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Abstract: With the development of information and communication technology, various types
of Internet of Things (IoT) devices have widely been used for convenient services. Many users
with their IoT devices request various services to servers. Thus, the amount of users’ personal
information that servers need to protect has dramatically increased. To quickly and safely protect
users’ personal information, it is necessary to optimize the speed of the encryption process. Since it
is difficult to provide the basic services of the server while encrypting a large amount of data in
the existing CPU, several parallel optimization methods using Graphics Processing Units (GPUs)
have been considered. In this paper, we propose several optimization techniques using GPU for
efficient implementation of lightweight block cipher algorithms on the server-side. As the target
algorithm, we select high security and light weight (HIGHT), Lightweight Encryption Algorithm
(LEA), and revised CHAM, which are Add-Rotate-Xor (ARX)-based block ciphers, because they are
used widely on IoT devices. We utilize the features of the counter (CTR) operation mode to reduce
unnecessary memory copying and operations in the GPU environment. Besides, we optimize the
memory usage by making full use of GPU’s on-chip memory such as registers and shared memory and
implement the core function of each target algorithm with inline PTX assembly codes for maximizing
the performance. With the application of our optimization methods and handcrafted PTX codes,
we achieve excellent encryption throughput of 468, 2593, and 3063 Gbps for HIGHT, LEA, and revised
CHAM on RTX 2070 NVIDIA GPU, respectively. In addition, we present optimized implementations
of Counter Mode Based Deterministic Random Bit Generator (CTR_DRBG), which is one of the
widely used deterministic random bit generators to provide a large amount of random data to the
connected IoT devices. We apply several optimization techniques for maximizing the performance of
CTR_DRBG, and we achieve 52.2, 24.8, and 34.2 times of performance improvement compared with
CTR_DRBG implementation on CPU-side when HIGHT-64/128, LEA-128/128, and CHAM-128/128
are used as underlying block cipher algorithm of CTR_DRBG, respectively.

Keywords: CHAM; LEA; HIGHT; Graphic Processing Unit (GPU); CUDA; Counter (CTR) mode;
parallel processing

1. Introduction

As the era of the 4th industrial revolution enters, the amount of information processed in
real-time is increasing exponentially. In particular, as the number of users sharply increases due
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to the development of the Internet of Things (IoT) technology and cloud computing services, the need
to protect user’s personal information also increases. Accordingly, various encryption technologies
have been studied and applied to protect user’s personal information.

However, from the server’s point of view, it is very burdensome to process data encryption as well
as basic services that the server has to provide. Since the encryption operation creates an additional
time load, it is necessary to optimize the cipher used for encryption to provide data encryption services
to many users in real-time.

Various optimization studies have been conducted on existing ciphers such as Advanced
Encryption Standard (AES) [1] in the Central Processing Unit (CPU) environment. However, AES has
limitations in optimizing on small devices such as microcontrollers. Therefore, it is efficient to optimize
the lightweight block cipher algorithm considering the operation in a constrained environment.
However, few optimization studies have been conducted on lightweight ciphers yet. Therefore, in this
paper, we propose several methods of optimizing lightweight block ciphers using the Graphics
Processing Unit (GPU) from the standpoint of the server that encrypts a large amount of data.
The reason that the server uses the same lightweight block cipher used by the IoT device is that
the server and the device must use the same cipher to decrypt each other’s encrypted data.

By optimizing the lightweight block encryption algorithm in the server, data encryption can be
provided quickly to multiple IoT devices. Using a GPU specialized for parallel computing, the server
can quickly encrypt data transmitted from multiple IoT devices.

In this paper, lightweight block cipher algorithms to be optimized are HIGHT [2], LEA [3],
and CHAM [4,5]. We present various methods that can implement operations and memory access
methods inside lightweight block ciphers in a direction optimized for the GPU platform, and introduce
several techniques to reduce time load by utilizing the features of the counter (CTR) operation mode.
In addition, an asynchronous execution technique has been proposed to reduce the memory copy time
between the CPU and GPU. In addition, an additional method to efficiently use registers and eliminate
unnecessary operations has been suggested by using the GPU’s inline assembly language inside the
encryption operations.

Based on the optimization method for several lightweight block ciphers in CTR operating mode,
we propose several optimization methods of Counter Mode Based Deterministic Random Bit Generator
(CTR_DRBG) [6].

The contributions of our paper can be summarized as follows.

1. Proposing General Optimization Methods for Add-Rotate-Xor (ARX)-based lightweight block
ciphers on GPU.
We optimize not only the high security and low weight (HIGHT) [2], which was established as
the ISO/IEC international block encryption algorithm standard in 2010, but also the Lightweight
Encryption Algorithm (LEA) [3] established as the ISO/IEC international lightweight block
encryption algorithm standard in 2019, and the CHAM algorithm proposed in 2017 [4] and
revised in 2019 [5]. In this paper, we propose several optimization methods that can be applied
commonly to the following Add-Rotate-Xor (ARX) operation based lightweight block ciphers.
We propose an optimization method that can reduce unnecessary operations by taking advantage
of the fact that the nonce value does not change in CTR mode. In addition, we introduce some
methods to efficiently proceed with encryption using the counter value in CTR mode by utilizing
the characteristics of the GPU. Rather than performing simple parallel encryption, we introduce
some methods that allow multiple GPU threads to effectively access and use registers and shared
memory inside the GPU. By these optimizations, we present excellent encryption speeds for
target lightweight block cipher algorithms. GPU encryption kernels show encryption speeds of
468 Gbps for HIGHT, 2593 Gbps for LEA, and 3063 Gbps for CHAM. This result was measured
on the RTX 2070, one of NVIDIA’s Turing architecture products. These results have been shown
better throughput performance even compared to other existing studies.
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2. Proposing Optimization Methods for actual encryption service provision environment
We not only optimize the GPU kernel time of the encryption algorithms but also proposed
several optimization methods for memory copying time that must be performed between the
CPU and GPU. The encryption speed operating inside the GPU is important, but to provide an
actual encryption service, data copying time between the CPU and the GPU in real-time is also
important. Therefore, we propose some methods to eliminate unnecessary memory copy time
between CPU and GPU by using CTR mode. In addition, we introduce a method that can reduce
the idle state as much as possible while the CPU and GPU perform tasks asynchronously using
Compute Unified Device Architecture (CUDA) stream. Through these optimization methods,
when encryption performance includes memory copying time, performance improvements were
achieved by 67% in HIGHT, 59% in LEA, and 96% in CHAM compared to the implementation
without any optimization methods.

3. Optimization of CTR_DRBG based on efficient CTR implementation
We propose several optimization methods for lightweight block ciphers by utilizing the
characteristics of the CTR operation mode. Using these methods, the CTR_DRBG [6],
a deterministic random number generator using the CTR operation mode, has additionally been
optimized. The extract function in CTR_DRBG has been optimized through the optimization
methods presented in this paper. In addition, various optimization methods have been proposed
from the progress structure of CTR_DRBG. As a result of the optimization of CTR_DRBG on the
GPU, when using HIGHT, LEA, and CHAM, the performance was achieved that was 52.2, 24.8,
34.2 times faster than the previous CPU implementation, respectively.

Abbreviations used in this paper are summarized in Table 1.

Table 1. Abbreviation table.

