 8-bit AVR MCUs, the first LEA’s implementation
needed 3040 clock cycles for encryption [2].

In [19], the hardware design and implementation of LEA was proposed. Based on the key size,
Ref. [19] introduced suitable hardware designs. For the area-optimized version, resource-shared
structure for LEA was proposed.

In WISA’15, an efficient LEA implementation technique of dividing a 32-bit word operation using
4-byte units was proposed [3]. The method proposed in [3] minimizes memory access. A technique
for efficiently operating rotate–shift used in 8-bit AVR MCUs was proposed. The proposed technique
implicitly performs a byte-wise rotate–shift [3]. In addition, the source code was reduced by maximizing
the use of the instruction set, and internal states of LEA were efficiently placed in general-purpose
registers [3].

In [4], efficient implementation of LEA and method of rotate–shift-right were proposed,
fully utilizing the AVR assembly instruction set and general-purpose registers in 8-bit AVR MCUs.
For the optimized LEA implementation, Ref. [4] presented a compact ARX task on a target 8-bit AVR
Microcontroller. Using both BST and BLD instructions in the AVR instruction, Ref. [4] improved the right
rotation by 1 bit. By using the BST instruction in a 1-bit shift-right, the first bit of the register is reflected
in the status flag. After that, rotate–shift–right is performed, using LSR and ROR instruction. Finally,
Ref. [4] applied the status flag to the 8th bit in the register by using BLD instruction. By using this, when
implementing LEA in 8-bit AVR MCUs, less than seven clock cycles are incurred for all rotate–shift
operations. In addition, Ref. [4] efficiently places the LEA’s internal state in a general-purpose register.
Using MOVW instruction, clock cycles of execution time were reduced.

In [15], efficient LEA implementation was proposed in ARM Cortex-M3 processors. The general
purpose registers are fully utilized to retain the required variables for the key scheduling and
encryption operations and the rotation operation is optimized away by using the barrel-shifter
technique. Since the on-the-fly method does not store the round keys, the RAM requirements
are minimized.

Mathematics 2020, 8, 1837 11 of 22

In [5], efficient techniques using general-purpose registers were presented. The general-purpose
registers in 8-bit AVR MCUs are compactly used for storing results during the key scheduling of LEA.

The HIGHT’s implementation was first presented in [16]. Execution time of HIGHT for encryption
and decryption in 8-bit AVR MCUs is 2438 and 2520 clock cycles, respectively [16].

In [21], efficient implementation using parallel architecture to enhance throughput was proposed.
It shares key scheduling block for encryption and decryption to reduce hardware complexity.

In [20], hardware implementation for a significant reduction in the number of memory resources
was proposed. Its implementation is useful for wireless applications such as a radio frequency
identification system (RFID).

In [4], efficient rotation operations were introduced, and they achieved high performance. Like the
LEA implementation proposed in [4], an efficient rotate–shift was used. Its implementation won the
second round of Fair Evaluation of Lightweight Cryptographic Systems (FELCS).

In [17], fast HIGHT implementation was proposed. For optimizing delta update, F0 function,
and F1 function, Ref. [17] uses the Look-Up Table (LUT). In addition, [17] proposed the memory-
efficient way for F0 and F1 function, using bit-wise operations.

In 2015, SIMON and SPECK were presented by The US National Security Agency (NSA) [18].
Both SIMON and SPECK have advantages for efficient implementation in hardware and software
environments. These two block ciphers support various block sizes and various key sizes. Therefore,
in various IoT devices, SIMON and SPECK can be widely used. For 8-bit AVR MCUs, efficient
implementation was presented in [8] using RAM-minimizing.

In an 8-bit AVR MCUs environment, block ciphers based on SPN also have also been actively
studied. Since Advanced Encryption Standard (AES) is an international standard, AES implementations
have widely studied.

In 2010, Ref. [22] presented efficient techniques for AES implementation, using a Z address pointer
to perform SubBytes operation. In [22], MixColumns were implemented by a branch instruction set.
Previous AES implementation in 8-bit AVR MCUs mainly focused on ECB Mode; however, in the field,
AES-CTR Mode is more widely used (e.g., TLS/SSL) [23].

In ICISC’19, Fast AES-CTR Mode Encryption LIGHT (FACE-LIGHT) was presented by [24].
FACE-LIGHT is a variant of FACE implementation suggested by [25] in 8-bit AVR MCUs. FACE-LIGHT
uses LUT for caching repeated data in IV. By using LUT, some operations can be omitted in 0,1,
and 2 Round.

In WISA’20, efficient AES implementation was presented by [11]. The column-wise implementation
was proposed. Proposed techniques have advantages for constant-time implementation and low
cost for generating LUT. In addition, using 0 round optimization, Ref. [11] presented the optimized
AES-CTR mode encryption for Wireless Sensor Network (WSN).

