
Received March 31, 2022, accepted May 24, 2022, date of publication June 3, 2022, date of current version June 9, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3179970

Efficient Implementation of Lightweight Hash
Functions on GPU and Quantum Computers
for IoT Applications
WAI-KONG LEE 1, (Member, IEEE), KYUNGBAE JANG2,
GYEONGJU SONG2, (Student Member, IEEE), HYUNJI KIM2, (Graduate Student Member, IEEE),
SEONG OUN HWANG 1, (Senior Member, IEEE), AND HWAJEONG SEO 2
1Department of Computer Engineering, Gachon University, Seongnam 13120, South Korea
2Department of IT Engineering, Hansung University, Seoul 02876, South Korea

Corresponding author: Hwajeong Seo (hwajeong84@gmail.com)

The work of Wai-Kong Lee was supported by the Brain Pool Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science and Information & Communications Technology (ICT) (2019H1D3A1A01102607. 30%). The work of
Seongoun Hwang was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT)
(2020R1A2B5B01002145, 20%). The work of Kyungbae Jang, Gyeongju Song, and Hyunji Kim was supported in part by the Institute for
Information and Communications Technology Planning and Evaluation (IITP) Grant through the Korea Government (MSIT)
(<Q|Crypton>, Study on Quantum Security Evaluation of Cryptography based on Computational Quantum Complexity) under Grant
2019-0-00033 (20%); and in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant
through the Korea Government (MSIT) [Development of Fast Design and Implementation of Cryptographic Algorithms based on Graphics
Processing Unit (GPU)/Application-Specific Integrated Circuit (ASIC)] under Grant 2021-0-00540 (20%). The work of Hwajeong Seo was
financially supported by Hansung University (10%).

ABSTRACT Secure communication is important for Internet of Things (IoT) applications, to avoid cyber-
security attacks. One of the key security aspects is data integrity, which can be protected by employ-
ing cryptographic hash functions. Recently, US National Institute of Standards and Technology (NIST)
announced a competition to standardize lightweight hash functions, which can be used in IoT applications.
IoT communication involves various hardware platforms, from low-end microcontrollers to high-end cloud
servers with GPU accelerators. Since many sensor nodes are connected to the gateway devices and cloud
servers, performing high throughput integrity check is important to secure IoT applications. However, this is a
time consuming task even for high-end servers, whichmay affect the response time in IoT systems.Moreover,
no prior work had evaluated the performance of NIST candidates on contemporary processors like GPU and
quantum computers. In this study, we showed that with carefully crafted implementation techniques, all
the finalist hash function candidates in the NIST standardization competition can achieve high throughput
(up-to 1,000 Gbps) on a RTX 3080 GPU. This research output can be used by IoT gateway devices and cloud
servers to perform data integrity checks at high speed, thus ensuring a timely response. In addition, this is
also the first study that showcase the implementation of NIST lightweight hash functions on a quantum
computer (ProjectQ). Besides securing the communication in IoT, these efficient implementations on a GPU
and quantum computer can be used to evaluate the strength of respective hash functions against brute-force
attack.

INDEX TERMS Graphics processing units (GPU), hash function, lightweight cryptography, quantum
computer.

I. INTRODUCTION
Internet of Things (IoT) is an emerging field of technology
that has inspiredmany innovative applications in recent years.

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdullah Iliyasu .

Combined with other important technologies like Artificial
Intelligence (AI) and cloud computing, IoT involves various
smart applications that can greatly enhance the quality of our
lives. For instance, smart homes [1], smart laboratories [2],
and smart cities [3] will become possible with advances in IoT
and other relevant technologies. Since many IoT applications

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 59661

https://orcid.org/0000-0003-4659-8979
https://orcid.org/0000-0003-4240-6255
https://orcid.org/0000-0003-0069-9061
https://orcid.org/0000-0002-4964-6609

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

involve the use of sensitive data, protecting communications
in IoT is of utmost importance [4]. One of the important
criteria used to secure IoT communication is the ability to
check the integrity of the sensor data being communicated.
This can be achieved through the use of cryptographic hash
functions like SHA-2 and SHA-3. In 2018, the National
Institute of Standards and Technology (NIST) of the United
States (US) initiated a worldwide competition [5] to stan-
dardize Light-Weight Cryptography (LWC), targeting appli-
cations in constrained systems. The LWC selection criteria
included requirements for small memory and fast computa-
tion, which is useful for IoT applications. This standardiza-
tion is currently in its final round [6]. Four hash functions and
nine authenticated encryption with associated data (AEAD)
algorithms are being reviewed.

Communication within an IoT system is usually heavy
because of the large number of connected sensor nodes, and
the complex communication protocols between sensor nodes,
gateway devices, and cloud server. In addition, IoT communi-
cation involves various platforms, including low-end micro-
controllers, mid-end gateway devices, and high-end cloud
servers. Considering these factors, it is critical that the hash
functions be efficiently implemented on various platforms to
provide integrity checks, so that they do not severely affect
the system response time. Although a LWC can achieve good
performance in constrained platforms [7], its performance
in mid-end gateway devices and high-end cloud servers is
unknown. In this paper, we show that with carefully designed
implementation techniques, all of the NIST finalist candi-
dates (lightweight hash functions) can achieve very high
throughput.

Brute-force attacks are a common way of evaluating the
strength of a hash function without exploiting a weakness in
the underlying algorithm. This process is important to better
understand the security of the selected hash functions and
protect IoT systems in the future. To achieve this, we present
the first implementation of the NIST finalist hash functions
in a quantum computer, which is a contemporary computing
system that is potentially faster than many existing computer
systems. Estimating the cost of quantum brute-force attacks
on hash functions or block ciphers in response to the upcom-
ing post-quantum era is an active research field [8]–[15]. The
cost of an attack depends on how efficiently the quantum
circuit for the target algorithm is implemented. Keeping this
in mind, in this work, we implement efficient quantum cir-
cuits for the selected NIST hash functions and estimate the
quantum resources required for the attack.

The proposed efficient implementation techniques can be
used in two specific environments. Firstly, we showed that
by using our GPU implementation techniques, we can help
to secure the high throughput IoT communication. Secondly,
we also demonstrate how to efficiently utilize quantum com-
puters to estimate the security level of the hash functions
that are used in IoT applications. These hash functions are
evaluated according to the security strength estimation for
symmetric key cryptography [16] suggested by NIST.

FIGURE 1. A typical IoT communication architecture.

Contributions of this paper are summarized below:

1) The first efficient implementations of PHOTON-
Beetle, ASCON, Xoodyak, and SPARKLE on GPU
platforms are presented in this paper. Proposed tech-
niques include table-based implementation with warp
shuffle instruction and various memory optimization
techniques on GPU platforms. The performance of
these implementations was evaluated on a high-end
GPU platform (RTX 3080). The hash throughput of
proposed implementation was up-to 1,000 Gbps, which
is fast enough to handle the massive traffic of an IoT
system.

2) We report the first implementation of PHOTON-Beetle,
ASCON, Xoodyak, and SPARKLE hash functions on
quantum computers. Hash functions were optimized
taking into account the reversible computing envi-
ronment in quantum computers, which is different
from classical computers. The implementation was per-
formed on ProjectQ, a quantum programming tool pro-
vided by ETH Zurich and IBM [17].

3) For the purpose of reproduction, we share the
GPU implementation codes in the public domain
at: https://github.com/benlwk/lwcnist-finalists and the
quantum circuit implementation codes in the pub-
lic domain at: https://github.com/starj1023/lwcnist-
finalists-QC

II. BACKGROUND
This section describes how cryptographic hash functions are
used to check data integrity in IoT communication. It also
provides an overview of the selected hash functions and
implementation platforms.

A. SECURE COMMUNICATION IN IoT APPLICATIONS
Referring to Figure 1, an IoT system consists of three com-
municating parties: sensor nodes, gateway device, and cloud

59662 VOLUME 10, 2022

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

server. Sensor nodes are usually placed ubiquitously to collect
important sensor data. Because of this requirement, sensor
nodes are designed with low power microcontrollers and
powered by battery. Gateway devices are placed at a strategic
location to obtain the IoT data from sensor nodes. These
gateway devices need to handle connections from a lot of
sensor nodes, so they are usually implemented with a more
powerful processor and connected to a continuous power
source. The communication between gateway device and
sensor nodes utilizes wireless technology, like Bluetooth Low
Energy (BLE) or Zigbee. In other words, the sensor nodes
are usually not directly connected to the Internet. On the
other hand, the cloud server communicates with the gateway
devices through an internet connection, which is usually pro-
tected through TLS protocol.