Abbreviations Full Name

IoT Internet of Things

CPU Central Processing Unit

GPU Graphics Processing Unit

ARX Add-Rotate-Xor operations

HIGHT HIGh security and light weigHT

AES Advanced Encryption Standard

LEA Lightweight Encryption Algorithm

ALU Arithmetic Logic Units

CTR CounTeR

ECB Electronic CodeBook

DRBG Deterministic Random Bits Generator

CUDA Compute Unified Device Architecture

SM Streaming Multiprocessors

2. Related Works

So far, various cryptographic algorithms have been developed and optimized. In the case of AES,
optimized implementations have been proposed in various environments such as GPUs. However,
only a few studies have been done on the optimization of the lightweight block cipher algorithm
in GPU.

In the CPU and microprocessor platform, several optimization studies have been conducted. Some
studies have been optimized on the CPU platforms. Others have been optimized on microprocessors
such as AVR, MSP, and ARM. In [7], HIGHT was optimized in the MSP430 environment, which used in
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sensor networks. In [8], efficient all-in-one implementation techniques considering the IoT environment
were conducted. In [9], CHAM was optimized to perform a fast single block encryption in the CPU
platform. In [10], the optimization methods in ARM Cortex-A53 using NEON SIMD for CHAM were
proposed. In this paper, we have implemented parallel optimization in the CPU platform through
OpenMP ourselves. As a result of implementing parallel optimization using OpenMP in the CPU, the
throughput of HIGHT was measured 1.05, LEA was 4.89, and CHAM was 1.65 Gbps in the AMD Ryzen
5 3600 CPU environment. When parallel encryption was performed in ECB mode instead of CTR mode,
the performance of CTR implementation and ECB implementation was not significantly different.

To the best of our knowledge, only a few studies have optimized HIGHT and CHAM on the GPU
platform. In the case of LEA, a parallel optimization study for LEA was conducted at ICISC 2013 [11].
The LEA was optimized using the various optimization methods, such as coalesced memory access
and inline PTX code. In JKIISC’2015, an LEA optimization study using GPU shared memory was
conducted [12]. In [13], the excellent performance improvement was achieved through coarse-grained
optimization using thread warp. By utilizing the characteristics of warp actively, terabit throughput
was proposed for various block ciphers. In [14], CHAM and LEA were optimized in GPU environment.
Terabit throughput was achieved by integrating and resolving various memory problems that could
occur in the GPU environment.

In the CTR_DRBG, to the best of our knowledge, this is the first work to optimize CTR_DRBG in
the GPU environment. In addition, since only CTR_DRBG among DRBGs generates random numbers
using block ciphers, we present the first GPU CTR_DRBG implementation using target lightweight
block cipher algorithms. The result of optimized CTR_DRBG can be an indicator of future studies.

3. Background

This section describes the optimization target lightweight block algorithms: HIGHT, LEA,
and CHAM. This section also describes CTR mode, one of the block cipher operation modes,
and CTR_DRBG, a deterministic random bits generator that utilizes CTR mode. In addition, the GPU,
which is a platform to propose an optimization method, will be described. In GPU, we introduce the
parallel computing characteristics and memory structure.

3.1. Overview of Target Algorithms

3.1.1. HIGHT

HIGHT [2] was developed in 2005 for portable devices and mobile environments and certified by
ISO/IEC international standards in 2010. HIGHT supports 128-bit key and 64-bit plaintext. In the key
scheduling, the master key is used to generate the whitening key and the round key. In the encryption,
the plaintext is encrypted through a transformation function by the whitening key before and after
of the round function. The round function consists of an XOR and a Rotate function. In Figure 1,
the round function of HIGHT is given. Notations X≪ i(i ∈ [0, 7]) and SK indicate left Rotate and sub
key, respectively. P0 to P7 constitute plaintext. At the beginning and end of the round, a conversion
process with whitening keys is performed.
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Figure 1. Round function of high security and light weight (HIGHT).

3.1.2. LEA

LEA [3] is a lightweight block cipher certified by ISO/IEC international standards in 2019.
LEA was developed to provide fast encryption in cloud computing services or mobile devices. The
size of the plaintext is 128 bits. LEA is classified according to the key size of 128, 192, and 256 bits.
Depending on the key size, the number of rounds is set to 24, 28, and 32 rounds for 128, 192, and 256
bits, respectively. The round function follows the ARX structure, including ADD, Rotate, and XOR
operations. Figure 2 shows the round function of the LEA. RK indicates the round key, and 6 round
keys are used per round. In the Figure, the symbol appearing after the ADD operation indicates the
Rotate operation, and the number inside the Figure indicates the number of bits to rotate.

𝑊𝑖 𝑋𝑖 𝑌𝑖 𝑍𝑖

𝑊𝑖+1 𝑋𝑖+1 𝑌𝑖+1 𝑍𝑖+1

𝟗

𝟑

𝟓𝑅𝐾0
𝑖

𝑅𝐾2
𝑖

𝑅𝐾4
𝑖

𝑅𝐾1
𝑖

𝑅𝐾3
𝑖

𝑅𝐾5
𝑖

Figure 2. Round function of Lightweight Encryption Algorithm (LEA).

3.1.3. CHAM

CHAM [4,5] is a lightweight block cipher algorithm proposed in 2017 and revised in 2019. In this
paper, revised CHAM has been described. CHAM follows the generalized four-branch Feistel structure
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based on ARX operations. CHAM consists of three types, including CHAM-64/128, CHAM-128/128,
and CHAM-128/256 (plaintext length/key length). Depending on each type, the number of rounds is
repeated by 88, 112, and 120 for CHAM-64/128, CHAM-128/128, and CHAM-128/256, respectively.
CHAM has a smaller round key size than other cryptographic algorithms. The identical round key is
reused several times throughout the round function. Figure 3 shows the round function of CHAM,
where the i indicates the order of round. In odd rounds of CHAM, one bit is left rotated first and
eight bits left rotated last. In even rounds, eight bits are left rotated first and one bit left rotated last.
The round key k is reused a certain number of rounds, and 2k/w, the size of the repeated section,
equals 16 in CHAM-64/128 and CHAM-128/256, and eight in CHAM-128/128.

𝟏

𝑥𝑖 𝑦𝑖 𝑧𝑖 𝑤𝑖

𝑖 𝑘𝑖 mod 2k/w

𝟖

𝟖

𝑥𝑖+1 𝑦𝑖+1 𝑧𝑖+1 𝑤𝑖+1

𝑖 + 1 𝑘𝑖+1 mod 2k/w

𝟏

𝑥𝑖+2 𝑦𝑖+2 𝑧𝑖+2 𝑤𝑖+2

Figure 3. Round function of CHAM.

3.1.4. Counter Modes of Operation

There are various methods of operation of block ciphers. The most representative method is
the ECB operation mode. In the ECB operation mode, data are divided by the size of the plaintext
block size. Each block is encrypted with the same key. However, the ECB operation mode has security
vulnerabilities. When the plaintext is the same, the ciphertext is always the same. On the other hand,
the CTR operation mode does not encrypt plaintext, directly. This proceeds the encryption using a
counter value, which is updated by adding one for each block. The counter value that has passed
through the encryption algorithm is XORed with the plaintext to form a ciphertext.

3.2. Overview of CTR_DRBG

CTR_DRBG [6] is a type of deterministic random bit generator, which receives entropy as an input
and generates a random number sequence according to a determined algorithm. CTR_DRBG generates
a random number using the block encryption CTR operation mode, and the overall CTR_DRBG
operation process is shown in Figure 4.