3.2. DRBG Implementations on AVR

To the best of our knowledge, the implementation of DRBG has not been presented in academic
papers. The commercial product provides the AES-DRBG, but the performance is much slower than
our work (http://cryptovia.com/cryptographic-libraries-for-avr-cpu/). Furthermore, the detailed
information is not available. For this reason, our work is the-state-of-art work.

4. Optimized Implementations of LEA-CTR and HIGHT-CTR

The optimized implementation of a counter mode of operation for block cipher utilizes unique
features of fixed nonce and variable counter values. The counter value indicates the block number,
while the nonce is a fixed random value. Every block has the same nonce value. The calculation based
on the nonce block is always a constant value. For this reason, the part can be pre-computed. The CTR
implementation is categorized into two different scenarios, including fixed-key and variable-key. In this
paper, we optimize both cases for various applications.

http://cryptovia.com/cryptographic-libraries-for-avr-cpu/

Mathematics 2020, 8, 1837 12 of 22

In the fixed-key scenario, the key value is fixed. For this reason, the precomputation result is
always same and the precomputation table does not require update. In the implementation, the LDI
instruction was used instead of the LD instruction to load the precomputation value from table. The LDI
instruction operates at one cycle faster than the LD instruction.

On the other hand, the LDI instruction cannot be used for the variable-key scenario because the
LDI instruction can only load the fixed value. Furthermore, the pre-computed table should be updated
efficiently whenever the key is updated. This implementation shows the lower performance than
that of fixed-key implementation. However, the variable-key implementation is able to perform the
encryption with updated keys, which is more suitable for practical usages than fixed-key.

4.1. Optimized Implementation of LEA-CTR

The LEA algorithm was suggested [2]. However, we use [4] implementation. [4] has optimized
key scheduling; in particular, LEA-128/128 can reuse some round keys.

- Round 0 In one round of LEA, the operations are performed in three parts. In Round 0, only
X0[0] word has a counterpart of IV. Consequently, two words can be implemented through the
precomputation method.

- Round 1 However, due to the Round 0, the X1[1] word is also beginning to be affected by the
counter value. For this reason, it might be thought that the precomputation part is only available
at X1[2] word. The part where X1[3] word is used as the input value of X1[0] in Round 1 can be
expressed by the following equation:

ROL3((X1[3] ⊕ RKenc
1 [2]) � (X1[0] ⊕ RKenc

1 [3]))

At this equation, it can be seen that the blue parts X1[3] word and round key are fixed values.
Consequently, XOR instruction between X1[3] word and round key part can be skipped.

- Round 2 In Round 2, only the X2[3] word is not affected by counter value. Therefore,
precomputation is not applicable as a whole. However, like the previous round, in order to
use X2[3] word as an input value for X3[0] word, the operation part that performs XOR instruction
with a round key can be a precomputation implement. The optimized LEA-128/128 CTR mode of
operation is described in Figure 7.

- Generation of look-up table When generating a look-up table, it has the advantage that the
table can be generated during the encryption process. CACHE can be saved in the look-up table
through the result of the operation in executing each round. When creating the look-up table,
only the address translation cost based on ST instruction is incurred.

Optimization for LEA-128/192 and LEA-128/256

Our optimization strategy for LEA-128/128 can be directly applied to both LEA-128/192 and
LEA-128/256 because their computational structures are identical except for the number of rounds.
In addition, we combine each four rounds into one for better performance in our LEA implementations.

Mathematics 2020, 8, 1837 13 of 22

Round 0

X0[0]

X0[1]

X0[2]

X0[3]

CACHE X1[1]ROL9

X1[0]

RK0
enc[0]

CACHE

Round 1

X2[2]

X2[1]

X2[0]

ROL9

RK1
enc[0]

CACHE

ROR3

CACHE

Round 2

X3[3]

X3[2]

X3[1]

X3[0]

RK1
enc[3]

ROL9

RK2
enc[0]

ROR3

RK2
enc[3]

RK2
enc[3]

RK2
enc[3] CACHE

ROR5

Figure 7. Optimized three rounds of LEA-128/128 block ciphers.

4.2. Optimized Implementation of HIGHT-CTR

The HIGHT-64/128 split input value into eight 8-bit words. The CTR mode of operation using
32-bit counter, so four words are affected by counter of IV in the initial round. Figure 8 shows this.

- Round 0 The HIGHT performs four operations in a single round. In Round 0, the operation is
performed using the following word pairs; X0[0] with X0[1], X0[2] with X0[3], X0[4] with X0[5],
and X0[6] with X0[7]. First of all, words of X0[0], X0[1], X0[2], X0[3] have counter values, which is
variable. Thus, two of the four operations must be implemented. However, the other operations
part uses only fixed values, which are nonce, and round keys, so precomputation is available for
these parts.

- Round 1 Unlike the previous round, the pair of words participating in the operation is slightly
different. In this time, the X1[4] word is affected by the counter value; then, precomputation
is not possible. X1[5] and X1[6] words still have nonce value, so this part is precomputation
implementation available. In addition, lastly, X1[0] word operates with a X1[7] word that has
nonce value. The whole operations cannot be skipped, but the result of X1[7] operation through
the F1 function is can be omitted because X1[7] has nonce value, and the F1 function only conducts
left shift operation.

