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Abstract: The deep voice detection technology currently being researched causes personal infor-
mation leakage because the input voice data are stored in the detection server. To overcome this
problem, in this paper, we propose a novel system (i.e., DeepDetection) that can detect deep voices
and authenticate users without exposing voice data to the server. Voice phishing prevention is
achieved in two-way approaches by performing primary verification through deep voice detection
and secondary verification of whether the sender is the correct sender through user authentication.
Since voice preprocessing is performed on the user local device, voice data are not stored on the
detection server. Thus, we can overcome the security vulnerabilities of the existing detection research.
We used ASVspoof 2019 and achieved an F1-score of 100% in deep voice detection and an F1 score of
99.05% in user authentication. Additionally, the average EER for user authentication achieved was
0.15. Therefore, this work can be effectively used to prevent deep voice-based phishing.

Keywords: voice phishing; deep voice detection; user authentication; privacy preservation;
autoencoder; convolutional neural networks

1. Introduction

As the deep learning paradigm has developed, various fields have grown rapidly.
However, cases of using it for crimes (e.g., voice phishing) are increasing as well. For
example, voice phishing has occurred with synthetic voices that are difficult for humans to
distinguish because of the generalized deepfake technology (https://www.vice.com/en/
article/pkyqvb/deepfake-audio-impersonating-ceo-fraud-attempt, accessed on 5 Septem-
ber 2022).

As the threat of impersonation attacks using deep voices rises, deep voice detectors
are needed to prevent voice phishing.

Deep voice is a deepfake technology that creates synthetic voices. The voice of a
specific person can be collected through a social network service (SNS), making it easy
to perform voice phishing through deep voices. In particular, voice phishing with deep
voices can cause serious damage in that synthetic voices that are difficult to distinguish
from real voices are used. Therefore, the importance of deep voice detection has emerged,
and many related studies are being conducted. However, these techniques have a security
vulnerability in that voice data are stored in the detection server.

In this paper, we propose a deep voice detection system (i.e., DeepDetection) with
privacy-enhanced features. The encoder can be distributed to the user’s mobile device.
When voice data are input, the feature is extracted in the form of numpy through the encoder
and transmitted to the server. Then, the numpy data are input into the detection model to
detect deep voices and perform user classification simultaneously.

By authenticating users through the user classification method, voice phishing damage
caused by simple impersonation can be prevented. An example of simple impersonation is
pretending to be the owner of the number using one of the numbers in the victim’s address
book. In this scenario, voice phishing can be accomplished easily because there is no doubt
that it is someone else (i.e., voice phishing criminal), unless the voice is completely different.

Appl. Sci. 2022, 12, 11109. https://doi.org/10.3390/app122111109 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122111109
https://doi.org/10.3390/app122111109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0069-9061
https://www.vice.com/en/article/pkyqvb/deepfake-audio-impersonating-ceo-fraud-attempt
https://www.vice.com/en/article/pkyqvb/deepfake-audio-impersonating-ceo-fraud-attempt
https://doi.org/10.3390/app122111109
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122111109?type=check_update&version=1


Appl. Sci. 2022, 12, 11109 2 of 13

This approach prevents voice phishing in two ways: by performing primary verifica-
tion through deep voice detection and secondary verification of whether the sender is the
correct sender through user authentication. Since the voice preprocessing for the classifier
is performed on the user’s local device, the voice data are not stored in the verification
server, thereby overcoming the security vulnerabilities of the existing technique.

1.1. Contribution
1.1.1. Preprocessing Method to Protect Privacy Using an Autoencoder

For deep voice detection, preprocessing must be performed before classification.
However, there is a vulnerability in the way in which voice data are exposed to the server.
We designed the encoder of the autoencoder to perform the preprocessing independently
by deploying it to the users. The model can be separated, and the preprocessing and
classification tasks can be performed on the user’s device and the server, respectively. This
approach has the following advantages. First, it can overcome the problem of original
data exposure that is the vulnerability of existing deep learning-based deep voice detection
methods. Since meaningful features are extracted through the autoencoder, effective data
can be used for user authentication and deep voice detection.

