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Abstract: With the advent of the Internet of Things (IoT) and cloud computing technologies, vast
amounts of data are being created and communicated in IoT networks. Block ciphers are being used
to protect these data from malicious attacks. Massive computation overheads introduced by bulk
encryption using block ciphers can become a performance bottleneck of the server, requiring high
throughput. As the need for high-speed encryption required for such communications has emerged,
research is underway to utilize a graphics processor for encryption processing based on the high
processing power of the GPU. Applying bit-slicing of lightweight ciphers was not covered in the
previous implementation of lightweight ciphers on GPU architecture. In this paper, we implemented
PRESENT and GIFT lightweight block ciphers GPU architectures. It minimizes the computation
overhead caused by optimizing the algorithm by applying the bit-slicing technique. We performed
practical analysis by testing practical use cases. We tested PRESENT-80, PRESENT-128, GIFT-64,
and GIFT-128 block ciphers in RTX3060 platforms. The throughput of the exhaustive search are
553.932 Gbps, 529.952 Gbps, 583.859 Gbps, and 214.284 Gbps for PRESENT-80, PRESENT-128, GIFT-
64, and GIFT-128, respectively. For the case of data encryption, it achieved 24.264 Gbps, 24.522 Gbps,
85.283 Gbps, and 10.723 Gbps for PRESENT-80, PRESENT-128, GIFT-64, and GIFT-128, respectively.
Specifically, the proposed implementation of a PRESENT block cipher is approximately 4× higher
performance than the latest work that implements PRESENT block cipher. Lastly, the proposed
implementation of a GIFT block cipher on GPU is the first implementation for the server environment.

Keywords: parallel processing; PRESENT; GIFT; lightweight block cipher; GPU implementation

1. Introduction

The significant growth of Internet of Things (IoT) technologies in recent years has
introduced many smart applications into our daily life. Due to this, the data exchanged
between IoT devices increases on an unprecedented scale, and the need for data security [1]
in mass data communication is also emerging. Block ciphers are being used to protect
these data from malicious attacks. Massive computations introduced by bulk encryption
using block ciphers can become a performance bottleneck of the server, requiring high
throughput. To alleviate this problem, some researchers proposed to utilize the Graphics
Processing Unit (GPU) as an accelerator for computing the cryptographic operations [2–9]
can free up CPU for other tasks. Some research works also consider using the GPU for
cryptanalysis purposes [10,11].

Many lightweight block ciphers have been introduced recently targeting resource-
constrained devices. In order to improve the encryption and decryption throughput of
these lightweight block ciphers in the server environment equipped with GPU, several
research works are proposed. Lee et al. [3] presented optimized implementation techniques
of LEA, Chaskey, SIMON, SPECK, and SIMECK on three different GPU architectures. In the
case of LEA, the previous best performance was achieved by Seo et al. [2]. Li et al. [12] focus

Appl. Sci. 2022, 12, 10192. https://doi.org/10.3390/app122010192 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4659-8979
https://orcid.org/0000-0002-4632-8322
https://orcid.org/0000-0003-0069-9061
https://doi.org/10.3390/app122010192
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010192?type=check_update&version=2


Appl. Sci. 2022, 12, 10192 2 of 15

on general software implementations of LED, Piccolo, and PRESENT on GPU architectures.
This includes lookup table-based implementations that use explore various memory types
to store the lookup tables. By studying parallel granularity and overlapping data transfer
and processing, this work significantly improved the performance of the three selected
block ciphers on various GPU platforms. An et al. [13] implemented the core part of each
cipher with a manual inline pseudo-assembly code (i.e., Parallel Thread eXecution; PTX)
and optimized each target cipher by considering the algorithmic characteristics of each
cipher. This is the first GPU optimization study for CHAM, with throughput improvements
of 10.7% and 67% compared to the previous best results.

