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ABSTRACT The PIPO block cipher, a domestic lightweight block cipher, was announced at ICISC’20.
In particular, the bitslicing technique is implemented in the S-Layer for the PIPO block cipher. Because this
is a part that can be operated in parallel, we implemented the PIPO block cipher efficiently in a parallel
approach through AVX2 instructions, and provide implementations for ECB and CTR modes. Compared
to the existing PIPO implementation, we achieved a performance improvement by 7.345x. In addition,
we applied the AVX2-PIPO implementation to the round function of format-preserving encryption. When
repeatedly encrypting 128-byte plaintext, we achieved performance similar to that of the existing FF1-AES
implementation. The FF1-AVX2-PIPO implementation successfully encrypted the database and enabled
efficient database management in terms of memory space and speed factor. Finally, AVX2-PIPO-CTR and
FF1-AVX2-PIPO were applied to image processing. In the case of CTR mode, the encryption performance
was better than that of ECB mode. Partial encryption with object detection and FF1-AVX2-PIPO was
successfully performed, and it is expected that privacy protection in CCTV or image processing can be
improved.

INDEX TERMS PIPO block cipher, parallel implementation, format preserving encryption.

I. INTRODUCTION
Recently, with the development of big data and deep
learning technologies, the need for large-scale databases
encryption and management has increased. Format preserv-
ing encryption can enable memory-efficient database encryp-
tion through constant data input/output length and format
preservation, which are advantages of format-preserving
encryption. Parallel operation on large-scale data is also
needed to improve the performance [1].

PIPO (Plug-In Plug-Out), a lightweight block cipher pre-
sented at ICISC’20 [2], is applied with the bit-slice technique,
which is an efficient implementation method for performing
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parallel operations. Therefore, the PIPO block cipher is suit-
able for the parallel implementation using AVX2 instruc-
tion sets. In addition, it seems that parallel encryption and
format-preserving encryption algorithms can be applied to
image processing to protect privacy.

A. CONTRIBUTION

1) PARALLEL IMPLEMENTATION OF PIPO BLOCK CIPHER
USING AVX2 INSTRUCTIONS

We implemented the PIPO block cipher in a parallel way
using AVX2 instructions, and it achieved 7.345 x improved
performance compared to the reference implementation by
applying an efficient rotation method. In addition, it supports
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ECB and CTR modes to provide scalability. This can be
applied to various applications.

2) FORMAT PRESERVING ENCRYPTION WITH THE PARALLEL
PIPO BLOCK CIPHER USING AVX2 INSTRUCTIONS

We successfully applied the parallel implementation of the
PIPO block cipher to the format-preserving cipher. This
implementation is called FF1-AVX-PIPO. Among pseudo
random functions and CIPH functions (encryption function)
inside the round function, the CIPH function was changed
to the parallel PIPO block cipher using AVX2, and it was
confirmed that encryption and decryption were successfully
conducted.

3) CASE STUDIES ON VARIOUS APPLICATIONS

We applied the proposed implementation to database
encryption and image processing. Database encryption
through FF1-AVX2-PIPO showed excellent performance in
terms of memory usage. In the case of short plaintext,
it achieved faster speed than the method provided by MySQL
in the process of encrypting and storing it in the database.
In addition, FF1-AVX2-PIPO was successfully applied to
image processing such as partial encryption after object
detection. This approach also solves problems involved in
image encryption, such as the waste of storage space asso-
ciated with data padding and, not being able to identify an
image without decoding.

Il. RELATED WORKS

A. LIGHTWEIGHT BLOCK CIPHER PIPO

PIPO is a lightweight block cipher that outperforms other
64-bit lightweight block ciphers in an 8-bit AVR environ-
ment [2]. It has 64-bit input/output and 128-bit (64/128)
and 256-bit (64/256) key size, and is designed with the
SPN (Substitution Permutation Network) structure. Depend-
ing on the length of the key, 13 rounds and 17 rounds are
performed respectively. The round consisting of the S-layer
performing S-box operation, which is a non-linear opera-
tion, the R-layer performing rotation, and key addition is
repeated. For the S-layer, a bit-slicing implementation using
11 nonlinear operations and 23 linear bit operations and TLU
(Table Look-up) implementation using a lookup table are
provided.

B. ADVANCED VECTOR EXTENSIONS (AVX)

AVX?2 is supported by 64-bit Intel processors. AVX2 is
an extension of AVX that includes 256-bit integer arith-
metic [3]. We can use the instructions supported by AVX in
C/C++ environment through the AVX2 intrinsic function.
A 256-bit register is used (epi8 and epil6 represent a vector
containing an unsigned integer). As shown in Table 1, AVX?2
also provides instructions, such as logic, combination, and
permutation in units of each vector size [4].
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TABLE 1. AVX2 instruction set for parallel PIPO implementation.