Data integrity is important for security because it ensures
the collected sensor data is not maliciously modified during
the communication process, from sensor nodes to the cloud
server. With the use of a cryptographic hash function, any
malicious modification of the communicated sensor data can
be easily detected. This allows us to verify the integrity of
the sensor data on the gateway or server side, which greatly
strengthens the security of IoT communication. On top of
that, the hash function is also used to construct a mutual
authentication protocol [18] or Hash-based Message Authen-
tication Code (HMAC) to ensure confidentiality and authen-
ticity. The role of a hash-based signature in IoT systems was
also investigated in a prior work [19].

Although hash functions are generally considered
lightweight, efficient implementation is still important
because of the massive amount of traffic in IoT communi-
cation. For instance, the gateway device may need to perform
a data integrity check (i.e., recomputing the hash value) on
all sensor data it receives. This can impose a huge burden on
the gateway device and potentially degrade its response time,
causing unwanted communication delay. Note that the gate-
way device may still need to perform other computations like
data summarizing and edge computing; performing integrity
check on many sensor nodes on a regular basis is definitely
a demanding task. To mitigate this potential performance
bottleneck, we can offload the data integrity check to an
accelerator (e.g., GPU), following the strategy proposed by
Chang et al. [20]. Hence, efficient implementation of hash
functions on GPU platforms is crucial to secure future IoT
communication systems, especially applications that have
a large number of sensor nodes. Besides that, the security
level of hash functions is usually allows estimated based
on classical computers. Due to the emergence of quantum
computers, their security level must be re-examined against
this new processor architecture.

B. LIGHTWEIGHT HASH FUNCTIONS
In March 2021, NIST announced that four hash func-
tion candidates (PHOTON-Beetle, Ascon, Xoodyak, and
Sparkle) had successfully advanced into the final round.
Another five AEAD candidates (Elephant, GIFT-COFB,

TABLE 1. Notations of logical operations.

TABLE 2. The PHOTON S-box.

Grain128-AEAD, ISAP, Romulus, and TinyJambu) also
advanced into the final round. Note that PHOTON-Beetle,
Ascon, and Sparkle can also be configured to operate as
AEAD. This sub-section provides an overview of the four
finalist hash functions that were selected for implementation
in the present study. More detailed descriptions can be found
in the respective specifications submitted to NIST for stan-
dardization [21]–[24]. Notations used to describe operations
in these four hash functions are presented in Table 1.

PHOTON-Beetle [21] uses the PHOTON permutation
function and sponge-based mode Beetle to construct the hash
function. The main computation lies on the PHOTON permu-
tation function, which is described in Algorithm 1. PHOTON
permutation makes use of a 4-bit S-Box described in Table 2.

Algorithm 1 PHOTON Permutation Function
1: X[64] F 512-bit state represented in 8× 8 bytes
2: RC[12]←{1,3,7,14,13,11,6,12,9,2,5,10}
3: IC[8]←{0,1,3,7,15,14,12,8}
4: for i = 0 to 7 do F AddConstant
5: X[i,0] ← X[i,0] ⊕ RC[k] ⊕ IC[i];
6: end for
7: for i = 0 to 7, j = 0 to 7 do F SubCells
8: X[i,j] ← S(X[i,j]);
9: end for
10: for i = 0 to 7, j = 0 to 7 do F ShiftRows
11: X[i,j] ← X[i,(j+i)%8];
12: end for
13: for i = 0 to 7, j = 0 to 7 do FMixColumnSerial
14: M← Serial [2,4,2,11,2,8,5,6]
15: X← M8

� X;
16: end for

Ascon [22] consists of authenticated ciphers (Ascon-128
and Ascon-128a), a hash function (Ascon-Hash, Ascon-
XOF), and a new variant Ascon-80pq with increased resis-
tance against quantum key-search [25]. The Ascon design
is based on a substitution-permutation network (SPN) that
makes use of the 5-bit S-Box described in Table 3, and a linear

VOLUME 10, 2022 59663

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

TABLE 3. The Ascon S-box.

layer explained in Equation (1):

x0←
∑

(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1←
∑

(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2←
∑

(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3←
∑

(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4←
∑

(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41) (1)

Xoodyak [23] make use of the Xoodoo permutation, which
was inspired by the Keccak-p permutation function. The
Xoodoo permutation consists of five simple steps, illustrated
in Algorithm 2. Xoodyak can be used as a hash function or
extendable output function (XOF), but not as AEAD.

Algorithm 2 Xoodoo Permutation Function
1: A[48] F 384-bit state represented in 48 bytes
2: Ci F Round constant at round i
//The sequence of steps is as follow:
3: θ :

4: P← A0 + A1 + A2
5: E ← P≪ (1, 5)+ P≪ (1, 14)
6: Ay← Ay + E for y ∈ {0, 1, 2}
7: ρwest :

8: A1← A1 ≪ (1, 0)
9: P← A2 ≪ (0, 11)

10: ι :

11: A0← A0 + Ci
12: χ :

13: B0← Ā1 · A2
14: B1← Ā2 · A0
15: B2← Ā0 · A1
16: Ay← Āy + Ay for y ∈ {0, 1, 2}
17: ρeast :

18: A1← A1 ≪ (0, 1)
19: A2← A2 ≪ (2, 8)

SPARKLE [24] is an SPN based cryptographic primitive
that can be used for authenticated encryption and hashing.
The Sparkle permutation function consists of an Alzette
ARX-box and a linear diffusion layer. The Alzette ARX-box,
described in Algorithm 4, is a Feistel-like 64-bit block cipher,
to provide quick diffusion.

Algorithm 3 Alzette ARX-Box in the Sparkle Permutation
Function
1: x[8] F 256-bit state represented in eight 32-bit words
2: c F Round constant
3: x ← x + (y≫ 31)
4: y← y⊕ (x ≫ 24)
5: x ← x ⊕ c
6: x ← x + (y≫ 17)
7: y← y⊕ (x ≫ 17)
8: x ← x ⊕ c
9: x ← x + (y≫ 0)
10: y← y⊕ (x ≫ 31)
11: x ← x ⊕ c
12: x ← x + (y≫ 24)
13: y← y⊕ (x ≫ 16)
14: x ← x ⊕ c

Algorithm 4 Linear Diffusion Layer L6(x) in the Sparkle
Permutation Function
1: t ← y0 ⊕ y1 ⊕ y2
2: t ← t ⊕ (t ≪ 16)) ≪ 16)
3: (x3, x4, x5)← (x3 ⊕ x0 ⊕ t, x4 ⊕ x1 ⊕ t, x5 ⊕ x2 ⊕ t)
4: (x0, x1, x2, x3, x4, x5)← (x4, x5, x3, x0, x1, x2)

C. OVERVIEW OF THE GPU ARCHITECTURE
A GPU is a massively parallel architecture consisting of
hundreds to thousands of cores. To achieve high throughput,
every core is assigned the same instruction, but operates on a
different piece of data. This is essentially a Single Instruc-
tion Multiple Data (SIMD) parallel computing paradigm.
The GPU has a deep memory architecture that needs to be
carefully used in order to achieve high performance. The
DRAM is the global memory in the GPU. It tends to be large
in size but very slow in access speed. Shared memory is a
user-managed cache that can be used to cache temporary data
or look-up table; it is faster than global memory but small
in size (e.g., 96KB). The register is the fastest memory in a
GPU, but it is limited to thread-level access and small in size
(64K registers per streaming-multiprocessor). To exchange
data across different threads, we need to rely on shared mem-
ory or warp shuffle instructions. A more detail explanation
of the GPU architecture and its programming model can be
found in [26].

D. QUANTUM COMPUTERS FOR BRUTE-FORCE ATTACK
Pre-image attack on hash functions involves finding a mes-
sage that outputs a specific hash value. Pre-image resistance
indicates that it is difficult to find a pre-image x for a given y
in the hash function h(x) = y. Grover search algorithm is
a quantum algorithm that is optimal for pre-image attacks
on hash functions [27]. Compared to the pre-image attack,
which requires 2n searches (worst case) on a classic com-
puter, Grover pre-image attack finds pre-image with a high

59664 VOLUME 10, 2022

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

probability with only 2
n
2 searches. The steps for Grover

pre-image attack are as follows.