1.1.2. Method for Performing User Authentication and Deep Voice Detection

We propose the DeepDetection system, which can perform user authentication and
deep voice detection using the ASVspoof2019 dataset simultaneously. The fake data of
this dataset is generated by speech synthesis technology, similar to the users belonging
to the real dataset. We adopted it in our work. To the best of our knowledge, this is the
first system that can perform both user authentication and deep voice detection with
ASVspoof2019 simultaneously.

Voice phishing damage caused by simple impersonation can be prevented by au-
thenticating users through user classification; that is, voice phishing can be prevented
more effectively through user authentication. This method prevents voice phishing in two
ways: by performing primary verification through deep voice detection and secondary
verification of whether the sender is the correct sender through user authentication. In
deep voice detection, an F1 score of 100% was achieved, and in user authentication, an F1
score of 99.05% was achieved with the proposed method.

The remainder of this paper is organized as follows. Section 2 presents related works
concerning AI, neural networks, deepfakes, and datasets, while Section 3 presents the
proposed system (i.e., DeepDetection), with its evaluation given in Section 4. Section 5
concludes the paper.

2. Related Works
2.1. Artificial Neural Networks
2.1.1. Convolutional Neural Networks

The convolutional neural network is a type of technology that combines a convolution
operation with an existing neural network. It is designed to imitate human visual process-
ing and shows strong performance in image processing. A CNN consists of convolution
layers that extract and reinforce the features from the input data using a kernel (i.e., filter)
and a classifier that classifies images based on the extracted features. In the convolution
layer, convolution plays a role in extracting an image’s features using filters. At this time,
the same filter traverses the input data and performs convolution operations. Since a CNN
learns the same weights using the same filters, it has the advantage that it takes less time
to learn because the number of parameters to learn is relatively small. After performing
the convolution operation, it enables faster and more effective learning through the activa-
tion function. Pooling simplifies the output by performing nonlinear downsampling and
reducing the number of parameters the network learns [1]. Through the convolution layer,
the general features are initially extracted, specific and unique features are extracted as
the higher-level layers proceed, and the output data are used for the next layer; that is,
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particular features are identified while repeating the process of extracting features from the
input data with learning based on them. After this, the resulting value in the form of an
image is transformed into a one-dimensional array, which is a form that can be classified
and is input to the fully connected layer to perform classification. The more diverse the
data used for learning are, the more accurate classification becomes possible [2].

There is the one-dimensional CNN (CNN 1D), which is effective for training time
series data. In the CNN 2D, which is well known as a neural network for image learning,
the kernel moves horizontally and vertically to learn the local features of the input image,
whereas in the CNN 1D, the kernel moves in one direction. Due to these characteristics, it
is used for learning time series data.

2.1.2. Autoencoder

Figure 1 shows the structure of the autoencoder model. The autoencoder consists of
an encoder and a decoder, and it is an artificial neural network trained with an unsuper-
vised learning method that learns without data labels [3]. It first learns the representation
encoded in the data and then aims to produce an output value from the learned encoding
representation as close as possible to the input data. Thus, the output of the autoencoder is
a prediction of the input. The autoencoder generates a latent variable that is the result of
extracting the features of the input data through the encoder neural network. After this,
the latent variable (i.e., the output of the encoder) is input into the decoder neural network.
The decoder reconstructs the original data (i.e., the input data of the encoder) based on the
latent variable. Unlike the classifier, it can extract the features of the data from the input
and then reconstruct them again. Due to these characteristics, it is mainly used for noise
removal [4], data visualization and reconstruction, and semantic extraction.

Figure 1. Structure of the autoencoder.

2.1.3. Mean Squared Error

The mean squared error (MSE) is one of the loss functions, and it is used to calculate
the difference between the actual value and the predicted value. It is calculated by Equa-
tion (1), where n is the total amount of data, yt is the actual value, and ŷt is the predicted
value. Since the loss function is used to accurately predict the result of the model, it is
important to select an appropriate loss function. The MSE is most commonly used in
scenarios such as regression problems:

MSE = 1
n ∑n

t=1(yt − ŷt)2 (1)

2.1.4. Precision

The precision refers to the amount of data that the model predicts to be true and is
actually true. It is calculated by Equation (2):

Precision = TP
TP+FP (2)
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2.1.5. Recall