‘ Instruction ‘
_mm256_loadu_si256
_mm256_setl_epil6
_mm256_xor_si256
_mm256_and_si256
_mm256_or_si256
_mm256_andnot_si256(A,b)
_mm256_slli_epil6 / _mm256_srli_epil6

Description

Load 256-bit of integer data from memory
Broadcast 16-bit integer to all elements of dst
Bitwise XOR of 256 bits
Bitwise AND of 256 bits
Bitwise OR of 256 bits
Bitwise NOT of 256 bits in a and then AND with b
Shift packed 16-bit integers in a left/right

C. FORMAT PRESERVING ENCRYPTION (FPE)

FF1 [5] is a standardized name for FFX[Radix]. It was
proposed by Mihir Bellare, Phillp Rogaway, and Terence
Spies in 2010 [6]. It is a Feistel structure. Plaintext, key,
radix, and tweak are used as input values, and ciphertext is
generated through 10-rounds. In the round function, AES-
128 [7] is used, and this part can be changed to another
block cipher [8]. The algorithm was described together with
the proposed method in Section III-B. In [9], a method was
proposed to improve the speed of FF1 and FF3-1 [5] by imple-
menting the algorithm by changing to the lightweight encryp-
tion algorithm (LEA) and SPECK, which are lightweight
block ciphers. They experimented with high performance
computers and low-power devices, and FF1 with LEA and
SPECK applied in high-performance computer environments
shortened the encryption time. However, it was found that the
efficiency of using lightweight block ciphers decreases after
10,000 iterations. In the IoT (Internet of Things) environment,
except FF1-LEA, it shows faster encryption speed in the IoT
environment. In addition, among their proposed methods,
implementations of FF1 greatly improved the encryption
speed when short data was encrypted, but the speed improve-
ment was low when the length of the plain text was long
or was repeated several times. In [10], a domestic format-
preserving encryption algorithm (FEA) was implemented in
a parallel way through ARM-NEON (ARM’s SIMD (Single
Instruction Multiple Data) instruction for parallel process-
ing), SSE (SIMD instruction set using 128-bit registers), and
AVX2. A parallel processing method for the lookup table
was implemented, and an optimal implementation for the
low-power IoT environment was also proposed. In [11], they
proposed an efficient implementation of Format-preserving
Encryption Algorithm (FEA), which is the Korean standard
of FPE, and the first-order masked implementation of FEA on
both low-end (i.e., AVR microcontroller) and high-end (i.e.,
ARM processor) [oT devices.

D. PARALLEL IMPLEMENTATION OF PIPO BLOCK CIPHER
There is no parallel implementation of PIPO in the same
environment yet, there are implementation on RISC-V [12]
and 64-bit ARM processor. In [13], they implemented par-
allel processing for the PIPO block cipher on RISC-V.
An efficient 8-bit unit R-layer function is implemented on
a 32-bit register, and parallel implementation is presented
in terms of memory optimization and speed optimization.
In addition, they proposed optimal implementations for ECB
(Electronic Code Block), CBC (Cipher Block Chaining) and
CTR (Counter Mode) modes. The performance measurement
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of parallel implementation of the ECB operation mode
show 84.85cpb (memory optimization) and 59.93cpb (speed
optimization). This shows performance improvements of
1.79x (memory optimization) and 2.53x (speed optimiza-
tion) compared to a single implementation. In addition, per-
formance improvements of 1.34x (memory optimization)
and 1.89x (speed optimization) were confirmed compared
to the existing implementation [14] that includes key sched-
ules. Similar to the ECB mode, it shows similar perfor-
mance improvement in the CTR operation mode, and the
similar performance is also measured by applying the par-
allel implementation technique to the decoding process of
the CBC operation mode. In [15], they proposed a parallel
implementation for block cipher PIPO on the A10x fusion
processor. In particular, the rotation operation of the R-layer
was implemented using only two instructions, and the oper-
ation speed was greatly improved. The original PIPO 64/128
shows 34.6 cpb, and the 64/256 shows 44.7 cpb. On the other
hand, the parallel implementation on eight plaintexts of the
proposed technique has performance of 12.0 cpb and 15.6 cpb
in 64/128 and 64/256 standards, respectively. In addition,
parallel implementation on 16 plaintexts has performance
of 6.3 cpb and 8.1 cpb in 64/128 and 64/256 standards,
respectively. As a result, compared to the original PIPO,
the parallel implementations of 8 plaintexts for each 64/128
and 64/256 standard showed higher performance by 65.3%,
66.4%, respectively. And compared to the original PIPO, the
parallel implementations of 16 plaintexts are improved 81.8%
and 82.1%, respectively.

lll. PROPOSED METHOD

A. PARALLEL IMPLEMENTATION OF PIPO BLOCK CIPHER
USING AVX2

We propose an AVX2-based parallel PIPO algorithm (AVX2-
PIPO) utilizing the bit-slicing implementation of the PIPO
block cipher suitable for parallel operation. The original
PIPO block cipher has 64-bit plaintext, and in the encryption
process (S-Layer, R-layer), it is calculated in units of bytes
(8-bit). Therefore, we implemented parallel operation for
8-bit unit operation, and for this, we used AVX2’s 256-bit
register. That is, the parallel implementation does not per-
form 8-bit but 256-bit operations. Finally, the existing PIPO
implementation encrypts one 64-bit plaintext, but with our
parallel implementation, 16 64-bit plaintext can be encrypted
at a time.