1) n-qubit message is prepared in superposition state | ψ〉
using Hadamard gates. This ensures that all qubits have
the same amplitude.

| ψ〉 = H⊗n | 0〉⊗n =
(
| 0〉+ | 1〉
√
2

)
=

1

2
n
2

2n−1∑
x=0

| x〉

(2)

2) A hash function implemented as a quantum circuit is
located in oracle f (x) and is defined as follows. Oracle
operator Uf turns the solution (i.e., pre-image) into a
negative sign. Since (−1)1 is −1, the sign becomes
negative only when f (x) = 1 and applies to all states.

f (x) =

{
1 if h(x) = y
0 if h(x) 6= y

(3)

Uf (| ψ〉 | −〉) =
1

2n/2

2n−1∑
x=0

(−1)f (x) | x〉 | −〉 (4)

3) The probability is increased by amplifying the ampli-
tude of the negative sign state in the diffusion operator.

Grover algorithm repeats steps 2 and 3 to increase the
probability of measuring a solution. The optimal number
of Grover iterations is bπ4 2

n
2 c (about 2

n
2) [28]. That is,

the classical pre-image attack which requires 2n searches is
reduced to 2

n
2 searches by using Grover search algorithm.

What is important in this attack is to efficiently implement the
hash function h(x) as a quantum circuit. Since the diffusion
operator has a typical structure, there is no special technique
to implement.

The advent of large-scale quantum computers proved to
be a threat to the cryptographic community, as it is one of
the best cryptanalysis tools available. Cryptanalysis, which
has been performed on classical computers so far, needs to
be performed on quantum computers as well in order to
provide sufficient confidence to the underlying hash func-
tions. This is evident from the effort of NIST in estimat-
ing the post-quantum security strength according to the
cost of applying the Grover algorithm for symmetric key
cryptography [16].

E. QUANTUM GATES
Quantum computing is reversible for all changes except mea-
surement. Reversible represents that the initial state must be
re-produced using only the output state. There are quantum
gates with reversible properties that can replace classical
gates. Figure 2 shows representative quantum gates used in
quantum computing.

1) NOT / X gate: NOT(x) = x, This inverts the input qubit.
2) CNOT gate: CNOT(x, y) = (x, x⊕y), One of two qubits

acts as a control qubit. If the control qubit x is set to 1,
y is inverted.

FIGURE 2. Quantum gates.

3) SWAP gate: SWAP(x, y) = (y, x), This changes the state
of two qubits x, y.

4) CCNOT / Toffoli gate: Toffoli(x, y, z) = (x, y, x · y⊕ z),
Two control qubits are used. When both control qubits
x and y are 1, z is inverted.

III. DEVELOPMENT OF IMPLEMENTATION TECHNIQUES
ON GPU
This section describes the optimization techniques developed
to implement the selected hash functions in the GPU. Note
that in order to achieve high throughput, we adopt a coarse
grain parallel method, whereinmany parallel threads are initi-
ated and each thread computes one hash value independently.

A. PHOTON-BEETLE
The PHOTON permutation function (Algorithm 1) oper-
ates in a 256-bit state organized in an 8-bit array (X)
with 8 × 8 dimension. The SubCells, ShiftRows and Mix-
ColumnSerial operations can be combined and pre-computed
in a table, which greatly improves implementation perfor-
mance. In PHOTON-beetle, optimizing the access to this
pre-computed table is the key to achieving high throughput
performance in GPU. Algorithm 5 describes the PHOTON
permutation function implemented with the pre-computed
table.

The pre-computed table in the PHOTONpermutation func-
tion only consumes 128 32-bit words, so it can be cached
in the shared memory for faster access speed. A closer look
into Algorithm 5 reveals that the access pattern to Table is
influenced by the state in PHOTON (X, line 9). Since the
value in state X is random, the access to Table is also random.
If Table is stored in shared memory, the access pattern is very
likely to experience bank conflict, which is not an optimal
solution.

To improve the performance and avoid bank conflicts,
we propose another technique to store Table in registers and
access it through warp shuffle instruction, which is illustrated
in Algorithm 6. In this proposed technique, each thread in
a warp (32 threads) stores four values from Table into four
registers (tb0, tb1, tb2, and tb3), so that the 128 values from
Table are equally distributed into 32 threads. To access the
values from Table, we can read one of the registers (tb0, tb1,
tb2, or tb3), which is stored in one of the 32 threads.

VOLUME 10, 2022 59665

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

Algorithm 5 PHOTON Permutation Function With
Pre-Computed Table
1: X[64] F 256-bit state represented in 8× 8 bytes
2: RC[12]←{1,3,7,14,13,11,6,12,9,2,5,10}
3: IC[8]←{0,1,3,7,15,14,12,8}
4: for i = 0 to 7 do F AddConstant
5: X[i,0] ← X[i,0] ⊕ RC[k] ⊕ IC[i];
6: end for
7: for i = 0 to 7 do
8: v← 0;
9: for j = 0 to 7 do F Use Pre-computed table
10: v← v ⊕ Table[j*16 + X(j,(j+i)%8)]
11: end for
12: for j = 1 to 8 do
13: X(8 - j, i)← v · (1� 4)− 1
14: v← v� 4;
15: end for
16: end for

Algorithm 6 Snippets of Table Implementation (line 8 - 10 in
Algorithm 5) Using Warp Shuffle

/ / t i d i s t h e t h r e a d ID . Each t h r e a d
/ / s t o r e s f o u r v a l u e s from Tab le
t b0 = Tab le [t i d
t b1 = Tab le [t i d
t b2 = Tab le [t i d
t b3 = Tab le [t i d

/ / u n r o l l e d r
f o r (c = 0 ; c < D; c ++){ / / f o r a l l c o l .

v = 0 ;
/ / R e t r i e v e t h e v a l u e s i n row−wise
v ^= _ _ s h f l (tb0 , X[0] [(0 + c)
v ^= _ _ s h f l (tb0 , 16 + X[1] [(1 + c)
v ^= _ _ s h f l (tb1 , X[2] [(2 + c)
v ^= _ _ s h f l (tb1 , 16 + X[3] [(3 + c)
v ^= _ _ s h f l (tb2 , X[4] [(4 + c)
v ^= _ _ s h f l (tb2 , 16 + X[5] [(5 + c)
v ^= _ _ s h f l (tb3 , X[6] [(6 + c)
v ^= _ _ s h f l (tb3 , 16 + X[7] [(7 + c)
\ l d o t s

}

}

For instance, __shfl(tb0,X [0][(0+c)%D]) allows us to access
tb0 stored in the thread indexed by X [0][(0 + c)%D]. The
proposed warp shuffle version can eliminate the adverse
effect of bank conflict and improves the throughput of the
PHOTON-beetle hash function. In this studywe implemented
the reference version, shared memory version, and the warp
shuffle version to compare their performance.

B. ASCON
The Ascon permutation function operates in a 320-bit state,
represented in a 5×64-bit array. The S-box in Ascon can be
implemented in a bit-sliced manner, which is very efficient

in both high-end processors and constrained devices.
Algorithm 7 shows the implementation of one round of Ascon
permutation, which is repeated for 12 rounds. We proposed
to utilize the bit-sliced approach when implementing the
S-box (lines 8 - 12) without using any shared memory, as was
the case in PHOTON-Beetle. The linear layer in the Ascon
permutation function can also be implemented using simple
logical and shift operations (lines 17 - 21). Note that the
NVIDIA GPU does not come with a native rotate instruction.
Rotate operations were replaced with two shifts and one XOR
instruction.