As shown in Figure 4, the entropy collected from the noise source is entered as inputs of
CTR_DRBG with nonce and personalization string. The input values are used to initialize the internal
state in the instantiate function, and the instantiate function consists of a derivation function and
an internal update function. After that, the generate function is repeatedly called and extracts a
random number sequence. At this time, when predict resistance is activated or when the reseed
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counter value, which increases when random numbers are repeatedly output, reaches the threshold,
the reseed function is called to update the external state. In other cases, the generate function directly
outputs a random number through the extract function, and the internal state is updated through the
update function.

The internal main functions of CTR_DRBG are derivation function, update function, and extract
function. The derivation function is operated through the CBC_MAC operation mode, and the update
function and the extract function are operated through the CTR operation mode. Figure 5 shows the
derivation function progress.

 

 
Instantiate

Generate

Reseed

Derivation
Personalization String

Nonce

Entropy Additional Input

Extract

Update

Derivation

Update
Random Number

Update

Figure 4. Counter Mode Based Deterministic Random Bit Generator (CTR_DRBG) overall process.

Counter 0 pad input len output len input data 0x80 0 pad

32-bits 32-bits 32-bits input len 4-bits

block 1 block 2 block 3 block n...

ECBC_KEY E EE

The result of CBC-MAC repeated by len_seed

Key V

E EE

Seed

Figure 5. Derivation function.
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The derivation function uses CBC_MAC, and the data that goes into the input of CBC_MAC
are as follows: counter value, zero paddings to fit the block size including counter value, value for
input length, value for output seed length, input variable, constant hexadecimal value 0 × 80, and zero
paddings to fit the entire length to the block size. The input values of CBC_MAC are divided by block
size and encrypted by the constant CBC_KEY. Each time CBC_MAC is executed, one block size result is
output, and this is repeatedly accumulated by len_seed, which is a predetermined value for each block
encryption algorithm. The resulting output as many times as the number of repetitions is again divided
into a key part and a plaintext V part, and encrypted through the CBC operation mode. The result of
combining each block output becomes the seed value.

Figure 6 shows the update and extract function progress. Both the update function and the extract
function proceed through the CTR operation mode. However, in the extract function, the result of
CTR encryption becomes the output random number, and n at this time becomes the random number
output block length. In the update function, the result of CTR encryption is XORed with the input
data to update the internal state. In update function, n becomes the len_seed value.

Key V

V + 1 V + 2 V + n

E

The result of CTR

Updated Key Updated V

Input data

EE

Extract

Update

Figure 6. Update function and extract function.

3.3. GPU Architecture Overview

Even though GPU was originally developed for graphic and image processing, they are widely
used for general purpose applications including acceleration of crypto operations, machine learning,
and so on. The NVIDIA is a representative GPU manufacturer, and GPUs produced by NVIDIA are
classified according to their architectures. NVIDIA TITAN RTX, the flagship GPU of Turing architecture
released in 2018, among many architectures, has 4608 CUDA cores with a 1770 MHz boost clock. It also
has 24 GB of GDDR6 graphics memory and has a memory clock of 1750 MHz.

The CPU uses most of the chip area for cache, while the GPU uses most of the chip area for
arithmetic logic units (ALUs). GPUs use hardware threads that run the same instruction stream on
different data sets. There are multiple streaming multiprocessors (SM) within the GPU, and a collection
of threads running on one multiprocessor is called a block. GPUs utilize these numerous threads to
perform high-level parallelism in their applications.

GPU memory is made up of many different types. Figure 7 shows the memory structure of GPU
devices. GPU has a memory area named global memory, constant memory, and texture memory,
which is shared by all threads. Since these memory types are the first memory areas to be accessed in
data copy with the CPU using PCIe, so the memory size is very large. Global memory is enormous
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because it uses the DRAM area of the GPU. However, it has the disadvantage that the memory access
speed is very slow compared to other memory areas. To solve this shortcoming, from the Fermi
architecture GPU, it is possible to cache and use global memory by adding a cache to the SM. However,
because the cache size is very small, there are limitations to actively use it. A register is a memory
area used by threads responsible for parallel operations in a block. Although small in size, it is very
fast. If threads use a lot of registers, Since there is an upper limit to the size of registers per block,
some of the memories in the registers are stored as local memory. Since local memory is a memory
existing in the DRAM area, the access speed is slower than register. Shared memory is a memory
shared by threads within a block, and has the advantage of fast access. Since the data are shared in
shared memory, the values in the memory can be affected by other threads.

GPU

CPU

Block 0

Global Memory

Constant Memory

Texture Memory

Shared Memory

Registers

Thread 0

Local
Memory

Registers

Thread 1

Block 1

Shared Memory

Registers

Thread 0

Local
Memory

Registers

Thread 1

Local
Memory

Local
Memory

Figure 7. Memory structure of GPU devices.

In 2006, NVIDIA announced CUDA [15]. CUDA is a parallel computing platform and API
model that enables the use of the general-purpose computing on graphics processing units (GPGPU)
technique, which is used for general-purpose computation of applications that process GPUs used only
for traditional graphics tasks. CUDA can be used in a various language such as C and C++, and new
versions are updated whenever a new GPU or architecture is released. CUDA compute capability
supported version varies depending on the GPU used.

CUDA programming uses a language that adds CUDA-specific syntax as a library. CUDA code
consists of calling a function on the host CPU called a kernel that only works inside the GPU. When
processing data in the GPU kernel, the memory on the host CPU is not immediately available, requiring
an additional process of copying the required memory area from the host to the device in advance.
Additional processes may also involve copying data back from the device to the host after completing
the operation.

Currently, many types of the latest NVIDIA GPUs that can process GPGPU using the CUDA
library have been released. As new GPUs are developed, new instructions are constantly being
developed. NVIDIA GPUs have different features for different architecture generations, and different
CUDA versions are available. Table 2 describes the examples and features from the latest Turing
architecture to the Maxwell architecture. There is a minimum CUDA version that must be satisfied for
each GPU architecture, and this is called CUDA compute capability.
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Table 2. Specifications of Compute Unified Device Architecture (CUDA)-enabled NVIDIA GPU
architectures.

Architecture Maxwell Pascal Turing

GPU Chips example GTX 980 Ti GTX 1080 Ti RTX 2080 Ti

SM count 24 28 68

Core count 2816 3584 4352

Memory Size 6 GB 11 GB 11 GB

Base clock 1000 MHz 1480 MHz 1350 MHz

CUDA compute capability 5.2 6.1 7.5

4. Proposed Implementation Techniques in Target Lightweight Block Ciphers

This section proposes several methods that can be optimized on the GPU through the target
lightweight block cipher algorithm CTR operation mode. This section explains the part where
optimization can be applied using the features of the CTR operation mode and presents some methods
to effectively execute the CTR operation mode by utilizing the features of the GPU. Several common
optimization methods applicable to all target algorithms are first introduced, followed by appropriate
optimization implementation methods for each algorithm.

4.1. Common Optimization Method

4.1.1. Parallel Counter Mode of Operation in GPU

In the general block cipher, the plaintext and key are entered as input values of the encryption
algorithm, and the ciphertext is output. In the ECB operation mode, the data to be encrypted must
always be plaintext. However, to handle data in the GPU, CPU’s data must be copied to the GPU in
advance. To perform encryption on the GPU through the ECB operation mode, an additional process
of copying plaintext values stored in the CPU in advance to the GPU is required.

