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Abstract: A crypto-ransomware has the process to encrypt victim’s files. Afterward, the crypto-
ransomware requests a ransom for the password of encrypted files to victims. In this paper, we
present a novel approach to prevent crypto-ransomware by detecting block cipher algorithms for
Internet of Things (IoT) platforms. We extract the sequence and frequency characteristics from the
opcode of binary files for the 8-bit Alf and Vegard’s RISC (AVR) processor microcontroller. In other
words, the late fusion method is used to extract two features from one source data, learn through each
network, and integrate them. We classify the crypto-ransomware virus or harmless software through
the proposed method. The general software from AVR packages and block cipher implementations
written in C language from lightweight block cipher library (i.e., Fair Evaluation of Lightweight
Cryptographic Systems (FELICS)) are trained through the deep learning network and evaluated.
The general software and block cipher algorithms are successfully classified by training functions
in binary files. Furthermore, we detect binary codes that encrypt a file using block ciphers. The
detection rate is evaluated in terms of F-measure, which is the harmonic mean of precision and recall.
The proposed method not only achieved 97% detection success rate for crypto-ransomware but also
achieved 80% success rate in classification for each lightweight cryptographic algorithm and benign
firmware. In addition, the success rate in classification for Substitution-Permutation-Network (SPN)
structure, Addition-Rotation-eXclusive-or structures (ARX) structure, and benign firmware is 95%.

Keywords: deep learning; cryptography; ransomware; internet of things

1. Introduction

In 2017, users of Microsoft Windows were infected by Wannacry ransomware virus,
since the file sharing protocol has the the vulnerability [1]. It is the biggest attack in the
history of ransomware, with more than 200,000 computers affected.

There are two categories of ransomware, including cryptography type or locker type.
Since the locker type locks the target machine, it can no longer be accessible by users [2].
However, the data can be copied to other devices, and the data can be recovered because
the data is not fully encrypted.

On the other hand, files of devices are encrypted by the cryptography ransomware.
Since cryptography algorithms used to encrypt the victim’s files are designed to be secure in
mathematical assumptions, it cannot be recovered without the valid secret key. The victim
has to pay the ransom to the hacker to recover files. Then, the victim can recover original
files using the secret key. Since most users are moving to digitization, the ransomware
is a large threat to digital devices. In order to prevent ransomware attacks, many works
devoted to detect the ransomware virus and recover damages.

The four most common crypto ransomware programs are analyzed in Reference [3].
All ransomware viruses that rely on the target system’s available system tools are identified.
The file can be recovered by shadow copies generated while the tool is running.

The ransomware detection is divided into the analysis of data traffic and the func-
tion call. In order to improve the performance, the machine learning is actively studied.
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In Reference [4], the ransomware virus is identified by analyzing ransomware network
behavior and packet selection. In Reference [5], the light and deep networks to detect
the ransomware virus were evaluated. The dominance of application programming inter-
faces (APIs) is analyzed to characterize and differentiate ransomware. In Reference [6],
a framework for multi-level big data mining is utilized. The ransomware is analyzed
at different levels, such as the function call, dynamic link library (DLL), and machine
code level, through supervised machine learning. Many research studies focused on the
cryptography function because of the nature of crypto ransomware.

In Reference [7], the collected data through the dynamic binary analysis is utilized
to characterize a specific aspect of cryptographic codes. In Reference [8], an approach is
presented to automatically identify parameters and block cipher algorithms in the binary
code, and it is based on static. In Reference [9], asymmetric key cryptographic (AKC)
algorithms are targeted since the ransomware performs the public key algorithms to encrypt
files. The encryption process performed by public-key cryptographic algorithms can be
detected by monitoring integer multiplication instructions. However, the architecture of
block cipher was paid little attention in previous works. In addition, there are not many
works to defend against ransomware in the Internet of Things (IoT) environment.