Algorithm 7 Implementation of Ascon Permutation Function
1: S[5] F 320-bit state represented in five 64-bit words
2: T[5] F 320-bit temporary state
3: C F Round constant
4: S[2]← S[2] ⊕ C F Add round constant
5: S[0]← S[0] ⊕ S[4]
6: S[4]← S[4] ⊕ S[3]
7: S[2]← S[2] ⊕ S[1]

// Ascon S-Box starts
8: T[0]← S[0] ⊕ ¯S[1] · S[2]
9: T[1]← S[1] ⊕ ¯S[2] · S[3]

10: T[2]← S[2] ⊕ ¯S[3] · S[4]
11: T[3]← S[3] ⊕ ¯S[4] · S[0]
12: T[4]← S[4] ⊕ ¯S[0] · S[1]

// Ascon S-Box ends
13: T[1]← T[1] ⊕ T[0]
14: T[0]← T[0] ⊕ T[4]
15: T[3]← T[3] ⊕ T[2]
16: T[2]← T[2] ⊕ T[2]

// Linear diffusion layer starts
17: S[0]← T[0] ⊕ (T[0]≫ 19)⊕ (T[0]≫ 28)
18: S[1]← T[1] ⊕ (T[1]≫ 61)⊕ (T[1]≫ 39)
19: S[2]← T[2] ⊕ (T[2]≫ 1)⊕ (T[2]≫ 6)
20: S[3]← T[3] ⊕ (T[3]≫ 10)⊕ (T[3]≫ 17)
21: S[4]← T[4] ⊕ (T[4]≫ 7)⊕ (T[4]≫ 41)
//Linear diffusion layer ends

C. XOODYAK
Xoodyak uses a permutation (Xoodoo) similar to the Keccak
hash function. Unlike the other three selected hash functions,
Xoodoo does not have any S-box or ARX-box layer. In our
GPU implementation, the round constants are used by all
threads, so they were stored in constant memory. Unlike the
pre-computed Table in PHOTO-Beetle at each round, these
Xoodoo round constants are only read once and consumed
by every thread, so it is highly possible to be cached at the L1
cache. Hence, we did not store them in the shared memory,
as it wouldn’t have provided any performance gain. Our GPU
implementation of the Xoodoo permutation function follows
Algorithm 2 closely. We do not repeat it here.

59666 VOLUME 10, 2022

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

FIGURE 3. Quantum circuit for PHOTON S-box.

D. SPARKLE
The SPARKLE permutation consists of an ARX-box layer
followed by a linear layer. The Alzette ARX-box in
SPARKLE can be executed efficiently using only logical
operations (see Algorithm 4. Due to the same reason in
Xoodyak, the round constants in SPARKLE are stored in
constant memory instead of shared memory or registers. The
implementation of the SPARKLE-256 permutation function
is illustrated in Algorithm 8.

IV. DEVELOPMENT OF IMPLEMENTATION TECHNIQUES
ON QUANTUM COMPUTER
A. PHOTON-BEETLE
The PHOTON permutation function (Algorithm 1) oper-
ates in a 256-qubit state organized in a 4-qubit array with
8 × 8 dimensions. The PHOTON permutation function,
which consists of AddConstant, SubCells, ShiftRows, and
MixColumnSerial, was implemented as a quantum circuit as
follows.

In AddConstant, the predetermined constants RC and IC
are XORed with each other. In this case, it can be imple-
mented using only NOT gates, and the overlapping parts are
omitted. For example, when k = 1 and i = 1, in X [1, 0]⊕
RC[1] ⊕ IC[1] (i.e. X [1, 0] ⊕ 3 ⊕ 1), two NOT gates are
performed on the first qubit of X [1, 0], so it is omitted
and the NOT gate is performed only on the second qubit
of X [1, 0]. Subcells apply the 4-qubit S-box × 64 to the
256-qubit state. When implementing an S-box in classical
computing, a lookup table is a common choice. However,
in quantum computing, this approach is quite inefficient.
Therefore, a quantum circuit that computes the output for the
input of the SBox should be implemented. Quantum circuit
implementations for SBox sometimes incur additional qubits
or increase circuit cost. To solve this, we use the LIGHTER-R
tool [29] to convert Table 2 into ANF (Algebraic Normal
Form). The LIGHTER-R can find reversible implementations
of the 4-bit SBox. The implementation works in place, thus
no additional qubits are allocated. Since the most cost in the
PHOTON permutation function is used in SBox, efficient
implementation of SBox is important. The PHOTON S-box
quantum circuit of ANF is shown in Figure 3. LIGHTER-R
is described in detail in [29].

In ShiftRow, the arrangement of qubits is changed, which
can only be done with Swap gates. For convenience we used
Swap gates in the implementation, but we did not count
them as quantum resources. This is because Swap gates can
be replaced by relabeling qubits [30]–[32] (called a logical
swap). Algorithm 9 describes Shiftrows implemented as a
quantum circuit. SWAP4 means a Swap operation in units of
4 qubits.

Algorithm 8 Implementation of SPARKLE-256 Permutation
Function
1: S[5] F 256-bit state represented in five 64-bit words
2: rc, tx, ty, x0, y0 F Temporary variables
3: C F Round constant
4: S[1]← S[1] ⊕ Ci%8 F Add round constant at i-th round
5: S[3]← S[3] ⊕ i

// Ascon S-Box starts
6: for j = 0to11 do
7: rc← C[j� 1]
8: S[j]← S[j] + S[j+1]≫ 31
9: S[j+1]← S[j] ⊕ S[j+1]≫ 24

10: S[j]← S[j] ⊕ rc
11: S[j]← S[j] + S[j+1]≫ 17
12: S[j+1]← S[j] ⊕ S[j+1]≫ 17
13: S[j]← S[j] ⊕ rc
14: S[j]← S[j] + S[j+1]
15: S[j+1]← S[j] ⊕ S[j+1]≫ 31
16: S[j]← S[j] ⊕ rc
17: S[j]← S[j] + S[j+1]≫ 24
18: S[j+1]← S[j] ⊕ S[j+1]≫ 16
19: S[j]← S[j] ⊕ rc
20: end for
// Ascon S-Box ends

// Linear layer starts
21: tx = x0 = S[0]
22: ty = y0 = S[1]
23: for j = 2 to 6 step 2 do
24: tx← tx ⊕ S[j]
25: ty← ty ⊕ S[j+1]
26: end for
27: tx← (tx ≫ 16) ⊕ (tx · 0xFFFF)
28: ty← (ty ≫ 16) ⊕ (ty · 0xFFFF)
29: for j = 2 to 6 step 2 do
30: S[j-2] = S[j+6]⊕ S[j]⊕ ty
31: S[j+6] = S[j]
32: S[j-1] = S[j+7] ⊕ S[j+1]⊕ tx
33: S[j+7] = S[j+1]
34: end for
35: S[4] = S[6] ⊕ x0 ⊕ ty
36: S[6] = x0
37: S[5] = S[7] ⊕ y0 ⊕ tx
38: S[7] = y0
//Linear layer ends

In MixColumnSerial, the matrix multiplication in GF(24)
is used. For the general multiplication, Tofffoli gates replace
AND operations. Since constant multiplications are used
in this matrix multiplication, only CNOT gates are used,
where the gates have a lower cost than the Tofffoli gates.
We already know the modulus x4 + x + 1, thus we can
implement the multiplication circuit for each constant using
only CNOT gates [33]. When the constant C = 2, C · X

VOLUME 10, 2022 59667

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

Algorithm 9 Quantum Circuit for ShiftRows
1: for i = 1 to 7 do
2: for j = 0 to i− 1 do
3: for k = 0 to 7 do
4: SWAP4(X [i, k],X [i, k + 1])
5: end for
6: end for
7: end for

FIGURE 4. C · X mod x4 + x + 1 (C = 2).

FIGURE 5. Ascon S-box in ANF.

mod x4 + x + 1 is shown in Figure 4. Since X has to be
used continuously, the product is stored in the newly allocated
qubits r0, r1, r2, r3. We prepare modular multiplication quan-
tum circuits for C(0 ∼ 15) and used them according to the
value of C in the matrix multiplication of MixColumnSerial.

B. ASCON
The Ascon permutation function consists of AddConstant,
a Substitution layer (Table 3), and a Linear diffusion layer
(Equation 1). AddConstant adds a round constant to the state
and is implemented using only NOT gates, as in PHOTON.
For the Substitution layer, it is inefficient to implement an
S-box in the form of Table 3 as a quantum circuit. In PHO-
TON, we converted Table 2 to ANF using LIGHTER-R, but
since Ascon uses 5-bit S-box, LIGHTER-R (only suitable for
a 4-bit S-box) could not be applied. Therefore, we imple-
mented the S-box in ANF (Figure 5) as specified in the Ascon
paper [22]. The notation � indicates an AND operation.