Another interesting optimization technique is to bit-slicing the lightweight ciphers,
which was covered in the previous studies. Bit-slicing was first used by Biham [14] instead
of lookup tables to speed up the software implementation of DES. Bit-slicing refers to
a technique of bit-wise operation by collecting each bit in several blocks. In this way,
multiple blocks can be processed in parallel. Hajihassani et al. [4] achieved the highest
AES throughput on GPU using the bit-slicing technique. Moreover, some other related
works that implement PRESENT [15], GIFT [16] and AES [17] on embedded devices
(e.g., microcontroller) also showed that a bit-slicing based technique can achieve the best
performance. However, in embedded software, a bit-slicing technique only processes
two blocks [17] due to high register utilization. The advanced bit-slicing technique that
processes a large number of blocks (i.e., larger than two blocks) is not widely explored as
there are insufficient registers to hold the intermediate results. However, GPU devices do
not have such limitations as there are plenty of registers available, which is suitable for this
advanced bit-slicing technique. This motivates us to improve the throughput of PRESENT
and GIFT lightweight ciphers using the advanced bit-slicing technique on the GPU.

Contributions

We implemented PRESENT, the first lightweight block cipher, and GIFT, one of the
most popular lightweight block ciphers. The bit-slicing technique was applied to improve
the throughput of PRESENT and GIFT and optimize the algorithm to minimize overhead.
The contributions of this paper are summarized below.

• Fast GPU implementation of PRESENT and GIFT Both PRESENT and GIFT block ci-
phers utilize S-box, which can be pre-computed and stored on various GPU memories
to achieve high encryption performance. In this paper, we move away from this tradi-
tional technique and focus on the advanced bit-slicing technique to further improve
the throughput performance. Existing bit-slice implementation on GPU suffers from
excessive use of registers. To avoid this issue, the proposed implementation generates
the round keys on the fly instead of pre-computing them.

• First GPU-based exhaustive key search and bulk data encryption for both PRESENT
and GIFT block ciphers. We performed practical analysis by testing practical use
cases (i.e., exhaustive key search and bulk data encryption). When implementing an
exhaustive key search, the counter value is directly generated in the bit-sliced form on
the GPU kernel. In this way, we do need to transfer the counter values to the GPU.
This also reduces the memory copy delay and improves performance significantly.

• Speed record result on modern GPU architecture (RTX) The proposed implementation
was evaluated on the RTX 3060 with NVIDIA Ampere architecture. We are able
to achieve 553.932 Gbps PRESENT-80, 529.952 Gbps PRESENT-128, 583.859 Gbps
GIFT-64, and 214.284 Gbps GIFT-128 throughput for encryption, respectively. For
exhaustive search, 24.264 Gbps PRESENT-80, 24.522 Gbps PRESENT-128, 85.283 Gbps
GIFT-64, and 10.723 Gbps GIFT-128 throughput are achieved, respectively. Note that
our implementation of PRESENT is approximately 4× higher performance than the
latest work that implements PRESENT [10].
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2. Background
2.1. PRESENT Block Cipher

PRESENT [18] is a lightweight block cipher based on the Substitution Permutation
Network (SPN) structure standardized in ISO/IEC in 2012. PRESENT supports 64-bit
input data blocks and key sizes of 80 and 128 bits. The input key is processed internally to
generate a round key for each of a total of 31 rounds. The cipher is composed of a structure
that repeats the following three basic operations for a state, as shown in Figure 1 The steps
addroundkey, sboxLayer, and pLyaer are repeated for each round.

• AddRoundKey: Adding state to the 64-bit word of the round key using finite field
arithmetic.

• sBoxLayer: Using an S-box (replacement box) with 16 values to replace 4-bits to 4-bits
in the state.

• pLayer: Applying a bit-level shift to the state.

Based on the key schedule in the 80-bit version, the key schedule first processed the
80-bit key by rotating it to the left by 61-bits. Next, the leftmost 4-bits are passed through
the S-box, and the round_counter value i is XORed with the least significant bit of K.

𝐼𝑛𝑝𝑢𝑡 (64-bit)

𝑂𝑢𝑡𝑝𝑢𝑡

𝑠𝐵𝑜𝑥𝐿𝑎𝑦𝑒𝑟

𝑝𝐿𝑎𝑦𝑒𝑟

⊕

⋮

𝑠𝐵𝑜𝑥𝐿𝑎𝑦𝑒𝑟

𝑝𝐿𝑎𝑦𝑒𝑟

⊕

𝑅𝐾!⊕𝑐!