In this paper, we propose a new approach to prevent ransomware viruses by classi-
fying the cryptography process of block cipher on low-end embedded processors. Codes
of target embedded processors are analyzed and classified as ransomware or innocent
software. Using neural networks, we trained and evaluated the binary code of functions in
the block cipher algorithm in the Fair Evaluation of Lightweight Cryptographic Systems
(FELICS) and the benign program in the Alf and Vegard’s RISC (AVR) processor (AVR)
package. First, the binary files of each block cipher and benign firmware are pre-processed
in two ways. One is the time series data representing the flow of opcode, and the other is
the frequency of the opcode. That is, our neural network trains those features by fusing
two features from one source data. Finally, a binary file of file encryption process or benign
firmware is entered into the trained model and then classified. The proposed method
successfully classified the encryption process and detected ransomware virus. In addition,
we evaluated the result in terms of precision, the harmonic mean of recall, and F-measure.
Following are our contributions.

1.1. Contribution
1.1.1. Detecting Crypto Ransomware Using Deep Learning for IoT

The potential ransomware is successfully detected by classifying the binary code. The
binary file is transformed to two arrays representing sequence and frequency. Then, these
two type of data are applied the neural network. After training, the trained model pruned
and converted to tensorflow lite model to inference in IoT environments.

1.1.2. Experiments with Several Methods to Achieve High Performance

We evaluated the proposed method with several options to achieve high performance
in the ransomware detection, such as using two features about sequence and frequency from
binary file and only one feature about sequence are compared. In addition, both methods
for extracting instructions and opcodes from binary code are compared and evaluated.

1.1.3. Detailed Analysis of the Instruction Set Used in Block Ciphers Implemented
in Microcontrollers

Symmetric Key Cryptography (SKC) algorithms are classified into two categories,
Substitution-Permutation-Network (SPN) or Addition-Rotation-eXclusive-or structures
(ARX). This approach observes distinguished features between them. Based on this feature,
the performance is significantly improved.
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1.2. Extended Version of World Conference on Information Security Applications (WISA)20

This paper is an extension of our previous work published in WISA"20 [10]. A method
of detecting crypto-ransomware by converting the binary code of an encryption algorithm
into an image was proposed in the previous work. To perform this method, first, we
extracted the instructions or opcodes from the binary file generated by compiling in the
AVR environment and converted it into an image. Converted images entered into the
convolutional neural network (CNN) to classify these image data. Since the generated
image contains features of a specific cryptographic operation, the encryption process can be
detected by the CNN. Therefore, it is possible to classify ransomware and general firmware
because the crypto-ransomware encrypts some files through an encryption algorithm. In
addition, the classification by each cryptographic algorithm and by SPN and ARX structure
is also possible. However, in the case of the previous work, the detection of the entire
process of ransomware encrypting files was not conducted. In other words, an encryption
process is detected, but it is not about the detection of an entire ransomware file. This work
further extended to detect crypto-ransomware through binary files by neural networks.

The organization of this paper is as follows. The background of cryptography ran-
somware detection methods for embedded processors is provided in Section 2. Then, we
propose and evaluate a new method to prevent cryptography ransomware in Section 3 and
Section 4. In Section 5, we conclude this paper.

2. Related Works
2.1. Ransomware on IoT Environments

Due to the rapid development of the IoT, ransomware virus protection and security
enhancement have been established as fundamental components for IoT-based services [11].
Many works have been carried out for a safe IoT environment.

In Reference [12], a method based on machine learning to detect ransomware is pre-
sented. They monitor the power consumption patterns of some processes, and then the
malicious ransomware is detected from benign applications. In Reference [13], a method
based on deep learning is presented to detect malware by using the opcode sequence
of machine. Opcodes are converted to a vector space. Afterward, they used a deep
Eigenspace learning. Finally, malware and harmless application are classified. In Refer-
ence [14], the proposed method utilized the behavior. Afterward, Transmission Control
Protocol/Internet Protocol (TCP/IP) header is extracted and the ransomware attacks are
detected by command and control (C&C) server blacklisting. In Reference [15], the se-
quence of instructions is converted to a grayscale image. Then, multi-classes are separated
using the statistical method along with the reduction of dimension.

However, these previous approaches focused on high-end IoT platforms. To collect
the data in distance, low-end microcontrollers are used in IoT services. For the success
of IoT-based services, the ransomware detection mechanism should be considered for
low-end microcontrollers. In this work, a novel mechanism to detect ransomware for
low-end environment is presented. To detect malicious ransomware, we use the sequence
and frequency of binary code as a feature of the encryption process. Afterward, the data
representing these features are classified through the neural network.