- Round 2 Round 2 has a similar structure to Round 0. However, in this time, X2[4] words are
affected by counter value, so the precomputation part is reduced by one place and then the
Round 0.

- Round 3 Likewise this time, the Round 3 scheme is like Round 1. The difference is that the X4[6]
word is affected by the counter value. For this reason, precomputation implementation is possible
in only one part.

- Generation of look-up table In the same method as the proposed look-up table of LEA,
the proposed method for HIGHT implementation has the advantage of generating a look-up
table during the encryption process. CACHE data are saved during the CTR mode encryption.
When creating the look-up table, only the address translation cost based on ST instruction
is incurred.

Mathematics 2020, 8, 1837 14 of 22

Round 0 Round 1 Round 2 Round 3

X0[1]

X0[0] X1[0]

X0[6]

X0[7]

X1[1]

X1[2]

X1[3]

F1

RK[4i - 4]

X0[5]

X2[0] X3[0] X4[0]

X2[1]

F0

RK[4i - 3]

X0[3]

X0[4]

X0[2] X2[2]

X2[3]

F1

RK[4i - 2]

F0

RK[4i - 3]

X1[4] X2[4]

CACHE

CACHE

X3[1]

F0

RK[4i - 3]

X3[2]

F1

RK[4i - 2]

X3[3]

X3[4]

F0

RK[4i - 1]

X3[5]

CACHE

X4[1]

X4[2]

X4[3]

X4[4]

X4[5]

X4[6]

F1

RK[4i - 2]

F0

RK[4i - 1]

F1

RK[4i - 4]

CACHE

CACHE

Figure 8. Optimized four rounds of HIGHT-64/128 block cipher.

4.3. Optimized Implementation of Rotation Operation

The 8-bit AVR microcontroller supports rotation instructions of 8-bit operands by one bit to left
(ROL) and right (ROR). Since one general-purpose register in an 8-bit AVR microcontroller is 8-bit in size,
additional computation is required to apply the rotate operation to data above 8-bit. If the offset of
rotation operation is a multiple of 8-bit, the rotation operation can be optimized away by indexing the
register directly. The optimized 16/32-bit word rotation operations are given in Table 6.

Table 6. Optimized 16/32-bit word rotation operations on 8-bit AVR Microcontroller.

16-bit ROL1 16-bit ROL8 32-bit ROL1 32-bit ROL8

LSL LOW
ROL HIGH
ADC LOW, ZERO

MOV TEMP, LOW
MOV LOW, HIGH
MOV HIGH, TEMP

LSL R0
ROL R1
ROL R2
ROL R3
ADC R0, ZERO

MOV TEMP, R3
MOV R3, R2
MOV R2, R1
MOV R1, R0
MOV R0, TEMP

3 cycles 3 cycles 5 cycles 5 cycles

5. Optimization for CTR_DRBG on 8-Bit AVR Microcontroller

In this section, we present optimization methods for an Instantiate Function of CTR_DRBG.
The proposed method optimizes the constant data in Derivation Function and Update Functions called
from Instantiate Function. This can be applied to any block ciphers used in CTR_DRBG. The proposed

Mathematics 2020, 8, 1837 15 of 22

optimization approach with the constant data for Derivation Function and Update Function used in
Instantiate Function is to generate a look-up table for the constant data.

In short, our strategy to speed-up an Instantiate Function is to generate the look-up table for the
result of encryption for size of block from msb of S, which is used in CBC-MAC of Derivation Function.
In addition, we optimize Instantiate Function by generating the look-up table for the result of Update
Function called from an Instantiate Function by using the fact that both C and V values of the initial
Operational Status are zero.

Figure 9 shows our optimization method for Derivation Function in an Instantiate Function.
As mentioned in Section 2.3, Step 1 of Derivation Function uses CBC-MAC. When CBC-MAC is called
in Derivation Function, the data from msb to Block Bit of S is zero. CBC-MAC executes encryption
with increasing C by the number of times Len_seed. Since, at this time, the key used in CBC-MAC is
fixed (0x00010203..), the result for encryption of Block Bit including C can be stored in a look-up table.
For LEA-128/128, as shown in the yellow and green parts in Figure 9, the Derivation Function can
reduce two encryptions during CBC-MAC computation. For other cases (HIGHT-64/128, LEA-128/192,
and LEA-128/256), as shown in the yellow, green, and blue parts, Derivation Function can reduce three
encryptions in the CBC-MAC computation process. The optimized method of Derivation Function we
propose is applicable regardless of the length of Input Data entered in S. In addition, for CTR_DRBG
that supports Prediction Resistance, Reseed Function is called from the Generate Function; even at
this time, our main idea for Derivation Function is applicable. The constant data on the look-up table
is the fixed data and requires the cost of Block Byte ∗ Len_seed. Based on the target block ciphers
used in this paper, the look-up table requires up to 48 bytes. Since the look-up table is used as being
semi-permanent when it is created (look-up table is constant data), the generation time of look-up
table is not considered. Therefore, the look-up table can be used in environments where CTR_DRBG is
repeatedly called.