Figure 1 shows the architecture of AVX2-PIPO. In this
work, the input and output of PIPO are 128-byte, and the
process of arrangement and packing plaintext is added before
entering the r-round. A process of rearranging the cipher-
text after encryption is completed is also required. This
requires pre-processing and post-processing, which ensure 16
64-bit plaintext in a single instruction. The whole process per-
forms key addition in round 0, and then repeats the S-Layer,
R-Layer, and key addition process in every round. There-
fore, we implemented plaintext arrangement and ciphertext
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AVX2 R-Layer
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FIGURE 1. Encryption structure of parallel implementation of PIPO block
cipher.

rearrangement processes as well as, parallel operations for
encryption processes. For efficient parallel implementation,
optimized instruction usage, arrangement, and rotation are
applied.

1) ARRANGEMENT OF PLAINTEXT FOR PARALLEL
IMPLEMENTATION

In this approach, 16 64-bit plaintexts are input by utilizing 8
256-bit registers to implement PIPO’s byte unit operation in
a parallel way. As shown in Figure 2, each plaintext consists
of 8 bytes, which are divided into byte units and input into
the temp array. That is, the n — 17 bytes of each plaintext
are collected and stored in temp[n — 1] (The length is 16).
In other words, the first byte (n = 1) of the 16™ plaintext
is input to temp[0][15]. Each row of the temp array (i.e.
temp[0], temp[1]) is loaded into each element of the 256-bit
register array using the _mm256_loadu_si256 instruction. As
shown in Figure 3, 128-bit data (16 8-bit data) is stored in one
256-bit register. Each 8-bit data is packed into 16-bit. Finally,
these 256-bit register arrays (7'256) are used as input to key
addition process.

2) KEY ADDITION

In the key addition process, as shown in Figure 4, the
256-bit register array (7256) received as an input and the
round key performs XOR operation. Because the round key
is the same for all plaintext, it is not implemented in a parallel
way. The round key performs bitwise XOR with T7256. The
n-th bytes of the round key are set in the 256-bit register array
for mapping to the n-th byte of the plaintext. For this, the n-th
byte of the round key is packed by 16-bit and set using the
_mm?256_setl_epil6 instruction. It is possible to add round
keys for a total of 16 plaintexts by eight operations.

3) S-LAYER

In the S-Layer, the substitution operation can be performed
through bit-slice or lookup table. In the implementation,
we use the bit-slice method, which is suitable for parallel
implementation. Algorithm 1 shows the bit-slice method for
s-layer using AVX2. The output of the key addition process is
used as the input of the S-Layer. Because the same bytes were
gathered, the same array index as that in the existing imple-
mentation is used for access. The operation between the bytes
of 1 plaintext is also the same for 16 plaintexts. However,
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plain[0][0] plain[0][7]

plain[15][0] plain[15][7]

Plaintext in Reference code

1byte 8ibyte
plain[0][0] plain[0][7]

plain[15][0] plain[15][7]
temp[0] temp[7]

Collect plaintext by bytes

plain[0][0] plain[15][0]

plain[0][7] plain[15][7]

Arranged plaintext in This work

FIGURE 2. Plaintext arrangement by bytes for using AVX2.
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‘ Set 1 byte of plain text into a 256-bit register (packed 16-bit integers)
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FIGURE 3. Allocation of 1-byte data to 256-bit registers packed in 16-bit
units.
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FIGURE 4. Key addition operation of proposed implementation.

the AVX2 instruction does not support the NOT operation
used in the S-Layer. Therefore, the _mm_andnot_si256(A,b)
instruction in line 17, is used to perform a NOT operation for
the value stored in the A register, and then an AND operation
is performed with b. An ANDmask (D) is needed to preserve
the value of A after the NOT operation. Therefore, the value
of ANDmask is set for all bits to 1.

4) R-LAYER

The PIPO block cipher performs byte unit operations.
Because the same operation is performed on the same byte,
32 plaintexts must be processed concurrently to maximize
the utilization of the 256-bit registers. However, the AVX2

99966

Algorithm 1 Bitslice for S-Layer Using AVX?2

Input: 256-bit register array of size 8 packed in 16-bit units
(T'256), 256-bit temp register array (7)), and 256-bit
register for masking (ANDmask).

Output: 256-bitregister array of size 8 packed in 16-bit units
(T256).

1: Let XOR be the notation for _mm?256_xor_si256, which
is an xor operation between 256-bit registers.

2: Let AND be the notation for _mm256_and_si256, which
is an and operation between 256-bit registers.

3. Let OR be the notation for _mm256_or_si256, which is
an or operation between 256-bit registers.

4: T[3] = _mm256_set1_epil6(0 x 00);

5. _ m256iANDmask;

6: Notmask = _mm256_set1_epil6(0xFF);

7: T256[5] = XOR(T256[5], AND(T256[7], T256[6]));

8: T256[4] = XOR(T256[4], AND(T256[3], T256[5]));

9: T256[7] = XOR(T256[7], T256[4));

10: T256[6] = XOR(T256[6], T256[3]);

11: T256[3] = XOR(T256[3], OR(T256[4], T256[5]));

12: T256[5] = XOR(T256(5], T256[7));

13: T256[4] = XOR(T256[4], AND(T256[5], T256[6]));

14: T256[2] = XOR(T256[2], AND(T256[1], T256[0]));

15: T256[0] = XOR(T256[0], OR(T256[2], T256[1]));

16: T256[1] = XOR(T256[1], OR(T256[2], T256[0]));

17: T256[2] = _mm?256_andnot_si256(T256[2],
ANDmask);

18: T256[7] = XOR(T256[7], T256[1]);