𝑟	𝑅𝑜𝑢𝑛𝑑
𝑟 = 31

𝑅𝐾"⊕𝑐"

Figure 1. PRESENT structure.

2.2. GIFT Block Cipher

GIFT [19] is a lightweight block cipher that corrects the well-known weakness of
PRESENT and improves its efficiency. It is an SPN-based cipher with two variants: GIFT-64
and GIFT-128. 128-bit key GIFT-64 operates with 28 rounds and GIFT-128 with 40 rounds,
and each round consists of three steps: SubCells, PermBits, and AddRoundKey as shown
in Figure 2. GIFT is similar to PRESENT, but the half round key is computed and no
addroundkey is performed at the start of encryption.

• sBoxLayer: S-box with 16 values (Substitute box) to replace from 4 bits to 4 bits in
the state.

• pLayer: Applying a bit-level shift to the state.
• AddRoundKey: Adding state to the 64-bit word of the round key using finite field

arithmetic.
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𝐼𝑛𝑝𝑢𝑡	(64/128-bit)

𝑂𝑢𝑡𝑝𝑢𝑡

𝑠𝐵𝑜𝑥𝐿𝑎𝑦𝑒𝑟

𝑝𝐿𝑎𝑦𝑒𝑟

⊕
⋮

𝑠𝐵𝑜𝑥𝐿𝑎𝑦𝑒𝑟

𝑝𝐿𝑎𝑦𝑒𝑟

⊕

𝑅𝐾!⊕𝑐!
𝑟	𝑅𝑜𝑢𝑛𝑑
𝑟 = 28/40

𝑅𝐾"#$⊕𝑐"#$

Figure 2. GIFT structure.

The key schedule and round constants are the same in both versions of GIFT. The
difference is round key extraction. The round key is first extracted from the key state before
the key state update. In the case of GIFT-64, two 16-bit words of the key state are extracted
as round keys.

RK = U ‖ V, U ←W6, V ←W7

In the case of GIFT-128, four 16-bit words in the key state are extracted as a round key.

RK = U ‖ V, U ←W2 ‖W3, V ←W6 ‖W7

The key state is updated as follows:

W0 ‖W1 ←W0 ≫ 2 ‖W1 ≫ 12
W2 ‖W3 ←W2 ‖W3
W4 ‖W5 ←W4 ‖W5
W6 ‖W7 ←W6 ‖W7

2.3. CUDA Framework

CUDA (Compute Unified Device Architecture) is a GPGPU technology that enables
parallel processing algorithms performed by GPUs to be written using high-level program-
ming languages including C/C++ and FOTRAN. CUDA was developed by Nvidia, and
this architecture requires an Nvidia GPU and special stream processing drivers. Under the
CUDA framework, the GPU code (known as kernel) are executed in a single-instruction-
multiple-data (SIMD) manner. CUDA organizes the parallel workload in grid, threads and
blocks shown in Figure 3. The maximum size of a block is limited to 1024, and 32 threads
are bundled as a warp. All 32 threads in a warp are executed simultaneously, and different
warps are scheduled by the Streaming Multi-processor (SM).

To implement the exhausted key search, one password is decrypted in each thread,
and many decryptions are performed in parallel using many threads. To achieve good
performance, it is necessary to select appropriate values for the number of threads per
block and the number of blocks per grid. It is also necessary to use sufficient threads and
blocks to keep the GPU busy by fully utilizing all the computational resources available.
Another key feature in GPU to achieve high-performance computing is the availability of a
user-managed cache, which is known as shared memory. It can use shared data between
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threads within the same block; this avoids writing back and forth to the slow global memory.
Registers are the fastest memory in GPU, but the size is limited and it is only accessible
within a thread.

Grid

Block (0, 0)

Block (0, 1) Block (1, 1)

Block (1, 0) Block (2, 0)

Block (2, 1)

Thread
0-31

Thread
32-63

Thread
192 - 223

Thread
224 - 255

Warp 1Warp 0

Warp 6 Warp 7

Figure 3. Grid, Thread, Block, and Warp configuration in CUDA.

3. Proposed Method

This section describes an optimized implementation technique based on bit-slicing for
lightweight block ciphers on CUDA GPUs.