2.2. Ransomware Detection Methods Based on Cryptographic Function Call

To encrypt victim’s files, ransomware use the cryptographic function. Therefore,
detecting the cryptographic function should be highly considered to classify the malicious
software. We compared the cryptographic function call-based ransomware detection
methods (see Table 1). In Reference [7], they detected symmetric key and public key
cryptography by the features of encryption functions. This approach uses a heuristics
method that is based on the target architecture. In Reference [8], the data flow graph
extracted from the binary file was utilized. The cryptographic function call is identified
by using the sub-graph isomorphism. In Reference [9], the instructions of multiplication
heavily called in Rivest-Shamir-Adleman (RSA) algorithm are monitored, then the public
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key cryptographic algorithms are detected. However, the deep learning-based ransomware
detection method is not explored in previous works. Recently, Reference [16] showed
that malware detection can be improved through deep learning algorithms. However,
this method does not target ransomware, and the high-end desktop is target platform. In
this paper, a cryptography ransomware detection mechanism targeting microcontroller
is presented.

Table 1. Comparison of detection methods based on cryptographic function call. SKC and AKC represent Symmetric Key

Cryptography and Asymmetric Key Cryptography, respectively.

Category [7] [8] [9] This Work
Cryptography SKC and AKC SKC AKC SKC
Apporach Dynamic Static Dynamic Static
Algorithm Heuristics Data graph flow System monitor Deep learning
Architecture Desktop Desktop Desktop Embedded Processor

2.3. Symmetric Key Cryptography on Low-End Embedded Processors

In 2015, the cryptography benchmarking framework (FELICS) was presented by the
University of Luxembourg [17]. The cryptographic engineers around the world submitted a
number of block cipher implementations on embedded processors to FELICS. We used the
block cipher implementations of FELICS in this work. The ATmega128, an 8-bit AVR widely
used in low-end IoT environments, is a target low-end microcontroller. The microcontroller
is the modified Harvard architecture-based 8-bit single-chip. It has 8-bit unit registers
and instructions. Block ciphers can be classified into two categories. There are Addition,
Rotation, and bitwise eXclusive-or (ARX) and Substitution-Permutation-Network (SPN).
Each architecture can be characterized by its structure and the operations performed. In
this paper, we classified the binary code by distinguishing features of both architectures.

3. Proposed Method

The proposed method detects ransomware with binary code for low-end IoT devices.
In general, the sensor network has a tree structure [18]. Low-end IoT used as leaf nodes
collect sensor data. And the leaf nodes of the tree are managed by the root node (i.e.,
base station). To ensure better service than before, the firmware of leaf nodes is regularly
updated by the base station. When the packets between base stations (or firmware servers)
are intercepted by a hacker, and the crypto ransomware is inserted into the firmware,
the base station or leaf node has to detect the ransomware virus. In our scenario, the crypto-
ransomware is detected by classifying the firmware’s binary file using a neural network.
The proposed approach classifies ransomware and harmless firmware depending on
whether the encryption process is running or not. This approach is able to self-defense
for the middle-end IoT with 64-bit Advanced RISC Machines (ARM) processors, such as
raspberry pi. The convolutional and fully connected neural network can be performed on
the device by TensorFlow Lite model.

The proposed method is designed as shown in Figure 1. We targeted block cipher
algorithms. After compiling a source code of block cipher algorithms, we can get the binary
data of source code. There are many functions to perform encryption, decryption, and key
schedule operations. We extract some functions to perform the encryption. Afterward,
opcodes for these functions are extracted. Since opcodes are a string type, we convert
hexadecimal opcodes to decimal numbers to encode. Converted decimal numbers become
an array for each function. Since the converted array has an opcode for each element. we
change the converted array to express the frequency of opcode. Two arrays are inserted to
the neural network for the training. After the training, they are classified each cryptographic
function or general firmware. Then, we can detect the ransomware. The neural network
we used is consist of two models. One model trains the opcode sequence and the other
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Figure 1. System configuration for proposed method.

