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This letter investigates the performance of coherent free-space optical
systems with multiple receivers especially through the generalised
moment-generating function based approach. Specifically, we first
derive a closed-form expression of the generalised moment-generating
function of the signal-to-noise ratio for the coherent free-space optical
systems. The derived generalised moment-generating function formula
is further utilised to effectively analyse the several performance metrics
such as amount of fading and ergodic capacity. The accuracy of our
theoretical analyses are corroborated via some numerical results.

Introduction: The coherent free-space optical (FSO) communication
systems have gained the enormous attention due to the benefits of
the easy deployment, huge bandwidth and license-free optical medium,
which provides the significant performance improvements compared to
the intensity modulation/direct detection [1, 2]. Accordingly, many ex-
perts have actively investigated the practical applications and theoretical
characteristics of FSO systems. However, the atmospheric turbulence-
induced fading or scintillation results in the major performance impair-
ments of FSO systems. To this end, the several studies for the coherent
FSO systems with multiple receive apertures have been introduced to
utilise the spatial diversity techniques [1–3]. The authors of [3] investi-
gated the diversity gain and diversity-multiplexing trade-off of coherent
FSO systems with multiple receive apertures for the channel model that
reflects the combined effects of turbulence-induced phase distortion and
amplitude fluctuation introduced in [4]. The average error probability
and ergodic capacity (EC) of the coherent FSO systems along with sys-
tem and channel models were analysed in [3, 4].

It has been well acknowledged that the generalised moment-
generating function (G-MGF) can be adopted to effectively calculate
the achievable performance metrics of interest [5–8]. Thus, in this let-
ter, we analyse the performance of coherent FSO systems with multiple
receivers based on the G-MGF, where the channel model and system
model [1–4] are adopted. Specifically, contrary to the previous works
given in [1–4], we first derive a closed-form expression for the G-MGF
of the signal-to-noise ratio (SNR) for the coherent FSO systems, from
which the moments of the SNR can be readily attained. We then inves-
tigate the applicability of the G-MGF in two different scenarios, such as
(1) amount of fading (AoF) and (2) EC, in the latter of which the com-
pact asymptotic behaviour in the high-SNR regimes is further evaluated.

System model: We consider the FSO system with M heterodyne re-
ceivers introduced in [1–3], where the phase distortion caused by the
atmospheric turbulence at the receivers is assumed to be compensated
by the modal compensation with Zernike polynomials. Then, the out-
put of signal at each receiver is y(t ) = ∑M

k=1 xk (t ) + ∑M
k=1 nk (t ), where

xk (t ) and nk (t ) represent the data part carrying information and the noise
part, respectively, the latter of which is assumed to be modelled as addi-
tive white Gaussian noise [1–3]. Accordingly, the SNR of the output of
the signal at receiver is given by

γ = γ0

M

M∑
k=1

α2
k , (1)

where γ0 is the SNR in the absence of the turbulence. Additionally, αk =
αR,k + jαI,k is the effective fading coefficient modelling the channel of

kth diversity branch with satisfying αk = |αk |, where αR,k and αI,k are
supposed to follow Gaussian distribution, that is αR,k ∼ N (αR, σ 2

R ) and
αI,k ∼ N (αI , σ

2
I ). The fading parameters αR, αI , σ 2

R and σ 2
I are defined

as follows [1–3]:

αR = e− σ2
χ +σ2

φ

2 , αI = 0

σ 2
R = 1

2N

(
1 + e−2σ 2

φ − 2e−σ 2
χ −σ 2

φ

)

σ 2
I = 1

2N

(
1 − e−2σ 2

φ

)
, (2)

where σ 2
χ = 0.307k7/6Z11/6C2

n is the log-amplitude variance, σ 2
φ =

CJ (Dk/r0) is the residual phase variance after the compensation of J
Zernike terms over each receive aperture with diameter Dk = D/

√
M ,

D denotes the receive aperture diameter of the benchmark single re-
ceiver system, CJ is the Zernike–Jolmogoroff residual error, r0 =
1.68(C2

n Zk2)−3/5 is the Fried parameter corresponding to the wavefront
coherence diameter with C2

n being the refractive index structure con-
stant, Z being the propagation distance and k being the wavenumber, and
N = {1.09(ρ0/Dk )2�(6/5, 1.08(Dk/ρ0)5/3)}−1 is the number of statisti-
cally independent patches or cells with �(·) being the lower incomplete
gamma function [9] and ρ0 ≈ (3.04/CJ )3/50.286J−0.362r0 being the gen-
eralised Fried parameter after the compensation of J Zernike terms.
Given that N is large enough, αk is known to follow Rician distribution
with probability density function (PDF) [1–3]

fαk (αk ) = 2αk (1 + K )

α2
e−Ke

− (1+K )α2
k

α2 I0

(
2αk

√
(1 + K )K

α2

)
, (3)

where α2 = σ 2
R + σ 2

I + αR
2, Iv(·) is the modified Bessel function of the

first kind of order v [9], and the parameter K is the ratio of the strength
of the coherent component to that of the incoherent one with satisfying
the condition K−1 = α2(αR

4 + 2αR
2(σ 2

I − σ 2
R ) − (σ 2

I − σ 2
R )2)−1/2 − 1.