The Substitution layer and Linear diffusion layer operate
in a 320-qubit state, represented in a 5 × 64-qubit array
xi(i=0,...,4). When computing x0 in the S-box, we need the
final x4 (yellow highlight in Figure 5). It is efficient to com-
pute in the order x4, x0, x1, x2, x3. Generating the final x4, x0,
x1 is not a problem. However, in order to obtain x2 and x3,

the values of x4 and x0 before the S-box are required
(red highlight in Figure 5). One way to solve this is to
store the values (x4 and x0 before S-box) in temp qubits.
However, we replaced it with additional qubits allocated
from the Linear diffusion layer. In the Linear diffusion layer,
to compute x0, values of x0 ≫ 19 and x0 ≫ 28 are
needed, simultaneously. If the first qubit x0[0] is updated
to x0[0] ⊕ x0[19] ⊕ x0[28], and the original x0[0] value
disappears. Since x0[45] and x0[36] cannot be computed, new
qubits are allocated to store the updated value. To reduce
the number of qubits, we present an S-box quantum circuit
using newly allocated qubits in Linear diffusion layer. This
approach allows the substitution layer and the linear diffusion
layer to share temporary qubits. As a result, the use of qubits
is minimized by allocating temporary qubits that should be
allocated to the substitution layer and the linear diffusion
layer only to the linear diffusion layer. We design an efficient
S-box quantum circuit by utilizing the reverse operation and
taking into account the Linear diffusion layer (Equation 1).
Figure 6 shows the structure of the proposed S-box quantum
circuit. In this quantum circuit, 1-qubit of each register oper-
ates the S-box and transfers the value to the temp qubit of the
Linear diffusion layer using CNOT gates. Then, to compute
x2, x3, a reverse operation (except for LD) is performed to
obtain x4, x0 before S-box. Finally, we computed x2 and
x3 without temp qubits using x4 and x0 before S-box.

C. XOODYAK
The Xoodoo permutation function operates in a 384-qubit
state, represented in a 3×128-qubit array (A0,A1,A2), and
each 128-qubit is arranged in a 4×32 array. Algorithm 10
describes each step of the Xoodoo permutation implemented
as a quantum circuit.

For the mixing layer θ , we need to allocate a new 128-qubit
P for P = A0 + A1 + A2. Then XOR A0,A1,A2 to P using
3 × CNOT128. CNOT128 means CNOT gates operating in
units of 128 qubits. In ≪ (a, b) of θ , a means a rotation
in 32-bit units in a 128-bit state, and b means a rotation in
1-bit units in a 32-bit state. We used RotateCNOT to XOR P
to A0,A1,A2 based on a logical swap for P. RotateCNOT is
shown in Algorithm 11. In this way, the rotation operation can
be performed without using Swap gates. In ρwest and ρeast ,
the rotation operations can be replaced with a logical swap as
in RotateCNOT, but for the convenience of implementation,
we used Swap gates. ι, which adds the constant Ci to A0,
is performed using only NOT gates in the same way as Add-
Constant in the PHOTON permutation function. Most of the
quantum gates and qubits are used for the non-linear layer χ .
Toffoli gates (high cost) were used to replace AND operations
on A0,A1,A2 and the results were stored in newly allocated
B0,B1 and B2. However, we reduced the use of qubits by
avoiding allocation for B2. After computing B0 = Ā1 · A2,
B1 = Ā2 · A0, the reverse operations return the values of
A1 and A2. Then A2 = A2+Ā0 ·A1 (i.e., replaceA2 = A2+B2)
avoids allocating qubits forB2.WhenA2 is completed,B0 and
B1 can be XORed to A0 and A1 with CNOT128. The reverse

59668 VOLUME 10, 2022

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

FIGURE 6. Ascon S-box quantum circuit (LD : performing Linear diffusion of Equation 1).

operation for CNOT gates does not have a large overhead in
the gate and depth of the quantum circuit. We save 128-qubit
every round in permutation with less overhead for gate and
depth. Lastly, ρeast is performed using Swap gates.

D. SPARKLE
This section only describes the Sparkle384 permutation
implementation technique. This same technique works on
Sparkle512. Sparkle permutations consist of an ARX-box
layer followed by a linear layer. For additions in ARX-box,
a quantum adder is required. For this, we used an improved
quantum ripple-carry adder, called the CDKM adder [34].
The ripple-carry adder stores the result of the addition ofA+B
in B, keeps A as it is (i.e. ADD(A,B, r) = (A,A+B, r)). The
ripple-carry adder allocates two carry qubit (r) for addition.
However, since the ARX-box uses modular addition ignoring
the highest carry, we only allocated a single qubit for r0.
Since this r0 is initialized to 0 after the addition, it can be
reused in subsequent additions. However, we design parallel
addition by using a few more qubits, which greatly reduces
the depth. In a round, Sparkle384 operates ARX-box 6 times
and Sparkle512 operates 8 times. Since these ARX-boxes are
independent of each other, parallel addition is possible. For
this, we do not use only r0, but r0∼5 for SPARKLE-384 and
r0∼7 for Sparkle512. Implementation details can be found in
our source code.

Algorithm 12 describes an ARX-box implemented as a
quantum circuit. For additions and XORs using rotated input
(e.g. x + (y ≫ 31), y ⊕ (x ≫ 24)), resources for rotation
were not used by using RotateCNOT and RotateADD based
on logical swap. RotateCNOT32 and RotateADD32, which
are based on logical swaps and operate in 32-qubit units, are
similar to RotateCNOT in the Xoodoo permutation, but this
can be implemented, simply. Algorithm 13 describes Rotate-
CNOT32. For RotateADD32, a CDKM adder in units of
32 qubits works. Similar to RotateXOR32, ai were relabeled
according to the rotated result (i.e., logical swaps).

In the linear layer L6(x), t for y0 ⊕ y1 ⊕ y2 was used.
In classic computing, using temp storage (t) like this is
not a problem. However, in quantum computing, the qubits
for t must be newly allocated, and since they cannot be
recycled, they must be allocated every L6(x), which is very
inefficient. We solved this by designing a quantum cir-
cuit for L6(x) as in Algorithm 14. Algorithm 14 computes

y2 = y0 ⊕ y1 ⊕ y2 (value preparation), and XORs y2 to
x3, x4 and x5 (lines 8∼19). CNOT16 and CNOT32 indi-
cate CNOT operations in units of 16 and 32 qubits. In the
last step, the value preparation is reversed to return to the
original y2. In the linear diffusion layer, L6(y) is also per-
formed on y. Since L6(y) differs from L6(x) only in operands
and the implementation technique is the same, the quantum
circuit for L6(y) is omitted.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section presents the implementation of the selected
NIST lightweight hash functions on two different platforms:
a GPU and a quantum computer. The GPU implementa-
tion was performed on a workstation equipped with an Intel
i9-10900K CPU and an RTX 3080 GPU. The quantum com-
puter implementation was performed on ProjectQ, which
enables quantum programming and simulation.

A. RESULTS OF IMPLEMENTATION ON GPU
This study focused on achieving a high throughput for all
of the hash functions implemented on the GPU. To achieve
this, all experiments were conducted by launching P blocks
in parallel, with each block consisting of 512 threads. Within
each thread, we performed one hash operation with different
lengths (MLEN) that ranged from 64 bytes to 512 bytes. This
represents the common sizes of IoT sensor data typically
found in sensor nodes that are built on constrained devices
with only a fewKB of RAM available. The throughput (Giga-
bit per second (Gbps)) was calculated as follows:

Throughput =
8× P× 512×MLEN

Timeelapsed
(5)

Figure 7 shows the throughput achieved by PHOTON-
Beetle in our GPU implementation. The shared memory
version was always slower than the proposed warp shuf-
fle version by approximately 40%. This is because in the
PHOTON round function, the shared memory used to store
the pre-computed table is accessed in a random manner,
which may introduce a lot of bank conflicts. In contrast,
the warp shuffle version stores the pre-computed table in
registers, which are not affected by any random access
pattern. Hence, the throughput of the warp shuffle ver-
sion consistently outperformed the shared memory version.
The highest throughput achieved by PHOTON-Beetle in our

VOLUME 10, 2022 59669

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

Algorithm 10 Quantum Circuit for Xoodoo Permutation
1: θ :

2: P← 128-qubit allocation
3: P← CNOT128(A0,P)
4: P← CNOT128(A1,P)
5: P← CNOT128(A2,P)
6: A0← RotateCNOT(P,A0)
7: A1← RotateCNOT(P,A1)
8: A2← RotateCNOT(P,A2)
9: ρwest :