Figure 10 shows the proposed optimization method for the Update Function of Instantiate
Function. When the Instantiate Function is called, the Derivation Function generates the seed. After
generating the seed, Instantiate Function calls the Update Function to execute an initial updating
process for Operational Status. The initial Operational Status has a value of zero (C = 0, V = 0). Since
Operational Status is zero when Instantiate Function generates the seed and updates Internal State,
we can store the results of Update Function in the look-up table. The orange part in Figure 10 is the
omitted encryption part. That is, the Instantiate Function can perform XOR operation immediately
using Seed (red part) and look-up table without executing the Update Function. The proposed method
that can be applied regardless of the block cipher algorithm, such as the optimization method applied
to the Derivation Function. In addition, the look-up table for Update Function is a constant data table
that can be used regardless of the number of calls made to CTR_DRBG, just like the look-up table
generated by Derivation Function. The look-up table for Update Function requires up-to 48 bytes,
the same as the look-up table generated for the Derivation Function.

The propose method for the Instantiate Function are to omit the encryption process as much
as possible by using the look-up table. The cost of the look-up table requires up to 96 bytes. We can
replace up-to six encryption operations using just 96 bytes. In the case of ATmega128, the most popular
MCU in an 8-bit AVR MCUs environment, as mentioned in Section 2, has 4 KB of SRAM. Therefore,
a maximum 96 bytes of the look-up table for the Instantiate Function can be stored in SRAM of
ATmega128 sufficiently. In addition, the optimization methods we propose for Instantiate Function
have the advantage of being applicable to various platforms such as low-end platforms and high-end
platforms without relying on specific platforms.

The Extract Function called in the Generate Function is a function of extracting random numbers
using the CTR mode. Figure 11 shows the proposed optimization method for the Extract Function
of the Generate Function. The Extract Function uses C and V in Operational Status as a key and
a counter to perform CTR mode to extract random numbers. Using the optimized CTR mode
proposed in Section 4, we apply the optimized CTR mode of Extract Function. In order to apply

Mathematics 2020, 8, 1837 16 of 22

the optimized CTR mode using the look-up table proposed in Section 4 to the Extract Function, the
look-up table must be generated first. When Counter is V+1, we apply the optimized CTR mode with
precomputation; through this process, we generate a look-up table. Note that the optimized CTR
mode with precomputation only applies when the counter is V+1. If the counter is V+2 or higher, the
optimized CTR mode using a look-up table is applied for the encryption of all CTR modes during
Extraction Function.

0(Pad) L Input DataNC 0(Pad)0x80S

Step 1

0x001020..

. . .

. . .E E EE

0(Pad) L Input DataNC 0(Pad)0x80S

Step 1

0x001020..

. . .

. . .E E EE

0(Pad) L Input DataNC 0(Pad)0x80S

Step 1

0x001020..

. . .

. . .E E EE

Len_seed = 2

Len_seed = 3

LEA - 128

LEA - 256

LEA - 192

HIGHT - 64

Figure 9. Optimized implementations for Derivation Function in the Instantiate Function.

V + 1 V + nV + 2

C = 0 V = 0

. . .

E E E. . .

C V

. . .

Seed

Update Function

Instantiate Function

Entrophy Nonce P-String

Derivation Function

Figure 10. Optimized implementations for the Update Function in the Instantiate Function.

Mathematics 2020, 8, 1837 17 of 22

V + 1 V + nV + 2

C V

. . .

Optimized
Encryption

. . .

. . .

Extract

Optimized
Encryption

Optimized
Encryption

Figure 11. Optimized implementations for the Extract function of the Generate function.

6. Implementation Results

Proposed implementations of CTR mode and CTR_DRBG were evaluated on 8-bit AVR MCUs.
The performance was measured in Clock cycles Per Byte (CPB). The measurement environment is
Atmel Studio 7 and all code was compiled using an -O2 option.

The comparison criteria are as follows. For comparison, we define three versions of our
implementations: the separation version (denoted as (c, s)), online version (denoted as (c, o)),
and optimized encryption version (denoted as (c) in Figure 12). Both the separation version and
the online version build the precomputation table by taking advantage of the property of CTR
mode for fast encryption. Actually, they include the process for precomputation table generation
and encryption. The difference between the separation version and the online version is that online
version builds the precomputation table while executing encryption (Separation version builds the
precomputation table separately from the encryption). Our optimized encryption version makes use
of the precomputation table generated from either the separation version or the online version for
fast encryption. Our three versions of LEA and HIGHT implementations will be compared with the
previous best works from [3–5] and from [1,4], respectively.