3.1. Bit-Slicing Techniques

In order to apply the bit-slicing technique, the operation process of the cryptographic
algorithm must be converted to a combination of simple logic gates such as AND, OR,
and NOT. In addition, a packing process to convert the data into multi-block bit-sliced
representation, and an unpacking process to return to the original representation, are
required. Therefore, the overhead caused by these processes must be considered. On the
other hand, the bit permutation in the linear layer of PRESENT and GIFT is complex and not
efficient to implement in software, but it can be solved by applying the bit-slicing technique.
Since the bit-slicing technique encrypts multiple blocks, it is suitable for platforms that
require high throughput, such as GPU devices. A bit-slicing implementation that computes
many blocks in parallel can save several computational domains but can incur overhead
because it consumes many registers. The GPU environment provides relatively sufficient
registers to efficiently perform this highly advanced bit-slice implementation. As shown in
Table 1, 32 64-bit plaintext blocks are implemented in parallel since the GPU core is a 32-bit
architecture.

Two types of overheads created by the bit-slicing technique are considered in the
proposed implementation. When an implementation uses the same key, the key schedule
is pre-launched to generate round keys to avoid duplicated work. When the bit-slicing
technique is applied, there are 32 plaintexts encrypted in parallel, the round key is also
increased by 32×. In this case, the kernel may have an additional delay in retrieving the
pre-computed round keys from the global memory. On the other hand, these pre-computed
round keys can be stored in the registers to achieve low latency, but it may not work if the
number of registers are more than supported amount. For instance, Hajihassani et al. [4]
hard-coded the AES round keys during compilation to avoid using an excessive number
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of registers, but this seriously limits the usefulness of such software. To resolve this issue,
we proposed to calculate the round keys on-the-fly instead of generating them in advance.
Although this may introduce some additional computation overhead, it is still beneficial
because the round key generation for lightweight ciphers is generally not complex.

On top of that, when the bit-slicing technique is applied, the additional overhead of
packing and unpacking to change the state occurs. This overhead increases as the number
and size of blocks to be converted increase. In lightweight ciphers using 64-bits, the block
size is relatively small, so it is suitable for high-level bit-slicing on the GPU.

Table 1. Bit-slicing representation from using 64 32-bit registers R0, . . . , R5 to process 32 blocks
b0, . . . , b7 in parallel where bi

j refers to the j-th bit of the i-th block.

Block0 Block1 Block2 Block3 · · · · · · Block28 Block29 Block30 Block31

R0 b0
0 b1

0 b2
0 b3

0 · · · · · · b28
0 b29

0 b30
0 b31

0
R1 b0

1 b1
1 b2

1 b3
1 · · · · · · b28

1 b29
1 b30

1 b31
1

R2 b0
2 b1

2 b2
2 b3

2 · · · · · · b28
2 b29

2 b30
2 b31

2
R3 b0

3 b1
3 b2

3 b3
3 · · · · · · b28

3 b29
3 b30

3 b31
3

R4 b0
4 b1

4 b2
4 b3

4 · · · · · · b28
4 b29

4 b30
4 b31

4
...

...
...

...
...

...
...

...
...

...
...

R63 b0
63 b1

63 b2
63 b3

63 · · · · · · b28
63 b29

63 b30
63 b31

63

3.2. PRESENT Block Cipher
3.2.1. S-Box in Bit-Slicing Form

In order to apply the bit-slicing technique, the S-box must be converted to a combina-
tion of circuits using gates including AND, OR, and NOT. There could be several possible
combinations to obtain these circuits, but only the one that performs the least bit operations
is used. This is to ensure a minimum latency between the input and output of the circuits,
which is optimized for performance. Due to this reason, we use the S-box implementation
of [15], which performs 14-bit operations on four input bits, which is the most optimized
one for the PRESENT S-box. This is detailed in the Algorithm 1.