10: SWAP32(A1[64 : 96],A1[96 : 128])
11: SWAP32(A1[32 : 64],A1[64 : 96])
12: SWAP32(A1[0 : 32],A1[32 : 64])
13: for i = 0 to 10 do
14: for j = 0 to 30 do
15: SWAP(A2[31− j],A2[30− j])
16: SWAP(A2[63− j],A2[62− j])
17: SWAP(A2[95− j],A2[94− j])
18: SWAP(A2[127− j],A2[126− j])
19: end for
20: end for
21: ι : RoundConstantXOR(A0,Ci)
22: χ :

23: B0← 128-qubit allocation
24: B1← 128-qubit allocation
25: A1← NOT128(A1)
26: B0← Toffoli128(A1,A2,B0)
27: A1← NOT128(A1) // reverse
28: A2← NOT128(A2)
29: B1← Toffoli128(A2,A0,B1)
30: A2← NOT128(A2) // reverse
31: A0← NOT128(A0)
32: A2← Toffoli128(A0,A1,A2)
33: A0← NOT128(A0) // reverse
34: A0← CNOT128(B0,A0)
35: A1← CNOT128(B1,A1)
36: ρeast :

37: for i = 0 to 30 do
38: SWAP(A1[31− i],A1[30− i])
39: SWAP(A1[63− i],A1[62− i])
40: SWAP(A1[95− i],A1[94− i])
41: SWAP(A1[127− i],A1[126− i])
42: end for
43: for i = 0 to 1 do
44: SWAP32(A2[64 : 96],A2[96 : 128])
45: SWAP32(A2[32 : 64],A2[64 : 96])
46: SWAP32(A2[0 : 32],A2[32 : 64])
47: end for
48: for i = 0 to 7 do
49: for j = 0 to 30 do
50: SWAP(A2[31− j],A2[30− j])
51: SWAP(A2[63− j],A2[62− j])
52: SWAP(A2[95− j],A2[94− j])
53: SWAP(A2[127− j],A2[126− j])
54: end for
55: end for

Algorithm 11 Quantum Circuit for RotateCNOT
1: for i = 0 to 31 do
2: //A = A+ (P≪ (1, 5))
3: A[(5+ i)%32]← CNOT(P[96+ i],A[(5+ i)%32])
4: A[(32+ ((5+ i)%32)]← CNOT(P[i],A[32+ ((5+
i)%32)]

5: A[(64 + ((5 + i)%32)]← CNOT(P[32 + i],A[64 +
((5+ i)%32)]

6: A[(96 + ((5 + i)%32)]← CNOT(P[64 + i],A[96 +
((5+ i)%32)]

7: //A = A+ (P≪ (1, 14))
8: A[(5+ i)%32]← CNOT(P[96+ i],A[(14+ i)%32])
9: A[(32+((14+ i)%32)]←CNOT(P[i],A[32+((14+
i)%32)]

10: A[(64+ ((14+ i)%32)]← CNOT(P[32+ i],A[64+
((14+ i)%32)]

11: A[(96+ ((14+ i)%32)]← CNOT(P[64+ i],A[96+
((14+ i)%32)]

12: end for

Algorithm 12 Quantum Circuit for ARX-Box in Sparkle
Permutation
1: x← RotateADD32(y, x, r0, 31)
2: y← RotateCNOT32(x, y, 24)
3: x← RoundConstantXOR(x, c)
4: x← RotateADD32(y, x, r0, 17)
5: y← RotateCNOT32(x, y, 17)
6: x← RoundConstantXOR(x, c)
7: x← ADD32(y, x, r0)
8: y← RotateCNOT32(x, y, 31)
9: x← RoundConstantXOR(x, c)

10: x← RotateADD32(y, x, r0, 24)
11: y← RotateCNOT32(x, y, 16)
12: x← RoundConstantXOR(x, c)

implementation range was between 70 Gps to 63 Gbps for
different MLEN.

Compared to PHOTON-Beetle, the other three candidates
achieved a much higher throughput. Referring to Figure 8,
Sparkle was able to achieve very high throughput across
different MLEN, ranging between 850 Gbps to 1000 Gbps.
Xoodyak and Ascon performed at a similar level, achieving
throughput that ranged between 400 Gbps to 500 Gbps. The
throughput achieved by these three candidates were an order
of magnitude higher than PHOTON-Beetle. The main reason
for the difference in performance is that PHOTON-Beetle
uses byte-wise operations, which is efficient in constrained
devices (e.g., a 8-bit microcontroller), but is not efficient in a
GPU with a 32-bit architecture. On the other hand, Sparkle,
Xoodyak and Ascon are designed based on word-level
operations (32-bit or 64-bit), which can be efficiently
implemented in a GPU. Hence, the throughput achieved
by these three candidates was much higher compared to
PHOTON-Beetle.

59670 VOLUME 10, 2022

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

Algorithm 13 Quantum Circuit for RotateCNOT32(a, b, n)
1: for i = 0 to 31 do
2: b[i]← CNOT(a[(n+ i)%32], b[i])
3: end for

Algorithm 14 Quantum Circuit for L6(x)
1: Value preparation :
2: //y2 = y0 ⊕ y1 ⊕ y2
3: y2← CNOT32(y0, y2)
4: y2← CNOT32(y1, y2)
5: //y2 = y2 ⊕ (y2 ≪ 16)
6: y2← CNOT16(y2[0 : 16], y2[16 : 32])
7: end

8: //x3 = x3 ⊕ x0 ⊕ (y2 ≪ 16)
9: x3[0 : 16]← CNOT16(y2[16 : 32], x3[0 : 16])
10: x3[16 : 32]← CNOT16(y2[0 : 16], x3[16 : 32])
11: x3← CNOT32(x0, x3)

12: //x4 = x4 ⊕ x1 ⊕ (y2 ≪ 16)
13: x4[0 : 16]← CNOT16(y2[16 : 32], x4[0 : 16])
14: x4[16 : 32]← CNOT16(y2[0 : 16], x4[16 : 32])
15: x4← CNOT32(x1, x4)

16: //x5 = x5 ⊕ x2 ⊕ (y2 ≪ 16)
17: x5[0 : 16]← CNOT16(y2[16 : 32], x5[0 : 16])
18: x5[16 : 32]← CNOT16(y2[0 : 16], x5[16 : 32])
19: x5← CNOT32(x2, x5)

20: //Back from y0 ⊕ y1 ⊕ y2 to y2
21: Reverse(Value preparation)

FIGURE 7. Throughput of PHOTON-Beetle with various message length.

B. RESULTS OF IMPLEMENTATION ON A QUANTUM
COMPUTER
A large-scale quantum computer capable of implement-
ing the entire quantum circuits proposed in this work is
still not available yet. However, simulation and analysis
can be performed using quantum programming tools. This

FIGURE 8. Throughput of Ascon, Xoodyak, and Sparkle with various
message length.

is also a common practice found in other work [8]–[11].
For our implementation, we used the quantum program-
ming tool ProjectQ. The implementation of quantum circuits
was validated using the ClassicalSimulator library
and the quantum resources used were analyzed using the
ResourceCounter library. All of the hash functions
implemented in this paper were optimized for qubits and
quantum gates in the reversible computing environment of
quantum computers. Table 4 shows the quantum resources
for the quantum circuit of hash functions. The input message
length is fixed to 256-bit (384-bit only for ESCH384). Among
the four NIST lightweight hash functions, Xoodyak uses few
quantum gates and has the lowest circuit depth. Conversely,
Sparkle uses many quantum gates and has the highest circuit
depth. This is because the quantum adder used in Sparkle
requires many quantum gates and has a high circuit depth.
One thing to note is that quantum addition uses a lot of
resources, but in this work, the depth is greatly reduced by
designing parallel addition. In terms of the number of qubits,
Sparkle can be implemented with a relatively small number
of qubits.

The quantum resources required to implement a quantum
circuit for a hash function can be utilized to evaluate resis-
tance to quantum attacks. At the current level of advancement
in quantum computers, the number of available qubits is
insufficient. So the number of qubits is related to when it can
actually work in a quantum computer. The depth represents
the start to the end of the circuit, which is related to the
execution time [35].

