
Received 16 August 2022, accepted 7 September 2022, date of publication 21 September 2022,
date of current version 27 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208247

Parallel Implementation of PIPO and Its
Application for Format Preserving Encryption
HYUNJI KIM, HYUNJUN KIM, SIWOO EUM , HYEOKDONG KWON, YUJIN YANG,
AND HWAJEONG SEO
IT Convergence Division, Hansung University, Seoul 02876, South Korea

Corresponding author: Hwajeong Seo (hwajeong84@gmail.com)

This work was supported in part by the Institute for Information and Communications Technology Promotion (IITP) Grant through the
Korea Government (MSIT), Research on Blockchain Security Technology for IoT Services (50%), under Grant 2018-0-00264; in part by
the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant through the Korea Government
(MSIT), Development of Fast Design and Implementation of Cryptographic Algorithms based on GPU/ASIC (25%), under Grant
2021-0-00540; and in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant through
the Korea Government (MSIT), Development of Lightweight BIoT technology for Highly Constrained Devices (25%), under
Grant 2022-0-00627.

1

2

3

4

5

6

7

8

9

10

11

12

13

ABSTRACT The PIPO block cipher, a domestic lightweight block cipher, was announced at ICISC’20.
In particular, the bitslicing technique is implemented in the S-Layer for the PIPO block cipher. Because this
is a part that can be operated in parallel, we implemented the PIPO block cipher efficiently in a parallel
approach through AVX2 instructions, and provide implementations for ECB and CTR modes. Compared
to the existing PIPO implementation, we achieved a performance improvement by 7.345×. In addition,
we applied the AVX2-PIPO implementation to the round function of format-preserving encryption. When
repeatedly encrypting 128-byte plaintext, we achieved performance similar to that of the existing FF1-AES
implementation. The FF1-AVX2-PIPO implementation successfully encrypted the database and enabled
efficient database management in terms of memory space and speed factor. Finally, AVX2-PIPO-CTR and
FF1-AVX2-PIPO were applied to image processing. In the case of CTR mode, the encryption performance
was better than that of ECB mode. Partial encryption with object detection and FF1-AVX2-PIPO was
successfully performed, and it is expected that privacy protection in CCTV or image processing can be
improved.

14 INDEX TERMS PIPO block cipher, parallel implementation, format preserving encryption.

I. INTRODUCTION15

Recently, with the development of big data and deep16

learning technologies, the need for large-scale databases17

encryption and management has increased. Format preserv-18

ing encryption can enable memory-efficient database encryp-19

tion through constant data input/output length and format20

preservation, which are advantages of format-preserving21

encryption. Parallel operation on large-scale data is also22

needed to improve the performance [1].23

PIPO (Plug-In Plug-Out), a lightweight block cipher pre-24

sented at ICISC’20 [2], is applied with the bit-slice technique,25

which is an efficient implementation method for performing26

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

parallel operations. Therefore, the PIPO block cipher is suit- 27

able for the parallel implementation using AVX2 instruc- 28

tion sets. In addition, it seems that parallel encryption and 29

format-preserving encryption algorithms can be applied to 30

image processing to protect privacy. 31

A. CONTRIBUTION 32

1) PARALLEL IMPLEMENTATION OF PIPO BLOCK CIPHER 33

USING AVX2 INSTRUCTIONS 34

We implemented the PIPO block cipher in a parallel way 35

using AVX2 instructions, and it achieved 7.345× improved 36

performance compared to the reference implementation by 37

applying an efficient rotation method. In addition, it supports 38

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 99963

https://orcid.org/0000-0002-9583-5427
https://orcid.org/0000-0003-0069-9061

H. Kim et al.: Parallel Implementation of PIPO and Its Application for Format Preserving Encryption

ECB and CTR modes to provide scalability. This can be39

applied to various applications.40

2) FORMAT PRESERVING ENCRYPTION WITH THE PARALLEL41

PIPO BLOCK CIPHER USING AVX2 INSTRUCTIONS42

We successfully applied the parallel implementation of the43

PIPO block cipher to the format-preserving cipher. This44

implementation is called FF1-AVX-PIPO. Among pseudo45

random functions and CIPH functions (encryption function)46

inside the round function, the CIPH function was changed47

to the parallel PIPO block cipher using AVX2, and it was48

confirmed that encryption and decryption were successfully49

conducted.50

3) CASE STUDIES ON VARIOUS APPLICATIONS51

We applied the proposed implementation to database52

encryption and image processing. Database encryption53

through FF1-AVX2-PIPO showed excellent performance in54

terms of memory usage. In the case of short plaintext,55

it achieved faster speed than the method provided by MySQL56

in the process of encrypting and storing it in the database.57

In addition, FF1-AVX2-PIPO was successfully applied to58

image processing such as partial encryption after object59

detection. This approach also solves problems involved in60

image encryption, such as the waste of storage space asso-61

ciated with data padding and, not being able to identify an62

image without decoding.63

II. RELATED WORKS64

A. LIGHTWEIGHT BLOCK CIPHER PIPO65

PIPO is a lightweight block cipher that outperforms other66

64-bit lightweight block ciphers in an 8-bit AVR environ-67

ment [2]. It has 64-bit input/output and 128-bit (64/128)68

and 256-bit (64/256) key size, and is designed with the69

SPN (Substitution Permutation Network) structure. Depend-70

ing on the length of the key, 13 rounds and 17 rounds are71

performed respectively. The round consisting of the S-layer72

performing S-box operation, which is a non-linear opera-73

tion, the R-layer performing rotation, and key addition is74

repeated. For the S-layer, a bit-slicing implementation using75

11 nonlinear operations and 23 linear bit operations and TLU76

(Table Look-up) implementation using a lookup table are77

provided.78

B. ADVANCED VECTOR EXTENSIONS (AVX)79

AVX2 is supported by 64-bit Intel processors. AVX2 is80

an extension of AVX that includes 256-bit integer arith-81

metic [3]. We can use the instructions supported by AVX in82

C/C++ environment through the AVX2 intrinsic function.83

A 256-bit register is used (epi8 and epi16 represent a vector84

containing an unsigned integer). As shown in Table 1, AVX285

also provides instructions, such as logic, combination, and86

permutation in units of each vector size [4].87

TABLE 1. AVX2 instruction set for parallel PIPO implementation.

