symmetry

Article

Optimized Implementation of Simpira on Microcontrollers for
Secure Massive Learning

Minjoo Sim !, Siwoo Eum !, Hyeokdong Kwon !, Kyungbae Jang !, Hyunjun Kim !, Hyunji Kim !,
Gyeongju Song !, Waikong Lee 2 and Hwajeong Seo 1'*

check for
updates

Citation: Sim, M.; Eum, S.; Kwon, H.;
Jang, K.; Kim, H.; Kim, H.; Song, G.;
Lee, W.; Seo, H. Optimized
Implementation of Simpira on
Microcontrollers for Secure Massive
Learning. Symmetry 2022, 14, 2377.
https://doi.org/10.3390/
sym14112377

Academic Editors: Milan
Milosavljevi¢, Takeshi Koshiba, Yuan

Ping and Yuri Borissov

Received: 27 September 2022
Accepted: 8 November 2022
Published: 10 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1
2

Division of IT Convergence Engineering, Hansung University, Seoul 02876, Korea
Department of Computer Engineering, Gachon University, Seongnam 13306, Korea
* Correspondence: hwajeong@hansung.ac.kr; Tel.: +82-760-8033

Abstract: Internet of Things (IoT) technology, in which numerous devices cooperate, has a significant
impact on existing industries, such as smart factories, smart cars, and smart cities. Massive learning
and computing using data collected through the IoT are also being actively performed in these
industries. Therefore, the security of low-end microcontrollers used in the Internet of Things should
be highly considered due to their importance. Simpira Permutation is a Permutation design using
the AES algorithm designed to run efficiently on 64-bit high-end processors. With the efficient
implementation of Simpira algorithm, we can ensure secure massive learning in IoT devices without
performance bottleneck. In nature, Simpira exploited the part of AES algorithm. The AES algorithm
is the most widely used in the world, and Intel has developed hardware accelerated AES instruction
set (AES-NI) to improve the performance of encryption. By using AES-NI modules, Simpira can be
improved further on high-end devices. On the other hand, low-end processors do not support AES-NI
modules. For this reason, an optimized implementation of efficient Simpira should be considered. In
this paper, we present an optimized implementation of Simpira on 8-bit AVR microcontrollers and 32-
bit RISC-V processors, which are low-end processors that do not support AES-NI features. There are
three new techniques applied. First, Addroundkey is computed efficiently through pre-computation.
Second, it takes advantage of the characteristics of round keys to omit some of the operations. Third,
we omit unnecessary operations added to use AES-NI features. We have carried out performance
evaluations on 8-bit ATmegal28 microcontrollers and 32-bit RISC-V processors, which show up-to
5.76x and 37.01 x better performance enhancements than the-state-of-art reference C codes for the
Simpira, respectively.

Keywords: AES; software implementation; simpira permutation; 8-bit AVR microcontroller; 32-bit
RISC-V processor

1. Introduction

With the development of Internet of Things (IoT) technology, low-end processors
used in the IoT communicate with each other to provide useful services [1]. For example,
autonomous vehicles collect driving state data through various sensors in the vehicle.
After analyzing the collected data, real-time decisions can be made [2]. In this way, vast
amounts of important data are collected in various industries, such as drones and trans-
portation to perform massive learning and computing [3,4]. The importance of security for
low-end processors used in IoT increases day by day. Therefore, research on encryption for
efficient operation in low-end processors is being actively conducted.

AES (Advanced Encryption Standard) is an encryption algorithm that was adopted
by the National Institute of Standards and Technology (NIST) in 2001 [5]. Since then, AES
block cipher has become the most used encryption algorithm in the world. In 2008, Intel
developed an instruction set (AES-NI [6]) to improve the performance of AES encryp-
tion/decryption as an extension of the x86 instruction set. In addition, the AES instruction
set was developed to improve AES performance in ARM processors.

Symmetry 2022, 14, 2377. https:/ /doi.org/10.3390/sym14112377

https://www.mdpi.com/journal /symmetry

https://doi.org/10.3390/sym14112377
https://doi.org/10.3390/sym14112377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0069-9061
https://doi.org/10.3390/sym14112377
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14112377?type=check_update&version=2

Symmetry 2022, 14, 2377

2 of 14

Simpira Permutation proposed an efficient permutation with AES Round function
using the AES instruction set [7]. AES algorithm is a symmetric-key algorithm. Therefore,
Simpira, which uses the round function of the AES encryption algorithm, is also a sym-
metric encryption algorithm. Most microcontrollers use symmetric encryption algorithms
to provide security for transmitted information [8-10]. Therefore, Simpira block cipher
is suitable for use as a cryptographic algorithm (i.e., symmetric encryption) to provide
security on microcontrollers. However, the proposed Simpira cannot be used generally,
because many kinds of processors do not support the AES instruction set. In this paper, we
propose optimized implementations of Simpira on 8-bit AVR microcontrollers and 32-bit
RISC-V processors that do not provide the AES instruction set.

The remainder of this paper is structured as follows. Section 2 describes the AES Block
Cipher, the Simpira Permutation, the target 8-bit AVR microcontrollers, the target 32-bit
RISC-V processors, and related works. Section 3 describes the proposed implementation
method. Section 4 shows a performance comparison with the-state-of-art works. Finally,
Section 5 describes the conclusion of this work and future plan.

1.1. Contribution
1.1.1. Optimized Simpira on the 8-Bit AVR Architecture

ATmegal28 processor is one of Atmel AVR family, which is the most commonly
used in practice. We propose an optimized implementation of Simpira on the ATmegal28
processor. The Simpira uses AES algorithm, but the target processor does not support
the AES-NI instruction set. Since AES-NI is not available, we have used existing AES to
enable Simpira to have the same AES-NI instruction set to operate on the target processor.
To implement the Simpira, some offset functions are optimized away. We optimized by
omitting the final rounds of Mixcolumns and InvMixcolums as they could work oppositely.
Furthermore, some Addroundkey functions use the 0x00 round key. Using this, we
optimized the Addroundkey operation by omitting it to 4 operations. We have carried out
experiments that show up-to 5.76 x better performance enhancements than reference C
code for the Simpira.