The CPU and GPU have ultimate fast computation speed. However, PCIe, the transmission path
between the CPU and GPU, is relatively slow. Therefore, copying data between the CPU and GPU is
time-consuming. Reducing this data copy time can make a significant optimization contribution in
GPU implementations. This heavy memory copy time can be reduced through the counter mode of
operation. A characteristic of the CTR operation mode is that it encrypts the counter value instead of
plaintext. Since the plaintext is not used while encrypting on the GPU, the copying time of the plaintext
is reduced.

Each thread that is in charge of computation inside the GPU has a unique number, the thread ID.
Each unique index of threads can be used as a counter value whose value increases by one for each
encryption block. As a result, the result of encrypting each thread ID as a counter value is the same
as the result of encrypting each block while increasing the counter value by one. The CPU performs
encryption by one block while increasing the counter value by one, but the GPU can encrypt the
counter values by the number of threads even if each thread encrypts only once. Thus, CTR operation
mode encryption using the advantage of these GPUs can show very fast encryption speed. Figure 8
shows the parallel CTR operation mode encryption process on these GPUs.

The round keys are generated through the key expansion function. Generated round keys are
copied and used in global memory by the GPU. Global memory is a memory space that all threads
can refer to in common but has a disadvantage that it is very slow compared to other memory spaces.
To use the round keys efficiently, the round keys must be stored in another memory space. Shared
memory is a memory shared in block units composed of multiple threads, which is faster than global
memory. Shared memory cannot be initialized, and after it is declared in the GPU kernel function,
the data in global memory are copied to shared memory.
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Encryption proceeds using the round key stored in the shared memory. Shared memory consists
of several banks. When different threads access the same memory bank, a problem called a bank
conflict occurs. Figure 9 shows the state of the bank conflict problem. When a bank conflict occurs,
the thread does not perform parallel operation and waits for sequential access to the memory bank.
This causes a big drop in speed. To prevent bank conflict, the shared memory bank size was adjusted
to use a unique bank for each thread, and the round keys were stored in each bank location. Therefore,
when encryption is performed, each thread can use the round key stored in shared memory within its
bank without duplicate access.
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Figure 8. Parallel CTR encryption on GPU threads.



Mathematics 2020, 8, 1894 12 of 25

Thread 1 AccessBank 0

Thread 2 AccessBank 1

0 2 4

1 3 5

Normal Parallel Condition

Bank 0 Threads Access in 
same Memory Bank

Bank 1

0 2 4

1 3 5

Bank Conflict Condition

(Memory Storage Order)

Parallel Access

Serialized Access

Figure 9. Bank conflict condition.

4.1.2. Reduce Memory Copy Time Using CUDA Stream

In addition to the optimization method through the CTR mode, an additional optimization method
was applied to reduce the memory copy time between the CPU and GPU. As shown in Figure 10,
the CPU enters the idle state and waits until the operation of the GPU is finished. When the GPU
operation is finished, the GPU data are copied to the CPU. To reduce the CPU’s idle time, asynchronous
instructions can be executed using CUDA streams. The stream is composed of a single default stream,
but CUDA instructions can be used to create multiple streams and divide data to perform operations.
Since each stream is managed asynchronously, when the first stream finishes copying data from the
CPU to the GPU and enters the kernel engine, the data copy process of the next stream proceeds
immediately. In this case, the CPU can continuously process the CPU task while reducing the latency
caused by the GPU operation. This optimization technique helps reduce memory copy time between
the CPU and GPU.

Stream 0(default)

Stream 0

Stream 0

Stream 0(default)

Stream 0

Stream 0

Stream 0(default)

Stream 0

Stream 0

Sequential Execution

S0 S1 S2

S0 S1 S2

S0 S1 S2

Asynchronous Execution

Time improvement

Host To Device Engine

Kernel Engine

Device To Host Engine

Host To Device Engine

Kernel Engine

Device To Host Engine

Figure 10. Asynchronous execution by using CUDA stream.

4.2. HIGHT

Unlike general block cipher algorithms like AES, HIGHT does not have a lookup table to suit
the environment where hardware resources such as memory are insufficient. HIGHT uses eight 8-bit
whitening keys and 128 8-bit subkeys from a 128-bit secret key. Since HIGHT’s plaintext is only 8 bytes,
not only the plaintext but also the whitening key can be stored and used in a register. In other words,
one thread uses 16 bytes of the register, and one GPU block, which is a bundle of threads, can be
implemented to store and use 128 bytes of subkey in shared memory.
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In the CTR mode of operation, the nonce and counter values are entered into the encryption
algorithm instead of plaintext. The counter value increases by 1 for each plaintext block, but the nonce
value has the same value for all plaintext blocks. Since block cipher algorithms divide the plaintext into
several words and perform the operation, the result of the operation for a fixed nonce value is the same
for all blocks. By using these features, unnecessary operations for nonce value can be reduced. In the
case of HIGHT, if 32 bits of 64 bits of plaintext are set as nonce and 32 bits as CTR value, the counter
value from P0 to P3 in Figure 11 and the nonce value from P4 to P7 are used. There is no need to perform
separate calculations for parts where only nonce values are used. In HIGHT, the operation of almost
two rounds is reduced.

Accordingly, a table that can appear according to an 8-bit secret key is created in advance in the
CPU, and unnecessary operations are eliminated in the GPU. Since all blocks use the same subkeys to
perform CTR operation mode encryption, the precomputed table operation only needs to be performed
once, and the result value is used for encryption as a constant value by all threads.

Additionally, by optimizing and implementing the existing cryptographic algorithm operation
with the assembly language of the GPU, PTX assembly code, it is possible to utilize registers to the
maximum and reduce unnecessary operations. In particular, by optimizing the rotation operation of
the ARX-based block cipher algorithm through PTX assembly code, the optimization method to reduce
unnecessary rounds in the CTR mode is applied. In addition, the operation itself is optimized to see an
excellent optimization effect.

Figure 12 shows the PTX assembly code for a round of HIGHT on a CUDA GPU. Whole plaintext
P0 to P7 can be stored in a register to perform encryption to achieve fast encryption performance.
Entire subkeys have been stored and used in shared memory. ROL in the footnote means the left
rotate. For example, ROL(P0, 3) means rotated by three bits to the left. Rotate can perform efficient
computation using the funnel shift command of GPU.
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Figure 11. Rounds that can be efficiently progressed by a fixed nonce in HIGHT.
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asm("{\n\t"
" .reg.type
" shf.l.mode.type
" shf.l.mode.type
" shf.l.mode.type
" xor.type
" xor.type
" xor.type
" add.mode.type

" shf.l.mode.type
" shf.l.mode.type
" shf.l.mode.type
" xor.type
" xor.type
" add.mode.type
" xor.type
" : "+r"(𝑃0), "+r"(𝑃1), ... , "+r"(𝑃7) 

: "r"(𝑃0), "r"(𝑃1), ... , "r"(𝑃7), 
"r"(sk[i*4]), "r"(sk[i*4 + 1]), "r"(sk[i*4 + 2]), "r"(sk[i*4 + 3]) 