C. FORMAT PRESERVING ENCRYPTION (FPE) 88

FF1 [5] is a standardized name for FFX[Radix]. It was 89

proposed by Mihir Bellare, Phillp Rogaway, and Terence 90

Spies in 2010 [6]. It is a Feistel structure. Plaintext, key, 91

radix, and tweak are used as input values, and ciphertext is 92

generated through 10-rounds. In the round function, AES- 93

128 [7] is used, and this part can be changed to another 94

block cipher [8]. The algorithm was described together with 95

the proposed method in Section III-B. In [9], a method was 96

proposed to improve the speed of FF1 and FF3-1 [5] by imple- 97

menting the algorithm by changing to the lightweight encryp- 98

tion algorithm (LEA) and SPECK, which are lightweight 99

block ciphers. They experimented with high performance 100

computers and low-power devices, and FF1 with LEA and 101

SPECK applied in high-performance computer environments 102

shortened the encryption time. However, it was found that the 103

efficiency of using lightweight block ciphers decreases after 104

10,000 iterations. In the IoT (Internet of Things) environment, 105

except FF1-LEA, it shows faster encryption speed in the IoT 106

environment. In addition, among their proposed methods, 107

implementations of FF1 greatly improved the encryption 108

speed when short data was encrypted, but the speed improve- 109

ment was low when the length of the plain text was long 110

or was repeated several times. In [10], a domestic format- 111

preserving encryption algorithm (FEA) was implemented in 112

a parallel way through ARM-NEON (ARM’s SIMD (Single 113

Instruction Multiple Data) instruction for parallel process- 114

ing), SSE (SIMD instruction set using 128-bit registers), and 115

AVX2. A parallel processing method for the lookup table 116

was implemented, and an optimal implementation for the 117

low-power IoT environment was also proposed. In [11], they 118

proposed an efficient implementation of Format-preserving 119

Encryption Algorithm (FEA), which is the Korean standard 120

of FPE, and the first-order masked implementation of FEA on 121

both low-end (i.e., AVR microcontroller) and high-end (i.e., 122

ARM processor) IoT devices. 123

D. PARALLEL IMPLEMENTATION OF PIPO BLOCK CIPHER 124

There is no parallel implementation of PIPO in the same 125

environment yet, there are implementation on RISC-V [12] 126

and 64-bit ARM processor. In [13], they implemented par- 127

allel processing for the PIPO block cipher on RISC-V. 128

An efficient 8-bit unit R-layer function is implemented on 129

a 32-bit register, and parallel implementation is presented 130

in terms of memory optimization and speed optimization. 131

In addition, they proposed optimal implementations for ECB 132

(Electronic Code Block), CBC (Cipher Block Chaining) and 133

CTR (Counter Mode) modes. The performance measurement 134

99964 VOLUME 10, 2022

H. Kim et al.: Parallel Implementation of PIPO and Its Application for Format Preserving Encryption

of parallel implementation of the ECB operation mode135

show 84.85cpb (memory optimization) and 59.93cpb (speed136

optimization). This shows performance improvements of137

1.79× (memory optimization) and 2.53× (speed optimiza-138

tion) compared to a single implementation. In addition, per-139

formance improvements of 1.34× (memory optimization)140

and 1.89× (speed optimization) were confirmed compared141

to the existing implementation [14] that includes key sched-142

ules. Similar to the ECB mode, it shows similar perfor-143

mance improvement in the CTR operation mode, and the144

similar performance is also measured by applying the par-145

allel implementation technique to the decoding process of146

the CBC operation mode. In [15], they proposed a parallel147

implementation for block cipher PIPO on the A10× fusion148

processor. In particular, the rotation operation of the R-layer149

was implemented using only two instructions, and the oper-150

ation speed was greatly improved. The original PIPO 64/128151

shows 34.6 cpb, and the 64/256 shows 44.7 cpb. On the other152

hand, the parallel implementation on eight plaintexts of the153

proposed technique has performance of 12.0 cpb and 15.6 cpb154

in 64/128 and 64/256 standards, respectively. In addition,155

parallel implementation on 16 plaintexts has performance156

of 6.3 cpb and 8.1 cpb in 64/128 and 64/256 standards,157

respectively. As a result, compared to the original PIPO,158

the parallel implementations of 8 plaintexts for each 64/128159

and 64/256 standard showed higher performance by 65.3%,160

66.4%, respectively. And compared to the original PIPO, the161

parallel implementations of 16 plaintexts are improved 81.8%162

and 82.1%, respectively.163

III. PROPOSED METHOD164

A. PARALLEL IMPLEMENTATION OF PIPO BLOCK CIPHER165

USING AVX2166

We propose an AVX2-based parallel PIPO algorithm (AVX2-167

PIPO) utilizing the bit-slicing implementation of the PIPO168

block cipher suitable for parallel operation. The original169

PIPO block cipher has 64-bit plaintext, and in the encryption170

process (S-Layer, R-layer), it is calculated in units of bytes171

(8-bit). Therefore, we implemented parallel operation for172

8-bit unit operation, and for this, we used AVX2’s 256-bit173

register. That is, the parallel implementation does not per-174

form 8-bit but 256-bit operations. Finally, the existing PIPO175

implementation encrypts one 64-bit plaintext, but with our176

parallel implementation, 16 64-bit plaintext can be encrypted177

at a time.178

Figure 1 shows the architecture of AVX2-PIPO. In this179

work, the input and output of PIPO are 128-byte, and the180

process of arrangement and packing plaintext is added before181

entering the r-round. A process of rearranging the cipher-182

text after encryption is completed is also required. This183

requires pre-processing and post-processing, which ensure 16184

64-bit plaintext in a single instruction. Thewhole process per-185

forms key addition in round 0, and then repeats the S-Layer,186

R-Layer, and key addition process in every round. There-187

fore, we implemented plaintext arrangement and ciphertext188

FIGURE 1. Encryption structure of parallel implementation of PIPO block
cipher.