3.1. Data Generation Based on Binary Code

After compiling on source codes, we can get binary files. Since the encryption process
is a distinguished feature of ransomware, we extract functions to perform the encryption
in the binary file. There are several functions in the cryptographic algorithm. We set
operations used in each algorithm as a feature because operations used in other algorithms
are different. The instruction pattern for encryption operations is trained, and we perform
the classification of the binary file for the algorithm. The section that transfers from one
function to another is not trained because it is not a sequence for a specific operation. We
made the extraction tool. Since extracted opcode patterns are performed in order, they
are time series data for each function. As shown in Figure 2, extracted opcodes become
1-dimensional (1-D) array. The max length of the sequence array is set to 1000. When we
calculated the length of function, the minimum is 14, and the maximum is 13,859. The
maximum value is the case that all operations are implemented without using functions.
The number of such cases is only 2, and most binary files have functions. As a result of
finding the percentile, if the length of a function is 878, among them, 90% of the number of
data is covered. We set the max length to 1000, and only two cases were excluded. If the
length of opcode sequence for each function is less than 1000 or more than 1000, they are
padded with 0 or cut up to 1000. Finally, each opcode sequence is set to the name of its
source function.
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PRINCE binary file SPARX binary file SPARX binary file
<SR>: <specky>: <roundF>:
= = =
602: 8¢!81; 1dd r24,Y+4 1bde: €9181; 1dd r30, Y+1 602: 84127, eor 1r24,r20
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Ly Ly Ly
‘ Extract opcode
Opcode sequence for each function
function 1 81 2f 95 » PRINCE
function 2 81 81 95 »  SPARX
functionn | 27 27 95 »  SPARX
Data Label

Figure 2. Opcodes sequence extraction for each function.

Extracted opcode sequences are formatted in a string type, which is hexadecimal
and 1-dimensional array. So, we need to convert input data type and format as shown in
Figure 3. The pre-processing phase is divided into two ways. First, the elements of the
opcode array must be transformed to be each row in order to be input into the convolution
1D layer. Afterward, it becomes time series data having one feature. In addition, each data
is extracted from 1 source data, so both sequence and frequency have the same label.

ex) 1F > 31, D0 > 208

Preprocessing

(1) Sequence of opcode

31

187

Convert to decimal number

Opcode -> Index:0

31
R Time series
data
187
E—
feature
255
s 0 . | 14

(2) Frequency of opcode

Figure 3. Data pre-processing.

3.2. Deep Learning Phase

We used the concatenated neural network to train two types of pre-processed data.
In other words, the two inputs and one output are required. Each input is entered to the
neural network and trained, properly. Then, the feature map of each model is concatenated.
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Afterward, we can get the result of classification with feature maps. This architecture is a
late fusion, where errors are propagated for each model. This considers the responsibility
and the plausibility of each input. If one of the inputs goes the wrong result, the late fusion
model can solve this problem because the models are independent of each other.

3.2.1. Training Phase

In the training phase, the pre-processed data about the function of each algorithm is
entered to the neural network as shown in Figure 4. In other words, the sequence of the
opcodes and the frequency of the opcodes used in function, are trained. That is, it is to
train by extracting two kinds of features from one source data. The each data go through
all the layers in each model, then they are concatenated and classified 11 cryptographic
algorithms and 1 general firmware. A CNN model consisting mainly of convolution 1D
layers is used to train opcode sequences, which are time-series data. A fully connected
model composed mainly of dense layers is used to train frequency of opcodes. In fact,
the Recurrent Neural Network (RNN) is good for training the sequential data. However,
the proposed system detects the ransomware on IoT devices. For this reason, we need
to convert our model to the tensorflow lite model to inference on edge tensor processing
unit (TPU). However, the Google Coral Edge TPU does not support the RNN layer yet. In
addition, the sequence is not long enough because we train the opcode sequence for each
function, not all binary files. For this reason, we selected the convolution 1D layer. Detailed
hyper parameter values of neural network are given in Table 2. The convolution 1D layer
has filters, and filters move at specific intervals by the value of stride. This layer is not to
train the spatial feature, such as convolution 2D layer. The filter of convolution 1D layer
moves from the start to the end of the sequence as shown Figure 5. Therefore, training
the sequence data is possible. We set the filter size to 16 and 4 for each convolution layer
through the hyper parameter optimization. The filter can extract (or detect) the feature
from the space covered by filter. If the filter size is bigger, features can be extracted from the
bigger space. However, this makes features obscure because the value of the space covered
by the filter is multiplied with the filter and then all values are added to form one feature.
The average length of opcode sequence in one operation, such as multiplication for one
index, is about from 30 to 40. If we set the filter size to 30 or 40, one operation becomes one
value. Then, it may obscure the feature of that operation. The filter size is selected. The
stride of convolution layer is 1; then, the filter can operate densely. The proposed system is
a multi-class classification, and then we use the categorical cross-entropy loss function and
softmax activation function for output layer. The range of data is 0 to 255 because the data
is 1-byte opcodes. The max length value is set to 1000 aforementioned.