Algorithm 1 PRESENT S-box

Input: x0, x1, x2, x3
Output: x0, x1, x2, x3

1: T1 = x2⊕ x1
2: T2 = x1∧ T1
3: T3 = x0⊕ T2
4: T5 = x3⊕ T3
5: T2 = T1∧ T3
6: T1 = T1⊕ T5
7: T2 = T2⊕ x1
8: T4 = x3∨ T2
9: x2 = T1⊕ T4

10: x3 =∼ x3
11: T2 = T2⊕ x3
12: x0 = x2⊕ T2
13: T2 = T2∨ T1
14: x1 = T3⊕ T2
15: x3 = T5

S-box receives 4 32-bit inputs, performs logical operations, and operates 16 times on
16 32-bit states expressed by bit slicing in one round.
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3.2.2. Permutation Layer (pLayer)

The efficiency of bit-slicing implementation is most visible in pLayer. Instructions are
executed efficiently if the operand is given in the size of the computer word (e.g., 32-bit
or 64-bit for modern processors). In this case, it can complete the given instructions at
one time. Since the pLayer permutes every single bit, a lot of instructions are needed
to implement it in software. Note that bit-wise permutation is especially cumbersome
to implement in software, but it is not a problem in hardware, as it can be performed
through simple wiring. Therefore, bit-wise permutation in software is more optimized if it
is implemented using a lookup table. In bit-slicing, each register stores bits in blocks, so bit
shifts can be treated as permuting values in a register, which is as efficient as in hardware
implementation. Therefore, in bit-slicing, bit shifts in pLayer are calculated as simple
value shifts between registers. The implementation of the proposed technique replaces
permutation P by performing P0 operation after P1 operation. The proposed technique is
based on the idea of [15], in which the computation of the P in two successive rounds by
replacing the permutation P with P0 and P1. In each round, instead of using P, P0 and P1
are used alternately. Executing P0 and P1 consumes fewer cycles than P. However, this
process requires the round key to be computed beforehand. Since we do not perform the
key schedule in advance, additional calculations are required. Therefore, P was used as a
combination of P0 and P1 in one round using only the advantage that P0 and P1 were faster.

Since several blocks are encrypted by bit-slicing, the key update operation is also mod-
ified to the form shown Algorithm 2. Note that the rotation step is now revised; it only per-
forms shift operations and utilizes the S-boxes combinational circuit form. round_counter is
changed and added in 32-bit form. To prevent overusing registers in the GPU, the proposed
technique calculates the round keys on-the-fly. Therefore, the key update is performed
every round.

Algorithm 2 PRESENT RoundKey Update

Input: Round r, X = {x0, x1x2, · · · , x78, x79}
Output: Y = {y0, y1y2, · · · , y78, y79}

1: For i = 1 to 80 do
2: yi = xi+61mod 80
3: PRESENT_SBOX(y1, y2, y3, y4)
4: y60 = y60 ⊕ (((r ∧ 16)� 4)) ∗ 0xFFFFFFFF)
5: y61 = y61 ⊕ (((r ∧ 8)� 3)) ∗ 0xFFFFFFFF)
6: y62 = y62 ⊕ (((r ∧ 4)� 2)) ∗ 0xFFFFFFFF)
7: y63 = y63 ⊕ (((r ∧ 2)� 1)) ∗ 0xFFFFFFFF)
8: y64 = y64 ⊕ ((r ∧ 16) ∗ 0xFFFFFFFF)

3.3. GIFT Block Cipher
3.3.1. S-Box in Bit-Slicing Form

Similar to PRESENT, S-box in GIFT can be expressed also be expressed in a combina-
tional circuit, which is described in the following logical operations:

S1← S1⊕ (S0∧ S2)

S0← S0⊕ (S1∧ S3)

S2← S2⊕ (S0∨ S1)

S3← S3⊕ S2

S1← S1⊕ S3

S3← S3

S2← S2⊕ (S0∧ S1)

S0, S1, S2, S3← S3, S1, S2, S0
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The fact that bit permutation works efficiently in bit-slicing also applies to GIFT. In the
proposed scheme, the last step of S-box {S0, S1, S2, S3} ← {S3, S1, S2, S0} is not performed,
but a part of sLayer is performed in pLayer. As S1 and S3 change, the value of the S-box
is transferred to the pLayer. Since it has been converted to a bit-slicing representation, it
is possible to move the values in consideration of the changes in the values of S1 and S3
without additional operation. Through this technique, the execution time of the S-box can
be further reduced. Using an S-box composed of bit-wise operators for four input bits is
shown in the Algorithm 3.