rearrangement processes as well as, parallel operations for 189

encryption processes. For efficient parallel implementation, 190

optimized instruction usage, arrangement, and rotation are 191

applied. 192

1) ARRANGEMENT OF PLAINTEXT FOR PARALLEL 193

IMPLEMENTATION 194

In this approach, 16 64-bit plaintexts are input by utilizing 8 195

256-bit registers to implement PIPO’s byte unit operation in 196

a parallel way. As shown in Figure 2, each plaintext consists 197

of 8 bytes, which are divided into byte units and input into 198

the temp array. That is, the n − 1th bytes of each plaintext 199

are collected and stored in temp[n − 1] (The length is 16). 200

In other words, the first byte (n = 1) of the 16th plaintext 201

is input to temp[0][15]. Each row of the temp array (i.e. 202

temp[0], temp[1]) is loaded into each element of the 256-bit 203

register array using the _mm256_loadu_si256 instruction. As 204

shown in Figure 3, 128-bit data (16 8-bit data) is stored in one 205

256-bit register. Each 8-bit data is packed into 16-bit. Finally, 206

these 256-bit register arrays (T256) are used as input to key 207

addition process. 208

2) KEY ADDITION 209

In the key addition process, as shown in Figure 4, the 210

256-bit register array (T256) received as an input and the 211

round key performs XOR operation. Because the round key 212

is the same for all plaintext, it is not implemented in a parallel 213

way. The round key performs bitwise XOR with T256. The 214

n-th bytes of the round key are set in the 256-bit register array 215

for mapping to the n-th byte of the plaintext. For this, the n-th 216

byte of the round key is packed by 16-bit and set using the 217

_mm256_set1_epi16 instruction. It is possible to add round 218

keys for a total of 16 plaintexts by eight operations. 219

3) S-LAYER 220

In the S-Layer, the substitution operation can be performed 221

through bit-slice or lookup table. In the implementation, 222

we use the bit-slice method, which is suitable for parallel 223

implementation. Algorithm 1 shows the bit-slice method for 224

s-layer using AVX2. The output of the key addition process is 225

used as the input of the S-Layer. Because the same bytes were 226

gathered, the same array index as that in the existing imple- 227

mentation is used for access. The operation between the bytes 228

of 1 plaintext is also the same for 16 plaintexts. However, 229

VOLUME 10, 2022 99965

H. Kim et al.: Parallel Implementation of PIPO and Its Application for Format Preserving Encryption

FIGURE 2. Plaintext arrangement by bytes for using AVX2.

FIGURE 3. Allocation of 1-byte data to 256-bit registers packed in 16-bit
units.

FIGURE 4. Key addition operation of proposed implementation.

the AVX2 instruction does not support the NOT operation230

used in the S-Layer. Therefore, the _mm_andnot_si256(A,b)231

instruction in line 17, is used to perform a NOT operation for232

the value stored in the A register, and then an AND operation233

is performed with b. An ANDmask (b) is needed to preserve234

the value of A after the NOT operation. Therefore, the value235

of ANDmask is set for all bits to 1.236

4) R-LAYER237

The PIPO block cipher performs byte unit operations.238

Because the same operation is performed on the same byte,239

32 plaintexts must be processed concurrently to maximize240

the utilization of the 256-bit registers. However, the AVX2241

Algorithm 1 Bitslice for S-Layer Using AVX2
Input: 256-bit register array of size 8 packed in 16-bit units

(T256), 256-bit temp register array (T), and 256-bit
register for masking (ANDmask).

Output: 256-bit register array of size 8 packed in 16-bit units
(T256).

1: Let XOR be the notation for _mm256_xor_si256, which
is an xor operation between 256-bit registers.

2: Let AND be the notation for _mm256_and_si256, which
is an and operation between 256-bit registers.

3: Let OR be the notation for _mm256_or_si256, which is
an or operation between 256-bit registers.

4: T [3] = _mm256_set1_epi16(0× 00);
5: __m256iANDmask;
6: Notmask = _mm256_set1_epi16(0xFF);
7: T256[5] = XOR(T256[5],AND(T256[7],T256[6]));
8: T256[4] = XOR(T256[4],AND(T256[3],T256[5]));
9: T256[7] = XOR(T256[7],T256[4]);

10: T256[6] = XOR(T256[6],T256[3]);
11: T256[3] = XOR(T256[3],OR(T256[4],T256[5]));
12: T256[5] = XOR(T256[5],T256[7]);
13: T256[4] = XOR(T256[4],AND(T256[5],T256[6]));
14: T256[2] = XOR(T256[2],AND(T256[1],T256[0]));
15: T256[0] = XOR(T256[0],OR(T256[2],T256[1]));
16: T256[1] = XOR(T256[1],OR(T256[2],T256[0]));
17: T256[2] = _mm256_andnot_si256(T256[2],

ANDmask);
18: T256[7] = XOR(T256[7],T256[1]);
19: T256[3] = XOR(T256[3],T256[2]);
20: T256[4] = XOR(T256[4],T256[0]);
21: T [0] = T256[7];T [1] = T256[3];T [2] = T256[4];
22: T256[6] = XOR(T256[6],AND(T [0],T256[5]));
23: T [0] = XOR(T [0],T256[6]);
24: T256[6] = XOR(T256[6],OR(T [2],T [1]));
25: T [1] = XOR(T [1],T256[5]);
26: T256[5] = XOR(T256[5],OR(T256[6],T [2]));
27: T [2] = XOR(T [2],AND(T [1],T [0]));
28: T256[2] = XOR(T256[2],T [0]);
29: T [0] = XOR(T256[1],T [2]);
30: T256[1] = XOR(T256[0],T [1]);
31: T256[0] = T256[7];T256[7] = T [0];
32: T [1] = T256[3];T256[3] = T256[6];T256[6] =