);

t0, t1, t2;
t0, %9, %9, 3;
t1, %9, %9, 4;
t2, %9, %9, 6;
t0, t0, t1;
t0, t0, t2;
t0, t0, %16;
%0, t0, %9;

t0, %15, %15, 1;
t1, %15, %15, 2;
t2, %15, %15, 7;
t0, t0, t1;
t0, t0, t2;
t0, t0, %19;
%6, t0, %15;

\n\t"  //Declare register temp
\n\t"  //t0 = ROL(𝑃0, 3)
\n\t"  //t1 = ROL(𝑃0, 4) = 𝐹1[𝑃0]
\n\t"  //t2 = ROL(𝑃0, 6)
\n\t"  //t0 = t0 XOR t1
\n\t"  //t0 = t0 XOR t2
\n\t"  //t0 = t0 XOR sk[i*4]
\n\t"  //𝑃0 = t0 + 𝑃1

\n\t"  //t0 = ROL(𝑃6, 1)
\n\t"  //t1 = ROL(𝑃6, 2) = 𝐹0[𝑃6]
\n\t"  //t2 = ROL(𝑃6, 7)
\n\t"  //t0 = t0 XOR t1
\n\t"  //t0 = t0 XOR t2
\n\t"  //t0 = t0 + sk[i*4+3]
}\n\t"  //𝑃6 = t0 XOR 𝑃7

//: output %0, %1, ... , %7
//: input %8, %9, ... , %19
// sk : sub key
// i = round

... ... ...

Figure 12. Example of inline PTX assembly codes of HIGHT round function.

4.3. LEA

Since LEA uses many round keys, the number of memory accesses is high. When the round key is
directly stored and used from global memory, the total kernel speed could be slow by the memory
access time. Using shared memory or constant memory can speed up memory access time. Using
shared memory can take advantage of fast memory access speeds, but be cautious of bank conflicts in
this case. Constant memory shows a fast memory access speed when copying previously cached data,
but when accessing data in uncached constant memory, it has a similar access speed to global memory.

In the CTR operation mode of LEA, since 64 bits of the 128-bit plaintext are used as counter values
and the remaining 64 bits are input as nonce values, certain operations can be omitted. In Figure 13,
it can reduce the total amount of calculations for one round, and a fixed nonce affects even the
beginning of the third round.

Figure 14 shows the PTX assembly code for a round of LEA on a CUDA GPU. The ROL(Z, 3) of
the footnote means right rotate by three bits. In the case of LEA, the round key size is very large, so the
whole round key cannot be stored in the register. Therefore, part of the round key is stored in a register
for use. Since LEA performs right rotate in addition to the left rotate, the left rotate and right rotate are
performed using sh f .l and sh f .r instruction in the PTX code.
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Figure 13. Rounds that can be efficiently progressed by a fixed nonce in LEA.

asm("{\n\t"
" xor.type 
" xor.type
" add.mode.type 
" shf.r.mode.type 
" xor.type 
" xor.type
" add.mode.type 
" shf.r.mode.type 
" xor.type 
" xor.type
" add.mode.type 
" shf.l.mode.type 
" xor.type 
" xor.type 
" add.mode.type 
" shf.r.mode.type 

: "+r"(W), "+r"(X), "+r"(Y), "+r"(Z) 
: "r"(W), "r"(X), "r"(Y), "r"(Z), 
"r"(rk[i]), "r"(rk[i + 1]), "r"(rk[i + 2]), "r"(rk[i + 3]), 
"r"(rk[i + 4]),"r"(rk[i + 5]),"r"(rk[i + 10]), "r"(rk[i + 11]) 

);

%2, %6, %12;
%3, %7, %13;
%3, %6, %7;
%3, %7, %7, 0x3
%1, %5, %10;
%2, %6, %11;
%2, %5, %6;
%2, %6, %6, 0x5;
%0, %4, %8;
%1, %5, %9;
%1, %4, %5;
%1, %5, %5, 0x9;
%3, %7, %14;
%0, %4, %15;
%0, %7, %4;
%0, %4, %4, 0x3;

//i = round
\n\t"  //Y = Y XOR rk[i + 4]
\n\t"  //Z = Z XOR rk[i + 5]
\n\t"  //Z = Y + Z
\n\t"  //Z = ROR(Z, 3)
\n\t"  //X = X XOR rk[i + 2]
\n\t"  //Y = Y XOR rk[i + 3]
\n\t"  //Y = X + Y
\n\t"  //Y = ROR(Y, 5)
\n\t"  //W = W XOR rk[i]
\n\t"  //X = X XOR rk[i + 1]
\n\t"  //X = W + X
\n\t" //X = ROL(X, 9) 
\n\t"  //Z = Z XOR rk[i + 10]
\n\t"  //W = W XOR rk[i + 11]
\n\t"  //W = Z + W 
}\n\t"//W = ROR(W, 3) 

//: output %0, %1, %2, %3
//: input %4, %5, ... %15
// W, X, Y, Z : word
// rk : round key

Figure 14. Example of inline PTX assembly codes of LEA round function.

4.4. CHAM

The CHAM algorithm repeatedly uses a short round key contrast to other algorithms. Therefore,
it is possible to have much faster memory access speed by storing all the CHAM plaintext and round
keys in a register. However, if the number of threads is too large, the maximum register size that
can be used by each thread is limited. Therefore, when applying the optimization technique using
registers, the number of threads was appropriately selected based on the number of registers to be
used for encryption.

In CHAM, when using the CTR operation mode, it is possible to omit the operation of the fixed
nonce value. Figure 15 shows that a total of two rounds of computation can be reduced.
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Figure 15. Rounds that can be efficiently progressed by a fixed nonce in CHAM.

Figure 16 shows the PTX assembly code for a round of CHAM on a CUDA GPU. ”r” means
register, and all inputs and outputs are entered into the PTX code through registers. In the case of
CHAM, since all round keys can be stored in a register, whole round keys can be used as an input of
a PTX code. On the GPU, the rotate operation on the existing CPU can be replaced with the funnel
shift operation. Type is a variable data type, which is u16 for CHAM-64/128 and u32 otherwise. In the
CHAM encryption process, the process of rotating the word is necessary at the end of each round.
However, the word rotation process is unnecessary because the PTX code calls the corresponding
register instead.

asm("{\n\t"
" .reg.type 
" shf.l.mode.type 
" xor.type 
" xor.type 
" add.mode.type 
" shf.l.mode.type 
" shf.l.mode.type 
" xor.type 
" xor.type
" add.mode.type 
" shf.l.mode.type 
: "+r"(x), "+r"(y), "+r"(z), "+r"(w) 
: "r"(x), "r"(y), "r"(z), "r"(w),               
"r"(rk[0]), "r"(rk[1]), "r"(rk[2]), "r"(rk[3]), 
"r"(rk[4]), "r"(rk[5]), "r"(rk[6]), "r"(rk[7])

);

t0,t1,t2,t3,t4,t5;
t0, %5, %5, 0x1;
t1, t0, %8;
t2, %4, 0x0;
t3, t1, t2;
t4, t3, t3, 0x8;
t0, %6, %6, 0x8;
t1, t0, %9;
t2, %5, 0x1;
t3, t1, t2;
t5, t3, t3, 0x1;

\n\t"  //Declare register t0,t1,t2,t3,t4,t5 
\n\t"  //t0 = ROL(y, 1)
\n\t"  //t1 = t0 XOR rk[0]
\n\t"  //t2 = x XOR 0 (round number i = 0)
\n\t"  //t3 = t1 + t2
\n\t"  //t4 = ROL(t3, 8)
\n\t"  //t0 = ROL(z, 8)
\n\t"  //t1 = t0 XOR rk[1]
\n\t"  //t2 = y XOR 1 (round number i = 1)
\n\t"  //t3 = t1 + t2
}\n\t" //t5 = ROL(t3, 1)

//: output %0, %1, %2, %3
//: input %4, %5, ... %15
// x, y, z, w : word
// rk : round key

Figure 16. Example of inline PTX assembly codes of CHAM round function.