19: T256[3] = XOR(T256[3], T256[2]);

20: T256[4] = XOR(T256[4], T256[0]);

21: T[0] = T256[7]; T[1] = T256[3]; T[2] = T256[4];

22: T256[6] = XOR(T256[6], AND(T[0], T256[5]));

23: T[0] = XOR(T[0], T256[6]);

24: T256[6] = XOR(T256[6], OR(T[2], T[1]));

25: T[1] = XOR(T[1], T256[5));

26: T256[5] = XOR(T256[5], OR(T256[6], T[2]));

27: T[2] = XOR(T[2], AND(T[1], T[0]));

28: T256[2] = XOR(T256[2], T[0]);

29: T[0] = XOR(T256[1], T[2]);

30: T256[1] = XOR(T256[0], T[1]);

31: T256[0] = T256[7]; T256[7] = T[0];

32: T[1] = T256[3]; T256[3] T256[6]; T256[6]
Ty

33: T[2] = T256[4]; T256[4]
T[2];

34: return 7256

T256[5]; T256[5] =

instruction does not support 8-bit shift operation for the
8-bit rotation operation. Therefore, it is necessary to change
the 256-bit register packed into 8-bit units before and after
the operation of the R-layer in 16-bit units. For this reason,
additional registers are needed. Registers must be re-packed
and unnecessary parts are added to the operation for the actual
8-bit rotation. To prevent this, we propose parallel processing
for 16 plaintext blocks. As mentioned above, the re-packing
process to 16-bit is not necessary because plaintext blocks are
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packed in 16-bit units in the plaintext arrangement process.
In this condition, an efficient 8-bit rotation operation can be
performed. Algorithm 2 shows details of the proposed 16-bit
rotation. Here, num is an array that stores rotation constants
for each byte to rotate. Because the first byte does not perform
the rotation operation, only operations on the other 7 registers
need to be performed. For the rotation operation, after left and
right shift operations are performed on the original register,
OR operation is performed. For this, MASKp is needed. The
0’s are allocated to the upper 8-bits of MASKg. The 1’s are
allocated to num/i]-bits starting with the most significant bit
of the lower 8-bit of MASKR. The value of the AND operation
of the original register (T256[i 4+ 1]) and MASKy is shifted
right by 8 — num/i], and T256[i 4+ 1] is shifted left by the
rotation constant. The OR operation is performed for these
two results, and then the final result is stored in the original
register (7256[i + 1]). This approach enables efficient 8-bit
rotation. In addition, after all rounds are finished, only the
lower 8-bits of each 16-bit are used as output.

Algorithm 2 16-Bit Rotation Mechanism for R-Layer Using

AVX2

Input: 256-bit register array of size 8 packed in 16-bit units
(T256), 256-bit register packed in 16-bit units for mask-
ing (MASKR), and array of rotation constants (num).

Output: 256-bit register array of size 8 packed in 16-bit units
(T256).

1. num[7] =1{7,4,3,6,5,1,2}
: fori =0, to6do
: Allocate 0’s to upper 8-bits of MASKg
Allocate 1’s to num[i]-bits starting with the most sig-
nificant bit of lower 8-bit of MASKRg
4:  RESy < T256[i + 1] < numli]
RES| < (T256[i + 1] & MASKR) > 8 — num][i]
5. T256[i+ 1] < RESy or RES;
end for
7: return 7256

N

a

5) PARALLEL PIPO WITH CTR MODE USING AVX2

We implemented a counter mode (CTR mode) of the PIPO
algorithm in a parallel way by using AVX2 instructions,
and we call this implementation AVX2-PIPO-CTR mode.
Figure 5 shows the system configuration of AVX2-PIPO-
CTR mode. For the AVX2-PIPO implementation, 16 con-
catenated values of 32-bit nonce and 32-bit counter are
required. In CTR mode, the nonce and counter are used as
input to this parallel implementation, not the plaintext to be
encrypted. Then, 16 encrypted 64-bit ciphertexts are XORed
with 16 plaintexts to be encrypted. That is, 64-bit values
combined with 32-bit nonce and 32-bit counter become input
to AVX2-PIPO implementation. So we can encrypt 16 con-
catenated values (32-bit nonce and 32-bit counter) at once.
The nonce is the same, and the counter is incremented by
1. The round key and encryption process is the same as
mentioned above, and the output is used as a key to encrypt
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FIGURE 5. CTR mode of AVX2-PIPO.

plaintext. Therefore, the output of AVX2-PIPO and the
128-byte plaintext perform XOR operation to generate
a 128-byte ciphertext. Because AVX2-PIPO also provides
CTR mode to have scalability, it can be utilized in various
applications.

B. FORMAT PRESERVING ENCRYPTION WITH

PARALLEL PIPO

The existing FF1 [5] performs a round function every round
with a feistel structure. In the round function, pseudo ran-
dom function (PRF') and encryption function (CIPH _k(X))
are performed, and AES-128-CBC mode and AES-128 are
used respectively. In this paper, we proposed a method using
AVX2-PIPO implementations for CIPH_k(X), which is used
in the round function of FF1, one of the format preserving
encryption methods.

