
Research Article
Toward Serverless and Efficient Encrypted Deduplication in
Mobile Cloud Computing Environments

Youngjoo Shin,1 Junbeom Hur,2 Dongyoung Koo ,3 and Joobeom Yun 4

1School of Computer and Information Engineering, Kwangwoon University, Seoul, Republic of Korea
2Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
3Department of Electronics and Information Engineering, Hansung University, Seoul, Republic of Korea
4Department of Computer and Information Security, Sejong University, Seoul, Republic of Korea

Correspondence should be addressed to Dongyoung Koo; dykoo@hansung.ac.kr and Joobeom Yun; jbyun@sejong.ac.kr

Received 16 February 2020; Revised 26 June 2020; Accepted 23 July 2020; Published 28 August 2020

Academic Editor: Luigi Coppolino

Copyright © 2020 Youngjoo Shin et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the proliferation of new mobile devices, mobile cloud computing technology has emerged to provide rich computing and
storage functions for mobile users.+e explosive growth of mobile data has led to an increased demand for solutions that conserve
storage resources. Data deduplication is a promising technique that eliminates data redundancy for storage. For mobile cloud
storage services, enabling the deduplication of encrypted data is of vital importance to reduce costs and preserve data confi-
dentiality. However, recently proposed solutions for encrypted deduplication lack the desired level of security and efficiency. In
this paper, we propose a novel scheme for serverless efficient encrypted deduplication (SEED) in mobile cloud computing
environments. Without the aid of additional servers, SEED ensures confidentiality, data integrity, and collusion resistance for
outsourced data. +e absence of dedicated servers increases the effectiveness of SEED for mobile cloud storage services, in which
user mobility is essential. In addition, noninteractive file encryption with the support of lazy encryption greatly reduces latency in
the file-upload process. +e proposed indexing structure (D-tree) supports the deduplication algorithm and thus makes SEED
much more efficient and scalable. Security and performance analyses prove the efficiency and effectiveness of SEED for mobile
cloud storage services.

1. Introduction

Most mobile devices, such as smartphones and Internet of
things products, are constantly connected to the Internet
thanks to advances in mobile wireless network technology.
Mobile cloud computing (MCC) [1, 2], also referred to as
mobile edge computing [3], has emerged to fulfill the need for
ubiquitous, low-latency services and applications for mobile
users. +rough the combination of cloud computing, mobile
computing, and wireless networks, MCC provides a rich array
of computing and storage options for mobile users [4].

With the explosive growth in the volume of data out-
sourced from mobile devices, it is crucial for mobile cloud
service providers (MCSPs) to minimize the costs of storing
outsourced data. Data deduplication, a technique that
eliminates data redundancy, can achieve this goal and reduce

resource use, including disk space and network bandwidth,
by more than 90% [5].

To maintain confidentiality of the outsourced data, it is
essential to devise a technique to conduct deduplication over
encrypted data. As a first attempt for encrypted dedupli-
cation, convergent encryption (CE) [6, 7] was proposed. CE
computes an encryption key from the hash of the data, thus
generating identical ciphertexts from identical plaintexts.
Although the method is quite simple, it is vulnerable to
brute-force attacks [8, 9] because encryption keys are de-
terministically computed from plaintext, which makes them
predictable. For example, given CE ciphertext C (of plaintext
F) and a dictionary of possible plaintexts
D � F1, F2, . . . , Fn􏼈 􏼉, an adversary might attempt to derive
an encryption key for each plaintext in D and then perform
encryption on it until C is found.

Hindawi
Security and Communication Networks
Volume 2020, Article ID 3046595, 15 pages
https://doi.org/10.1155/2020/3046595

mailto:dykoo@hansung.ac.kr
mailto:jbyun@sejong.ac.kr
https://orcid.org/0000-0003-3283-5494
https://orcid.org/0000-0002-7264-2446
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3046595
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2020%2F3046595&domain=pdf&date_stamp=2020-08-28

Server-aided encryption [8, 10–12] addresses this prob-
lem and aims to mitigate brute-force attacks on encrypted
deduplication. +is approach uses a dedicated key server for
the generation of encryption keys. +e key server possesses
its own secret key and performs an oblivious key generation
protocol [13] with users: for each request, it generates an
encryption key, using the secret key and a blinded hash
computed from the data, and then returns it to the user. By
doing so, the randomness of the key server’s secret key
contributes to the encryption keys, which makes brute-force
attacks infeasible while the secret key is kept hidden from
adversaries.