T [1];
33: T [2] = T256[4];T256[4] = T256[5];T256[5] =

T [2];
34: return T256

instruction does not support 8-bit shift operation for the 242

8-bit rotation operation. Therefore, it is necessary to change 243

the 256-bit register packed into 8-bit units before and after 244

the operation of the R-layer in 16-bit units. For this reason, 245

additional registers are needed. Registers must be re-packed 246

and unnecessary parts are added to the operation for the actual 247

8-bit rotation. To prevent this, we propose parallel processing 248

for 16 plaintext blocks. As mentioned above, the re-packing 249

process to 16-bit is not necessary because plaintext blocks are 250

99966 VOLUME 10, 2022

H. Kim et al.: Parallel Implementation of PIPO and Its Application for Format Preserving Encryption

packed in 16-bit units in the plaintext arrangement process.251

In this condition, an efficient 8-bit rotation operation can be252

performed. Algorithm 2 shows details of the proposed 16-bit253

rotation. Here, num is an array that stores rotation constants254

for each byte to rotate. Because the first byte does not perform255

the rotation operation, only operations on the other 7 registers256

need to be performed. For the rotation operation, after left and257

right shift operations are performed on the original register,258

OR operation is performed. For this, MASKR is needed. The259

0’s are allocated to the upper 8-bits of MASKR. The 1’s are260

allocated to num[i]-bits starting with the most significant bit261

of the lower 8-bit ofMASKR. The value of the AND operation262

of the original register (T256[i + 1]) and MASKR is shifted263

right by 8 − num[i], and T256[i + 1] is shifted left by the264

rotation constant. The OR operation is performed for these265

two results, and then the final result is stored in the original266

register (T256[i + 1]). This approach enables efficient 8-bit267

rotation. In addition, after all rounds are finished, only the268

lower 8-bits of each 16-bit are used as output.269

Algorithm 2 16-Bit Rotation Mechanism for R-Layer Using
AVX2
Input: 256-bit register array of size 8 packed in 16-bit units

(T256), 256-bit register packed in 16-bit units for mask-
ing (MASKR), and array of rotation constants (num).

Output: 256-bit register array of size 8 packed in 16-bit units
(T256).

1: num[7] = {7, 4, 3, 6, 5, 1, 2}
2: for i = 0, to 6 do
3: Allocate 0’s to upper 8-bits ofMASKR

Allocate 1’s to num[i]-bits starting with the most sig-
nificant bit of lower 8-bit ofMASKR

4: RES0← T256[i+ 1]� num[i]
RES1← (T256[i+ 1] & MASKR)� 8− num[i]

5: T256[i+ 1]← RES0 or RES1
6: end for
7: return T256

5) PARALLEL PIPO WITH CTR MODE USING AVX2270

We implemented a counter mode (CTR mode) of the PIPO271

algorithm in a parallel way by using AVX2 instructions,272

and we call this implementation AVX2-PIPO-CTR mode.273

Figure 5 shows the system configuration of AVX2-PIPO-274

CTR mode. For the AVX2-PIPO implementation, 16 con-275

catenated values of 32-bit nonce and 32-bit counter are276

required. In CTR mode, the nonce and counter are used as277

input to this parallel implementation, not the plaintext to be278

encrypted. Then, 16 encrypted 64-bit ciphertexts are XORed279

with 16 plaintexts to be encrypted. That is, 64-bit values280

combined with 32-bit nonce and 32-bit counter become input281

to AVX2-PIPO implementation. So we can encrypt 16 con-282

catenated values (32-bit nonce and 32-bit counter) at once.283

The nonce is the same, and the counter is incremented by284

1. The round key and encryption process is the same as285

mentioned above, and the output is used as a key to encrypt286

FIGURE 5. CTR mode of AVX2-PIPO.

plaintext. Therefore, the output of AVX2-PIPO and the 287

128-byte plaintext perform XOR operation to generate 288

a 128-byte ciphertext. Because AVX2-PIPO also provides 289

CTR mode to have scalability, it can be utilized in various 290

applications. 291

B. FORMAT PRESERVING ENCRYPTION WITH 292

PARALLEL PIPO 293

The existing FF1 [5] performs a round function every round 294

with a feistel structure. In the round function, pseudo ran- 295

dom function (PRF) and encryption function (CIPH_k(X)) 296

are performed, and AES-128-CBC mode and AES-128 are 297

used respectively. In this paper, we proposed a method using 298

AVX2-PIPO implementations for CIPH_k(X), which is used 299

in the round function of FF1, one of the format preserving 300

encryption methods. 301

Algorithm 3 shows the process of the proposed FF1 302

with AVX2-PIPO implementations. Inputs are tweak, tweak 303

length, radix, key, and plaintext. The input plaintext X is split 304

into A and B. Then, b (length of B), d , and the initial block 305

P are set. These values are used for the encryption. Q is also 306

generated using T , round (i), and B. Here, R is generated with 307

initial blocks P and Q through PRF (AES_Encrypt in line 8). 308

AVX2-PIPO is not applied to the PRF part, because PRF 309

receives the input of a fixed length of 16 bytes. Up to line 8 in 310

Algorithm 3, it is the same as the existing FF1 algorithm [8]. 311

Afterward, R is encrypted through CIPH_k(X) to generate S. 312

We change this CIPH_k(X) to the implementation of AVX2- 313

PIPO algorithm. In the existing FF1, the values obtained by 314

performing XOR operation with R and Q by 16 bytes were 315

encrypted. In this work, 128-bytes are encrypted at once in 316

a parallel way. The AVX2-PIPO encryption process consists 317

of arranging plaintext, repeating rounds, and rearranging 318

ciphertext, as described above. Then, S and A are added on 319

the mod radixm, and then converted to the original radix 320

frequency of length m. Finally, the concatenated value of 321

the last A and B becomes the ciphertext, and this process is 322

repeated for 10 rounds. 323

C. APPLICATION 324

1) IMAGE ENCRYPTION WITH AVX2-PIPO-CTR MODE 325

Wepropose image encryption using AVX2-PIPO-CTRmode. 326

Image processing is usually time consuming and involves 327

doing the same and repetitive work on multiple pixels. Multi- 328

ple pixels are simultaneously worked through AVX2-PIPO 329

VOLUME 10, 2022 99967

H. Kim et al.: Parallel Implementation of PIPO and Its Application for Format Preserving Encryption

Algorithm 3 FF1 Encryption Process Using AVX2-PIPO
Input: Tweak (T), Length of tweak (t), Radix (r), Key (k),

and Plaintext (X)
Output: Encryption value (A||B)
1: Let u = b n/2 c; v = n− u
2: Let A = X [1 . . . u]; B = X [u+ 1 . . . n]
3: Let b = dd v · LOG(r)e/8e
4: Let d = 4db/4e + 4
5: Let P = [1]1||[2]1||[1]1||[r]3||[10]1||[u

mod 256]1||[n]4||[t]4

6: for i = 0, to 9 do
7: Let Q = T ||[0](−t−b−1) mod 16

||[i]1||[NUMradix(B)]b

8: Let R = AES_Encrypt(P||Q)
9: Let pad = ((−t−b− 1)%16+ 16)%16

Let Qlen = t + pad + 1+ b
Let count = Qlen / 16
unsigned char Ri[16], unsigned char ∗Qi = Q,
unsigned char Ri256[256]