Algorithm 3 shows the process of the proposed FF1
with AVX2-PIPO implementations. Inputs are tweak, tweak
length, radix, key, and plaintext. The input plaintext X is split
into A and B. Then, b (length of B), d, and the initial block
P are set. These values are used for the encryption. Q is also
generated using T, round (i), and B. Here, R is generated with
initial blocks P and Q through PRF (AES_Encrypt in line 8).
AVX2-PIPO is not applied to the PRF part, because PRF
receives the input of a fixed length of 16 bytes. Up to line 8 in
Algorithm 3, it is the same as the existing FF1 algorithm [8].
Afterward, R is encrypted through CIPH _k(X) to generate S.
We change this CIPH _k(X) to the implementation of AVX2-
PIPO algorithm. In the existing FF1, the values obtained by
performing XOR operation with R and Q by 16 bytes were
encrypted. In this work, 128-bytes are encrypted at once in
a parallel way. The AVX2-PIPO encryption process consists
of arranging plaintext, repeating rounds, and rearranging
ciphertext, as described above. Then, S and A are added on
the mod radix™, and then converted to the original radix
frequency of length m. Finally, the concatenated value of
the last A and B becomes the ciphertext, and this process is
repeated for 10 rounds.

C. APPLICATION

1) IMAGE ENCRYPTION WITH AVX2-PIPO-CTR MODE

We propose image encryption using AVX2-PIPO-CTR mode.
Image processing is usually time consuming and involves
doing the same and repetitive work on multiple pixels. Multi-
ple pixels are simultaneously worked through AVX2-PIPO
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Algorithm 3 FF1 Encryption Process Using AVX2-PIPO

Input: Tweak (T'), Length of tweak (), Radix (r), Key (k),
and Plaintext (X)

Output: Encryption value (A||B)

I: Letu=|n/2 |;v=n—u
s LetA=X[1...ul;B=X[u+1...n]
: Letb=[[v-LOG(r)]/8]
: Letd =4[b/4] 4+ 4
Let P =
mod 256]"[|[n]*[|[1]*
: fori =0, to9 do
Let O = T|[0]"=>=1 mod 16| |11 || [NUM aqi (B)1?
Let R = AES_Encrypt(P||Q)
Let pad = ((—t—b — 1)%16 + 16)%16
Let Qlen =t +pad + 1+ b
Let count = Qlen/ 16
unsigned char R;[16], unsigned char xQ; = 0,
unsigned char R;256[256]
10:  for block = 0, to count — 1 do

SN SR 5

LRI e e o0t |

o o

11: for j =0, to 15 do

12: Ri[j1 = Oilj1 @ RIJ]

13: R;256[16 * block + j] < R;[j]

14: end for

15: 0+ =16

16:  end for

17:  AVX2-PIPO_k(R;256, R, roundkey); R is for cipher-
text

18:  memcpy (S, R,16)
19:  Lety=NUM(S)
20:  if i is even then

21: m=u
22:  else

23: m=yv
24:  end if

25: ¢ = (NUM,(A)+y) mod r™
26:  C =STR(c)

27 A=B,B=C

28: end for

29: return A||B

implemented in a parallel way. We implemented the CTR
mode with high parallelism. First, the nonce, counter, and
key of PIPO are inserted into AVX2-PIPO implementation
to perform the encryption. The result value becomes the
key used to encrypt input pixels. Then, image pixels are
loaded into a 128-byte buffer. They are divided into 16 64-bit
plaintexts, and the XOR operation is performed in a parallel
way. Encrypted values are entered in the original place of
the corresponding plain pixels. Because the 128-byte pixel
to be input is independent, the speed can be further improved
through the parallel implementation of the counter mode.

2) DATABASE ENCRYPTION USING FF1-AVX2-PIPO

In this paper, we propose a database encryption method using
FF1-AVX2-PIPO. Because format-preserving encryption is
used, the size of the data to be encrypted is not padded to
match the block size of the encryption algorithm. Therefore,
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the input and output are maintained in the same length,
preventing waste of memory storage space at the database.
Because it has the same form as the original data, there is no
need to change the schema of the database. When trying to
store the password ‘A1234’ in the database table that stores
the user ID and password, if the domain of the password
column is a character string that combines letters and numer-
als, it is encrypted within that range (letters and numeral),
to preserve the length and format. No additional database
schema changes are required. Thus, database administration
costs are not increased and system modifications are not
required.

MySQL (one of the relational database management sys-
tems) provides encryption algorithms, such as AES-128,
SHAZ2, and DES. However, as mentioned above, these cryp-
tographic schemes waste database memory because the input
and output sizes are fixed. Furthermore, these cryptographic
algorithms are not suitable for maintaining database schema.
To solve these problems, we use the FF1 implementation
which has advantages in terms of database memory manage-
ment and schema maintenance.

Algorithm 4 shows the database encryption mechanism.
MySQL can be implemented in various languages. In partic-
ular, C language is used for the implementation of this work.
First, the data to be encrypted through the FF1 algorithm
in plain text is set. Before encryption, the MySQL server is
connected, and the database to be used is selected through a
query in line 2. The ciphertext generated after encryption is
inserted into a table chosen by the user in the database using
the query in line 4.