1.1.2. Optimized Simpira on the 32-Bit RISC-V Architecture

RISC-V is open-source computer architecture. We present the optimal implementation
of Simpira, whose permutation is implemented with the AES algorithm. However, on the
32-bit RISC-V processor it does not support AES-NI instruction sets. Since we are not using
AES-NI, we can omit the Mixcolumns operation in the last round. As a result, Mixcolumns
and InvMixcolumns operations are omitted. Furthermore, certain rounds in Simpira use a
round key of 0x00. The Addroundkey operation is omitted for those rounds. As a result,
we showed that the experiment is up to 37.01 x better than the reference C code for Simpira.

1.1.3. First Optimized Implementation for Simpira on 8-Bit AVR Microcontrollers and
32-Bit RISC-V Processors

The implementation on the low-end processor for Simpira, an algorithm used inside
SPHINCS+ [11] and an algorithm that advanced to the NIST PQC Round3 [12], has not
yet been explored before except for the implementation on the ARM processors [7]. To the
best of our knowledge, there are no studies regarding Simpira on the optimized 8-bit AVR
microcontrollers and 32-bit RISC-V processors. In this paper, we have optimized Simpira
on 8-bit AVR microcontrollers and 32-bit RISC-V processors, for the first time.

2. Related Works
2.1. AES Block Cipher

The AES (Advanced Encryption Standard) is a symmetric block cipher that uses an
identical key for encryption and decryption. It is composed of 128-bit blocks, and the
number of rounds is 10, 12, and 14 according to the key length of 128-bit, 192-bit, and
256-bit, respectively. In the encryption process, the MixColumns step is performed in all

Symmetry 2022, 14, 2377

3of 14

rounds except the last round, and every round goes through the SubBytes, ShiftRows,
and AddRoundKey steps.

Each encryption step proceeds as follows. SubBytes apply the same 8-bit S-Box to each
byte of the internal state. ShiftRows shifts the k-th row to the left by k-bytes. MixColumns
multiplies each column by a diffusion matrix through GF(2%). AddRoundKey adds the
round key, which is derived from key extension using secret key [5]. The overall operation
codes are detailed in Algorithm 1.

Algorithm 1: AES Algorithm.

procedure AESroundkey(state, rk)
1: state <— Addroundkey(state, rk[0])
2: R+ Round —1
3: fori =1to R do
4. state <— SubBytes(state)
5. state < ShiftRows(state)

6: state +— MixColumns(state)

7. state <— Addroundkey(state, rk[R])
8: end for

9: state <— SubBytes(state)
10: state <— ShiftRows(state)

11: state <— Addroundkey(state, rk[Round))
12: return state

end procedure

2.2. Simpira Permutation

Simpira Permutation uses the AES round functions. If the roundkey used in Ad-
dRoundKey in the AES block cipher is set to a publicly known fixed value, it can be used as
an encryption permutation with the same output value when the input value is the same.
AES encryption spreads all bits to other bytes during 2 rounds. For this reason, one round
of Simpira consists of 1 and 2 rounds of AES. To use it as the permutation, a fixed value is
used for the roundkey used in AddRoundKey of AES. Therefore, the output value is fixed,
because the roundkey is fixed [7].

At this time, it is not safe to set the fixed roundkey value to 0x00. A fixed roundkey
is used by utilizing the round constant. The overall algorithm is the same as Algorithm 2.
The roundkey Z used in line 5 of the Algorithm 3 represents a roundkey in which all
roundkey values are 0x00. That is, a fixed roundkey using a round constant and a round
key with 0x00 are used alternately. Simpira block size increases in 128-bit units because
it uses the round function of AES. In b x 128-bit, there is a difference in the algorithm
depending on the parameter b. In this paper, b is set to 1 where b is a number of blocks, it is
used as a standard. Figure 1 shows the structure of Simpira for b = 1.

Symmetry 2022, 14, 2377 4 of 14

Algorithm 2: Simpira Algorithm.

procedure Simpira(state, rk)
1: R« 6

2: forc =1to Rdo
state <— F_ ,(state)

4: end for
5: state <— InvMixColumns(state)
6: return state

end procedure

Algorithm 3: F. , Algorithm (b =1).

procedure F_;(state)

1: RK[0] =0x00 @ c @b
2. RK[4] = 0x10 B c b
3 RK[8] = 0x20 & c @ b

4 RK[12] = 0x30®cd b
5. return AES(AES(state, RK),Z)

end procedure

Xo Fcb

’

b=1

Figure 1. Structure of Simpira about b = 1; c is a counter that is initialized by one, and incremented
after every use of F.j,. Every F.} consists of two AES round, where the round constants that are
determined from (c, b) where b is number of blocks.

2.3. 8-Bit AVR Microcontroller

A low-end 8-bit AVR microcontroller is an 8-bit RISC single chip based on Harvard
architecture. Mainly used in low-power environments, there are currently several types
of AVR microcontrollers, with various peripherals and memory sizes. In this paper, AT-
megal28, which is the most widely used in the ATmega class, is used. The ATmegal28 can
use 133 RISC instructions and has 32 8-bit general-purpose registers. It has 128 KB of flash
memory, 4 KB of EEPROM, and 4 KB of SRAM [13]. Instructions used to implement the
optimized Simpira are summarized in Table 1.

Symmetry 2022, 14, 2377 5o0f 14

Table 1. Summarized instructions set of efficient Simpira implementations on 8-bit AVR microcon-
trollers; Rd: destination register, Rr: source register, X, Y, Z: indirect address register (X{R27 : R26},
Y{R29 : R28} and Z{R31 : R30}), PC: loaded with the contents of the Z-register, C: carry flag, K:

constant data, k: constant address.