Despite its resistance to brute-force attacks, server-aided
encryption has several limitations when applied to an MCC
environment. First, the achievement of security comes at the
cost of managing key servers, which are subject to single
point-of-failure or server-compromise attacks [8]. Second,
the dedicated key servers that are usually residing within on-
premises networks severely reduce user mobility, which
significantly degrades the effectiveness and performance of
the MCC technology. +is restriction on mobility could be
relieved by deploying multiple key servers over geograph-
ically separated areas. However, this not only incurs high
deployment costs but also exposes the system to a wide
variety of security threats.

For the successful provisioning of ubiquitous, low-la-
tency, and secure storage services in a mobile cloud envi-
ronment, it is necessary to devise serverless encryption that
enables brute-force-resistant encrypted deduplication
without the aid of additional servers.

In this paper, we propose a novel scheme for serverless
and efficient encrypted deduplication (SEED) in MCC en-
vironments. Instead of using key servers, users perform
bilinear pairing-based encryption on files using their own
public and secret keys. +e bilinearity of file encryption
allows an equality test to be conducted for the ciphertexts
generated under different secret keys and thus enables cross-
user deduplication of encrypted data. +e encryption al-
gorithm randomizes all ciphertexts and the corresponding
tags, which are susceptible to exposure to adversaries, using a
random source supplied from the users’ secret keys. +e
provable security ensures that no information about the
plaintext is revealed from either ciphertexts or tags. Fur-
thermore, file encryption allows the tags to be computed
independently of the ciphertexts, which makes it possible for
the ciphertexts and tags to be generated in parallel. +is
property of SEED enables lazy encryption, a novel feature in
which ciphertext generation, a computationally expensive
component of encryption, can be delayed or even omitted in
the case of client-side deduplication.

In addition to bilinear pairing-based file encryption,
SEED is based on an efficient deduplication algorithm. For
this, we propose D-tree, a new indexing data structure that
supports deduplication. D-tree is a random binary tree,
which is a binary search tree that is formed from the random
permutation of nodes. Each node in a D-tree contains a tag
for an outsourced file as deduplication information within
the storage. +e cloud server (i.e., MCSP) can perform a
binary search over the D-tree for identical files within the

storage by running equality tests on each node. Because
nodes are balanced in a random binary tree, D-tree preserves
logarithmic computational complexity in the worst case for
the deduplication algorithm.

SEED is significantly more practical for mobile cloud
storage services than existing solutions because of the fol-
lowing advantages:

(i) It eliminates the need for key servers, which severely
restricts user mobility. +e absence of key servers
also allows noninteractive file encryption: users can
generate encryption keys directly without server
interaction. In combination with lazy encryption,
efficient and low-latency file uploading to a mobile
cloud is realized.

(ii) +e random binary-tree-based deduplication algo-
rithm reduces the run time complexity when finding
duplicates to O(log n), where n is the number of
outsourced files in the storage. +is makes the
scheme much more efficient and scalable, especially
considering very large data items being outsourced.

(iii) +e use of users’ secret keys for file encryption
ensures strong data confidentiality even for pre-
dictable data, while also guaranteeing data integrity
and resistance against collusion attacks.

(iv) Noninteractive file encryption with the support of
lazy encryption greatly reduces latency in the file
uploading process.