Table 2. The hyperparameters for training.

Hyperparameters Descriptions Hyperparameters Descriptions
Number of label 12 Loss Categorical crossentropy
Range of data 0~255 integer (1-byte opcode) Activation ReLu (hidden), Softmax (output)
Sequence max length 1000 Optimizer Adam (Ir = 0.0002)
Convl1D filters 16, 4 Epochs 50
ConvlD strides 1 Batch size 8




Mathematics 2021, 9, 705

8 of 16

ConvlD ConvlD
31 Il v Flatten
BatchNorm | [—{| BatchNorm | [— ¥
187 ! ! Bl
Sequence of opcode ReLu ReLu
Dense Dense
Index: 0 255 I !
| 0 | | L4l }—’ BatchNorm | —{| BatchNorm |[—{| Dense
Frequency of opcode v v
ReLu ReLu

Concatenate

—{ Dense

— output

Figure 4. Neural network architecture for proposed method.
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Figure 5. Convolution 1D layer for time series data training.

3.2.2. Ransomware Detection Phase

31
1
147

| 208 |
8 I

I
I
L1 §7_|

Figure 6 shows the detection phase. In the detection phase, all functions of a binary
files are entered to the neural network. However, the input shape must be the same with
the input shape of training data because the inference is performed through the trained
model. The test data is truncated to a length of 1000. Except the process, the pre-process
step for detection is identical. The truncated data is entered to the trained neural network.
Then, the input data is classified as one of 12 labels, such as general firmware, Advanced
Encryption Standard (AES), and PRESENT.
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Figure 6. Ransomware detection phase.

3.2.3. Pruning for Ransomware Detection on the IoT Devices

The model of the proposed system is pruned for the lightweight model to detect the
ransomware on loT devices. Therefore, we apply the weight pruning for the trained model.
In the pruning process, small weights not exceeding the threshold are removed. However,
the pruned model has to achieve a similar level of performance to the original model. Since
unimportant weights are removed from original weights to the extent, the performance
degradation does not happen. The pruned model is converted to the tflite model to
inference on edge devices. The pruned tflite model is deployed to IoT devices, and then we
can detect the ransomware on IoT environments.

4. Evaluation

In this experiment, we used a cloud-based service, Google Colaboratory. This supports
Intel Xeon CPU (13 GB RAM), Nvidia GPU (12 GB RAM), and Ubuntu 18.04.5 LTS. Python
3.6.9, TensorFlow 2.4.1, and Keras 2.4.0 were utilized for the programming environment.

Since the encryption is performed unlike benign firmware when the crypto ran-
somware runs, the encryption process is set as a characteristic of ransomware. Table 3
shows the detailed dataset of general firmware and symmetric key cryptography (e.g.,
substitution-permutation-network and addition-rotation-exclusive-or architectures) in IoT
environments. Among the FELICS implementations, we used cryptographic modules
written in the C language. General programs, including Radio-Frequency Identification
(RFID), WiFi, xBee, and Bluetooth, are used as general firmware. In addition, values in
parentheses are the number of data, and the training set, validation set, and test set are
divided into approximately 7:2:1. In the detection phase, only binary files of block ciphers
belonging to the test set are used. However, they are not divided by function, and their
entire binary files are used.
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Table 3. Detailed programs for the dataset.