Instruction Operands Description Operation #Clock
ADD Rd, Rr Add without Carry Rd < Rd + Rr 1
EOR Rd, Rr Exclusive OR Rd < Rd & Rr 1
MOV Rd, Rr Copy Register Rd < Rr 1

MOVW Rd, Rr, Rr Copy Register Pair Rd+1:Rd < Rr+1:Rr 1
LPM Rd, Z Load Program Memory Rd«+Z 3
BRCC k Branch if Carry Cleared if(C=0)thenPC+PC+k+1 1/2
LD Rd, X(or Y, Z) Load Indirect Rd + X(or Y, Z) 2
LDI Rd, K Load Immediate Rd «+ K 1

ST X(orY, Z), Rr Store Indirect X(orY, Z) < Rr 2
PUSH Rr Push Register on Stack STACK ¢ Rr 2
POP Rd Pop Register from Stack Rd + STACK 2

2.4. 32-Bit RISC-V Processor

A RISC-V is an open-source developed at UC Berkeley since 2010. Unlike ARM proces-
sors, which have the greatest influence, this is a computer CPU structure that can be used
for free without paying a license. RISC-V has developed 32-bit, 64-bit, and 128-bit devices.
The RISC-V instruction set architecture (ISA) is divided into RV32I, RV64I, and RV128I
according to the supported bit size. In this paper, the 32-bit RV32I instruction set is used.
A 32-bit RISC-V processor has 32 32-bit registers. The purpose of each register is shown in
Table 2. Among them, there are sp registers and sO~sl11 registers as callee-saved registers
that preserve the value before using the register and return the value after use [14]. The
intruction set for RISC-V is given in Table 3.

Table 2. Purpose of registers in 32-bit RISC-V processor.

Register Description Saver
zero(x0) zero register caller
ra(x1) return address register caller
sp(x2) stack pointer register callee
gp(x3) global pointer register caller
tp(x4) thread pointer register caller
a0~a7 function arguments and return value registers caller
s0~sl1 saved registers callee

t0~t6 temporal registers caller

Symmetry 2022, 14, 2377

6 of 14

Table 3. Summarized instructions set of efficient Simpira implementations on 32-bit RISC-V proces-

sors; Rd: destination register, Rs: source register, K: constant data, J: constant address [15].

Instruction Operands Description Operation
ADD Rd, Rs1, Rs2 Add Rd < Rs1 + Rs2
XOR Rd, Rs1, Rs2 Exclusive OR Rd < Rs1 @ Rs2
MV Rd, Rs1 Copy Register Rd < Rsl
SLLI Rd, Rs1, K Shift left logical immediate Rd < Rsl1 «K
SRLI Rd, Rs1, K Shift right logical immediate Rd < Rsl1» K
BNE Rs1, Rs2,] Branch not equal if(Rs1!=Rs2) Jump to]
JAL J Jump and link Jump to]

LW Rd, K(]) Load word Rd +J+K
SW Rs1, K(J) Store word Rsl =+ J+K
ANDI Rd, Rs1, K AND immediate Rd < Rsl1 & K

2.5. Related Works

There are many kinds of optimization implementations on AVR and RISC-V pro-
cessors. In the case of Simpira, since it has never been optimally implemented on AVR
and RISC-V processors, we introduce an optimized implementation of other block cipher
algorithms instead.

Kim et al. [16] suggested FACE-LIGHT that revised version of Fast AES-CTR mode
Encryption (FACE [17]). The FACE-LIGHT targeted AES with the 32-bit counter mode
of operation in constant timing. It used pre-computation techniques that some variables
pre-calculated. Some of the operation are omitted. The FACE-LIGHT targeted AVR micro-
controllers, and it showed 22% faster than the previous FACE.

Kwon et al. [18] showed an optimized implementation of the Korean block cipher
CHAM [19]. It proposed a pre-computation technique that skipped the first eight rounds of
CHAM block cipher. Furthermore, the proposed method was implemented considering the
key update and the fixed key situation. Results showed that the proposed implementation
had 12.8%, 8.9%, and 9.6% higher performance than previous CHAM implementation for
CHAM-64/128, CHAM-128/128, and CHAM-128/256, respectively.

Kim et al. [20] was implemented the Korean block cipher PIPO that announced in
2020 [21]. The proposed implementation targeted AVR microcontrollers, and it had Side-
Channel Attack(SCA) countermeasure by 2-byte random masking. In addition, they pre-
sented a new kind of masking technique that using OR operation, so to implement the
S-layer the presented implementation used 23 AND operations, 5 OR operations, and
47 XOR operations. Evaluation results showed 1.5x faster than reference PIPO implemen-
tation without SCA countermeasure. In the case of SCA countermeasure implementation,
the proposed implementation had 2.2 x faster performance than previous implementations.

Eum et al. [22] optimally implemented the Korean block cipher LEA [23] on RISC-V
processors. The proposed implementation applied Counter mode of operation and Galois
counter mode of operation. It mainly used pre-computation method and state fixing that
makes omitted state move operations. Moreover, it showed applicability to GCM. As a
result, the suggested implementation showed 2% performance improvement over previous
LEA implementations with counter mode of operation. In the case of GCM, it becomes an
indicator for the following researchers.

Kwon et al. [24] targeted the Chinese domestic block cipher SM4 [25], and it was
implemented on AVR, and RISC-V processors. It presented an efficient register scheduling
plan and optimized implementation for 32-bit wise rotation. Furthermore, different imple-
mentations were provided depending on whether to optimize the memory or the operating
speed in the case of AVR implementations. The AVR implementations showed evaluation

Symmetry 2022, 14, 2377

7 of 14

results that 205.2 cycles per byte, 213.3 cycles per byte, and 207.4 cycles per byte for speed
optimization, memory optimization, and code size optimization, respectively. All kinds of
implementations showed faster performance than reference implementation which had
1670.7 cycles per byte. The RISC-V implementation had 128.8 cycles per byte, it had better
performance than 345.7 cycles per byte of the reference implementation.