6.1. LEA-CTR on 8-bit AVR Microcontrollers

The LEA implementation result is shown in Figure 12. Three LEA implementations exist on AVR
environments [3–5]. The latest research is [5], but it contains only LEA-128 implementation. Therefore,
in the case of LEA-128/192 and LEA-128/256, we compare our implementations to [3].

The separation version (denoted as (c, s) in the figure) of LEA-128 has worse performance by
about 7.3% compared to [5]. In addition, LEA-128/192 and LEA-128/256 have slightly lower speeds
than [3].

However, the precomputation in online version (denoted as (c, o) in the figure) of LEA-128 shows
similar performance to [5]. The reason for the performance difference is that there is a part that
calculates a cache table.

The reason for the performance difference compared to the separation version is that the online
version combines the generation process of precomputation and the encryption process in order to
reduce additional function calls.

The optimized LEA CTR mode implementations (denoted as (c) in the figure) clearly outperform
the works from [3–5]. It shows around 4.8% performance improvement in case of LEA-128/128
compared with the work from [5]. In case of LEA-128/192, and LEA-128/256, our implementations
provide around 6.3% and 6.3% improved performance compared to [3]. Our LEA implementations
provide the fastest performance on 8-bit AVR platform compared with the previous results.

Mathematics 2020, 8, 1837 18 of 22

150 170 190 210 230 250 270

LEA-128/256c

LEA-128/192c

LEA-128/128c

LEA-128/256c,o

LEA-128/192c,o

LEA-128/128c,o

LEA-128/256c,s

LEA-128/192c,s

LEA-128/128c,s

LEA-128/256 [3]

LEA-128/192 [3]

LEA-128/128 [3]

LEA-128/128 [4]

LEA-128/128 [5] 167

168

169

224

256

180

236

267

168

222

252

159

210

240

Figure 12. Comparison of execution time for LEA implementations on 8-Bit AVR Microcontrollers under
the variable-key scenario in terms of clock cycles per byte, c: counter mode of operation (32-bit counter),
s: building precomputation table separately from encryption process, o: building precomputation table
in online while executing encryption process.

6.2. HIGHT-CTR on 8-Bit AVR Microcontrollers

The HIGHT is a 64-bit block cipher and until now there has only been one previous study for
optimization on the AVR platform. Thus, we compare our implementation to the previous work [4],
and the results are represented in Figure 13. Like performance analysis of LEA implementation
described in the previous subsection, there are three HIGHT implementation versions such as the
separation version, online version, and optimized CTR implementation, which are denoted as (c, s),
(c, o), and (c), respectively, in Figure 13.

The separation version (denoted as c, s) has about 9.9% lower performance than [4]. However, the
online version (denoted as c, o) provides a slightly better performance. The reason for this result
is that the separation version performs encryption after calculating a precomputation table in
independent functions. On the other hand, the online version keeps executing an encryption process,
while generating the precomputation table. By using this, additional function calls overhead for
generating a precomputation table can be reduced. Given these points, the online version has better
performance compared with the separation version.

Finally, an optimized CTR mode of operation version (denoted as c) gets 3.8% better performance
than [4]. This is because some of the calculation intervals are skipped through the use of precomputed
values, and this is the fastest timing compared with the previous best results on the same platform.

140 160 180 200 220 240 260 280 300 320

HIGHT-64/128c

HIGHT-64/128c,o

HIGHT-64/128c,s

HIGHT-64/128 [4]

HIGHT-64/128 [1] 311

161

177

160

155

Figure 13. Comparison of execution time for HIGHT implementations on 8-Bit AVR Microcontrollers under
the variable-key scenario in terms of clock cycles per byte, c: counter mode of operation (32-bit counter),
s: building precomputation table separately from encryption process, o: building precomputation table
online while executing the encryption process.

Mathematics 2020, 8, 1837 19 of 22

6.3. CTR_DRBG on 8-Bit AVR Microcontrollers

The proposed CTR_DRBG was implemented in Atmel Studio 7, as the same implementation
environment as Section 6.1. In addition, the code was complied in an -O2 option. We implemented
CTR_DRBG using the optimization method proposed in Section 4 and 5. Therefore, we measured the ratio
of performance improvement by comparing our proposed implementation of CTR_DRBG (using optimized
LEA-CTR, and optimized HIGHT-CTR) and CTR_DRBG with LEA [3,5], and HIGHT [4]. Since until now
there have been no implementations of CTR_DRBG, we implement the naive version ourselves. As the
underlying block cipher, we utilize the previous works of LEA implementation from [3,5], and of HIGHT
from [4].

Table 7 shows the ratio of performance improvement to Derivation Function and Update Function,
and shows the ratio of performance improvement in Extract Function depending on the length of the
extracted random number. When measuring the ratio of performance improvement, an Input Data of
Derivation Function was fixed at 64 bytes (which is reasonable because, on AVR platforms, the noise
data are typically collected from hardware noise sources, which contain larger entropy than software
noise sources). The encryption process as much as Len_seed is omitted in the Derivation Function
proposed in Section 5. The block ciphers except HIGHT-64/128 show a performance improvement of
more than 10% in Derivation Function as the Block size is 128-bit.