4.5. CTR_DRBG Optimization Using Target Lightweight Block Ciphers

Since the core operation of CTR_DRBG is performed through the CTR operation mode, if the
optimization method for the CTR operation mode is applied above, optimization implementation
effects can be obtained in CTR_DRBG as well. In this paper, CTR_DRBG is optimized and implemented
using HIGHT, LEA, and CHAM, which are target lightweight block algorithms that have proposed
an optimization method. In this subsection, we propose a common optimization method using the
structural features of CTR_DRBG.

4.5.1. Parallel Random Number Extraction

The main operation of CTR_DRBG is the CTR mode encryption process, so the method of
optimizing block encryption in CTR operation mode can be applied to CTR_DRBG. In CTR_DRBG,
the CTR mode of operation’s encryption process is mainly used in the update function and extract
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function. Figure 17 shows the use of GPU in the update and extract functions. Significant time
improvement can be obtained by processing the CTR operation mode encryption process performed
in parallel using GPU threads.

Instantiate Generate

Derivation Update Extract

GPU kernelGPU kernel

C

V + Thread ID (n)

Parallel Encryption

E E E

Output

V + Thread ID (0) V + Thread ID (1) ...

Figure 17. Parallel CTR_DRBG optimization on GPU.

When generating a random number sequence while calling multiple CTR_DRBGs, since the
update function performs CTR mode encryption of 2 to 3 blocks depending on the type of the selected
block cipher, 2 to 3 threads can implement one CTR_DRBG. In this paper, the optimization strategy for
CTR_DRBG on GPU are two categories. The first thing that threads output a random number sequence
by calling one CTR_DRBG function. In this case, since a different CTR_DRBG internal environment can
be built by using a thread ID, which is a unique number for each thread, a more secure random number
sequence can be output. However, memory and performance are limited because each thread has to
bear the instantiate function, internal derivation function, and update function, which are processes
until the random number sequence is output from CTR_DRBG. When each thread calls a number of
CTR_DRBGs, the parallel CTR mode optimization method can be applied by encrypting one or two
CTR_DRBGs in 2 to 3 threads according to the CTR block lenseed value of the update function.

Another optimization direction is to call one CTR_DRBG but set the length of the random number
sequence very large inside to process many CTR mode blocks in parallel. That is, the CTR mode
encryption process performed by the extract function is optimized and used as efficiently as possible.
In this case, the same process is performed in the CPU until inside the CTR_DRBG just before the
extract function but is implemented to process only the extract function with the GPU. This method
applies only the CTR mode optimization method in one CTR_DRBG. The CPU only needs to manage
one internal state, so it has the advantage of less memory load than the optimization method that
calls multiple CTR_DRBGs. Outputting a large number of random numbers through one internal state
can cause safety issues. However, the maximum value of the seed counter that calls the seed function
is 248. This value is an extremely big number that is hard to reach. Therefore, even in a method of
outputting a large number of random numbers through the GPU, the corresponding seed counter
value is not transmitted.

In the extract function, the number of CTR mode blocks is determined according to the output
length of the random number sequence. In the case of the optimization method that calls multiple
CTR_DRBGs, since 2 to 3 threads are in charge of one CTR_DRBG in the update function, the random
number sequence output length is also implemented to output 2 to 3 blocks according to the number
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of threads. In the case of the optimization method of outputting a large number of random number
sequences in one CTR_DRBG, the number of threads can be set to the number of CTR mode blocks
according to the random number size to be output, so that each thread can encrypt each block in
parallel. For example, when outputting a random number sequence having a block size of 16 bytes,
to output a random number sequence of 1 MB, 65,536 threads can encrypt each CTR mode block once.

4.5.2. Method for Omitting Operations Using Constant Results

In the first CTR_DRBG operation, the internal state is initialized by the instantiate function.
The derivation function and the update function in the instantiate function are slightly different from
the derivation function and the update function in the generate function. Some input values of the
instantiate functions are fixed.

As shown in Figures 18 and 19, the key and plaintext used for encryption are all fixed, so the
ciphertext output is always fixed. In the first derivation function in the instantiate function, a counter
value in the first block and a zero-padded value are entered as inputs. By the way, the counter value
only increases by one while repeating CBC_MAC as much as len_seed, and since CBC_KEY is a
constant value, the ciphertext has a fixed value. In the derivation function, the range of the constant
value is not so large by the nature of the CBC operation mode.

In the update function inside the instantiate function, V and the key are all zeros. Therefore, all the
output values by the CTR operating mode are fixed. By using the result of this operation as a constant
value, the number of encryption times as much as len_seed can be reduced.

EE

Counter

block 2 block 3 block n...

ECBC_KEY E

The result of CBC-MAC repeated by len_seed

Key V

E EE

Seed

block 1

0 pad input len output len input data 0x80 0 pad

Constant value

Figure 18. The part that can be constant value in the derivation function.
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Key = 0 V = 0
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Updated Key Updated V

Input data

EE
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Figure 19. The part that can be constant value in the update function.

5. Implementation Results

5.1. Experiment Environment

The results implemented according to the proposed GPU optimization method were measured in
the environment presented in Table 3. In this paper, we present the performance of the target block
cipher algorithms and the performance of CTR_DRBG.

The optimization results for the block encryption algorithms were measured based on the time
taken to encrypt data of a fixed size. Experimental results were measured while encrypting data of a
minimum size of 128 MB and a maximum size of 1024 MB. The number of threads per GPU block used
while performing encryption on the GPU is from 256 to 1024. The performance results including the
memory copy time between the CPU and GPU are presented first, and the GPU kernel performance
results without the memory copy time are presented.

In the performance results including memory copy time, the results for three types of
implementations are presented. First, the parallel encryption performance in the ECB operation mode
is presented, followed by the parallel encryption performance in the CTR operation mode. In addition,
the performance to which the CUDA stream optimization method was applied is presented. In the
ECB mode implementation, all input plaintext data were filled with random values generated by the
random number generator. In the case of the CTR mode implementation, only the nonce value was
filled with a random number value. In the case of the CUDA stream optimization implementation,
the total plaintext data were divided by the number of streams, and encryption was performed
asynchronously. The performance result was measured based on the time from when the first stream
started copying data from the CPU to the GPU until the last stream copied the ciphertext from the
GPU to the CPU. The performance was averaged after measuring the repeated time for a total of
100 iterations.
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Table 3. GPU optimization implementation test environment.