3. Proposed Method
3.1. Optimized Implementation of Simpira on 8-Bit AVR Microcontroller
3.1.1. Constant Roundkey Pre-Computation

Since the AES algorithm used in Simpira uses a round constant unlike the original AES
extended roundkey, it is possible to calculate the value used as the roundkey in advance.
Before entering the AES round function in Algorithm 3, the roundkey is pre-computed and
the AES round function operation is performed. Therefore, we fixed the b parameter to 1
because we optimized the implementation of Simpira Permutation where the value of b
(the number of blocks) is 1. Roundkeys always use the fixed value b. Therefore, during the
operation of the F, , function, the roundkey can be calculated in advance without having to
recalculate the roundkey every round. In other words, the operations performed in lines 1
to 4 of Algorithm 3 (operation of the roundkey) can be omitted.

3.1.2. Omitting AddRoundkey Function

Simpira runs 6 rounds. In this case, two AES round functions are performed in one
Simpira round. Among the round functions of AES, the roundkey used in the Addroundkey
function uses a constant roundkey once and uses Z (all values of roundkey are 0x00)
once. In other words, two roundkeys are used per round and a total of 12 roundkeys.
Since one roundkey per round is 0x00, 6 roundkeys are using 0x00 in a total of 6 rounds.
The operation of the Addroundkey function consists of the XOR operation of State and
roundkey. When XOR operation is performed with roundkey of 0x00 and State, the State
value does not change.

The implementation of existing Simpira study was implemented using AES-NI. When
using AES-NI instructions, the Addroundkey function cannot be omitted. However, we do
not use AES-NI and implement each AES function individually. So, We can omit the Ad-
droundkey operation that uses Z where all roundkey values are 0x00 among Addroundkey
functions. For this reason, we omit a total of 12 Addroundkeys to 6 Addroundkeys.

3.1.3. Optimizing InvMixColumn

In line 6 of Algorithm 2, InvMixColumns operation is performed. Mixcolumn is
not performed in the last round of AES. However, since Simpira’s round function is
implemented using AES-NI, Mixcolumn is included in the last round. So, after the round
function ends, it is implemented by additionally using InvMixcolumn, which is used when
decrypting Mixcolumn. In this process, performing InvMixcolumn operations at the end
of the round is the same result of omitting the Mixcolumn operations once in the round
function of AES. Therefore, it is more efficient to omit the Mixcolumn operation once than
implement the InvMixcolumn, separately. As the result, since we directly implement the
AES round function, we omit the operation of Mixcolumn and InvMixcolumn once each.

3.1.4. Optimized Addroundkey Function

The Addroundkey step in the existing AES performs an XOR operation on the ex-
tended roundkey and the current block bit by bit. However, the Addroundkey of AES
used in Simpira has the characteristic of using a fixed roundkey value. The result of XOR
operation, the round constant, roundkey, and the number of blocks b (i.e., 1) are used as the
roundkey. As mentioned in Section 3.1.1, it is possible to pre-compute the roundkey using
the round constant, roundkey, and number of block b (i.e., 1) with this characteristic.

Figure 2 summarizes the values for each roundkey. Among RK[0] ~ RK][15], it can
be seen that only the values corresponding to RK[0], RK[4], RK[8], and RK[12] are XOR

Symmetry 2022, 14, 2377

8 of 14

operations with the round constant. Using these properties, RK[0], RK[4], RK[8], and
RK[12] perform the XOR operation with the bit value corresponding to the current block.
Through this process, different roundkey values can be generated for each round. However,
other roundkey(except RK[0], RK[4], RK][8], and RK[12]) values are fixed at 0x00.

RK[O] 0x00&B c b RK[4] 0x10 Bc @b RK[8] 0x20 B cP b RK[12] 0x30 B c® b

RK[1] 0x00 RK[5] 0x00 RK[9] Ox00 RK[13] 0x00
RK[2] Ox00 RK[6] 0x00 RK[10] 0x00 RK[14] 0x00
RK[3] 0x00 RK[7] 0x00 RK[11] Ox00 RK[15] 0Ox00

Figure 2. Values of each roundkey; RK = Roundkey, c is a counter that is initialized by one, and incre-
mented after every use of F j, Every F_, consists of two AES round, where the round constants that
are determined from (c, b), b is number of blocks.

Therefore, except for operations for RK[0], RK[4], RK][8], and RK[12], the results of
the remaining operations are the same as those when the operation is not performed. The
algorithm applying the optimized Addroundkey can be found at Algorithm 4.

Algorithm 4: Optimized Addroundkey in AVR microcontrollers (.macro round);
RO, R4, R8, R12: input register, R18: temporary register, Y: indirect address register.

Input: RO, R4, R8, R12

4: eor R4, R18
Output: RO, R4, R8, R12

5: Id R18, Y+
1: 1d R18, Y+ 6: eor R8, R18
2: eor RO, R18 7: Id R18, Y+
3: 1d R18, Y+ 8: eor R12, R18

As the result, we omit the rest of the operations except RK[0], RK[4], RK[8], and RK[12]
whose values change, reducing the operations of Addroundkey of the existing from 16 op-
erations to 4 operations using Simpira’s characteristics. Comparison results are shown in
Table 4. For the Addroundkey operation, 48 cycles were obtained when the same operation
was performed as before, whereas 12 cycles were obtained for this work. As a result, it
reflects a performance improvement of 4.0 x.

Table 4. Evaluation result of Addroundkey on 8-bit AVR microcontrollers in terms of execution
timing (i.e., clock cycles); Notation (*) indicates implementation with optimization techniques.