The recall is the amount of data that the model recognizes as true for data that are
actually true. It is calculated by Equation (3):

Recall = TP
TP+FN (3)

2.1.6. F1-Score

The F1 score, also called the f-measure, is used to measure the accuracy in statistical
analysis. The existing accuracy equation can achieve high performance in the case of a data
imbalance, even when a low-performance model is used. Therefore, the F1 score is used
for accurate calculation results even in the case of a data imbalance. It is calculated as the
harmonic mean of the precision and recall, and it is calculated by Equation (4):

F1-score = 2 × Precision×Recall
Precision+Recall (4)

2.2. Deepfake
2.2.1. Deepfake

Deepfake is a compound word for deep learning and fake, and it refers to the results
of false video, images, and voices generated through the steps of extraction, learning, and
generation using deep learning technology. As artificial intelligence advances, sophisticated
generation technologies are emerging. Deepfakes can be applied in various fields, but it
can also be abused with negative intentions.

2.2.2. Deep Voice

Deep voice is a speech synthesis technology that uses deep learning to create a ma-
nipulated voice. As mentioned Section 2.2.1, deepfake is a generic term for non-real,
manipulated results generated using deep learning technology. Since it is also widely used
in the meaning of video synthesis, in this paper, we call it deep voices instead of deepfakes
to focus on speech synthesis technology. Deep voice technology is being applied in real
life, such as making audiobooks using the voices of celebrities. Problems that can arise
from the misuse of deep voices include legal evidence manipulation and voice phishing.
This can cause serious social problems. Research for detecting deep voices is being actively
conducted. In Section 2.3, the previous studies on deep voice detection are discussed.

2.3. Dataset
ASVspoof

Automatic speaker verification (ASV) is the authentication of individuals by perform-
ing analysis of speech utterances [5,6]. The ASVspoof challenge is a series of challenges that
promote the development of countermeasures to protect ASV from the threat of spoofing [7].
The ASVspoof 2019 challenge provides a standard database [8] for anti-spoofing. For our ex-
periment, the logical access (LA) part of ASVspoof 2019 was used. The LA of the provided
dataset consists of synthetic speech generated with the very latest, state-of-the-art text-to-
speech synthesis (TTS) and voice conversion (VC) technologies, including Tacotron2 [9]
and WaveNet [10] as well as bona fide user speech. The spoofing data in the ASVspoof
2019 database have been proven to be similar to the target speaker [8]. Most datasets for
deep voice detection consist of deep voices for a single person. However, our proposal is to
enhance the prevention of voice phishing by verifying the correct sender after performing
verification primarily through deep voice detection. To accomplish this, we need a deep
voice dataset for each user. This dataset is suitable for our work as it contains a deep
voice for each user. Therefore, we adopted this dataset in order to show the utility of
DeepDetection.



Appl. Sci. 2022, 12, 11109 5 of 13

2.4. Previous Deep Voice Detection Techniques

In [11], the authors proposed a forensic technique that can distinguish human voices
from AI-synthesized voices. The technique is the first bispectral analysis method to distin-
guish between real and fake voices based on observation of the bispectral artifacts in fake
voices.

In [12], the authors introduced a deep voice detection technique based on the theory
of detecting subtle differences between real and fake voices. In the process of inputting
voice data into the model and processing it as a refined signal, the behavior of neurons is
monitored to detect fake voices. A thin ResNet model is used for speaker recognition (SR),
and a convolutional layer and a fully connected layer are used to capture the behavior of
neurons to classify real speech and fake speech. The captured neurons are input into the
binary classifier, and the classifier detects the fake voices.

In [13], the authors used a CNN model to detect fake voices generated using deep
voice and imitation techniques, and they used image augmentation and dropout techniques
to prevent overfitting. The detection sequence is as follows. When the voice data are input,
a histogram is extracted, and image augmentation is performed. The generated dataset is
input into the CNN model to perform binary classification that classifies real voices and
fake voices. Although there are various methods such as histograms and spectrograms for
extracting voice features, the histogram has the advantage that the detection model can
classify the voice data without relying on the text. They are characterized by including
imitation voices, which are more natural than deep voices and difficult for humans to
distinguish, in the fake data.