1.1. Contribution. We make several contributions in this
paper:

(i) We address the challenge of encrypted deduplica-
tion in an MCC environment and propose a novel
serverless and efficient encrypted deduplication
scheme, called SEED, suitable for this environment

(ii) +e security of SEED is rigorously analyzed in terms
of data confidentiality, data integrity, and collusion
resistance

(iii) +e effectiveness of SEED is validated by an ex-
tensive analysis of its efficiency and performance

1.2. Organization. +e remainder of this paper is organized
as follows. In Sections 3 and 4, we present the system model
and background knowledge, respectively. In Section 5, we
describe the proposed scheme in detail. We analyze the
security of the scheme in Section 6 and present a com-
parative and performance analysis in Section 7. Finally, we
conclude the paper in Section 8.

2. Related Work

2.1. Convergent Encryption. CE is a cryptographic algorithm
that generates identical ciphertexts from identical plaintexts
[6, 7]. In CE, a convergent key k is derived by computing
H(M), where Mis data (or a file) and H is a cryptographic
hash function. +e ciphertext C⟵Enck(M) is then

2 Security and Communication Networks

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

computed with conventional symmetric encryption algo-
rithm Enc and convergent key k. A given plaintext M will
always produce an identical ciphertext C. Bellare et al.
[14–16] presented message-locked encryption (MLE), which
is a generalized framework for CE, and attempted to for-
malize security. MLE essentially follows the CE approach in
the sense that it derives encryption keys deterministically
from M.

Despite the novel nature of encrypted deduplication, CE
and MLE are insufficiently secure for two reasons [17]. First,
they cannot preserve semantic security due to their deter-
ministic nature. Second, the distribution of message space is
the only entropic source of randomness in the convergent
key. +us, the key space is reduced to the message space,
which is very small compared to the former. +is ultimately
renders CE and MLE susceptible to brute-force attacks [8].

Many secure deduplication solutions have been built on
CE and MLE. While addressing data confidentiality as a
primary goal, these previous solutions also attempted to meet
other security goals, such as ownership management [18],
authentication [19, 20], authorization [21], reliability [22–24],
and access control [9, 25, 26]. Recently proposed lattice-based
cryptographic schemes for cloud storage [27, 28] are possible
candidates for secure deduplication solutions.

2.2. Server-Aided Encryption. To overcome the weaknesses
of CE, it is necessary to strengthen the generation of con-
vergent keys so that the key space has high min-entropy.
Several solutions have been proposed to achieve this goal.
+e approach used in server-aided encryption is to generate
convergent keys through interacting with key servers. By
doing so, the probability distribution of the convergent keys
becomes independent of the distribution of message space,
and thus brute-force attacks can be mitigated.

DupLESS [8] was the first attempt at server-aided en-
cryption. In this approach, users run an interactive key
generation protocol with a key server to compute convergent
keys. +e protocol operates on RSA-based Oblivious
Pseudorandom Function (OPRF) [13], and thus, it guar-
antees that the convergent keys can be computed without
revealing any information about the message or the secret of
the key server. In this way, adversaries, such as the MCSP or
users, cannot recover plaintext (i.e., messages) with offline
brute-force attacks on ciphertext, even if the plaintext is
easily predicable.

+e security of the DupLESS scheme requires the aid of a
key server, which is inherently vulnerable to the single-
point-of-failure problem.+at is, data confidentiality cannot
be retained if the server is compromised.

Subsequent attempts at server-aided encryption have
been made to overcome the drawbacks of DupLESS. Miao
et al. [11] proposed multiserver-aided encryption, which
uses several key servers rather than just one. In this ap-
proach, key servers cooperate with each other to process
convergent key generation requests. More specifically,
convergent keys are generated by executing a threshold
blind-signature-based protocol [29] with the aid of the group
of key servers. Each key server uses a share of a secret key to

generate a partial blind signature for the message a user
requested. +e partial blind signatures are then combined,
and, in turn, a convergent key is computed from the blind
signature. Unlike DupLESS, multiserver-aided encryption
can resist server-compromise attacks unless the attackers
gain access to more than t (i.e., the threshold) key servers.