Architecture

Examples

Substitution-Permutation-Network (88) RECTANGLE(5), PRIDE(25), PRINCE(33), PRESENT(10), and AES(15)
Addition-Rotation-eXclusive-or (191) SPECK(37), RC5(12), LEA(9), SIMON(19), HIGHT(58), and SPARX(56)

Benign (66)

XBee, GPS, WiFi, Bluetooth, and RFID

The experiment is conducted in three ways. The first experiment is conducted about
opcodes. This way will construct a dataset with the proposed system and then detect the
ransomware. The second experiment is carried out in the same way. However, the dataset
consists of instructions containing operand, and opcode, not opcode. The third experiment
is done only with opcode sequences, without considering the frequency characteristics.
The last one is an experiment on the pruned model. Because an unbalanced dataset is used
in this experiment, we use an F-measure. It is the harmonic mean of precision and recall
rather than accuracy. There are micro and macro averaged F-measures. The micro approach
takes into account the data belonging to each class. The macro approach takes into account
the all classes with the same weight. The dataset used for these experiments has a different
number of data for each class. Therefore, we evaluated through micro F-measure for each
experiment. In addition, all results are the average value of 10 experiments. In addition,
the result table consists of validation F-measure, test F-measure, and detection F-measure.
Since validation and test results are about the training phase, these are results performed
with each function in the binary file. Since the detection is about the detection phase,
the detection is done with the entire binary file, not a function.

4.1. Instruction-Based vs. Opcode-Based

This experiment is to compare the performance of the proposed method (opcode-
based) and instruction-based (opcode and operand). In case of instruction-based, the pre-
process method is same, but operand and opcode are inputted into the neural network
as feature values for one time series data. The sequence data of opcode-based method
has 1 feature (i.e., opcode). However, the sequence data of instruction-based method has
2 features (operand and opcode).That is, if the proposed method has one column for n
time-series data, the instruction-based method has two columns for #n time series data. If
the same operation is performed, it has same opcodes. However, operands are different in
high possibility.

The experiment results of training and detecting on opcode-based and instruction-
based methods are in Tables 4 and 5. These values mean the success rate. In case of
classifying 11 cryptographic algorithms and benign firmware into 12 labels, the opcode-
based method achieved 4%, 10%, and 10% higher detection performance in validation,
testing, and detection, respectively, than the instruction-based method. For this reason, we
proposed the opcode-based method.

Table 4. Evaluation of opcode-based model.

Category

Training Detection

Validation F-Measure Test F-Measure F-Measure

Each algorithm vs. General firmware 0.93 0.85 0.80
SPN vs. ARX vs. General firmware 0.99 0.98 0.97
Ransomware vs. General firmware 0.99 0.98 0.97

In the opcode-based method, most of the misclassifications were for (SPECK and
LEA) and (SPECK and SPARX) in experiment for each algorithm. In the instruction-based
method, most of the misclassifications were for (SIMON and SPECK), (SPARX and SPECK),
and (LEA and SPECK) in the same experiment.
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Table 5. Evaluation of instruction-based model.
Training Detection
Category —
Validation F-Measure Test F-Measure F-Measure
Each algorithm vs. General firmware 0.89 0.75 0.70
SPN vs. ARX vs. General firmware 0.95 0.93 0.95
Ransomware vs. General firmware 0.99 0.98 0.97
In SPN versus ARX versus General firmware, the opcode-based method misclassified
SPECK and general firmware in validation and test. In addition, in detection, the general
firmware was incorrectly detected as SPARX. That is, there were no cases of misclassifying
SPN and ARX structures. However, the instruction-based method misclassified between
RECTANGLE, PRIDE, HIGHT, and general firmware in validation and test. In addition,
in the detection, there were misclassification between RECTANGLE, SPARX, SPECK,
and generic firmware. SPN and ARX structures are sometimes misclassified. However,
both opcode-based and instruction-based methods show the same performance for the
ransomware detection. Results of detecting ransomware is the same percentage. However,
as shown in Figure 7, the instruction-based method has about 2 times higher loss value
than the opcode-based method. Due to the nature of the training process that trains to
minimize the loss, a model with a smaller loss value can classify in the accurate manner.
Therefore, the opcode-based method is a better way to detect ransomware.
3 I I T T 3 I I T T
—— Training loss —— Training loss
2.5 || —— Validation loss N 2.5 || — Validation loss N
2 a 2
n n
& 151 1 815
1 a 1
0.5 N 0.5
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0 &5 10 15 20 25 30 35 40 45 50 0 &5 10 15 20 25 30 35 40 45 50
epochs epochs

Figure 7. Training and validation losses for instruction-based (left) and opcode-based (right) models.