C. POST-QUANTUM SECURITY STRENGTH
In this section, we estimate the post-quantum security
strength of NIST lightweight hash functions using the
post-quantum security requirements presented by NIST [16].
In symmetric key cryptography, the security strength is
halved when Grover algorithm is applied. However, if the
application cost is high, the target cipher or hash function can
be evaluated to be resistant to quantum attacks. Therefore,

VOLUME 10, 2022 59671

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

TABLE 4. Quantum resources required for lightweight hash functions and
SHA3-256.

TABLE 5. Quantum resources required for lightweight hash functions and
SHA3-256 (Clifford + T).

the quantum cost required to attack the target symmetric
key cryptography is being used to evaluate the post-quantum
security strength. NIST presented the following requirements
for the security strength of post-quantum cryptosystems.

• Attacks that break the security strength of a block
cipher with a 128-bit key must require similar or more
resources than those required for an attack against a hash
function (e.g. AES-128).

• Attacks that break the security strength of a 256-bit
hash function must require similar or more resources
than those required for an attack against a hash function
(e.g. SHA-256 or SHA3-256).

NIST estimates the quantum attack cost for symmetric
key cryptography as D (total gates × total depth) [16]. For
the block cipher AES-128, NIST estimates the cost of quan-
tum attack to be 2170(D), citing Grassl’s implementation of
AES quantum circuits [8]. On the other hand, NIST did not
give an estimated cost for hash functions (only for classic
gates). Thus, we estimate the attack cost(D) for SHA3-256 [9]
following the estimation method in [16]. The attack cost
was estimated based on the quantum circuit for SHA3-256
(Table 4). For detailed analysis, we decompose the Toffoli
gate into 7 T gates + 9 Clifford gates and 3 T depth, identical
to the approach of [9]. X gates and CNOT gates are counted
as Clifford gates. Table 5 is a resource analysis at T+Clifford
level for NIST lightweight hash functions and SHA3-256.

Now we estimate the cost of Grover’s pre-image attack
(D in Section II) for NIST lightweight hash functions and

TABLE 6. Quantum resources required for quantum pre-image attacks.

SHA3-256 based on the quantum resources in Table 4.
Grover’s algorithm consists of an oracle and a diffusion
operator, but the cost of the diffusion operator is commonly
ignored when estimating the cost [8], [11], [16], [36]. This
is because the overhead for the diffusion operator is negli-
gible. We also estimate only oracle as the cost of Grover’s
algorithm.

In the Grover’s oracle, the hash function is executed twice
due to (hashing + reverse). Therefore, the resources of
Table 5 × 2 are used except for qubits. Resources using a
single multi-controlled NOT gate to compare the generated
hash value to a known hash value were omitted for simplicity.
The optimal number of Grover search iterations is bπ4 2

n
2 c.

Thus, for a 256-bit input message, the oracle is repeated
b
π
4 2

128
c times (bπ4 2

192
c for ESCH384). Finally, the resources

for the attack were estimated as Table 5×2×bπ4 2
128
c and is

shown in Table 6 (Table 5×2×bπ4 2
192
c for ESCH384). Note

that the number of qubits was not counted in D. NIST does
not consider the number of qubits in estimating the attack
cost.

It can be seen that the attack costs for the 256-bit hash func-
tions for PHOTON-Beetle, Sparkle, Xoodyak, and ASCON
(ESCH-256) are lower than for SHA3-256(1.574 · 2295),
which is the NIST security requirement. One of the ways to
meet the NIST-defined security requirements against quan-
tum computer attacks is to increase the length of the message,
a well-known countermeasure. Even if the length is doubled,
the security strength against quantum computer attacks is
halved, but the originally intended security strength can be
obtained. In addition, there are cost difficulties in performing
quantum attacks because the number of Grover iterations
increases exponentially with the length of the input message
(e.g. ESCH384 (1.538 · 2422) in Table 6). Lastly, increasing
the number of permutation functions, which occupies the
most quantum resources in NIST lightweight hash functions,
will also be one of the methods to satisfy the post-quantum
security strength in terms of cost.

VI. CONCLUSION
Conducting high throughput data integrity checks is essential
to protect communications in IoT systems. In this study,
we proposed techniques to optimize the four lightweight

59672 VOLUME 10, 2022

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

hash functions finalists in the NIST standardization com-
petition (PHOTON-Beetle, Ascon, Xoodyak and Sparkle).
All four candidates achieved high hashing throughput (70
Gbps to 1000 Gbps) on a GPU platform, which can be used
to perform high performance data integrity checks in IoT
systems. Implementing these four hash functions on a quan-
tum computer was analyzed using ProjectQ. Further, we esti-
mated the cost of a Grover pre-image attack and compared it
with NIST’s post-quantum security requirements. Our work
contributes to the analysis of hash functions by a quantum
computer. The output from this article can be used to protect
IoT communication (high throughput integrity check) as well
as analyze the vulnerabilities of these hash functions against
brute-force attack [37].

REFERENCES
[1] A. H. Sodhro, A. Gurtov, N. Zahid, S. Pirbhulal, L. Wang,

M. M. U. Rahman, M. A. Imran, and Q. H. Abbasi, ‘‘Toward convergence
of AI and IoT for energy-efficient communication in smart homes,’’ IEEE
Internet Things J., vol. 8, no. 12, pp. 9664–9671, Jun. 2021.

[2] M. Chen, Y. Liu, J. C. Tam, H. Chan, X. Li, C. Chan, and W. J. Li,
‘‘Wireless AI-powered IoT sensors for laboratory mice behavior recog-
nition,’’ IEEE Internet Things J., vol. 9, no. 3, pp. 1899–1912,
Feb. 2022.

[3] M.A. Rahman,M.M. Rashid,M. S. Hossain, E. Hassanain,M. F. Alhamid,
and M. Guizani, ‘‘Blockchain and IoT-based cognitive edge framework
for sharing economy services in a smart city,’’ IEEE Access, vol. 7,
pp. 18611–18621, 2019.

[4] S. Sengupta and S. S. Bhunia, ‘‘Secure data management in cloudlet
assisted IoT enabled e-health framework in smart city,’’ IEEE Sensors J.,
vol. 20, no. 16, pp. 9581–9588, Aug. 2020.

[5] L. Bassham, C. C. Çalık, K. McKay, and M. S. Turan, ‘‘Submission
requirements and evaluation criteria for the lightweight cryptography stan-
dardization process,’’ U.S. Nat. Inst. Standards Technol., Gaithersburg,
MD, USA, Tech. Rep., 2018.

[6] NIST. (2021). Lightweight Cryptography: Finalist. [Online]. Available:
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists/

[7] M. O. A. Al-Shatari, F. A. Hussin, A. A. Aziz, G. Witjaksono, and
X.-T. Tran, ‘‘FPGA-based lightweight hardware architecture of the
PHOTON hash function for IoT edge devices,’’ IEEE Access, vol. 8,
pp. 207610–207618, 2020.

[8] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, ‘‘Applying
Grover’s algorithm to AES: Quantum resource estimates,’’ in
Post-Quantum Cryptography. Cham, Switzerland: Springer, 2016,
pp. 29–43.

[9] M.Amy, O. D.Matteo, V. Gheorghiu,M.Mosca, A. Parent, and J. Schanck,
‘‘Estimating the cost of generic quantum pre-image attacks on SHA-2 and
SHA-3,’’ 2016, arXiv:1603.09383.

[10] J. Zou, Z. Wei, S. Sun, X. Liu, and W. Wu, ‘‘Quantum circuit imple-
mentations of AES with fewer qubits,’’ in Advances in Cryptology—
ASIACRYPT, S. Moriai and H. Wang, Eds. Cham, Switzerland: Springer,
2020, pp. 697–726.

[11] S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, ‘‘Implementing Grover
oracles for quantum key search on AES and LowMC,’’ in Proc. Annu.
Int. Conf. Theory Appl. Cryptograph. Techn. Cham, Switzerland: Springer,
May 2020, pp. 280–310.

[12] K. Jang, H. Kim, S. Eum, and H. Seo, ‘‘Grover on gift,’’ Cryptol. ePrint
Arch., Tech. Rep. 2020/1405, 2020.

[13] K. Jang, S. Choi, H. Kwon, and H. Seo, ‘‘Grover on speck: Quantum
resource estimates,’’ Cryptol. ePrint Arch., Tech. Rep. 2020/640, 2020.

[14] R. Anand, A. Maitra, and S. Mukhopadhyay, ‘‘Grover on SIMON,’’Quan-
tum Inf. Process., vol. 19, no. 9, pp. 1–17, 2020.