CPU AMD Ryzen 5 3600

GPU GTX 1070 RTX 2070

GPU Architecture Pascal Turing

GPU Core count 1920 2304

GPU Memory Size 8 GB 8 GB

GPU Base clock 1506 MHz 1410 MHz

CUDA Version 11.0

OS Windows 10

5.2. Experiment Results in Block Cipher Encryption

Figures 20–22 show the performance improvement according to each optimization method for
CHAM, LEA, and HIGHT. Each figure compares the performance of each algorithm, and within
each figure, compares each optimization performance according to the key size of the algorithm.
Figures 20–22 all show performance results including memory copy time between CPU and GPU.
The performances shown in Figures 20–22 were measured on the RTX 2070. The encryption speed
inside the GPU kernel also affected the encryption service provision time, but because the memory
copy time load occupied a much larger portion than the kernel’s computation time, the performance
results including the memory copy time was directly affected for IoT or cloud computing servers.
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Figure 20. Comparison of throughput (MB/s) for HIGHT implementations on GPU platform including
memory copy time, where p, c, and m represent parallel ECB mode of operation, parallel CTR mode of
operation, and GPU memory optimization, respectively.(HIGHT-n/m means n-bit plaintext encryption
with the m-bit key).
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Figure 21. Comparison of throughput (MB/s) for LEA implementations on GPU platform including
memory copy time, where p, c, and m represent parallel ECB mode of operation, parallel CTR mode of
operation, and GPU memory optimization, respectively.(LEA-n/m means n-bit plaintext encryption
with the m-bit key).
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Figure 22. Comparison of throughput (MB/s) for CHAM implementations on GPU platform including
memory copy time, where p, c, and m represent parallel Electronic CodeBook (ECB) mode of operation,
parallel CTR mode of operation, and GPU memory optimization, respectively.(CHAM-n/m means
n-bit plaintext encryption with the m-bit key).

5.2.1. HIGHT CTR

In the case of HIGHT shown in Figure 20, the performance of applying only the simple ECB mode
parallel operation implementation was measured in 2047 MB/s for HIGHT-64/128. In addition, the
performance of 2948 MB/s was confirmed in CTR mode parallel implementation. Finally, when the
encryption was split asynchronously using the CUDA stream, the performance was 3419 MB/s, up
to 67% performance improvement over the simple parallel implementation without optimization.
The number of CUDA streams used in the experiment showed the highest performance when the
maximum number was available in the GPU architecture. In RTX 2070, highest performances were
shown when the number of CUDA stream was 32.

5.2.2. LEA CTR

In the case of LEA shown in Figure 21, the performance of applying only the simple ECB mode
parallel operation implementation was measured in 2169, 2115, and 2122 MB/s for LEA-128/128,
LEA-128/192, and LEA-128/256 respectively. In addition, when the optimization was implemented in
the CTR mode that did not copy plaintext from the existing ECB operation mode, it can be seen that
the performance of each increased to 3239, 3240, and 3121 MB/s. Finally, when the encryption was split
asynchronously using the CUDA stream, the performance for each was 3412, 3365, and 3356 MB/s,
up to 57, 59, and 58% performance improvement over the simple parallel implementation without
optimization.

5.2.3. CHAM CTR

In the case of CHAM shown in Figure 22, the performance of applying only the simple
ECB mode parallel operation implementation was measured in 2133, 2171, and 2184 MB/s for
CHAM-64/128, CHAM-128/128, and CHAM-128/256 respectively. In addition, when the optimization
was implemented in the CTR mode that does not copy plaintext from the existing ECB operation
mode, it can be seen that the performance of each increased to 2976, 3324, and 3368 MB/s. Finally,
when the encryption was split asynchronously using the CUDA stream, the performance for each was
3882, 4253, and 4176 MB/s, up to 81, 95, and 91% performance improvement over the simple parallel
implementation without optimization.
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5.3. Experiment Results in CTR_DRBG

CTR_DRBG was also performed in the same environment in which the CTR mode optimization
implementation was tested. The performance of the GPU CTR_DRBG optimization implementation
was measured based on when the CTR_DRBG was called and ended when the random number
sequence was output. The performance measurements were measured by various experimental
environment variables, and the set experimental environment variables were divided into four types:
block cipher type, output random number sequence size, prediction resistance, and additional input.
Prediction resistance and additional input, which had little effect on the performance measurement,
was turned off in the test environment.

When the optimization was implemented, the progressing function varied depending on the
predict resistance and whether additional input was performed, but the extract function, which is the
main element of CTR_DRBG operating as the GPU, was not affected. Therefore, the results provided
in Figure 23 measured the performance while changing the size of the random number output while
the environment was fixed as one. In the performance measurement, the result of repeating the entire
process 1000 times is presented as an average.Version October 23, 2020 submitted to Journal Not Specified 21 of 24
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Figure 23. Comparison of throughput (MB/s) for CHAM, LEA, and HIGHT implementations on GPU
platform. (cipher-n/m means n-bit plaintext encryption with the m-bit key).

Figure 23 shows the result of throughput(MB/s) for the CTR_DRBG optimization implementation
on the GPU according to the random number output size. It can be seen that the performance of all the
cryptographic algorithms implemented increases as the output random number increased in common.
When outputting a 128 MB random number compared to the random number output size of 1 MB,
it can be seen that the performance increased up to five times.

Based on the 128 MB random number output, the throughput of the CPU is 100.9, 235.8,
and 169.6 MB/s respectively for HIGHT-64/128, LEA-128/128, and CHAM-128/128 and when
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the random number was output through the GPU, up to 52.2, 24.8, and 34.2 times performance
improvement was shown.

5.4. Comparison

Table 4 shows the GPU kernel performance for the optimized target algorithm by the number of
threads and data size. The fastest performance result was obtained when the number of threads per
block was 256.

Table 4. Throughput by data size and the number of threads (Gbps) in RTX 2070.

128 MB 256 MB 512 MB 1024 MB

HIGHT
256 threads 443 468 432 393
512 threads 437 439 419 402
1024 threads 401 414 409 373

LEA
256 threads 2486 2593 2564 2497
512 threads 2498 2509 2492 2504
1024 threads 2317 2301 2325 2309

CHAM
256 threads 2897 3063 2966 2870
512 threads 2843 2890 2887 2874
1024 threads 2535 2558 2536 2513

Table 5 shows the kernel performance for the target algorithm implemented in the GPU.
Kernel operating performance excluding memory copy time was measured by throughput (Gbps).
The performance was measured in CHAM-128/128, LEA-128/128, and HIGHT-64/128, and the
number of threads was fixed to 256 to properly utilize the GPU memory space. Compared to the
existing CPU implementation, it was possible to obtain 445, 530, and 1856 times improved performance
for each of CHAM, LEA, and HIGHT when encrypted with RTX 2070 GPU. This result showed
improved performance for other studies conducted in the past, and in the case of HIGHT and CHAM,
few optimization studies were conducted in the existing GPU environment.

Table 5. Comparison of encryption kernel on GPU in terms of throughput (Gbps).

Method Platform HIGHT LEA CHAM

Seo et al. [11] GTX 680 - 139 -

Lee et al. [13] GTX 980 - 678 -
GTX 1080 1478

An et al. [14] RTX 2070 - 2472 3033

Beak et al. [16] GTX 470 46 - -

This work
GTX 1070 281 1576 1620
RTX 2070 468 2593 3063

Ryzen 5 3600(CPU) 1.05 4.89 1.65

6. Conclusions

Along with many optimization studies on cryptographic algorithms, interest in optimization
studies in a GPU environment is also increasing. However, research on the optimization of lightweight
block ciphers in a GPU environment has not been actively conducted yet.