Figure 8 is the visualization of opcodes sequence for each function. First, functions
that perform the same operation show almost similar patterns, and different functions
have different patterns. We can see that rotation functions of SIMON and SPARX have a
very similar sequence. In addition, the same pattern is repeated in the function. Figure 9
shows the frequency of opcodes for each algorithm. These images can be represented in an
array with 256 columns. Therefore, each index represents an opcode, and elements of this
array represent the number of times the opcode is used. The opcode used is represented
by the vertical line in these Figures. Therefore, it is visually revealed that the distribution
of opcodes is different for each structure through the location and contrast of the lines. In
the gray scale, 0 means black, and 255 means white. The frequency was normalized to be
within the range. The line of color closer to white is the more used opcode. The comparison
is made between Figure 9 and Table 6. The most commonly used operations, such as LD,
ST, and MOVW, are 129, 131, and 1, respectively. The middle of the images is expressed close
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to white, and there is a common line in the leftmost part. The cryptographic algorithms
which have ARX (Addition-Rotation-Xor) structure frequently performed arithmetic and
logical operations, such as ADIW, XOR, SBCI, and ADC. The third most frequently used
ADIW is 150. XOR and ADC are 30 and 40, respectively. There are lines close to the white color
in the left part, which represent those operations. The cryptographic algorithms of SPN
structure have operations to access the memory in the part of S-box operation. It is common
and frequently performed. Similar operation to ARX was used, but the part corresponding
to XOR or ADC was expressed in gray compared to ARX. In the general firmware, there
are many branch instructions, and instructions that access I/O registers, which are rarely
found in cryptographic code, such as RIJMP, BRNE, and OUT. The operation like NOP is not
used in cryptographic algorithms. Since operations of the collected general firmware are
different, it is difficult to have a common pattern like encryption algorithms. There are
no particular emphasized parts. Compared to this, cryptographic algorithms with the
same architecture tend to share similar operation patterns. In addition, certain patterns are
repeated because block cipher algorithms repeat rounds.

SPN
RECTANGLE PRESENT
s-layer, p-layer s-layer, p-layer
[ — e —
h . I l
I —
HIGHT SIMON SPARX
round function round, rotation round, rotation
[ ] ] ]
e — . EE— —
= = T e——
i
— ] ]
] =
— — E—— ]
Bluetooth Timer LED WiFi XBee

Figure 8. Visualization of binary images for each function.
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SPN ARX

General

Figure 9. Visualization of opcode frequency for each algorithm.

Table 6. Comparison of each architecture depending on instruction frequency.

. Sorted by Frequency
Architecture
1 2 3 4 5 6 7 8
SPN LD ST MOVW XOR ADIW ANDI MOV STD
ARX LD MOVW ADIW STD XO0R SBCI ADC LDD
General LD MOVW RJMP BRNE BREQ NOP ouT SBCI

4.2. Frequency and Opcode Sequence Versus Sequence-Only

In this experiment, we evaluated the model reflecting frequency and opcode (proposed
model) and the model reflecting only the sequence. We applied the late fusion in proposed
model. As mentioned in Section 3.2, the late fusion model can cope with a problem
that the one of inputs is wrong, and it has independent error propagation. The post-
concatenation process focuses on learned strengths (features) for each input. Therefore,
better performance is achieved in general.

Table 7 shows the result of experiment with the model reflecting only the sequence.
Compared to Table 4, in ransomware versus general firmware, the classification success rate
decreased by 5% and 4% for the test data and data for ransomware detection, respectively.
For validation and test data, there is no misclassification between SPN and ARX. In the
detection phase, the classification success rate decreased by 10% between two cryptographic
algorithms. Besides, in the case of classification by each algorithm, the performance was
significantly degraded. The loss of the sequence-only model is shown in Figure 10. The loss
value is sufficiently decreased, but there is slight gap between training loss and validation
loss. In the case of this model, the detection success rate tends to be decreased for the full
binary file in the detection.

3 T T T
—— Training loss
2.5 |-| —— Validation loss |

0 | | | \ \
0 5 10 15 20 25 30

epochs

Figure 10. Training and validation losses for sequence-only model.
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Table 7. Evaluation of sequence-only model.