In [14], through explainable artificial intelligence (XAI), the possibility of interpretation
of deepfake detection results is given. Therefore, the authors improved the reliability of the
detection results by providing the basis for the detection results through XAI.

2.4.1. Previous Works Using the ASVspoof2019 Dataset

Previous works have focused on detecting real or fake voices and classifying spoofing
algorithms generating fake voices. In other words, these are works that verify whether one
user is real or fake.

In [15], the authors adapted a light convolutional gated RNN model to improve the
long-term dependency for spoofing attack detection.

In [16], the authors used the deep residual network (ResNet [17]) model tho alleviate
the gradient loss problem for deep voice detection. Audio preprocessing was performed
through a 60-dimension linear filter bank (LFB). To improve generalization performance in
deep voice detection, they used a dataset that considered the actual situation and added a
FreqAugment layer that randomly masked adjacent data frequencies. Through this work,
the model could learn features well even if there were outliers or noise in the dataset.

In [18], the authors proposed a method referred to as feature genuinization, which
learns a transformer with a CNN using the characteristics of only a real voice. They then
used this genuinization transformer with a light CNN classifier. Their system outperformed
other single systems for the detection of synthetic attacks.

In [19], the authors proposed a continuous learning technique called Defining Fake
Without Forgetting (DFWF) to detect new spoofing attacks incrementally. Through contin-
uous learning, it was possible to focus more on the characteristics of the real voice while
remembering the previously learned information. The problem of forgetting information
about the existing data when integrating additional data was addressed with two limi-
tations: Learning without Forgetting (LwF) and Positive Sample Alignment (PSA). They
showed that DFWF performed much better than fine-tuning, and the model generated
80-dimension high-level embeddings using a light convolution neural network (LCNN).

In [20], the authors used two types of new acoustic features to improve deep voice
detection performance. The first feature consisted of two cepstral coefficients and one
LogSpec feature. Cepstral coefficients and LogSpec are extracted from the linear prediction
residual signals. The second characteristic is the harmonic and noise subband ratio function.
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2.4.2. Security Vulnerabilities in Existing Works

When detecting deep voices with the above-described technique, the original voice
data are used as the input for the detection system. At this time, preprocessing is performed
on the same server as the detection model. This causes a problem in that the voice data,
which are biometric information, are stored in the detection server. Therefore, in this paper,
we overcome these security vulnerabilities by separating the server for preprocessing and
detection and prevent the original data from being stored on the server.

2.5. Equal Error Rate

The equal error rate (EER) is one of the popular criteria for optimizing speaker verifi-
cation systems and is a common evaluation criterion for balancing the false rejection rate
(FRR) and the false acceptance rate (FAR) [21].

2.5.1. False Rejection Rate

The FRR indicates the false rejection of authorized users. It is calculated by Equa-
tion (5). False negative (FN) represents the number of true entries classified as false. True
negative (TN) represents the number of false entries classified as false. For example, a user
registered in the fingerprint recognition system is not recognized due to an error in the
system and is instead recognized as an unauthorized user. Therefore, it is necessary to
design a system that minimizes the FRR:

FRR = FN
FN+TN (5)

2.5.2. False Acceptance Rate

The FAR is an evaluation metric for cases in which unauthorized users are accepted in
a specific system, and it is calculated by Equation (6). False positive (FP) represents the
number of false entries classified as true. True positive (TP) represents the number of true
entries classified as true. For example, the fingerprint of a user who is not registered in the
system is mistakenly recognized as another user and accepted:

FAR = FP
FP+TP (6)

2.5.3. Equal Error Rate

The EER is the value at which the FRR and FAR become equal, and it is a metric
that evaluates the overall performance of the biometrics. It is calculated by Equation (7).
Since the EER is used as a threshold value of the biometrics, it should be set appropriately
according to the sensitivity of the system. As the sensitivity of the system increases, the
FRR increases, and the FAR decreases. When the sensitivity is lowered, the FRR decreases,
and the FAR increases. It should be set in consideration of the trade-off between the FAR
and FRR as well as the importance of the two values in the system:

EER = FAR or FRR, i f FAR = FRR (7)