This Work This Work *
48 12

We implemented each module for Subbytes, Shiftrows, MixColumns, and Addround-
key of Simpira to call the module as needed. By implementing it as a Modularization, it is
possible to efficiently manage the code.

Three optimization techniques of Sections 3.1.1-3.1.3 are equally applicable to 32-bit
RISC-V processors. However, the technique in Section 3.1.4 does not apply to the 32-bit

Symmetry 2022, 14, 2377

9of 14

RISC-V processor. Because it takes AVR’s structural advantage of the 8-bit register size of
the AVR microcontroller.

3.1.5. Using Optimized AES Implementation of AVR

For the optimal implementation of Simpira on the AVR microcontroller, it is neces-
sary to first implement the optimization of the AES algorithm. We implemented Simpira
by modifying Johannes Feichtner’s [26] optimized code. Feichtner’s is implemented by
integrating the key extension step and AddRoundKey into one step. In this case, 4 LDD op-
erations, 1 LDI operation, 4 ADD operations, and 16 EOR operations, a total of 25 operations
are required.

As mentioned in Section 3.1.1, Simpira uses a round constant instead of an extended
round key, unlike AES, so the value used as the round key can be calculated in advance. So,
we omit it because we do not use the key expansion step. As mentioned in Section 3.1.2,
if we perform XOR operation with roundkey and State of 0x00, the State value does not
change, so we omit the total 12 Addroundkeys. Therefore, like Algorithm 4, 4 LD operations
and 4 EOR operations are required for a total of 8 operations.

MixColumns are the most computationally expensive in AES. To implement Mix-
Columns efficiently, Feichtner reduced the multiplication and XOR operations required for
MixColumns to a minimum. Multiplication of 2 is implemented so that ADD operation,
BRCC operation, and EOR operation are performed in order. As a result, MixColumns
was efficiently implemented through 16 ADD operations, 16 BRCC operations, 64 EOR
operations, and 36 MOV operations.

As a result, our Addroundkey implementation omitted 17 operations over Feichtner’s,
and we implemented Simpira using these optimized MixColumns. The code size to which
our optimization technique is applied is as shown in our work * in Table 5.

Our AVR Implementation is available in the public domain at https:/ /github.com/
minjoo97 /Implementation_AVR (accessed on 7 November 2022).

Table 5. Evaluation result on AVR microcontrollers and RISC-V processors about code size; Notation
(*) indicates with optimization techniques.

Implementation Processor Code Size
low-end AVR 2122
Our work
low-end RISC-V 1806
low-end AVR 1978
Our work *
low-end RISC-V 1781

3.2. Optimized Implementation of Simpira on 32-Bit RISC-V
3.2.1. Simpira Optimized Implementation of RISC-V

The optimization technique in 32-bit RISC-V processors uses the same technique used
in 8-bit AVR microcontrollers. The first is the pre-computation of the roundkey. Similar
to the AVR optimization implementation, before starting the operation of the F, , function
using the feature of using a fixed b value, we performed optimization through roundkeys
pre-computation. The second is the omission of the Addroundkey function. Since the RISC-
V processor does not support AES-NI instruction sets, it is possible to omit Addroundkey
where Z is used. The implementation when roundkey is Z is the same as Algorithm 5.
Algorithm 5 omits four commands to load the roundkey and four commands to XOR
operations, rather than when the Constant roundkey is used, resulting in a total of eight
commands being optimized. Third, it is omitting InvMixcolumn. As above, since AES-NI
is not supported, InvMixcolumn can be omitted by not performing Mixcolumns operation
in the last round.

https://github.com/minjoo97/Implementation_AVR
https://github.com/minjoo97/Implementation_AVR

Symmetry 2022, 14, 2377

10 of 14

3.2.2. Using Optimized AES Implementation

For the optimal implementation of Simpira on 32-bit RISC-V processors, it is necessary
to first implement the optimization of the AES algorithm. It is implemented by referring to
Ko Stoffelen’s [27] implementation of AES optimization on the RISC-V processor. In [27],
the fastest implementation of encryption for a single block utilizes large lookup tables
called T-tables, which combine the various steps of a round function. Encryption of a
single 16-byte block is performed in 912 clock cycles. This uses 24-byte on the stack to store
callee-save registers and a 4KiB lookup table.

We implemented Simpira by modifying the optimized code. Algorithm 5 is the code
that performs one round of AES except for AddRoundkey. A brief description of the
algorithm is as follows. First, calculate the value to add to the table address(LUT) in the
state. Corresponds to lines 1-8, 17-24, 37-44, and 57-64 of Algorithm 5. By changing the
table address using this value, the value is substituted, and the AES round operation is
calculated through the XOR operation of the substituted value. Corresponds to lines 9-16,
25-36, 45-56, 65-76 of Algorithm 5. Many round functions are pre-computed in the T-table.
That is, SubBytes, ShiftRows, and Mixcolumns are calculated only by table substitution
and XOR operation. This code cannot be used in the last round, as we need to omit the
Mixcolumns in the last round. So, in the final round, slightly modified code from that code
is used. This does not require adding InvMixcolumns to that implementation.

As a result, the optimization implementation is shown in Figure 3. Figure 3 shows the
basic structure of Simpira and the structure after optimization, and the code size to which

our optimization technique is applied is as shown in our work * in Table 5. Our RISC-V
Implementation is available in the public domain at https://github.com/ShuRaAtum/
Implementation_RICS-V (accessed on 7 November 2022).