Algorithm 3 GIFT S-box

Input: x3, x2, x1, x0
Output: x3, x2, x1, x0

1: x1 = (x0∧ x2)⊕ x1
2: x0 = (x1∧ x3)⊕ x2
3: x3 = x3⊕ x2
4: x1 = x1⊕ x3
5: x3 =∼ x3
6: x2 = (x0∧ x1)⊕ x2

3.3.2. Permutation Layer (pLayer)

The last step of S-box {S0, S1, S2, S3} ← {S3, S1, S2, S0} is processed in pLayer. Since
S1 and S3 have changed, value permutation takes place in the pLayer. Since the movement
path of bits is known in pLayer, if the existing S1 and S3 are moved appropriately, the
operation is possible without additional operation. The process is similar to the pLayer of
the PRESENT block cipher. Similarly, pLayer with bit-sliced implementation is computed
as a simple value shift between registers. Due to this reason, we found that the efficiency of
bit-slicing implementation is most visible in pLayer.

3.3.3. Roundkey Update

Since several blocks are encrypted by bit-slicing, the picture key update operation is
also changed. Rotation operations are changed to move values. In particular, round_counter
is changed and added to a 32-bit form as shown in the CUDA C/C++ code as below:

__device__ void addRoundConstant(uint32_t* X, uint32_t r)
{

uint32_t GIFT_RC [28] =
{0x01 , 0x03 , 0x07 , 0x0F , 0x1F , 0x3E , 0x3D ,
0x3B , 0x37 , 0x2F , 0x1E , 0x3C , 0x39 , 0x33 ,
0x27 , 0x0E , 0x1D , 0x3A , 0x35 , 0x2B , 0x16 ,
0x2C , 0x18 , 0x30 , 0x21 , 0x02 , 0x05 , 0x0B };
X[ 3] ^= (GIFT_RC[r] & 0x1)*0 xFFFFFFFF;
X[ 7] ^= (( GIFT_RC[r] >> 1) & 0x1)*0 xFFFFFFFF;
X[11] ^= (( GIFT_RC[r] >> 2) & 0x1)*0 xFFFFFFFF;
X[15] ^= (( GIFT_RC[r] >> 3) & 0x1)*0 xFFFFFFFF;
X[19] ^= (( GIFT_RC[r] >> 4) & 0x1)*0 xFFFFFFFF;
X[23] ^= (( GIFT_RC[r] >> 5) & 0x1)*0 xFFFFFFFF;
X[63] ^= 0xFFFFFFFF;

}

Similar to the implementation of PRESENT, the proposed technique calculates the
round key in on-the-fly without generating the round key in advance.

3.4. Overhead of Data Transmission between CPU and GPU

To perform encryption on a large amount of data, it is necessary to transfer the plaintext
from the CPU to the GPU for encryption, which is very time-consuming. The problem
is even more obvious in key exhaustive searches, wherein the guessed key values are
transferred to the GPU and create a huge transmission delay. Tezcan [10] eliminates the
process of transferring plaintext to the GPU by using the counter mode, in which the counter
values are generated in the kernel as a key value, and increase by one in each thread. This
idea was also adopted by us and applied to the bit-slicing technique. However, converting
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the counter value in normal representation to the bit-slicing representation introduces
overhead that cannot be ignored. Hence, we propose a technique to create a counter that
is already in a bit-slicing representation, thus avoiding the expensive conversion process.
This is shown in the CUDA C/C++ code as below:

uint32_t tid = blockIdx.x * blockDim.x + threadIdx.x;
uint32_t subkeys [80] = {0,};
subkeys [0] = 0x55555555;
subkeys [1] = 0x33333333;
subkeys [2] = 0x0F0F0F0F;
subkeys [3] = 0x00FF00FF;
subkeys [4] = 0x0000FFFF;

for (uint32_t i = 0; i < 31; i++) {
subkeys[i+5] = ((tid & (1<<i)) >> i) * 0xFFFFFFFF;

}

The proposed method creates a counter in a packed state instead of packing it into
a bit-slicing expression after generating a counter value. 32-bit blocks are processed
simultaneously. Therefore, the same value is used for [0]∼[4] of subkeys, and the counter
is incremented by 32. In the next step, the thread uses the counter value incremented by
32 times its own thread number as the key value.