10: for block = 0, to count − 1 do
11: for j = 0, to 15 do
12: Ri[j] = Qi[j]⊕ R[j]
13: Ri256[16 ∗ block + j]← Ri[j]
14: end for
15: Qi+ = 16
16: end for
17: AVX2-PIPO_k(Ri256, R, roundkey); R is for cipher-

text
18: memcpy (S, R,16)
19: Let y = NUM (S)
20: if i is even then
21: m = u
22: else
23: m = v
24: end if
25: c = (NUMr (A)+ y) mod rm

26: C = STRmr (c)
27: A = B, B = C
28: end for
29: return A||B

implemented in a parallel way. We implemented the CTR330

mode with high parallelism. First, the nonce, counter, and331

key of PIPO are inserted into AVX2-PIPO implementation332

to perform the encryption. The result value becomes the333

key used to encrypt input pixels. Then, image pixels are334

loaded into a 128-byte buffer. They are divided into 16 64-bit335

plaintexts, and the XOR operation is performed in a parallel336

way. Encrypted values are entered in the original place of337

the corresponding plain pixels. Because the 128-byte pixel338

to be input is independent, the speed can be further improved339

through the parallel implementation of the counter mode.340

2) DATABASE ENCRYPTION USING FF1-AVX2-PIPO341

In this paper, we propose a database encryption method using342

FF1-AVX2-PIPO. Because format-preserving encryption is343

used, the size of the data to be encrypted is not padded to344

match the block size of the encryption algorithm. Therefore,345

the input and output are maintained in the same length, 346

preventing waste of memory storage space at the database. 347

Because it has the same form as the original data, there is no 348

need to change the schema of the database. When trying to 349

store the password ‘A1234’ in the database table that stores 350

the user ID and password, if the domain of the password 351

column is a character string that combines letters and numer- 352

als, it is encrypted within that range (letters and numeral), 353

to preserve the length and format. No additional database 354

schema changes are required. Thus, database administration 355

costs are not increased and system modifications are not 356

required. 357

MySQL (one of the relational database management sys- 358

tems) provides encryption algorithms, such as AES-128, 359

SHA2, and DES. However, as mentioned above, these cryp- 360

tographic schemes waste database memory because the input 361

and output sizes are fixed. Furthermore, these cryptographic 362

algorithms are not suitable for maintaining database schema. 363

To solve these problems, we use the FF1 implementation 364

which has advantages in terms of database memory manage- 365

ment and schema maintenance. 366

Algorithm 4 shows the database encryption mechanism. 367

MySQL can be implemented in various languages. In partic- 368

ular, C language is used for the implementation of this work. 369

First, the data to be encrypted through the FF1 algorithm 370

in plain text is set. Before encryption, the MySQL server is 371

connected, and the database to be used is selected through a 372

query in line 2. The ciphertext generated after encryption is 373

inserted into a table chosen by the user in the database using 374

the query in line 4. 375

Algorithm 4 Database Encryption Mechanism Using
FF1-AVX2-PIPO
Input: Tweak (T), Length of tweak (t), Radix (r), Key (k),

Plaindata (X), and Length of plaindata (Xlen)
Output: Database with encrypted data added (new_DB)
1: MySQL ∗ conn = mysql_init(NULL)
Set_Connection(conn); Connect to a MySQL server

2: MySQL_query(USE DATABASE NAME)
3: Y ← FF1-AVX2-PIPO(T , t, r, k,X ,Xlen)
4: MySQL_query(INSERT INTO %s VALUES(%s),
DB_TABLE, Y)

5: return new_DB

3) PARTIAL IMAGE ENCRYPTION USING FF1-AVX2-PIPO 376

We propose a method to encrypt the detected object in the 377

entire image after object detection through deep learning. 378

Figure 6 shows the system configuration. We use Yolov3 379

(an object detection model) to detect a region where a spe- 380

cific object is located in the entire image. The detected area 381

is represented by the (x, y) coordinates of the top-left and 382

bottom-right corners. We use these coordinates to get pixels 383

inside a particular area ((left_x < row) && (row < right_x) 384

&& (left_y < col) && (col < right_y)). Because this 385

area has a different size depending on the target image or 386

model used, only pixels within the area are encrypted using 387

99968 VOLUME 10, 2022

H. Kim et al.: Parallel Implementation of PIPO and Its Application for Format Preserving Encryption

FIGURE 6. Partial encryption using FF1-AVX2-PIPO and object detection.