4‘ Simpira Round (i =1to6) }7
[%)
(%) q>f %) g
n w =R IRV, %) w c %)
Q2| EllT Q|| 2||lEl|lQ =]
> (@] > o > o > > (o)
m—»E+_O->:J ,m+£+6+m O
Q = @) o Q = v} = X
allGa|| 2|3 al|la|| 2|3 p
=2 = >
Input £ Output
AES round function (¢ = i) AES round function (Z)
4l Simpira Round (i =1t0 5) li
2l g 2
%) v ~ 0w %) c (%) wn
Q 2| €|l 9 2| € RN
S| O S c S| | © =] >|| ©
cQ-»E-»B-»D ~m»£+6 m-»CE
o E||lal] @ ol ||| 9 ol|E
S| < || S| < < S| <
wn (V2] = S (V] wm — (%] (V2]
=22 =
Input Output
AES round function (¢ =) AES round function (Z)

Figure 3. (Top) original Simpira structure/(Bottom) optimized Simpira structure.

https://github.com/ShuRaAtum/Implementation_RICS-V
https://github.com/ShuRaAtum/Implementation_RICS-V

Symmetry 2022, 14, 2377 11 of 14

Algorithm 5: Implementation of AES round function when the roundkey is Z
in RISC-V processors (.macro zround); X0 ~ X3: input state register, YO ~ Y3:
output state register, LUTO ~ LUT3: look up table address, C: constant value
(0xtf0) register, TO ~ T4: temp registers.

51: add T4, T3, LUTO
Input: X0, X1, X2, X3 25: add T4, TO, LUT3
52: 1w T3, (T4)
Output: Y0,Y1,Y2,Y3 26: Iw TO, (T4)
53: xor YO0, YO, TO
27: add T4, T1, LUT3

1: andi TO, X0, Oxff 54: xor Y1,Y1, T1
28: 1w T1, (T4)

2: andi T1, X1, Oxff 55: xor Y2,Y2, T2
29: add T4, T2, LUT3

3: andi T2, X2, Oxff 56: xor Y3,Y3, T3

30: 1w T2, (T4)
4: andi T3, X3, Oxff

31: add T4, T3, LUT3 57: srli X0, X0, 8
5: slli TO, TO, 4

32: Iw T3, (T4) 58: srli X1, X1, 8
6: slliT1,T1,4

33: xor Y0, YO, TO 59: srli X2, X2, 8
7: slliT2,T2,4

34: xor Y1,Y1,T1 60: srli X3, X3, 8
8: slliT3,T3,4

35: xor Y2,Y2, T2 61: and TO, X3, C
9: add T4, TO, LUT1

36: xor Y3,Y3, T3 62: and T1, X0, C

10: 1w YO, (T4)
63: and T2, X1, C

11: add T4, T1, LUTI 37: stli X0, X0, 8

64: and T3, X2, C
12: 1w Y1, (T4) 38: srli X1, X1, 8

65: add T4, T0, LUT2
13: add T4, T2, LUT1 39: srli X2, X2, 8

66: Iw TO, (T4)
14: Iw Y2, (T4) 40: srli X3, X3, 8

67: add T4, T1, LUT2
15: add T4, T3, LUT1 41: and TO, X2, C

68: 1w T1, (T4)
16: 1w Y3, (T4) 42: and T1, X3, C

69: add T4, T2, LUT2
43: and T2, X0, C

17: srli X0, X0, 4 70: lw T2, (T4)
44: and T3, X1, C

18: srli X1, X1, 4 71: add T4, T3, LUT2
45: add T4, TO, LUTO

19: srli X2, X2, 4 72: lw T3, (T4)
46: 1w TO, (T4)

20: srli X3, X3, 4 73: xor Y0, YO, TO
47. add T4, T1, LUTO

21: and TO, X1, C 74: xor Y1,Y1, T1
48: 1w T1, (T4)

22: and T1, X2, C 75: xor Y2,Y2, T2
49: add T4, T2, LUTO

23: and T2, X3, C 76: xor Y3,Y3, T3

50: 1w T2, (T4)
24: and T3, X0, C

4. Evaluation

This section introduces the evaluation of the proposed implementation. There are
no comparative groups because we first implemented this on target processors. This
compares the performance of each platform’s Simpira C implementation and Assembly

Symmetry 2022, 14, 2377

12 of 14

implementation by setting the optimized level to -O3, and we compare the reference
code [7] using AES-NI with the optimized implementation performance for each platform.
The performance evaluation is measured in terms of execution timing (i.e., clock cycle).

4.1. 8-Bit AVR Microcontroller

The proposed implementation is evaluated on the ATmegal28 microcontroller. The
source code was implemented through the Microchip Studio Framework and compiled
with compile option -O3. Since Simpira has never been implemented on the AVR mi-
crocontrollers, the reference code is ported to the AVR microcontroller and results and
performance are compared. Comparison results are shown in Table 6. A reference C
code takes 14,334 cycles. An optimized assembly implementation takes 2862 cycles, while
the optimized implementation in assembly language achieved 2485 cycles. As a result, it
confirmed that there is a 5.76 x performance improvement over the-state-of-art reference im-
plementation. We compared our implementation with reference code [7] using AES-NLThe
comparison results are shown in the Table 6. Most platforms are much better than AVR,
so our performance comparison shows that our reference implementation outperforms
our implementation. However, we have optimally implemented Simpira on a low-end
processor so that it can be used efficiently.

Table 6. Evaluation result on AVR microcontrollers, RISC-V processors with the optimization level -O3
in terms of execution timing (i.e., clock cycles); Notation (*) indicates with optimization techniques.

Implementation Processor Clock Cycles
low-end AVR 14,334
Reference-C
low-end RISC-V 38,942
low-end AVR 2862
Our work
low-end RISC-V 1106
low-end AVR 2485
Our work *
low-end RISC-V 1052
[7] Skylake (high-end Intel Processor) 50

4.2. 32-Bit RISC-V Processor

The proposed implementation is evaluated over the 32-bit RISC-V processor using
a RV32I. The source code was implemented through the Freedom Studio Framework
provided by SiFive. Similar to the results of AVR microcontrollers, Simpira has no imple-
mentation results on 32-bit RISC-V processors. The reference C code is transplanted to
RISC-V and the results are compared. Comparison results are shown in Table 6. A Refer-
ence C code takes 38,942 cycles. Moreover, the assembly implementation takes 1106 cycles,
while the optimized implementation in assembly language achieved 1052 cycles. As the
result, it confirmed that there is a 37.01x performance improvement over the-state-of-art
reference implementation. We compared our implementation with reference code [7] using
AES-NILThe comparison results are shown in the Table 6 Most platforms are much better
than RISC-V, so our performance comparison shows that our reference implementation
outperforms our implementation. However, we have optimally implemented Simpira on a
low-end processor so that it can be used efficiently.