In this paper, we introduced the optimization methods for the lightweight block encryption
algorithms HIGHT, LEA, and CHAM in the GPU environment. Several methods of reducing
unnecessary memory copying and operations are proposed by linking the characteristics of the
block cipher operation mode, CTR mode, with the characteristics of the GPU. In addition, various
methods to efficiently use the internal memory of the GPU are presented. Inside the GPU, we proposed
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an implementation method that can more efficiently process existing operations while actively utilizing
registers using inline PTX assembly codes.

In the RTX 2070 GPU environment, our implementations with HIGHT, LEA, and revised CHAM
provide 445, 530, and 1,856 times of improved encryption throughput compared with our best
OpenMP CPU block cipher encryption implementations. In addition, the deterministic random number
generator CTR_DRBG was optimized by applying the excellent optimization results in the CTR
operation mode. In the RTX 2070 GPU environment, our CTR_DRBG implementations using HIGHT,
LEA, and revised CHAM provide 52.2, 24.8, and 34.2 times enhanced throughput over CTR_DRBG
implementations in the CPU, respectively.

By using the various optimization methods in this paper, the CPU can perform other tasks
while the GPU processes encryption in parallel. By utilizing this, the server provides basic server
functions from the CPU, while in the case of tasks that require encryption, the GPU is called to perform
encryption asynchronously and provide it to the user.

In the case of CTR_DRBG, a random number generator, a very large random number sequence can
be output at the same time according to the optimization methods proposed in this paper. Public-key
cryptography or quantum-resistant cryptography often requires a very long random number sequence,
so it can be actively used in a server environment that performs encryption using a public key.

In future works, we will conduct research that can operate resources and workloads distributedly
considering multiple GPUs.

Author Contributions: Investigation, S.A. and H.K.; Software, H.K. and Y.K. and S.C.S.; Supervision, S.A. and Y.K.
and H.S.; Writing–original draft, S.A. and H.K. and Y.K.; Writing–review and editing, H.S. and S.C.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2019R1F1A1058494).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Federal Information Processing Standards Publications. 197(FIPSPUBS): Announcing the ADVANCED
ENCRYPTION STANDARD(AES); National Institute of Standards and Technology (NIST): Gaithersburg,
ML, USA, 2001.

2. Hong, D.J.; Sung, J.C.; Hong, S.H.; Lim, J.G.; Lee, S.J.; Koo, B.S.; Lee, C.H.; Chang, D.H.; Lee, J.S.;
Jeong, K.T.; et al. HIGHT: A new block cipher suitable for low-resource device. In Proceedings of the
International Workshop on Cryptographic Hardware and Embedded Systems, Yokohama, Japan, 10–13 October
2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 46–59.

3. Hong, D.J.; Lee, J.K.; Kim, D.C.; Kwon, D.S.; Ryu, K.H.; Lee, D.G. LEA: A 128-bit block cipher for fast
encryption on common processors. In Proceedings of the International Workshop on Information Security
Applications, Jeju Island, Korea, 19–21 August 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–27.

4. Koo, B.W.; Roh, D.Y.; Kim, H.J.; Jung, Y.H.; Lee, D.G.; Kwon, D.S. CHAM: A family of lightweight block
ciphers for resource-constrained devices. In Proceedings of the International Conference on Information Security
and Cryptology, Xi’an, China, 3–5 November 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–25.

5. Roh, D.Y.; Koo, B.W.; Jung, Y.H.; Jeong, I.W.; Lee, D.G.; Kwon, D.S.; Kim, W.H. Revised Version of Block
Cipher CHAM. In Proceedings of the International Conference on Information Security and Cryptology, Nanjing,
China, 6–8 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–19.

6. Information Technology Laboratory Computer Security Division. The NIST SP 800-90A Deterministic
Random Bit Generator Validation System (DRBGVS); National Institute of Standards and Technology(NIST):
Gaithersburg, ML, USA, 2015.

7. Seo, H.J.; Kim, H.W. Optimized implementations of HIGHT algorithm for sensor network. J. Korea Inst. Inf.
Commun. Eng. 2011, 15, 1510–1516. [CrossRef]

8. Seo, H.J. High Speed Implementation of LEA on ARMv8. J. Korea Inst. Inf. Commun. Eng. 2017, 21, 1929–1934.
9. Kim, T.U.; Hong, D.J. Software Implementation of Lightweight Block Cipher CHAM for Fast Encryption.

J. Korea Soc. Comput. Inf. 2018, 23, 111–117.

http://dx.doi.org/10.6109/jkiice.2011.15.7.1510


Mathematics 2020, 8, 1894 25 of 25

10. Lee, S.J.; Kang, J.Y.; Hong, D.W.; Seo, C.H. Research for Speed Improvement Method of Lightweight Block
Cipher CHAM using NEON SIMD. J. Korea Inst. Inf. Secur. Cryptol. 2019, 5, 485–491. [CrossRef]

11. Seo, H.J.; Liu, Z.; Park, T.H.; Kim, H.J.; Lee, Y.C.; Choi, J.S.; Kim, H.W. Parallel Implementations of LEA.
In Proceedings of the International Conference on Information Security and Cryptology, Okinawa, Japan, 1–5 April
2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 256–274.

12. Park, M.K.; Yoon, J.W. Optimization of Lightweight Encryption Algorithm (LEA) using Threads and Shared
Memory of GPU. J. Korea Inst. Inf. Secur. Cryptol. 2013, 25, 719–726.

13. Lee, W.K.; Goi, B.M.; Phan, R.C.-W. Terabit encryption in a second: Performance evaluation of block cipher in
GPU with Kepler, Maxwell, and Pascal architectures. Concurr. Comput. Pract. Exp. 2018, 31, e5048. [CrossRef]

14. An, S.W.; Seo, S.C. Highly Efficient Implementation of Block Ciphers on Graphic Processing Units for
Massively Large Data. Appl. Sci. 2020, 10, 3711. [CrossRef]

15. NVIDIA. CUDA Toolkit-Develop, Optimize and Deploy GPU-Accelerated Apps. Available online: https:
//docs.nvidia.com/cuda/ (accessed on 21 August 2020)

16. Baek, E.T.; Lee, M.K. Speed-optimized Implementation of HIGHT Block Cipher Algorithm. J. Korea Inst. Inf.
Secur. Cryptol. 2012, 22, 495–504.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5626/JOK.2019.46.5.485
http://dx.doi.org/10.1002/cpe.5048
http://dx.doi.org/10.3390/app10113711
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Background
	Overview of Target Algorithms
	HIGHT
	LEA
	CHAM
	Counter Modes of Operation

	Overview of CTR_DRBG
	GPU Architecture Overview

	Proposed Implementation Techniques in Target Lightweight Block Ciphers
	Common Optimization Method
	Parallel Counter Mode of Operation in GPU
	Reduce Memory Copy Time Using CUDA Stream

	HIGHT
	LEA
	CHAM
	CTR_DRBG Optimization Using Target Lightweight Block Ciphers
	Parallel Random Number Extraction
	Method for Omitting Operations Using Constant Results


	Implementation Results
	Experiment Environment
	Experiment Results in Block Cipher Encryption
	HIGHT CTR
	LEA CTR
	CHAM CTR

	Experiment Results in CTR_DRBG
	Comparison

	Conclusions
	References