Algorithm 4 Database Encryption Mechanism Using
FF1-AVX2-PIPO
Input: Tweak (T"), Length of tweak (¢), Radix (r), Key (k),
Plaindata (X), and Length of plaindata (Xlen)
Output: Database with encrypted data added (new_DB)
1: MySQL * conn = mysql_init(NULL)
Set_Connection(conn); Connect to a MySQL server
2: MySQL_query(USE DATABASE NAME)
3: Y < FF1-AVX2-PIPO(T , t, r, k, X, Xlen)
4: MySQL_query(INSERT INTO %s VALUES(%s),
DB_TABLE, Y)
5: return new_DB

3) PARTIAL IMAGE ENCRYPTION USING FF1-AVX2-PIPO

We propose a method to encrypt the detected object in the
entire image after object detection through deep learning.
Figure 6 shows the system configuration. We use Yolov3
(an object detection model) to detect a region where a spe-
cific object is located in the entire image. The detected area
is represented by the (x, y) coordinates of the top-left and
bottom-right corners. We use these coordinates to get pixels
inside a particular area ((left_x < row) && (row < right_x)
&& (left_y < col) && (col < right_y)). Because this
area has a different size depending on the target image or
model used, only pixels within the area are encrypted using
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FIGURE 6. Partial encryption using FF1-AVX2-PIPO and object detection.

the FF1-AVX2-PIPO implementation. Therefore, a padding
process is not required, and only a specific area can be
encrypted. In addition, it is possible to efficiently preserve the
privacy of image data due to the use of the PIPO algorithm,
which is robust against side-channel attacks, and the fast
encryption speed achieved through parallel implementation.

IV. EVALUATION

We experimented with parallel Implementation of PIPO
using AVX2, format preserving encryption with parallel
PIPO implementation and several applications. Because each
experimental environment is different, we refer to the exper-
imental environment in each subsection. Also, the source
code is open to our github https://github.com/khj1594012/
AVX2-PIPO.

A. PARALLEL IMPLEMENTATION OF PIPO USING AVX2

For the performance evaluation, we measured the perfor-
mance of the parallel processing of 32 plaintext blocks
(32 PT blocks), 16 plaintext blocks (16 PT blocks), and
the reference code. This experiment was performed on a
MacBook Pro @2.6GHz 6 core Intel Core i7 (16GB RAM),
and the optimization options -O1 and -mavx2 were applied.
As aperformance comparison method, the execution time and
cycles to process 1 byte (Cycle Per Byte, cpb) were used.

1) IMPLEMENTATION

We implemented the PIPO algorithm with AVX2 instructions
in a parallel way, and we used test vectors from the reference
code to ensure that this design was implemented, properly.
When the same test vector was applied to 16 plaintexts, the
output of the last round of the existing PIPO and the output
of the implementation were generated identically.

2) EVALUATION
Table 2 shows a comparison of the execution time results
according to the number of plaintext blocks. In the case of
the reference code, it started to slow down compared to the
AVX2 implementation from more than 64 blocks of plaintext.
When fewer than 64 plaintext blocks were processed, it was
confirmed that the parallel implementation was rather slow
due to pre-processing for the parallel operation. As seen
in ITI-A1, the pre-processing is a process of arranging several
64-bit plaintexts for parallel processing. The nth bytes (e.g.
1-th byte, 2-th byte) of each plaintext are collected. Next, they
are arranged in a form for input to 256-bit AVX2 register. This
pre-processing is an additional process that is not necessary
if parallel processing is not performed.

Because this pre-process is required, the performance of
the AVX2 parallel implementation improved as the number of
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TABLE 2. Comparison result in terms of speed (unit: ms) between
reference code and AVX2-PIPO (32 PT blocks/16 PT blocks) where
the optimization option is-O1.

Th;T‘“l‘)rl‘:;irs of Il Ref. [2] |32 PT blocks| 16 PT blocks
2 0.501 0.505 0.502
64 0511 0.509 0.503
320,000 54.647 32.876 9.003
3,200,000 451.136 260.624 73.538
32,000,000 4390.659 | 2437.528 597.735

TABLE 3. Comparison result in terms of speed (unit: cpb) between
related works and AVX2-PIPO (32 PT/16 PT).

Platform Implementation ‘ cpb
Intel Core i7 Single PT (Ref. code [2]) 44.592
AVX2 32 PT blocks (This work) 24.75
AVX2 16 PT blocks (This work) 6.07
RISC-V Speed opt. (Single) [13] 1918
RISC-V Speed opt. (Parallel) [13] 59.93
RISC-V Memory opt. (Single) [13] 2715
RISC-V Memory opt. (Parallel) [13] 84.85
ARM Single PT (Ref. code [2]) 34.6
ARM 8 PT [15] 12.0
ARM 16 PT [15] 6.3

plaintexts increased. In the case of 32 PT blocks that process
more plaintext but require unnecessary pre-processing in
the R-Layer, compared to the reference code, performance
improvement of 1.003x for 64 plaintexts and 1.801x for
processing 32 million plaintexts was achieved. Therefore,
16 PT block implementation showed the best performance.
Compared to the reference code, 16 PT block implementation
achieved 7.345 x the speed for 32 million plaintext blocks. In
other words, when processing 32 PT blocks at the same time,
pre-processing is required to use the AVX2 instruction in the
R-layer (Because there is no instruction 8-bit shift for 8-bit
rotation). However, if 16 PT blocks are processed in paral-
lel, rotation using AVX instruction is possible without pre-
processing, so speed optimization is possible. In addition, for
parallel processing, plaintext arrangement process is required
before encryption. In addition, as the number of plaintexts
to be processed increases, the time required for the plaintext
arrangement process before encryption is reduced, and thus
the speed can be improved.