Then, by the definition of the SNR γ given in (1) and employing a
simple variable change, the PDF of the SNR can be derived as [1–3]

fγ (γ ) = (1 + K )M

α2γ0

(
(1 + K )γ

Kα2γ0

) (M−1)
2

× e
−KM− (1+K )Mγ

α2γ0 IM−1

(
2M

√
K(1 + K )γ

α2γ0

)
. (4)

G-MGF based analysis: The G-MGF of a random variable X is defined
as [5–8]

M(n)
X (s) � E{X neX s} =

∫ ∞

0
xnexs fX (x)dx, (5)

where fX (x) is the PDF of X and E{·} denotes the expectation opera-
tor. Then, if n ∈ Z

+, the G-MGF equals the nth order derivative of the
MGF MX (s) � E{eX s} = M(0)

X , and the nth order moment of X can be

obtained as E{X n} = M(n)
X (0).

Thus, from the definition of the G-MGF given in (5), the G-MGF of
the coherent FSO systems with M multiple receivers can be formulated
as

M(n)
γ (s) = E{γ neγ s}

=
∫ ∞

0
γ neγ s fγ (γ )dγ

=
∫ ∞

0
μ

( μ

KM

) M−1
2

e−KMγ
M−1

2 +ne(s−μ)γ

× IM−1(2
√

KMμ
√

γ )dγ

(a)= μ
( μ

KM

) M−1
2

e−KM
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×
∫ ∞

0
2xM+2ne(s−μ)x2

IM−1(2
√

KMμx)dx

(b)= �(M + n)

�(M )

μM e−KM

(μ − s)M+n 1F1

(
M + n, M,

KMμ

μ − s

)
, (6)

where μ = (1 + K )M/(α2γ0), �(x) represents the Gamma function [9],

1F1(x, y, z) denotes Kummer confluent hypergeometric function, (a) can
be obtained by defining x = √

γ , and (b) can be derived by using the
formula [10, equations (9.4-11)]. Moreover, since the number M of mul-
tiple receivers and the parameter n for the G-MGF in (5) are positive and
non-negative integers, respectively, that is, M ∈ Z

+ and n ∈ {0} ∪ Z
+,

the G-MGF for the coherent FSO systems with multiple receivers in (6)
can be rewritten as

M(n)
γ (s) = �(M + n)

�(M )

1

μn

(
1

1 − s
μ

)M+n

× e
−KM

(
1− 1

1− s
μ

)
n∑

p=0

(−n)p

(
− KM

1− s
μ

)p

p!(M )p
, (7)

where (x)p � �(x + p)/�(x) denotes the Pochhammer symbol, and for
x ∈ Z

+ ∧ y ∈ Z
+ ∧ y ≤ x, 1F1(x, y, z) can be expressed as [11, equation

(07.20.03.0025.01)]

1F1(x, y, z) = e−z
x−y∑
p=0

(y − x)p(−z)p

p!(y)p
. (8)

Therefore, the nth moment of the SNR γ of coherent FSO systems
can be also obtained from (7) as

E{γ n} = (M(n)
γ (s)

∣∣
s=0

= �(M + n)

�(M )

e−KM

μn 1F1 (M + n, M, KM)

= �(M + n)

�(M )

e−KM

μn

n∑
p=0

(−n)p(−KM)p

p!(M )p

. (9)

It is worthy to note that equations (6), (7) and (9) are new in the
literature to the best of our knowledge.

Applications to performance analysis: We here illustrate the applicabil-
ity of the G-MGF for the SNR γ of coherent FSO systems in the dif-
ferent scenarios: (1) AoF and (2) EC. Additionally, it is noticeable that
the G-MGF can be further applicable to the various performance eval-
uations, for example, error probability analysis, outage probability with
interference, energy detection, and physical layer security [5–8].

A. Amount of fading: The AoF is generally used as fundamental perfor-
mance metric to describe the fading severity of channel model, which
aims to define the distribution of the SNR of the received signal, and
thus can be defined as [12]

AoFγ � Var(γ )

(E{γ })2
= E{γ 2} − (E{γ })2

(E{γ })2
= E{γ 2}

(E{γ })2
− 1, (10)

where Var(γ ) denotes the variance of the SNR γ . Using (6) and (9), we
can have

E{γ } = (M(1)
γ (s)

∣∣
s=0

= �(M + 1)

�(M )

e−KM

μ
1F1 (M + 1, M, KM)

= (K + 1)M

μ
, (11a)

E{γ 2} = (M(2)
γ (s)

∣∣
s=0

= �(M + 2)

�(M )

e−KM

μ2 1F1 (M + 2, M, KM)

= M

μ2

[
(K + 1)2M + 2K + 1

]
. (11b)

Hence, by substituting (11a) and (11b) into (10), the AoF for the SNR
γ of coherent FSO systems can be readily obtained as

AoFγ = 1

(K + 1)2M

[
(K + 1)2M + 2K + 1

] − 1

= 2K + 1

(K + 1)2M
, (12)

where it is apparent that the AoF depends only on the ratio K of strength
of the coherent component to that of the incoherent one and the number
M of heterodyne receivers of FSO systems.