The actual computation of the method, proposed in Section 5, in the Update Function is only the
XOR operation for the length of the seed. Since, in the Update Function as much encryption process
as Len_seed has been omitted, the ratio of performance improvement is much larger than that of
Derivation Function. We measure performance according to the length of the extracted random number
in the Extract Function. In addition, we implemented the Extract Function using methods proposed
in Sections 4 and 5. In other words, our implementation generates a look-up table when the Counter
equals V+1, and uses a look-up table when the Counter more than V+2. Therefore, it can be seen
that the longer the length of the extracted random number, the greater the ratio of the performance
improvement of the Extract Function for each algorithm.

Figure 14 shows the ratio of performance improvement for CTR_DRBG with the target block
ciphers according to the length of the extracted random number. The ratio of performance improvement
is measured by comparing the previous best results shown in [3–5]. Table 8 shows the ratio of
performance improvement, which shows the best performance among the ratios in Figure 14.

Table 7. Performance improvement of proposed Derivation function and Update function compared
the naive implementation version on 8-bit AVR MCUs [3–5]. The result is based on the number of
extracted random numbers, where B, D.Fnc, U.Fnc, and E.Fnc represent byte, Derivation Function,
Update Function, and Extract Function, respectively.

Block Cipher LEA-128/128 LEA-128/192 LEA-128/256 HIGHT-64/128

D.Fnc 10.1% 13.4% 14.1% 5.6%

U.Fnc 51.1% 69.4% 72.4% 40.6%

32B E.Fnc 13.6% 22.0% 23.5% 1.4%

64B E.Fnc 16.7% 25.1% 26.5% 1.9%

128B E.Fnc 20.2% 28.7% 29.9% 2.4%

256B E.Fnc 23.4% 31.9% 32.8% 3.0%

512B E.Fnc 25.8% 34.3% 35.0% 3.3%

1024B E.Fnc 27.3% 35.8% 36.4% 3.5%

The optimized implementations of CTR_DRBG used LEA-128/128, LEA-128/192, and LEA-128/256
increase the ratio of performance improvement as the length of the extracted random number increases.
In Table 7, the ratio of performance improvement to Extract Function for LEA-128/128, LEA-128/192,

Mathematics 2020, 8, 1837 20 of 22

and LEA-128/256 increases by a greater width than HIGHT-64/128 as the length of the extracted random
number increases. Therefore, the ratio of performance improvement to Extract Function for LEA-128/128,
LEA-128/192, and LEA-128/256 affects the performance improvement ratio of CTR_DRBG over the
ratio of performance improvement for Derivation Function and Update Function. HIGHT-64/128 has a
difference of approximately 2.1% in the ratio of performance improvement between 32 bytes and 1024
bytes extracted random number, and the overall ratio of performance improvement of CTR_DRBG does
not increase. In other words, in the case which uses HIGHT-64/128, the ratio of performance improvement
for Extract Function has less effect on the ratio of performance improvement in CTR_DRBG than the ratio
of performance improvement for Derivation Function and Update Function.

Table 8. The best performance improvement ratio (%) of CTR_DRBG using our LEA and HIGHT
implementation compared to CTR_DRBG using previous LEA and HIGHT implementation [3–5].
The result is based on the number of extracted random numbers, Byte represents the number of bytes
with best performance of CTR_DRBG.

Block Cipher LEA-128/128 LEA-128/192 LEA-128/256 HIGHT-64/128

Byte 1024 1024 1024 32

CTR_DRBG 26.7% 36.2% 37.2% 8.7%

The ratio of performance improvement of CTR_DRBG using HIGHT-64/128 drops as the length
of the extracted random number increases. Table 7 shows that the performance increase in the Extract
Function of HIGHT-64/128 results in a performance improvement of less than 3% as the length of
the extracted random number increases. According to our observation, in the ratio of performance
improvement to the extracted 32 byte random numbers and 1024 byte random numbers from the
Extract Function, if the difference between the ratio of performance improvement when extracting
random numbers is less than 8.3%, the ratio of performance improvement in CTR_DRBG does not
increase depending on the length of the extracted random number. The longer the extracted random
number is, the more encryption process is added. The longer the extracted random number, the more
encryption process is added. Therefore, if the ratio of performance improvement of the Extract Function
is significantly less than the ratio of performance improvement for Derivation Function and Update
Function, the ratio of performance improvement for CTR_DRBG is lower. Our work of optimized
CTR_DRBG in this paper shows up to 37.2% performance improvement when using proposed LEA
implementation, and up to 8.7% performance improvement when using proposed HIGHT-64/128
implementation.