the FF1-AVX2-PIPO implementation. Therefore, a padding388

process is not required, and only a specific area can be389

encrypted. In addition, it is possible to efficiently preserve the390

privacy of image data due to the use of the PIPO algorithm,391

which is robust against side-channel attacks, and the fast392

encryption speed achieved through parallel implementation.393

IV. EVALUATION394

We experimented with parallel Implementation of PIPO395

using AVX2, format preserving encryption with parallel396

PIPO implementation and several applications. Because each397

experimental environment is different, we refer to the exper-398

imental environment in each subsection. Also, the source399

code is open to our github https://github.com/khj1594012/400

AVX2-PIPO.401

A. PARALLEL IMPLEMENTATION OF PIPO USING AVX2402

For the performance evaluation, we measured the perfor-403

mance of the parallel processing of 32 plaintext blocks404

(32 PT blocks), 16 plaintext blocks (16 PT blocks), and405

the reference code. This experiment was performed on a406

MacBook Pro @2.6GHz 6 core Intel Core i7 (16GB RAM),407

and the optimization options -O1 and -mavx2 were applied.408

As a performance comparisonmethod, the execution time and409

cycles to process 1 byte (Cycle Per Byte, cpb) were used.410

1) IMPLEMENTATION411

We implemented the PIPO algorithm with AVX2 instructions412

in a parallel way, and we used test vectors from the reference413

code to ensure that this design was implemented, properly.414

When the same test vector was applied to 16 plaintexts, the415

output of the last round of the existing PIPO and the output416

of the implementation were generated identically.417

2) EVALUATION418

Table 2 shows a comparison of the execution time results419

according to the number of plaintext blocks. In the case of420

the reference code, it started to slow down compared to the421

AVX2 implementation frommore than 64 blocks of plaintext.422

When fewer than 64 plaintext blocks were processed, it was423

confirmed that the parallel implementation was rather slow424

due to pre-processing for the parallel operation. As seen425

in III-A1, the pre-processing is a process of arranging several426

64-bit plaintexts for parallel processing. The nth bytes (e.g.427

1-th byte, 2-th byte) of each plaintext are collected. Next, they428

are arranged in a form for input to 256-bit AVX2 register. This429

pre-processing is an additional process that is not necessary430

if parallel processing is not performed.431

Because this pre-process is required, the performance of432

the AVX2 parallel implementation improved as the number of433

TABLE 2. Comparison result in terms of speed (unit: ms) between
reference code and AVX2-PIPO (32 PT blocks/16 PT blocks) where
the optimization option is–O1.

TABLE 3. Comparison result in terms of speed (unit: cpb) between
related works and AVX2-PIPO (32 PT/16 PT).

plaintexts increased. In the case of 32 PT blocks that process 434

more plaintext but require unnecessary pre-processing in 435

the R-Layer, compared to the reference code, performance 436

improvement of 1.003× for 64 plaintexts and 1.801× for 437

processing 32 million plaintexts was achieved. Therefore, 438

16 PT block implementation showed the best performance. 439

Compared to the reference code, 16 PT block implementation 440

achieved 7.345× the speed for 32 million plaintext blocks. In 441

other words, when processing 32 PT blocks at the same time, 442

pre-processing is required to use the AVX2 instruction in the 443

R-layer (Because there is no instruction 8-bit shift for 8-bit 444

rotation). However, if 16 PT blocks are processed in paral- 445

lel, rotation using AVX instruction is possible without pre- 446

processing, so speed optimization is possible. In addition, for 447

parallel processing, plaintext arrangement process is required 448

before encryption. In addition, as the number of plaintexts 449

to be processed increases, the time required for the plaintext 450

arrangement process before encryption is reduced, and thus 451

the speed can be improved. 452

Table 3 compares the CPBs of our implementation 453

(32 PT blocks and 16 PT blocks) and the reference imple- 454

mentation. In the case of 32 PT blocks, there was a per- 455

formance improvement of 1.8× compared to the reference 456

code. The performance of 16 PT blocks was also the best, 457

a performance improvement of about 7.34× compared to the 458

reference implementation was achieved. Comparing our two 459

implementations, the cpb of the 16 PT block implementation 460

was 4.07× higher than that of the 32 PT block. And, as a result 461

of comparing CPBs for several plaintext numbers (in Table 2), 462

it was found that all of them were almost same. 463

VOLUME 10, 2022 99969

H. Kim et al.: Parallel Implementation of PIPO and Its Application for Format Preserving Encryption

Also, Table 3 shows a comparison with PIPO imple-464

mentations implemented in parallel on different platforms.465

In [13], RV321model supporting 32-bit was used, and in [15],466

64-bit ARMwas used. As a result of benchmarking the exist-467

ing single plaintext encryption reference [2] on each platform,468

it was measured to be about 44 cpb on our platform. And,469

it was measured to 1918 for speed optimization on RISC-V,470

2715 for memory optimization on RISC-V, and 34.6 on471

64-bit ARM. An exact comparison is difficult because of the472

different platforms and different implementations. Neverthe-473

less, comparing the performance improvement, when using474

AVX2, 32PT and 16PT were faster than encryption for single475

plaintext by 1.8× and 7.34× respectively. Next, in RISC-V,476

speed optimization became 32× faster than single encryp-477

tion, and in the case of memory optimization, it was 31.9×478

faster. Finally, in 64-bit ARM, 8PT and 16PT achieved speed479

improvements of 2.9× and 5.5×, respectively, compared to480

single plaintext encryption. Comparing only the performance481

improvement rate, RISC-V improved the most and ARM482

showed the least performance improvement.483

B. FORMAT PRESERVING ENCRYPTION WITH PARALLEL484

PIPO IMPLEMENTATION485

1) IMPLEMENTATION486

In this implementation, key, tweak, radix, and plaintext were487

used as input, and we used the test vector of FF1. A short488

plaintext, a long plaintext, a plaintext composed of numbers,489

and a plaintext that is a mixture characters and numbers can490

be encrypted while maintaining length and domain.491

2) EVALUATION492

This experiment was performed on an Ubuntu 20.04.2 LTS493

virtual machine with Intel i5-8250U CPU @2.50GHz and494

2GB RAM. Table 4 shows a comparison of the speed result495

obtained for the existing FF1 and FF1-AVX2-PIPO. When a496

16-byte plaintext was encrypted without repetition, the two497

algorithms performed similarly, and when the encryption498

was repeated 100,000 times, FF1-AES shows faster perfor-499

mance than the FF1-AVX2-PIPO. AVX2 implementation is500

inefficient because it encrypts in units of 128 bytes. When501

a 128-byte plaintext was encrypted 100,000 times, it took502

almost the same amounts of time for the existing method503

and proposed method. As seen in Table 2, the performance504

of AVX2-PIPO is better than that of the reference code505

when more plaintext is encrypted. In this experiment, the506

performance of FF1-AVX2-PIPO showed improvement when507

128-byte plaintext was performed, repeatedly. In addition,508

it was confirmed that it is rather inefficient to repeatedly509

encrypt 16-byte plaintext using FF1-AVX2-PIPO. It showed510

similar performance to that of FF1-AES when 128-byte511

plaintext was input.512

C. APPLICATION513

1) IMAGE ENCRYPTION USING AVX2-PIPO-CTR514

We performed image encryption using AVX2-PIPO-CTR515

mode. As described in Section III-C, multiple pixels can be516

TABLE 4. Comparison result in terms of speed (unit: ms) between
existing FF1-AES and FF1-AVX2-PIPO (16 PT blocks) where the
optimization option is–O2.