B. Ergodic capacity: The EC represents the quantity of information
transferred through the time-variant channels. Based on the derived G-
MGF in (6), the EC [bps/Hz] for the coherent FSO systems with multiple
receivers can be expressed as the expected value of log2(1 + γ ), that is,
[13, 14]

C = E{log2(1 + γ )}

=
∫ ∞

0
log2(1 + γ ) fγ (γ )dγ

(a)= − 1

ln 2
×

∫ ∞

0
Ei(−s)M(1)

γ (−s)ds

≈ 1

ln 2

N∑
n=0

vnEi(−sn)
([M(1)

γ (−s)
]∣∣

−s→sn
, (13)

where N is any positive integer, Ei(·) is exponential integral function [9],
(a) can be obtained with the G-MGF in (6) by following [13, equation
(7)], and the coefficients vn and sn are given as [14]

vn = π2 sin( 2n−1
2N π )

4N cos2
(

π
4 cos

(
2n−1

2N π
) + π

4

) , (14)

sn = tan

(
π

4
cos

(
2n − 1

2N
π

)
+ π

4

)
. (15)

Furthermore, for the high-SNR regime, the compact asymptotic EC
can also be formulated by utilising the nth moment of SNR γ as [15,
equation (22)]

C∞ = 1

ln 2

(
∂

∂n
E{γ n}

∣∣∣∣
n=0

= 1

ln 2

(
∂

∂n
M(n)

γ (0)

∣∣∣∣
n=0

(a)= 1

ln 2

(
e−KM

1F (1,0,0)
1 (M, M, KM) − log μ + ψ (0)(M )

)

= 1

ln 2

⎛
⎝e−KM

∞∑
p=0

(M )pψ (M + p)(KM)p

p!(M )p

− e−KMψ (M )

⎞
⎠

(
×1F1 (M, M, KM) − log

(
(1 + K )M

α2γ0

)
+ ψ (0)(M )

)

= 1

ln 2

⎛
⎝ ∞∑

p=0

e−KMψ (M + p)(KM)p

p!
− log

(
(1 + K )M

α2γ0

)⎞
⎠ ,

(16)
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where ψ (·) is the Euler’s digamma function [9], ψ (0)(·) is the 0th deriva-
tive of digamma function to satisfy ψ (0)(x) = ψ (x), 1F (1,0,0)

1 (a, b, x) de-
notes the derivative of 1F1(a, b, x) with respect to a, and (a) is attained by
using [11, equation (07.20.20.0001.01)]. We note that although the EC
achieved by the considered systems was theoretically investigated in [1]
and the simpler EC expression was given in [2], we attempt here to derive
the novel concise EC formula especially by exploiting the G-MGF in (6)
and thus to demonstrate the usefulness of the G-MGF newly derived in
this letter. Moreover, we can also find that the asymptotic EC expression
in (16) is equivalent to that given in [2, equation (9)], however, where
the PDF-based approach was used.

Numerical results: In this section, we present some numerical results
for the AoF and EC of the coherent FSO systems with multiple receivers
eventually to verify the usability of the G-MGF derived in this letter. For
simplicity, we consider the coherent FSO system with α2 = 1. Addi-
tionally, in order to calculate the infinite summation in (16), we restrict
to p = 0, . . . , 50.

In Figure 1, we analyse the AoF as a function of number of multiple
receivers M with the different ratio K (i.e. K = 0.001, 0.5, 1, 2, 3) for
the coherent FSO system. As shown in the figure, the AoF decreases
as both the number of multiple receivers M and the ratio K increase. It
is also observed that the AoF is significantly affected by the number of
receive apertures especially for the small M .

Figure 2 illustrates the EC obtained from (13) and its correspond-
ing asymptotic expression in (16) as a function of SNR γ0 with the
ratio K = 0.001 for the different number of multiple receivers M (i.e.
M = 1, 2, 4, 8). In the figure, we can observe that the numerical results
from the proposed formula (i.e. (13)) exactly coincide, in all SNR re-

gions, with those from the Monte-Carlo simulation, and the results from
the derived asymptotic expression (i.e. (16)) also tightly converge to the
corresponding ones from (13) in the high-SNR regime. This evidently
implies that by using the derived formulas, the EC performance of the
coherent FSO systems can be easily but precisely predicted for different
system parameters and channel conditions.

Conclusions: We have comprehensively evaluated the performance
achieved by the coherent FSO systems with multiple receivers through
judiciously exploiting the G-MGF. To this end, we have first derived
the novel closed-form expression for the G-MGF of the SNR, and then
explored its usefulness and applicability for two different performance
metrics, that is, AoF and EC, whose achievable performances were ex-
plicitly verified through various numerical results.
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