Training Detection
Category —
Validation F-Measure Test F-Measure F-Measure
Each algorithm vs. General firmware 0.86 0.76 0.67
SPN vs. ARX vs. General firmware 0.99 0.93 0.87
Ransomware vs. General firmware 0.99 0.93 0.93
4.3. Pruned Model for Detection on IoT Devices
We carried out the pruning to reduce the file size of model. The pruning is performed
with the trained model. The loss value decreased rapidly as shown in Figure 11, and
20 epochs were enough. Table 8 shows the evaluation of the pruned model. The classifica-
tion by algorithm and structure slightly decreased, but the performance was maintained for
the classification of ransomware and general firmware. However, the file size is reduced
only 7% because performance should not be influenced. Table 9 shows the file size and the
F-measure of two models. The F-measure is calculated in detection of ‘Ransomware versus
General firmware’ case.
Table 8. Evaluation of the pruned model.
Training Detection
Category
Validation F-Measure Test F-Measure F-Measure
Each algorithm vs. General firmware 0.93 0.88 0.83
SPN vs. ARX vs. General firmware 0.99 0.95 0.94
Ransomware vs. General firmware 0.99 0.95 0.97
Table 9. Evaluation of the lightweight model.
Model File Size F-Measure of Detection
Original tflite model 1.74 MB 0.97
Pruned tflite model 1.63 MB 0.97
2 \ T
—— Training loss
— Validation loss
15} a
2]
£ 1
0.5 *
0 | | |
0 5 10 15 20

epochs

Figure 11. Training and validation losses for the pruned model.
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4.4. Comparison with Other Methods

Table 10 shows the comparison with other methods. There are implementations of
cryptographic algorithms, such as the OpenSSL and Cryptopp library. Since this work
is an AVR environment, the implementation written in C in FELICS was used. Crypto-
ransomware mainly consists of AES and RSA algorithms. Therefore, these two algorithms
should be detected. In Reference [7], there are three approaches: chains, mnemonic-const,
and verifier. Among them, the verifier identification method checks the existence and
parameters of the symmetric encryption process, and it has the best performance. The
verifier method achieved a detection success rate of 0.946 in AES. However, it was not
possible to detect Message-Digest (MD5) algorithm and RSA, and if the chains method is
used, both AES and RSA can be detected. In Reference [19], another factor that enables
identification of the existence of the encryption process, the key scheduling process, can
also be detected. It can detect AES, Data Encryption Standard (DES), RC4, MD5, and RSA
with simple mechanisms. Proposed methods can cover a wider range of cryptographic algo-
rithms. It is possible to detect lightweight block ciphers for low-power embedded processor
environments. Therefore, it can be used to detect the ransomware for IoT environments.

Table 10. Comparison with other methods.

Grobert et al. [7] Caballero et al. [19] This Work
Algorithm Heuristic Field semantics inference Deep learning
Implementation OpenSSL, Cryptopp, Beecrypt OpenSSL, Cryptopp, Beecrypt FELICS
Description AES, DES, RC4, and RSA AES, DES, RC4, MD5, and RSA See Table 3

5. Conclusions

In this paper, new methods to identify the potential malware by classifying the block
cipher modules and benign firmware for embedded processors is presented. Opcodes in
binary file are converted to decimal, then the converted data is pre-processed into 2 types
of data which represent features of the functions. One is the sequence of opcodes, and the
other one is the frequency of opcodes. Then, the neural network is applied to the deep
learning. In order to classify operations performed by each algorithm, we divided them
into function units and used them as features of each algorithm. In addition, the block
cipher classification has 2 classes by utilizing unique features of block ciphers. Types of
opcodes and frequency of opcodes mainly used in SPN and ARX are different. Through
an experiment, it was confirmed that the frequency is a feature that affects performance.
These approaches significantly improved the classification and the detection performance.

Furthermore, we suggested the proper ransomware detection framework by consid-
ering the resource-constrained environment. RNN layers that are not supported by deep
learning accelerators for inference in edge devices were not used. Therefore, a convolution
1D layer that can be used for learning time series data and has less weight to be trained
was used. In addition, pruning was performed to reduce the weight of the model. The file
size was reduced by 7%, and the F-measure achieved 97% as before.

As a future work, we will explore classification method for the other cryptography
modules, including public key cryptography and hash function.
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