FIGURE 7. Result of image encryption with AVX2-PIPO CTR mode (center)
and ECB mode (right).

TABLE 5. Comparison result table in terms of speed (unit: ms) between
AES, SHA2 of MySQL and FF1-AVX2-PIPO.

encrypted at the same time. Figure 7 shows the result of image 517

encryption with AVX2-PIPO CTR and ECB modes. In the 518

ECB mode, the upper pixels of the image have the same 519

ciphertext value for several rows. Because the upper part of 520

the image has the same pixel value, the ECB mode outputs 521

the same ciphertext. However, in the CTR mode, the same 522

input was encrypted with a completely different value due 523

to the characteristics of the CTR operation mode. Because 524

the CTR mode does not have ciphertext feedback, parallel 525

implementation is easy and high-speed encryption is possible. 526

It has a structure that converts a block cipher into a stream 527

cipher, and this can be utilized for the encryption of videos 528

which are composed of a continuous series of frames. 529

2) DATABASE ENCRYPTION USING FF1-AVX2-PIPO 530

This section compares and analyzes database encryption 531

using MySQL’s built-in algorithm and database encryption 532

using the FF1-AVX2-PIPO implementation. The experiment 533

was performed on an Ubuntu 16.04 LTS virtual machine 534

with Intel i5-8250U CPU @1.60GHz and 2GB RAM due 535

to the MySQL environment issues. In addition, we selected 536

data storage speed and memory usage after encryption as 537

performance comparison factors. 538

MySQL provides encryption algorithms, such as AES, 539

SHA2, and DES. We encrypted data stored in our database 540

using FF1-AVX2-PIPO. Table 5 shows the result of 541

99970 VOLUME 10, 2022

H. Kim et al.: Parallel Implementation of PIPO and Its Application for Format Preserving Encryption

FIGURE 8. Memory usage for each database (AES, SHA2, and
FF1-AVX2-PIPO).

measuring the time it takes to save data to the database after542

encrypting it using MySQL’s AES and SHA2 as well as the543

proposed implementation of FF1-AVX2-PIPO. It is the time544

taken to perform 100,000 encryption divided by 100,000 (i.e.545

average timing). That is the time taken to store single data.546

For the experiment, we set the data to be encrypted as short547

plain text and long plain text. As seen in Table 5, in the548

case of AES and SHA, the block length is adjusted with549

the padding. This takes a similar amount of time for short550

plaintext and long plaintext. Because the length of input and551

output is preserved in the case of FF1-AVX2-PIPO, for the552

case of short plaintext, the process of encryption and storage553

in the database was performed in a shorter time than usual.554

When the long plaintext was used, AES based encryption555

showed the fastest speed, followed by FF1-AVX2-PIPO, and556

SHA2 was the slowest. Because plaintext is 256-bits for557

SHA2, it seems to take the longest. In summary, for short558

plaintext, FF1-AVX2-PIPO was 0.163ms and 0.226ms faster559

than AES and SHA2, respectively. For long plaintext, AES560

wasmeasured to be 0.014ms and 0.036ms faster, respectively,561

compared to FF1-AVX2-PIPO and SHA2. Combining the562

results for two lengths of plaintext, AES took 0.7965ms, SHA563

took 0.846 ms, and FF1-AVX2-PIPO took 0.722ms.564

In addition, the memory space occupied by each database565

is also an important factor. Figure 8 shows the memory usage566

after three iterations of storing each data in Table 5 with567

encryption 100,000 times. That is, a total of 600,000 results568

of encrypting the data are stored in each database. The stored569

data in the table of a database is shown in Figure 9. It can be570

seen that when block ciphers are used, the data is converted571

to a fixed-length (block size) and then stored. SHA, AES,572

and FF1-AVX2-PIPO took up more memory capacity in that573

order. For SHA in MySQL, the block length is 256-bit. That574

of AES is 128-bit. If the length of the plaintext is smaller575

than the block size, padding is performed to fit the block576

size. Thus, memory space is wasted. However, in the case577

of FF1-AVX2-PIPO, because the input and output length578

are same, the wasted part generated by padding to fit the579

block size can be eliminated. The proposed method achieves580

FIGURE 9. Data stored in each database (AES, SHA2, and FF1-AVX2-PIPO).

FIGURE 10. Result of partial encryption (right) with FF1-AVX2-PIPO and
object detection (left).