5. Conclusions

In this paper, we propose an optimized implementation of Simpira Permutation on
both 8-bit AVR microcontrollers and 32-bit RISC-V processors. The proposed techniques
include the constant roundkey pre-computation and AddRoundKey, InvMixColumns
operation omission. Taking advantage of AVR's structural features, the optimized imple-
mentation of the AVR microcontroller omits the operation of the 0x00 part of the constant

Symmetry 2022, 14, 2377 13 of 14

roundkey value. The proposed technique confirmed the performance improvement of 5.7 x
in AVR microcontrollers and 37.01 x in RISC-V processors compared to the-state-of-art
reference C implementation, respectively. This paper is the first Simpira Permutaion opti-
mization study on 8-bit AVR and 32-bit RISC-V that does not support AES-NI features.
Lastly, we also provide our implementation result in open-source. Any research followers
can easily access and utilize it their own purposes.

As a future research project, we will propose an optimal implementation for Simpira
Permutation on other IoT platforms.

Author Contributions: Formal analysis, M.S., S.E. and H. K. (Hyeokdong Kwon); Software M.S., S.E.
and H.K. (Hyeokdong Kwon); Writing—original draft, M.S.; Writing—review and editing, K.J., H.K.
(Hyunjun Kim), HK. (Hyunji Kim), G.S. and W.L.; Supervision, H.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partly supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No.2018-0-00264, Research on
Blockchain Security Technology for IoT Services, 50%) and this work was partly supported by
Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No.2022-0-00627, Development of Lightweight BloT technology
for Highly Constrained Devices, 50%).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xie, C;Yu, B,; Zeng, Z; Yang, Y.; Liu, Q. Multilayer internet-of-things middleware based on knowledge graph. IEEE Internet
Things |. 2020, 8, 2635-2648. [CrossRef]

2. Lu,J;Chen, L; Xia, J.; Zhu, E; Tang, M.; Fan, C.; Ou, J. Analytical offloading design for mobile edge computing-based smart
internet of vehicle. EURASIP J. Adv. Signal Process. 2022, 2022, 44. [CrossRef]

3. Alsambhi, S.H.; Shvetsov, A.V.; Kumar, S.; Hassan, J.; Alhartomi, M.A.; Shvetsova, S.V.; Sahal, R.; Hawbani, A. Computing in the
Sky: A Survey on Intelligent Ubiquitous Computing for UAV-Assisted 6G Networks and Industry 4.0/5.0. Drones 2022, 6, 177.
[CrossRef]

4. Zhao,M.; Li,],; Tang, F; Asif, S.; Zhu, Y. Learning based massive data offloading in the iov: Routing based on pre-rlga. IEEE
Trans. Netw. Sci. Eng. 2022, 9, 2330-2340. [CrossRef]

5. Daemen,].; Rijmen, V. Reijndael: The Advanced Encryption Standard. Dr. Dobb’s]. Softw. Tools Prof. Program. 2001, 26, 137-139.

6. Akdemir, K.; Dixon, M.G.; Feghali, W.; Fay, P.G.; Gopal, V.; Guilford,]J.; Ozturk, E.; Wolrich, G.; Zohar, R. Breakthrough AES
Performance with Intel® AES New Instructions. 2010. Available online: https:/ /www.semanticscholar.org/paper/Breakthrough-
AES-Performance-with-Intel-%C2%AE- AES-New-Akdemir-Dixon/62116fe84e7360202d4e1cff859c8fc014ef4614 (accessed on 26
September 2022).

7. Gueron, S.; Mouha, N. Simpira v2: A family of efficient permutations using the AES round function. In International Conference on
Cryptology and Information Security in Latin America; Springer: Berlin/Heidelberg, Germany, 2016; pp. 95-125.

8. Ahmad, S.; Alam, KM.R.; Rahman, H.; Tamura, S. A comparison between symmetric and asymmetric key encryption algorithm
based decryption mixnets. In Proceedings of the 2015 International Conference on Networking Systems and Security (NSysS),
Dhaka, Bangladesh, 5-7 January 2015; pp. 1-5.

9. Yassein, M.B.; Aljawarneh, S.; Qawasmeh, E.; Mardini, W.; Khamayseh, Y. Comprehensive study of symmetric key and asymmetric
key encryption algorithms. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya,
Turkey, 21-23 August 2017; pp. 1-7.

10. Rajesh, S.; Paul, V.; Menon, V.G.; Khosravi, M.R. A secure and efficient lightweight symmetric encryption scheme for transfer of
text files between embedded IoT devices. Symmetry 2019, 11, 293. [CrossRef]

11. Bernstein, D.J.; Hiilsing, A.; Kolbl, S.; Niederhagen, R.; Rijneveld, J.; Schwabe, P. The SPHINCS+ signature framework. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11-15 November
2019; pp. 2129-2146.

12. NIST PQC Project. Available online: https:/ /csrc.nist.gov/Projects / post-quantum-cryptography (accessed on 29 July 2022).

13. ATmegal28 Datasheet. Available online: www.microchip.com/wwwproducts/en/ATmegal28 (accessed on 16 August 2022).

14. The RISC-V Instruction Set Manual Volume I: User-Level ISA Document Version 2.2. Available online: https:/ /riscv.org/wp-
content/uploads/2017/05/riscv-spec-v2.2.pdf (accessed on 16 August 2022).