3. Proposed Method

The proposed system extracts features through an autoencoder from the voice data in
a user’s mobile device. After that, the extracted features are transmitted to the server and
input into the classifier, and deep voice detection and user authentication are performed.
Figure 2 is a schematic diagram of the proposed method, which is shown in a comprehen-
sive manner. As for the specific process, after receiving the voice data as the input, the
size of the voice signal is unified through data preprocessing. The preprocessed data are
input into the autoencoder. During the encoding, meaningful features are extracted. The
encoder can be deployed on users’ devices. As shown in Figure 2, when the user’s mobile
and server environments are divided, only the preprocessed data and not the original voice
are stored in the server. Since the original voice is not exposed, privacy can be protected.
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The extracted feature vector is input into the classifier, and the classifier classifies the input
voice data as users or deep voices. Through this process, user authentication and deep
voice detection are possible simultaneously.

Figure 2. Diagram of proposed method.

3.1. Dataset
3.1.1. Dataset Configuration

Table 1 shows the details of the dataset for the proposed system.
We classified 20 users and a deep voice. In other words, these entries were divided

into a total of 21 classes. In order to construct a dataset suitable for our system, the deep
voice data were sampled at the same ratio from each user’s deep voice. Then, the deep
voice data were composed into the same class, regardless of whose deep voice it was. The
dataset composed of these criteria was preprocessed for training and inference.

Table 1. Details of dataset (U, D : the number of users and deep voices).

Category Original Data Autoencoder Classifier

Number of classes 40 (20 (U), 20 (D)) 21 (20 (U), 1 (D)) 21 (20 (U), 1 (D))

Amount of data 25,373 130,516 130,516

Length of sequence Different for each data 1000 163

3.1.2. Preprocessing

The voices were the time series data, and the raw audio could not be used as the input
for the neural network. Therefore, we used preprocessing to convert the raw audio into a
numpy array for use as input for the neural network. Because the sequence length of the
original voice data exceeded at least 50,000, a very large amount of RAM was required for
training and inference, and an out of memory (OOM) state occurred in our system with 50
GB of RAM. Since the length of each voice datum was different, it was necessary to unify
the sequence length. In order to reduce the length of the sequence of voice data, as long
as there was no performance degradation, the length was sliced to 1000. Through this, we
reduced the overhead and increased the amount of voice data from 2450 to 130,516. A total
of 130,516 data were divided into 60% for training, 20% for validation, and 20% for testing.
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3.2. Autoencoder for Feature Extraction from the Voice Data
Architecture of the Autoencoder

Figure 3 and Table 2 show the structure of the autoencoder for feature extraction and
details on the hyperparameters of the autoencoder, respectively. In this paper, an autoen-
coder is used to extract features from the voice data. In DeepDetection, this autoencoder is
used for preprocessing of user authentication and deep voice detection. The structure of
the autoencoder consists of a Conv1d layer, MaxPool1d layer, and MaxUnpool1d layer. The
Conv1d layer is a convolutional layer for sequential data, extracting the features of the
input data and making a feature map from them. MaxPool1d is a maxpooling layer for the
sequential data which reduces the dimensions of the feature map and prevents overfitting.
MaxUnpool1d is opposite of MaxPool1d, and it is used to restore the dimensions reduced
through MaxPool1d’s encoder in the decoder. The encoder consists of two Conv1d layers
and one MaxPool1d layer. The input, hidden, and output channels of the Conv1d layers are
1, 16, and 8, respectively. The length of the data is reduced to 1000, 988, and 978 through
the Conv1d layers. The output values of Conv1d go through the ReLU function, which is
an activation function that adds nonlinearity, and then are used as the input values of the
MaxPool1d layer. The kernel size and stride of MaxPool1d are 6, and the output value has a
data length of 163. The decoder consists of two Conv1d layers and one MaxUnpool1d layer.
The input is the same as the output of the encoder, and the shape of the decoder is identical
to the encoder. Training was performed in 100 epochs, and we achieved an average loss of
0.00076 in classification for 20 users and the fake voice.

Figure 3. Structure of autoencoder for feature extraction.

Table 2. Details of hyperparameters of autoencoder.