4. Evaluation

In this Section, the performance of the proposed method is compared. Firstly, we
measure the performance of exhaustive key search using PRESENT and GIFT block ciphers,
which were optimized through the proposed techniques presented in Section 3. Next,
we measure the performance of data encryption using PRESENT and GIFT applying the
proposed method. Finally, we measure the overhead of packing and unpacking for GIFT-64
and GIFT-128 with different sizes of plaintext blocks. Starting from 1, the size of the block
is doubled, and the size of the thread is increased by 32.

All the experiments are performed on an RTX 3060 GPU platform. The throughput per
second was measured by considering data transmission between CPU and GPU, as well
as the GPU kernel execution. In the implementation, 32 blocks per thread are calculated.
When the kernel runs once, data of 32 × size of data block × number of threads per block
(thread size) × number of blocks per grid (block size) is processed. For example, if the
block size of data is 64-bits, the thread size is 256, and the block size is 1024, 536,870,912-bits
of data are processed. The number of threads per block (thread size) and the number of
blocks per grid (block size) affect performance. The right choice is necessary to achieve
optimal performance. To confirm this, the performance was measured by changing the
number of threads per block and the number of blocks per grid.

4.1. Exhaustive Search

As shown in Figures 4–7 are the experimental results for each cipher. The X-axis is
blocks per grid, the Y-axis is gigabits per second, the legend is threads per block. In general,
the larger the blocks per grid, the higher the throughput. However, the threads per block
are not high, the higher the throughput. According to blocks per grid, there are threads
per block with the highest throughput. There are threads per block showing the highest
throughput per block per grid. For example, in Figure 5, block 4096 per grid achieves the
highest throughput with 256 threads per block. However, for blocks 8192 per grid, the
highest throughput is achieved with 128 threads per block. All four ciphers implemented
show similar characteristics. The achieved throughput of the proposed method is shown in
Table 2. The peak throughput of PRESENT-80, PRESENT-128, GIFT-64, and GIFT-128 were
553.932 Gbps, 529.952 Gbps, 583.859 Gbps, and 214.284 Gbps, respectively. PRESENT-80
implemented by the proposed method as shown in Table 3 showed 4.39 times higher
performance than 1.8852 Gblocks/s in RTX 3070 environment of [10], even in a GPU
environment with lower performance (i.e., RTX 3060).
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Table 2. The highest throughput results of the exhaustive search version of the proposed technique.
The unit of throughput is Gigabit per second (Gbps).

Cipher Blocks per Gird Threads per Block Throughput

PRESENT-80 131,072 192 553.932
PRESENT-128 131,072 128 529.952

GIFT-64 131,072 64 583.859
GIFT-128 16,384 160 214.284

Table 3. Comparison of implementation results for CPU and GPU.

Cipher Ref. Model Throughput

PRESENT-80 ECB [20] intel i7-9750H 0.001
PRESENT-80 ECB [12] Tesla V100 14.15
PRESENT-80 ECB

using multiple stream [12] Tesla V100 24.525

PRESENT-80 ECB this work RTX 3060 24.264
PRESENT-80 CTR [10] RTX 3070 115.73
PRESENT-128 ECB [12] Tesla V100 14.15
PRESENT-128 ECB

using multiple stream [12] Tesla V100 24.525

PRESENT-128 ECB this work RTX 3060 24.522
GIFT-64 ECB [21] intel i7-9750H 0.003
GIFT-64 ECB this work RTX 3060 85.283

GIFT-128 ECB [21] intel i7-9750H 0.014
GIFT-128 ECB this work RTX 3060 10.723
PRESENT-80

EXHAUSTIVE [10] RTX 3070 120.64

PRESENT-80
EXHAUSTIVE this work RTX 3060 553.932
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Figure 4. PRESENT-80 exhaustive key search: Comparison of the number of key-search per second.
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Figure 5. PRESENT-128 exhaustive key search: Comparison of the number of key-search per second.
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Figure 6. GIFT-64 exhaustive key search: Comparison of the number of key-search per second.
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Figure 7. GIFT-128 exhaustive key search: Comparison of the number of key-search per second.