32B 64B 128B 256B 512B 1024B
5

9

13

17

21

25

29

33

37

Byte of random number extracted CTR_DRBG

O
pt

im
iz

ed
pe

rf
or

m
an

ce
ra

ti
o(

%
)

LEA-128/128
LEA-128/192
LEA-128/256

HIGHT-64/128

Figure 14. Performance improvement ratio (%) for CTR_DRBG using our LEA and HIGHT
implementations on 8-bit AVR MCUs, compared to CTR_DRBG using previous LEA and HIGHT
implementation [3–5]. The result is based on the number of extracted random numbers. B represents byte.

Mathematics 2020, 8, 1837 21 of 22

7. Conclusions

In this paper, we have presented optimized implementations of ARX-based Korean block ciphers
(LEA and HIGHT) with CTR mode of operation, and CTR_DRBG using them on low-end 8-bit AVR
microcontrollers. With respect to CTR mode optimization, the proposed implementation method
for generating look-up tables has the advantage of reducing additional function calls compared
to the existing naive methods. By using this technique, our proposed table generation method
reduced the cost of building precomputation table by around 6.7% and 9.1% in the case of LEA
and HIGHT, respectively. In addition, using the generated look-up table in a fixed key scenario, our
CTR implementations based on LEA and HIGHT provide 6.3% and 3.8% improvements compared
with the previous best results, respectively. Our CTR implementations are the fastest compared to
existing LEA and HIGHT implementations. Regarding CTR_DRBG optimization, we proposed to
precompute several parts of CTR_DRBG, which results in performance improvement. The proposed
method is the first CTR_DRBG optimization technique, and can be applied regardless of any cipher
used for CTR_DRBG. By using this, our CTR_DRBG’s implementations using LEA and HIGHT on
8-bit AVR MCUs provide 37.2% and 8.7% of performance improvement compared with the previous
naive implementation. We believe that our work can be widely used for building various types of
secure IoT services. Furthermore, the optimization techniques from this work can be applied to the
other platforms without difficulties.

Author Contributions: Writing—original draft, Y.K., H.K., and S.A.; Writing—review and editing, H.S. and S.C.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2019R1F1A1058494).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hong, D.; Sung, J.; Hong, S.; Lim, J.; Lee, S.; Koo, B.S.; Lee, C.; Chang, D.; Lee, J.; Jeong, K.; et al. HIGHT:
A new block cipher suitable for low-resource device. In International Workshop on Cryptographic Hardware and
Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 46–59.

2. Hong, D.; Lee, J.K.; Kim, D.C.; Kwon, D.; Ryu, K.H.; Lee, D.G. LEA: A 128-bit block cipher for fast
encryption on common processors. In International Workshop on Information Security Applications; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 3–27.

3. Seo, H.; Liu, Z.; Choi, J.; Park, T.; Kim, H. Compact implementations of LEA block cipher for low-end
microprocessors. In International Workshop on Information Security Applications; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 28–40.

4. Seo, H.; Jeong, I.; Lee, J.; Kim, W.H. Compact implementations of ARX-based block ciphers on IoT processors.
ACM Trans. Embed. Comput. Syst. (TECS) 2018, 17, 1–16. [CrossRef]

5. Seo, H.; An, K.; Kwon, H. Compact LEA and HIGHT implementations on 8-bit AVR and 16-bit MSP
processors. In International Workshop on Information Security Applications; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 253–265.

6. Meltem, S.T.; Elaine, B.; John, K.; Kerry, M.; Mary, B.; Michael, B. Recommendation for the Entropy Sources Used
for Random Bit Generation; NIST DRAFT Special Publication 800-90B; NIST: Gaithersburg, MD, USA, 2018;
pp. 4–47.

7. Kim, Y.; Seo, S. Study on CTR_DRBG Optimization in 8-bit AVR Encironment. In Proceedings of the
Conference on Information Security and Cryptography-Summer 2020 (CICS-S’20), Seoul, Korea, 15 July 2020.

8. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK block
ciphers on AVR 8-bit microcontrollers. In International Workshop on Lightweight Cryptography for Security and
Privacy; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–20.

9. Koo, B.; Roh, D.; Kim, H.; Jung, Y.; Lee, D.G.; Kwon, D. CHAM: A Family of Lightweight Block Ciphers for
Resource-Constrained Devices. In Proceedings of the International Conference on Information Security and
Cryptology (ICISC’17), Seoul, Korea, 29 November–1 December 2017 .

http://dx.doi.org/10.1145/3173455

Mathematics 2020, 8, 1837 22 of 22

10. Atmel. AVR Instruction Set Manual. 2012. Available online: http://ww1.microch-\ip.com/downloads/en/
devicedoc/atmel-0856-avr-instruction-set-manual.pdf (accessed on 10 October 2020).

11. Kim, Y.; Seo, S.C. An Efficient Implementation of AES on 8-bit AVR-based Sensor Nodes. In Proceedings of
the 21th World Conference on Information Security Applications, Jeju island, Korea, 26–28 August 2020.