Hyperparameters Encoder Decoder

Neurons of input/output layers 1000/163 163/1000

Channels of hidden layers 16

Channels of latent variable 8 (output of encoder and input of decoder)

Sequence length 1000

Kernel size 13, 11

Strides 1

Batch size 8

Loss function Mean square error

Activation function ReLu

Optimizer Adam (lr = 0.0001)

Epoch 100
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3.3. Convolutional Neural Network for User Authentication and Deep Voice Detection

Figure 4 is a diagram showing the structure of a neural network for user authentication
and deep voice detection. A vector extracted from speech through a separate autoencoder
is input into the classifier. In the scenario, the autoencoder is deployed on a mobile device.
The classifier classifies a total of 21 classes including a deep voice and User 1∼User 20.
The vector input into the classifier goes through four one-dimensional CNNs. After that, a
flattening operation is performed to be input into the fully connected layer. Unlike a two-
dimensional CNN, a one-dimensional CNN is a neural network mainly used for processing
sequential data. Our dataset was sequential data because it was voices. Therefore, we used
a one-dimensional CNN. The input vector goes through four one-dimensional CNNs. After
that, a flattening operation is performed to input the vector into the fully connected layer.
After flattening the vector, it is input into two fully connected layers. The output layer does
not include the softmax activation function for multiple classifications. Since the softmax
activation function is applied to the cross-entropy loss function provided by PyTorch, a
separate activation function is not used for the output layer. Table 3 shows the details of the
hyperparameters. These are the results derived through hyperparameter tuning. The input
shape of the classifier was (8, 163), and the number of neurons in the output layer was 21.
Since the number of labels was 21, the number of neurons in the output layer was set to
21. The output channels of each Conv1D layer were 32, 64, 32, and 8. The number of output
neurons in the fully connected layer was 64 and 21. The filter size of the convolutional layer
was 15, and the stride was 1. After that, it was flattened and made into a 1-dimensional
array of a length of 856. Since it was a multi-class classification, cross-entropy loss was used,
and Adam with a learning rate of 0.0001 was used as the optimization function. Finally, the
epoch was set to 50, and the batch size was set to 128.

Figure 4. Structure of classifier for authentication and detection.

Table 3. Details of hyperparameters of CNN.

Hyperparameters Descriptions

Shape of Input and Output Input (8, 163), Output (21)

The Number of Labels 21 (1 Deep Voice and 20 Users)

Neurons of Layers Conv1D (149, 135, 121, 107), Flatten (856), Linear (64, 21)

Channel of Layers Conv1D (32, 64, 32, 8)

Kernel Size 15

Strides 1

Batch Size 128

Loss Function Cross-Entropy Loss

Activation Function ReLU

Optimizer Adam (lr = 0.0001)

Epoch 50
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4. Evaluation
4.1. Experiment Environment

We used Google Colaboratory Pro+, a cloud-based service, for this experiment. The
operating system was Ubuntu 18.04.5 LTS, and the RAM was 51 GB. The GPU was a Tesla
P100 16 GB, and the version of CUDA was 11.1. We used Python 3.7.13 and PyTorch
1.11.0+cu113.

4.2. Reconstruction the Rate of Voice Data Using an Autoencoder

Figure 5 shows the original data and the restored data using the autoencoder. “Origi-
nal” represents the original data, “encoded” represents the features extracted by the encoder,
and “decoded” represents the original data reconstructed using a decoder based on those
features. From this, it can be seen that there was a voice pattern for each data, and the
input data was successfully restored through the autoencoder with an MSE loss value of
about 0.00076. Therefore, it was found that the features extracted through the encoder of
the autoencoder extracted an appropriate latent vector for data restoration, and the latent
vector was used to perform user authentication and deep voice classification.

Figure 5. Original and decoded voice data samples.

4.3. Deep Voice Detection and User Authentication

We evaluated the performance of the model for user authentication and deep voice
detection. As a performance indicator, the cross-entropy loss function was used in the
training and validation process. In the testing process, performance was evaluated through
the F1 score and EER. As a result of the experiment, the loss values achieved for the training
and validation process were 0.021041 and 0.037903, respectively. Table 4 shows the F1 scores
for user authentication and deep voice detection. In the training and validation process,
the F1 scores achieved for user authentication were 99.03% and 98.55%, respectively, In the
test process, the F1 score achieved was 99.05%. In the training and validation process, the
F1 scores for deep voice detection were 99.98% and 99.95%, respectively. In the test process,
deep voice detection achieved a score of 100%. Neither the loss value nor the F1 score
dropped during the validation process, and a high F1 score was also achieved, indicating
that overfitting did not occur during the test process. Accordingly, this shows that the
model is suitable for deep voice detection and user authentication.