1.8× less memory usage compared to AES and 2.55× less 581

than SHA2. 582

Besides, reducing the need to modify the database sys- 583

tem is important in database management. In the case of 584

a database table, it consists of rows and columns, and the 585

domains of data stored in the same column are the same. 586

For example, a column that stores names stores strings, 587

and a column that stores ages stores numeric data. Thus, 588

it is possible to preserve the entire schema of the database 589

by storing data that maintains its format even after being 590

encrypted. 591

In conclusion, the results obtained by applying FF1-AVX2- 592

PIPO can be summarized as follows. It can reduce memory 593

usage and process multiple data in a parallel way. In addition, 594

the encryption speedwas improved for the short plaintext, and 595

the encryption speed achieved for the long plaintext was sim- 596

ilar to that achieved by MySQL’s method. Considering that 597

short data such as passwords are mainly contained in actual 598

databases, the necessity of encryption for large databases, 599

and the need to perform encryption on various types of data 600

stored in databases, using FF1-AVX2-PIPO is considered to 601

be efficient. 602

VOLUME 10, 2022 99971

H. Kim et al.: Parallel Implementation of PIPO and Its Application for Format Preserving Encryption

3) PARTIAL IMAGE ENCRYPTION USING FF1-AVX2-PIPO603

We used a deep learning-based object detection algorithm604

that detects objects, such as people and cars. The area is605

displayed as a bounding box as shown on the left of Figure 10,606

and the coordinates of the upper left and the lower right607

can be obtained. After the area to be encrypted was deter-608

mined through these coordinates, only that part was suc-609

cessfully encrypted, as shown in the right part of Figure 10.610

Privacy can be protected in the process of video analysis611

based on deep learning, and it can prevent waste of stor-612

age space as well as inability to recognize images without613

decoding.614

V. CONCLUSION615

In this paper, we propose parallel implementation of PIPO,616

format preserving encryption with PIPO, and its applications.617

To achieve high-performance, we utilized an AVX2 based618

parallel implementation of the PIPO block cipher. After-619

ward, the implementation was applied to the FF1 algorithm.620

Finally, we presented several case studies based on PIPO621

and FF1 implementations. We will further explore the opti-622

mized implementation on other platforms and services in623

future works.624

REFERENCES625

[1] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, ‘‘In-memory big626

data management and processing: A survey,’’ IEEE Trans. Knowl. Data627

Eng., vol. 27, no. 7, pp. 1920–1948, Jul. 2015.628

[2] H. Kim, ‘‘PIPO: A lightweight block cipher with efficient higher-order629

masking software implementations,’’ in Proc. Int. Conf. Inf. Secur. Cryptol.630

Cham, Switzerland: Springer, 2020, pp. 99–122.631

[3] W. Muła, N. Kurz, and D. Lemire, ‘‘Faster population counts632

using AVX2 instructions,’’ Comput. J., vol. 61, no. 1, pp. 111–120,633

Jan. 2018.634

[4] A. Faz-Hernández and J. López, ‘‘Fast implementation of Curve25519635

using AVX2,’’ in Proc. Int. Conf. Cryptol. Inf. Secur. Latin Amer. Cham,636

Switzerland: Springer, 2015, pp. 329–345.637

[5] M. Dworkin, ‘‘Recommendation for block cipher modes of operation:638

Methods for format-preserving encryption,’’ NIST Special Publication,639

vol. 800, p. 38G, Mar. 2016.640

[6] M. Bellare, P. Rogaway, and T. Spies, ‘‘The FFX mode of operation for641

format-preserving encryption,’’ NIST Submission, vol. 20, no. 19, p. 24,642

2010.643

[7] J. Daemen and V. Rijmen, ‘‘AES proposal: Rijndael,’’ Tech. Rep., 1999.644

[8] W. Stallings, ‘‘Format-preserving encryption: Overview and NIST speci-645

fication,’’ Cryptologia, vol. 41, no. 2, pp. 137–152, Mar. 2017.646

[9] W. Jang and S.-Y. Lee, ‘‘A format-preserving encryption FF1, FF3–1 using647

lightweight block ciphers LEA and, SPECK,’’ in Proc. 35th Annu. ACM648

Symp. Appl. Comput., Mar. 2020, pp. 369–375.649

[10] C. Park, S. Jeong, D. Hong, and C. Seo, ‘‘Optimal implementation of650

format preserving encryption algorithm FEA in various environments,’’651

J. Korea Inst. Inf. Secur. Cryptol., vol. 28, no. 1, pp. 41–51, 2018.652

[11] H. Kim, M. Sim, K. Jang, H. Kwon, S. Uhm, and H. Seo, ‘‘Masked653

implementation of format preserving encryption on low-end AVR micro-654

controllers and high-end ARM processors,’’ Mathematics, vol. 9, no. 11,655

p. 1294, Jun. 2021.656

[12] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, ‘‘The RISC-V657

instruction set manual: User-level ISA, version 2.0,’’ California Univ.658

Berkeley Dept. Elect. Eng. Comput. Sci., Long Beach, CA, USA,659

Tech. Rep., 2014, vol. 1.660

[13] S.-W. Eum, K.-B. Jang, G.-J. Song, M.-W. Lee, and H.-J. Seo, ‘‘Optimized661

parallel implementation of lightweight blockcipher PIPO on 32-bit RISC-662

V,’’ in Proc. Korea Inf. Process. Soc. Conf., 2021, pp. 201–204.663

[14] Y. Kwak, Y. Kim, and S. C. Seo, ‘‘Parallel implementation of PIPO block664

cipher on 32-bit RISC-V processor,’’ in Proc. Int. Conf. Inf. Secur. Appl.665

Cham, Switzerland: Springer, 2021, pp. 183–193.666

[15] S. Eum, H. Kwon, H. Kim, K. Jang, H. Kim, J. Park, G. Song, M. Sim, and 667

H. Seo, ‘‘Optimized implementation of block cipher PIPO in parallel-way 668

on 64-bit ARM processors,’’ KIPS Trans. Comput. Commun. Syst., vol. 10, 669

no. 8, pp. 223–230, 2021. 670

HYUNJI KIM received the B.S. and M.S. degrees 671

in IT convergence engineering from Hansung Uni- 672

versity, where she is currently pursuing the Ph.D. 673

dgree. Her research interests include artificial 674

intelligence, machine learning, and information 675

security. 676

HYUNJUN KIM received the B.S. and M.S. 677

degrees in IT convergence engineering from Han- 678

sung University, where he is currently pursuing 679

the Ph.D. degree. His research interests include 680

side-channel analysis and cryptography imple- 681

mentation. 682

SIWOO EUM received the B.S. degree in IT con- 683

vergence engineering from Hansung University, 684

where he is currently pursuing theM.S. degree. His 685

research interests include cryptography implemen- 686

tation and information security. 687

HYEOKDONG KWON received the B.S. andM.S. 688

degrees in IT convergence engineering from Han- 689

sung University, where he is currently pursuing 690

the Ph.D. degree. His research interests include 691

cryptography implementation, information secu- 692

rity, and machine learning. 693

YUJIN YANG received the B.S. degree in IT con- 694

vergence engineering from Hansung University, 695

where, she is currently pursuing the M.S. degree. 696

Her research interests include cryptography imple- 697

mentation and information security. 698

HWAJEONG SEO received the B.S.E.E., M.S., 699

and Ph.D. degrees in computer engineering from 700

Pusan National University. He is currently an 701

Assistant Professor with Hansung University. His 702

research interests include the Internet of Things 703

and information security. 704

705

99972 VOLUME 10, 2022