12. Kwon, H.; Kim, H.; Choi, S.J.; Jang, K.; Park, J.; Kim, H.; Seo, H. Compact Implementation of CHAM Block
Cipher on Low-End Microcontrollers. In Proceedings of the The 21th World Conference on Information
Security Applications, Jeju island, Korea, 26–28 August 2020.

13. Balasch, J.; Ege, B.; Eisenbarth, T.; Gérard, B.; Gong, Z.; Güneysu, T.; Heyse, S.; Kerckhof, S.; Koeune, F.;
Plos, T.; et al. Compact Implementation and Performance Evaluation of Hash Functions in ATtiny Devices.
IACR Cryptol. ePrint Arch. 2012, 2012, 507.

14. Cheng, H.; Dinu, D.; Großschädl, J. Efficient Implementation of the SHA-512 Hash Function for 8-Bit AVR
Microcontrollers. In Innovative Security Solutions for Information Technology and Communications; Springer:
Berlin/Heidelberg, Germany, 2018; Volume 11359, pp. 273–287.

15. Seo, H.J. High Speed Implementation of LEA on ARM Cortex-M3 processor. J. Korea Inst. Inf. Commun. Eng.
2018, 22, 1133–1138.

16. Eisenbarth, T.; Gong, Z.; Güneysu, T.; Heyse, S.; Indesteege, S.; Kerckhof, S.; Koeune, F.; Nad, T.; Plos, T.;
Regazzoni, F.; et al. Compact implementation and performance evaluation of block ciphers in ATtiny devices.
In International Conference on Cryptology in Africa; Springer: Berlin/Heidelberg, Germany, 2012; pp. 172–187.

17. Kim, B.; Cho, J.; Choi, B.; Park, J.; Seo, H. Compact Implementations of HIGHT Block Cipher on IoT Platforms.
Secur. Commun. Netw. 2019, 2019, 1–10. [CrossRef]

18. Beaulieu, R.; Treatman-Clark, S.; Shors, D.; Weeks, B.; Smith, J.; Wingers, L. The SIMON and SPECK
lightweight block ciphers. In Proceedings of the 52nd Annual Design Automation Conference; IEEE: Piscataway, NJ,
USA, 2015; pp. 1–6.

19. Lee, D.; Kim, D.; Kwon, D.; Kim, H. Efficient Hardware Implementation of the Lightweight Block Encryption
Algorithm LEA. Sensors 2014, 14, 975–994, doi:10.3390/s140100975. [CrossRef] [PubMed]

20. Aguilar, J.; Sierra, S.; Jacinto, E. Implementation of ‘HIGHT’ encryption algorithm on microcontroller.
In Proceedings of the 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and
Communication Technologies (CHILECON), Santiago, Chile, 28–30 October 2015; pp. 937–942.

21. Lee, J.H.; Lim, D.G. Parallel Architecture for High-Speed Block Cipher, HIGHT. Int. J. Secur. Its Appl.
2014, 8, 59–66. [CrossRef]

22. Osvik, D.A.; Bos, J.W.; Stefan, D.; Canright, D. Fast software AES encryption. In International Workshop on
Fast Software Encryption; Springer: Berlin/Heidelberg, Germany, 2010; pp. 75–93.

23. McGrew, D.; Viega, J. The Galois/counter mode of operation (GCM). Submiss. Nist Modes Oper. Process.
2004, 20, 1–13.

24. Kim, K.; Choi, S.; Kwon, H.; Liu, Z.; Seo, H. FACE–LIGHT: Fast AES–CTR Mode Encryption for
Low-End Microcontrollers. In International Conference on Information Security and Cryptology; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 102–114.

25. Park, J.H.; Lee, D.H. FACE: Fast AES CTR mode Encryption Techniques based on the Reuse of Repetitive
Data. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 469–499.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://ww1.microch-\ip.com/downloads/en/devicedoc/ atmel-0856-avr-instruction-set-manual.pdf
http://ww1.microch-\ip.com/downloads/en/devicedoc/ atmel-0856-avr-instruction-set-manual.pdf
http://dx.doi.org/10.1155/2019/5323578
https://doi.org/10.3390/s140100975
http://dx.doi.org/10.3390/s140100975
http://www.ncbi.nlm.nih.gov/pubmed/24406859
http://dx.doi.org/10.14257/ijsia.2014.8.2.06
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	8-Bit AVR Microcontroller
	Target Block Ciphers
	LEA Block Cipher
	HIGHT Block Cipher

	CTR_DRBG

	Related Works
	Block Cipher Implementations on AVR
	DRBG Implementations on AVR

	Optimized Implementations of LEA-CTR and HIGHT-CTR
	Optimized Implementation of LEA-CTR
	Optimized Implementation of HIGHT-CTR
	Optimized Implementation of Rotation Operation

	Optimization for CTR_DRBG on 8-Bit AVR Microcontroller
	Implementation Results
	LEA-CTR on 8-bit AVR Microcontrollers
	HIGHT-CTR on 8-Bit AVR Microcontrollers
	CTR_DRBG on 8-Bit AVR Microcontrollers

	Conclusions
	References