Table 4. F1 scores for user authentication and deep voice detection.

Method Training Validation Test

User Authentication 99.03% 98.55% 99.05%

Deep Voice Detection 99.98% 99.95% 100%

Equal Error Rate for User Authentication

Table 5 shows the average EER for each class. The total average EER for user classifica-
tion was 0.15. Therefore, we set the threshold to 0.15. In general, the default threshold was
set as a random probability, but the proposed model was 3.75× higher than the random
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probability of 0.04 when classifying 21 classes. In other words, since user authentication
is possible only when classified with a high probability, the proposed model is robust in
determining whether the sender is a deep voice or the correct sender.

Table 5. EER for user authentication in test dataset.

Deep Voice User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9

0.1 0.14 0.11 0.09 0.08 0.14 0.25 0.07 0.05 0.3

User 10 User 11 User 12 User 13 User 14 User 15 User 16 User 17 User 18 User 19 User 20

0.08 0.1 0.2 0.12 0.04 0.15 0.18 0.12 0.13 0.21 0.35

4.4. Comparison with Previous Works

Table 6 shows a comparison with previous works using the ASVspoof2019 dataset
mentioned in Section 2. Previous works were binary classifications that only detected real
or fake voices for one user. Unlike previous works, in this work, we can simultaneously
perform deep voice detection and user authentication through multi-class classification. To
the best of our knowledge, this is the first system that can perform both user authentication
and deep voice detection with ASVspoof2019 simultaneously.

In addition, most previous studies using various models achieved an EER value of 0.04.
Our model achieved the EER values shown in Table 5 in Section 4.3, with an average EER
of 0.15. However, in our system, real and fake classification as well as user authentication
are possible. Therefore, a fair comparison is difficult, but as mentioned in Section 4.3, it has
sufficient performance to perform deep voice detection and user authentication.

In other words, previous works involved checking whether a user was an authorized
user or not, but this work involves a system that can authenticate which of several users
he or she is. In addition, our system can deploy an autoencoder on the user’s device
to encode data in a separate environment. Through this, when extracting voice data in
an inference situation, user authentication and deep voice detection are possible while
preventing the original voice data from being exposed to the server. Therefore, it is possible
to provide enhanced privacy protection by overcoming the vulnerability of data exposure
in the previous deep voice detection technology.

Table 6. Comparison with previous works. O = provided method and X = not provided method.

Method Deep Voice Detection User Authentication Privacy Preserved

This work O Classification
for 20 users

O (by using encoded
data)

Gomez et al. [15] O Real or fake
for 1 user X

Chen et al. [16] O Real or fake
for 1 user X

Wu et al. [18] O Real or fake
for 1 user X

Ma et al. [19] O Real or fake
for 1 user X

Wei et al. [20] O Real or fake
for 1 user X

5. Conclusions

In this paper, we proposed a system (i.e., DeepDetection) that simultaneously performs
user authentication and deep voice detection to prevent voice phishing without privacy
leakage. We designed a deep voice detection and user authentication model that achieves
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high performance by preprocessing voice data using an autoencoder. In addition, the
autoencoder can be deployed on the user’s device for inference. Therefore, the problem of
exposing voice data to the server can be prevented. The previous works involved detecting
whether a user is a deep voice or an authenticated user, but this work involves a system
that can authenticate which of several users he or she is while preserving privacy. To the
best of our knowledge, this is the first system that can perform both user authentication
and deep voice detection with ASVspoof2019 simultaneously. We achieved an F1 score
of 100% in deep voice detection and an F1 score of 99.05% with an average EER of 0.15
in user authentication. This result means that user authentication is possible only when
classified with high probability, so the proposed model is robust in determining whether
the sender is a deep voice or a correct sender. Therefore, our system can effectively perform
security-enhanced user authentication and deep voice detection, which is sufficient to
prevent voice phishing. In future works, we will conduct additional research for a more
robuste and safer voice phishing prevention system by creating human impersonation data.
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