Table 3 compares the CPBs of our implementation
(32 PT blocks and 16 PT blocks) and the reference imple-
mentation. In the case of 32 PT blocks, there was a per-
formance improvement of 1.8x compared to the reference
code. The performance of 16 PT blocks was also the best,
a performance improvement of about 7.34 x compared to the
reference implementation was achieved. Comparing our two
implementations, the cpb of the 16 PT block implementation
was 4.07 x higher than that of the 32 PT block. And, as a result
of comparing CPBs for several plaintext numbers (in Table 2),
it was found that all of them were almost same.
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Also, Table 3 shows a comparison with PIPO imple-
mentations implemented in parallel on different platforms.
In [13], RV321 model supporting 32-bit was used, and in [15],
64-bit ARM was used. As a result of benchmarking the exist-
ing single plaintext encryption reference [2] on each platform,
it was measured to be about 44 cpb on our platform. And,
it was measured to 1918 for speed optimization on RISC-V,
2715 for memory optimization on RISC-V, and 34.6 on
64-bit ARM. An exact comparison is difficult because of the
different platforms and different implementations. Neverthe-
less, comparing the performance improvement, when using
AVX2, 32PT and 16PT were faster than encryption for single
plaintext by 1.8 x and 7.34x respectively. Next, in RISC-V,
speed optimization became 32x faster than single encryp-
tion, and in the case of memory optimization, it was 31.9x
faster. Finally, in 64-bit ARM, 8PT and 16PT achieved speed
improvements of 2.9x and 5.5 %, respectively, compared to
single plaintext encryption. Comparing only the performance
improvement rate, RISC-V improved the most and ARM
showed the least performance improvement.

B. FORMAT PRESERVING ENCRYPTION WITH PARALLEL
PIPO IMPLEMENTATION

1) IMPLEMENTATION

In this implementation, key, tweak, radix, and plaintext were
used as input, and we used the test vector of FF1. A short
plaintext, a long plaintext, a plaintext composed of numbers,
and a plaintext that is a mixture characters and numbers can
be encrypted while maintaining length and domain.

2) EVALUATION

This experiment was performed on an Ubuntu 20.04.2 LTS
virtual machine with Intel 15-8250U CPU @2.50GHz and
2GB RAM. Table 4 shows a comparison of the speed result
obtained for the existing FF1 and FF1-AVX2-PIPO. When a
16-byte plaintext was encrypted without repetition, the two
algorithms performed similarly, and when the encryption
was repeated 100,000 times, FF1-AES shows faster perfor-
mance than the FF1-AVX2-PIPO. AVX?2 implementation is
inefficient because it encrypts in units of 128 bytes. When
a 128-byte plaintext was encrypted 100,000 times, it took
almost the same amounts of time for the existing method
and proposed method. As seen in Table 2, the performance
of AVX2-PIPO is better than that of the reference code
when more plaintext is encrypted. In this experiment, the
performance of FF1-AVX2-PIPO showed improvement when
128-byte plaintext was performed, repeatedly. In addition,
it was confirmed that it is rather inefficient to repeatedly
encrypt 16-byte plaintext using FF1-AVX2-PIPO. It showed
similar performance to that of FFI-AES when 128-byte
plaintext was input.

C. APPLICATION

1) IMAGE ENCRYPTION USING AVX2-PIPO-CTR

We performed image encryption using AVX2-PIPO-CTR
mode. As described in Section III-C, multiple pixels can be
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TABLE 4. Comparison result in terms of speed (unit: ms) between
existing FF1-AES and FF1-AVX2-PIPO (16 PT blocks) where the
optimization option is-02.

FF1-AVX2-PIPO

. } 1
Existing FFI-AES © |~ 6 bT blocks)

Length of Plaintext

16-byte (1 time) 0.715 0.549
128-byte (1 time) 0.790 0.687
16-byte (100,000 times) 2600.053 4147.026
128-byte (100,000 times) 13236.574 14071.321

!

FIGURE 7. Result of image encryption with AVX2-PIPO CTR mode (center)
and ECB mode (right).

TABLE 5. Comparison result table in terms of speed (unit: ms) between
AES, SHA2 of MySQL and FF1-AVX2-PIPO.

0~9

0~9

Method Al1234 09
A~H

AES of MySQL 0.755 0.838
SHA2 of MySQL 0.818 0.874
FF1-AVX2-PIPO 0.592 0.852

encrypted at the same time. Figure 7 shows the result of image
encryption with AVX2-PIPO CTR and ECB modes. In the
ECB mode, the upper pixels of the image have the same
ciphertext value for several rows. Because the upper part of
the image has the same pixel value, the ECB mode outputs
the same ciphertext. However, in the CTR mode, the same
input was encrypted with a completely different value due
to the characteristics of the CTR operation mode. Because
the CTR mode does not have ciphertext feedback, parallel
implementation is easy and high-speed encryption is possible.
It has a structure that converts a block cipher into a stream
cipher, and this can be utilized for the encryption of videos
which are composed of a continuous series of frames.