[15] M. Rahman and G. Paul, ‘‘Grover on KATAN: Quantum resource estima-
tion,’’ IEEE Trans. Quantum Eng., vol. 3, pp. 1–9, 2022.

[16] NIST. (2016). Submission Requirements and Evaluation Criteria for
the Post-Quantum Cryptography Standardization Process. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf

[17] D. S. Steiger, T. Häner, and M. Troyer, ‘‘ProjectQ: An open source
software framework for quantum computing,’’ Quantum, vol. 2, p. 49,
Jan. 2018.

[18] M. Adil, M. A. Jan, S. Mastorakis, H. Song, M. M. Jadoon, S. Abbas,
and A. Farouk, ‘‘Hash-MAC-DSDV: Mutual authentication for intelligent
IoT-based cyber-physical systems,’’ IEEE Internet Things J., early access,
May 26, 2022, doi: 10.1109/JIOT.2021.3083731.

[19] S. Suhail, R. Hussain, A. Khan, and C. S. Hong, ‘‘On the role of hash-
based signatures in quantum-safe Internet of Things: Current solutions
and future directions,’’ IEEE Internet Things J., vol. 8, no. 1, pp. 1–17,
Jan. 2021.

[20] C.-C. Chang, W.-K. Lee, Y. Liu, B.-M. Goi, and R. C.-W. Phan, ‘‘Sig-
nature gateway: Offloading signature generation to IoT gateway accel-
erated by GPU,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4448–4461,
Jun. 2019.

[21] Z. Bao, A. Chakraborti, N. Datta, J. Guo, M. Nandi, T. Peyrin,
and K. Yasuda. (2021). PHOTON-Beetle Authenticated Encryption
and Hash Family. [Online]. Available: https://csrc.nist.gov/
CSRC/media/Projects/lightweight-cryptography/documents/finalist-
round/updated-spec-doc/ascon-spec-final.pdf

[22] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. (2021).
Ascon V1.2 Submission to NIST. [Online]. Available: https://csrc.nist.
gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-
round/updated-spec-doc/ascon-spec-final.pdf

[23] J. Daemen, S. Hoffert, S. Mella, M. Peeters, G. Assche, and R. V. Keer.
(2021). Xoodyak, a Lightweight Cryptographic Scheme. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/xoodyak-
spec-final.pdf

[24] C. Beierle, A. Biryukov, L. C. Santos, J. Großschädl, L. Perrin,
A. Udovenko, V. Velichkov, Q. Wang, A. Moradi, and A. R. Shahmirzadi.
(2021). Schwaemm and Esch: Lightweight Authenticated
Encryption and Hashing Using the Sparkle Permutation Family.
[Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/finalist-round/updated-spec-
doc/sparkle-spec-final.pdf

[25] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, ‘‘Ascon v1.2,’’
CAESAR Competition, Tech. Rep., 2016.

[26] C. Beierle, A. Biryukov, L. C. Santos, J. Großschädl, L. Perrin,
A. Udovenko, V. Velichkov, Q. Wang, A. Moradi, and A. R. Shahmirzadi.
(2021). Schwaemm and Esch: Lightweight Authenticated Encryption
and Hashing Using the Sparkle Permutation Family. [Online].
Available: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#maximize-instruction-throughput

[27] L. K. Grover, ‘‘A fast quantum mechanical algorithm for database
search,’’ in Proc. 28th Annu. ACM Symp. Theory Comput. (STOC), 1996,
pp. 212–219.

[28] M. Boyer, G. Brassard, P. Hoyer, and A. Tappa, Tight Bounds on Quantum
Searching (Progress of Physics), vol. 46. Hoboken, NJ, USA: Wiley,
Jan. 2005, pp. 187–199.

[29] V. A. Dasu, A. Baksi, S. Sarkar, and A. Chattopadhyay, ‘‘LIGHTER-R:
Optimized reversible circuit implementation for SBoxes,’’ in Proc. 32nd
IEEE Int. Syst.-Chip Conf. (SOCC), Sep. 2019, pp. 260–265.

[30] L. Schlieper, ‘‘In-place implementation of quantum-gimli,’’ 2020,
arXiv:2007.06319.

[31] K. Jang, G. Song, H. Kim, H. Kwon, H. Kim, and H. Seo, ‘‘Effi-
cient implementation of PRESENT and GIFT on quantum computers,’’
Appl. Sci., vol. 11, no. 11, p. 4776, May 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/11/4776

[32] M. Žnidarič, O. Giraud, and B. Georgeot, ‘‘Optimal number of controlled-
NOT gates to generate a three-qubit state,’’ Phys. Rev. A, Gen.
Phys., vol. 77, no. 3, Mar. 2008, Art. no. 032320, doi: 10.1103/Phys-
RevA.77.032320.

[33] I. L. Markov and M. Saeedi, ‘‘Constant-optimized quantum circuits for
modular multiplication and exponentiation,’’ 2012, arXiv:1202.6614.

[34] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, ‘‘A new
quantum ripple-carry addition circuit,’’ 2004, arXiv:quant-ph/0410184.

[35] D. Bhattacharjee and A. Chattopadhyay, ‘‘Depth-optimal quantum circuit
placement for arbitrary topologies,’’ 2017, arXiv:1703.08540.

[36] A. Baksi, K. Jang, G. Song, H. Seo, and Z. Xiang, ‘‘Quantum implementa-
tion and resource estimates for rectangle and knot,’’Quantum Inf. Process.,
vol. 20, no. 12, pp. 1–24, Dec. 2021.

[37] P. Liu, S. Li, and Q. Ding, ‘‘An energy-efficient accelerator based on
hybrid CPU-FPGA devices for password recovery,’’ IEEE Trans. Comput.,
vol. 68, no. 2, pp. 170–181, Feb. 2019.

VOLUME 10, 2022 59673

http://dx.doi.org/10.1109/JIOT.2021.3083731
http://dx.doi.org/10.1103/PhysRevA.77.032320
http://dx.doi.org/10.1103/PhysRevA.77.032320

W.-K. Lee et al.: Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications

WAI-KONG LEE (Member, IEEE) received the
B.Eng. degree in electronics and the M.Sc. degree
from Multimedia University, in 2006 and 2009,
respectively, and the Ph.D. degree in engineering
from Universiti Tunku Abdul Rahman, Malaysia,
in 2018. He was a Visiting Scholar at Carleton
University, Canada, in 2017, at Feng Chia Uni-
versity, Taiwan, in 2016 and 2018, and at OTH
Regensburg, Germany, in 2015, 2018, and 2019.
He worked in several multi-national companies,

including Agilent Technologies (Malaysia) as Research and Development
Engineer. He is currently a Postdoctoral Researcher with Gachon University,
South Korea. His research interests include cryptography, numerical algo-
rithms, GPU computing, the internet of things, and energy harvesting.

KYUNGBAE JANG received the B.S. and M.S.
degrees in IT convergence engineering from
Hansung University, in 2019 and 2021,
respectively.

GYEONGJU SONG (Student Member, IEEE)
received the B.S. degree in IT convergence engi-
neering from Hansung University, in 2021.

HYUNJI KIM (Graduate Student Member, IEEE)
received the B.S. degree in IT convergence engi-
neering from Hansung University, in 2020.

SEONG OUN HWANG (Senior Member, IEEE)
received the B.S. degree in mathematics from
Seoul National University, in 1993, the M.S.
degree in information and communications engi-
neering from the PohangUniversity of Science and
Technology, in 1998, and the Ph.D. degree in com-
puter science from the Korea Advanced Institute
of Science and Technology, in 2004, South Korea.
He was a Software Engineer at LG-CNS Sys-
tems Inc., from 1994 to 1996, a Senior Researcher

at the Electronics and Telecommunications Research Institute (ETRI),
from 1998 to 2007, and a Professor at the Department of Software and
Communications Engineering, Hongik University, from 2008 to 2019. He is
currently a Professor with the Department of Computer Engineering, Gachon
University. His research interests include cryptography, cybersecurity, and
artificial intelligence. He is the Editor of ETRI Journal.

HWAJEONG SEO received the B.S., M.S., and
Ph.D. degrees in computer engineering fromPusan
National University. He is currently an Assistant
Professor with Hansung University. His research
interest includes cryptographic engineering.

59674 VOLUME 10, 2022