4.2. Data Encryption

Figures 8–11, are the experimental results for each cipher. The X-axis is blocks per grid,
Y-axis is gigabits per second, the legend is threads per block. Similarly to the experiment of
Exhaustive Search, the larger the blocks per grid, the higher the throughput. According to
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blocks per grid, there are threads per block with the highest throughput. All four ciphers
implemented show similar characteristics. The achieved throughput of the proposed
method is shown in Table 4. In the case of exhaustive search, high throughput was achieved
because there is no such delay factor. However, in the case of ECB mode, a large amount of
data is transferred between the CPU and GPU architectures, and there is a delay due to the
large amount of data being called stored in the GPU’s global memory.

Table 4. The highest throughput results of the data encryption version of the proposed technique.
The unit of throughput is Gigabit per second (Gbps).

Cipher Blocks per Gird Threads per Block Throughput

PRESENT-80 32,768 128 24.264
PRESENT-128 32,768 64 24.522

GIFT-64 32,768 32 85.283
GIFT-128 32,768 96 10.723
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Figure 8. PRESENT-80 encryption: Comparison of the number of encryption per second.
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Figure 9. PRESENT-128 encryption: Comparison of the number of encryption per second.
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Figure 10. GIFT-64 encryption: Comparison of the number of encryption per second.
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Figure 11. GIFT-128 encryption: Comparison of the number of encryption per second.

4.3. Shared Memory

One of the main features of CUDA is that it provides access to fast shared memory,
which is essentially a user-managed cache. It can be used to store lookup tables, providing
fast access speed to constantly used data. Many prior GPU implementations utilized this
feature by storing the round keys in the shared memory. In this paper, we compare the
performance achieved by the proposed technique with one using shared memory.

In the proposed method, the key is updated during the round operation. Since the key
update is performed with a round function, 80× 32 bits for an 80-bit key and 128× 32 bits
for a 128-bit key are used for one algorithm operation. Since the size of the round keys
that need to be stored is not large, they can be written to shared memory. We propose a
technique for allocating shared memory as needed for each thread. However, the size of
the shared memory used needs to be carefully considered. It does not exceed the maximum
allowable range. Therefore, the number of threads per block must be selected so that
the shared memory does not exceed the maximum allowable size. In addition, available
shared memory has a different capacity depending on the GPU architecture in the GPU
architecture. In this regard, the number of threads may vary depending on the shared
memory available. It is implemented using dynamic allocation. Unfortunately, we did not
see a huge performance difference. There was no significant difference in encryption per
second. Figure 12 is a comparison of PRESENT-80 before and after shared memory use.
Comparisons were made by increasing blocks per grid. When the blocks per grid were
large enough, the performance difference between the two was small.
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Figure 12. PRESENT-80 encryption: Comparison of using shared memory and not using shared memory.

5. Conclusions

We implemented both PRESENT and GIFT block ciphers with bit-slicing technology
on CUDA GPU. We optimize the algorithm of cipher by applying the bit-slicing technique
and minimize the overhead caused by applying the bit-slicing technique in normal format.
Proposed implementation was evaluated on the RTX 3060 with NVIDIA Ampere archi-
tecture. We are able to achieve 553.932 Gbps PRESENT-80, 529.952 Gbps PRESENT-128,
583.859 Gbps GIFT-64, and 214.284 Gbps GIFT-128 throughput for encryption, respectively.
For exhaustive search, 24.264 Gbps PRESENT-80, 24.522 Gbps PRESENT-128, 85.283 Gbps
GIFT-64, and 10.723 Gbps GIFT-128 throughput are achieved, respectively. As a result of
comparing the proposed PRESENT method with previous works, the bit-slicing method
showed higher throughput than the existing table implementation method. The GIFT im-
plementation is the first on GPU architectures. The implementation of PRESENT achieved
approximately 4x higher throughput than the state-of-art work. As a result of our im-
plementation, we were able to confirm that a lightweight cipher was suitable for a high
degree of bit-slicing because of its simple key schedule and small blocks. In this paper, we
dealt with PRESENT and GIFT of SPN structure. We believe that applying the bit-slicing
technique to other lightweight ciphers is also effective. In the future, we plan to apply it to
other design ciphers to which bit slicing is applicable.
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