15. Waterman, A.; Lee, Y.; Patterson, D.A.; Asanovi¢, K. The RISC-V Instruction Set Manual, Volume I: User-Level ISA; Version 2.1. 2016.
Available online: https:/ /www2.eecs.berkeley.edu/Pubs/TechRpts /2016 /EECS-2016-118.pdf (accessed on 26 September 2022).

16. Kim, K,; Choi, S.; Kwon, H,; Liu, Z.; Seo, H. FACE-LIGHT: Fast AES-CTR mode encryption for Low-End microcontrollers. In

International Conference on Information Security and Cryptology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 102-114.

http://doi.org/10.1109/JIOT.2020.3019707
http://dx.doi.org/10.1186/s13634-022-00867-2
http://dx.doi.org/10.3390/drones6070177
http://dx.doi.org/10.1109/TNSE.2022.3163193
https://www.semanticscholar.org/paper/Breakthrough-AES-Performance-with-Intel-%C2%AE-AES-New-Akdemir-Dixon/62116fe84e7360202d4e1cff859c8fc014ef4614
https://www.semanticscholar.org/paper/Breakthrough-AES-Performance-with-Intel-%C2%AE-AES-New-Akdemir-Dixon/62116fe84e7360202d4e1cff859c8fc014ef4614
http://dx.doi.org/10.3390/sym11020293
https://csrc.nist.gov/Projects/post-quantum-cryptography
www.microchip.com/wwwproducts/en/ATmega128
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf

Symmetry 2022, 14, 2377 14 of 14

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Park, J.H.; Lee, D.H. FACE: Fast AES CTR mode encryption techniques based on the reuse of repetitive data. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018, 2018, 469-499. [CrossRef]

Kwon, H.; An, S.; Kim, Y.; Kim, H.; Choi, S.J.; Jang, K.; Park, J.; Kim, H.; Seo, 5.C.; Seo, H. Designing a CHAM block cipher on
low-end microcontrollers for internet of things. Electronics 2020, 9, 1548. [CrossRef]

Roh, D.; Koo, B.; Jung, Y.; Jeong, LW.; Lee, D.G.; Kwon, D.; Kim, WH. Revised version of block cipher CHAM. In International
Conference on Information Security and Cryptology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1-19.

Kim, H.; Sim, M.; Eum, S,; Jang, K.; Song, G.; Kim, H.; Kwon, H.; Lee, WK.; Seo, H. Masked Implementation of PIPO Block
Cipher on 8-bit AVR Microcontrollers. In International Conference on Information Security Applications; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 171-182.

Kim, H,; Jeon, Y.; Kim, G.; Kim, J.; Sim, B.Y.; Han, D.G.; Seo, H.; Kim, S.; Hong, S.; Sung, J.; et al. PIPO: A lightweight block cipher
with efficient higher-order masking software implementations. In International Conference on Information Security and Cryptology;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 99-122.

Eum, S.W.; Kwon, H.D.; Kim, H.J.; Yang, Y.J.; Seo, H.]. Implementation of LEA Lightwegiht Block Cipher GCM Operation Mode
on 32-Bit RISC-V. J. Korea Inst. Inf. Secur. Cryptol. 2022, 32, 163-170.

Hong, D.; Lee,].K.; Kim, D.C.; Kwon, D.; Ryu, K.H.; Lee, D.G. LEA: A 128-bit block cipher for fast encryption on common
processors. In International Workshop on Information Security Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3-27.
Kwon, H.; Kim, H.; Eum, S.; Sim, M.; Kim, H.; Lee, WK,; Hu, Z.; Seo, H. Optimized Implementation of SM4 on AVR
Microcontrollers, RISC-V Processors, and ARM Processors. IEEE Access 2022, 10, 80225-80233. [CrossRef]

Cheng, H.; Ding, Q. Overview of the block cipher. In Proceedings of the 2012 Second International Conference on Instrumentation,
Measurement, Computer, Communication and Control, Washington, DC, USA, 8-10 December 2012; pp. 1628-1631.

Efficient Implementations of AES-128 and Grestl-256 for the AVR 8-Bit Microcontroller Architecture. Available online: https:
/ /github.com/Churro/avr-aes128-groestl256 /blob /master /Paper.pdf (accessed on 16 August 2022).

Stoffelen, K. Efficient Cryptography on the RISC-V Architecture. In International Conference on the Theory and Application of
Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany, 2019; pp. 323-340.

http://dx.doi.org/10.46586/tches.v2018.i3.469-499
http://dx.doi.org/10.3390/electronics9091548
http://dx.doi.org/10.1109/ACCESS.2022.3195217
https://github.com/Churro/avr-aes128-groestl256/blob/master/Paper.pdf
https://github.com/Churro/avr-aes128-groestl256/blob/master/Paper.pdf

	Introduction
	Contribution
	Optimized Simpira on the 8-Bit AVR Architecture
	Optimized Simpira on the 32-Bit RISC-V Architecture
	First Optimized Implementation for Simpira on 8-Bit AVR Microcontrollers and 32-Bit RISC-V Processors

	Related Works
	AES Block Cipher
	Simpira Permutation
	8-Bit AVR Microcontroller
	32-Bit RISC-V Processor
	Related Works

	Proposed Method
	Optimized Implementation of Simpira on 8-Bit AVR Microcontroller
	Constant Roundkey Pre-Computation
	Omitting AddRoundkey Function
	Optimizing InvMixColumn
	Optimized Addroundkey Function
	Using Optimized AES Implementation of AVR

	Optimized Implementation of Simpira on 32-Bit RISC-V
	Simpira Optimized Implementation of RISC-V
	Using Optimized AES Implementation

	Evaluation
	8-Bit AVR Microcontroller
	32-Bit RISC-V Processor

	Conclusions
	References