2) DATABASE ENCRYPTION USING FF1-AVX2-PIPO
This section compares and analyzes database encryption
using MySQL’s built-in algorithm and database encryption
using the FF1-AVX2-PIPO implementation. The experiment
was performed on an Ubuntu 16.04 LTS virtual machine
with Intel 15-8250U CPU @1.60GHz and 2GB RAM due
to the MySQL environment issues. In addition, we selected
data storage speed and memory usage after encryption as
performance comparison factors.

MySQL provides encryption algorithms, such as AES,
SHA?2, and DES. We encrypted data stored in our database
using FF1-AVX2-PIPO. Table 5 shows the result of
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| information_schema
| mysql

| performance schema
PIPO_FF1

FIGURE 8. Memory usage for each database (AES, SHA2, and
FF1-AVX2-PIPO).

measuring the time it takes to save data to the database after
encrypting it using MySQL’s AES and SHA?2 as well as the
proposed implementation of FF1-AVX2-PIPO. It is the time
taken to perform 100,000 encryption divided by 100,000 (i.e.
average timing). That is the time taken to store single data.
For the experiment, we set the data to be encrypted as short
plain text and long plain text. As seen in Table 5, in the
case of AES and SHA, the block length is adjusted with
the padding. This takes a similar amount of time for short
plaintext and long plaintext. Because the length of input and
output is preserved in the case of FF1-AVX2-PIPO, for the
case of short plaintext, the process of encryption and storage
in the database was performed in a shorter time than usual.
When the long plaintext was used, AES based encryption
showed the fastest speed, followed by FF1-AVX2-PIPO, and
SHA2 was the slowest. Because plaintext is 256-bits for
SHAZ2, it seems to take the longest. In summary, for short
plaintext, FF1-AVX2-PIPO was 0.163ms and 0.226ms faster
than AES and SHA?2, respectively. For long plaintext, AES
was measured to be 0.014ms and 0.036ms faster, respectively,
compared to FF1-AVX2-PIPO and SHA2. Combining the
results for two lengths of plaintext, AES took 0.7965ms, SHA
took 0.846 ms, and FF1-AVX2-PIPO took 0.722ms.

In addition, the memory space occupied by each database
is also an important factor. Figure 8 shows the memory usage
after three iterations of storing each data in Table 5 with
encryption 100,000 times. That is, a total of 600,000 results
of encrypting the data are stored in each database. The stored
data in the table of a database is shown in Figure 9. It can be
seen that when block ciphers are used, the data is converted
to a fixed-length (block size) and then stored. SHA, AES,
and FF1-AVX2-PIPO took up more memory capacity in that
order. For SHA in MySQL, the block length is 256-bit. That
of AES is 128-bit. If the length of the plaintext is smaller
than the block size, padding is performed to fit the block
size. Thus, memory space is wasted. However, in the case
of FF1-AVX2-PIPO, because the input and output length
are same, the wasted part generated by padding to fit the
block size can be eliminated. The proposed method achieves
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AES (128-bit)

SHA2 (256-bit)
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ctzsbl[i§xxts-~"etifilebyga3sfilsydak€3ww}agf9,j,bigtg7fn6za
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FF1-AVX2-PIPO (Same as plaintext length)

FIGURE 9. Data stored in each database (AES, SHA2, and FF1-AVX2-PIPO).

Fia

FIGURE 10. Result of partial encryption (right) with FF1-AVX2-PIPO and
object detection (left).

1.8 x less memory usage compared to AES and 2.55x less
than SHA2.

Besides, reducing the need to modify the database sys-
tem is important in database management. In the case of
a database table, it consists of rows and columns, and the
domains of data stored in the same column are the same.
For example, a column that stores names stores strings,
and a column that stores ages stores numeric data. Thus,
it is possible to preserve the entire schema of the database
by storing data that maintains its format even after being
encrypted.

In conclusion, the results obtained by applying FF1-AVX2-
PIPO can be summarized as follows. It can reduce memory
usage and process multiple data in a parallel way. In addition,
the encryption speed was improved for the short plaintext, and
the encryption speed achieved for the long plaintext was sim-
ilar to that achieved by MySQL’s method. Considering that
short data such as passwords are mainly contained in actual
databases, the necessity of encryption for large databases,
and the need to perform encryption on various types of data
stored in databases, using FF1-AVX2-PIPO is considered to
be efficient.
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3) PARTIAL IMAGE ENCRYPTION USING FF1-AVX2-PIPO

We used a deep learning-based object detection algorithm
that detects objects, such as people and cars. The area is
displayed as a bounding box as shown on the left of Figure 10,
and the coordinates of the upper left and the lower right
can be obtained. After the area to be encrypted was deter-
mined through these coordinates, only that part was suc-
cessfully encrypted, as shown in the right part of Figure 10.
Privacy can be protected in the process of video analysis
based on deep learning, and it can prevent waste of stor-
age space as well as inability to recognize images without
decoding.

V. CONCLUSION

In this paper, we propose parallel implementation of PIPO,
format preserving encryption with PIPO, and its applications.
To achieve high-performance, we utilized an AVX2 based
parallel implementation of the PIPO block cipher. After-
ward, the implementation was applied to the FF1 algorithm.
Finally, we presented several case studies based on PIPO
and FF1 implementations. We will further explore the opti-
mized implementation on other platforms and services in
future works.
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