Another solution, proposed by Duan [10], addressed the
single point-of-failure inherent in server-aided encryption.
Similar to multiserver-aided encryption, in this approach,
multiple entities are involved in key generation using an RSA
threshold signature. However, it differs in that the tasks of
the key servers are distributed to a number of signers (i.e., a
qualified subset of users). A key server participates in the
system only during the setup phase: it generates a secret key
and disperses shares of the secret key across the signers.
Convergent keys can be acquired if more than t signers
participate in the interactive key generation protocol. Zhang
et al. [30] proposed a server-aided encrypted deduplication
scheme for electronic health systems.

+e aforementioned schemes achieved the goal of
mitigating server-compromise attacks on a DupLESS sys-
tem. However, all server-aided encryption schemes funda-
mentally require key servers. +e necessity of dedicated
servers severely restricts user mobility, limiting its appli-
cation in MCC environments.

2.3. Serverless Encryption. Another approach has been
proposed to achieve high levels of data confidentiality in
encrypted deduplication without the need for additional
servers.

Liu et al. [31] proposed serverless encryption that uses
Password Authenticated Key Exchange (PAKE) [32]. In-
stead of interacting with key servers, it allows convergent
keys to be derived in cooperation with online checkers (i.e., a
subset of uploaders) through a PAKE-based protocol.
However, despite the advantages of removing the servers,
this scheme suffers from lower performance, including high
latency, because many PAKE steps are required when
conducting file encryption.

Several schemes for serverless encryption use pairing-
based cryptography. Abadi et al. [15] proposed a scheme that
deviates from MLE by fully randomizing all components of
the ciphertexts. A study precedent to SEED [33] is also built
on bilinear pairing encryption algorithms to make the ci-
phertexts indistinguishable from a random distribution.

In these pairing-based schemes, a test algorithm that
checks for equality among the ciphertexts is necessary be-
cause the ciphertexts are fully randomized. However,
deduplication using an equality test algorithm inherently has
a linear time complexity with the number of files in the
storage. Without a tree-based indexing structure, it seriously
degrades the performance of the cloud storage service.

3. System Model and Design Goals

3.1. System Model. In this paper, we consider a general
architecture of mobile cloud storage services where multiple
mobile users outsource their data to remote storage.

Security and Communication Networks 3

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

User: this is an entity who owns data (or files (We will
use the term “file” and “data” interchangeably in this
paper.)) and wishes to outsource the data to the cloud
storage. A user who uploaded data is referred to as an
uploader: he/she is the initial uploader of the file Fif it is
the first time that Fhas been uploaded to the storage, or
a subsequent uploader otherwise.
MCSP: this is an entity equipped with abundant storage
and computing resources and provides cloud storage
services to mobile users. It has an interest in saving
storage costs, so it performs deduplication of the
outsourced data.

3.2. ,reat Model and Security Goals. We consider honest-
but-curious adversaries in our threat model. +at is, for
assigned tasks, MCSP and users will faithfully perform their
work within the system. However, they have an interest in
obtaining as much information as possible about the out-
sourced data, beyond their privileges. +us, our primary
security goal is to prevent them from accessing the plaintext
version of encrypted data.

In this study, we consider two types of adversaries: (i) an
outside adversary, who makes an effort to learn useful in-
formation about the outsourced data by playing the role of a
user and (ii) an inside adversary, who may be an honest-but-
curious MCSP or intruders that have compromised the
storage server. Specifically, we aim to achieve the following
security goals in the proposed scheme:

(i) Data confidentiality: no adversary can acquire in-
formation from the outsourced data using brute-
force attacks unless they obtain the corresponding
key

(ii) Data integrity: any valid user should be able to check
whether the data downloaded from cloud storage
has been kept intact

(iii) Collusion resistance: any adversaries without valid
ownership of the data should be blocked from
obtaining useful information from the data even if
they collude with each other

4. Preliminaries

4.1. Server-Side and Client-Side Deduplication. Data dedu-
plication can be classified into two kinds of approaches
according to the location where the deduplication occurs. In
server-side deduplication, the MCSP performs deduplica-
tion once files have been uploaded to the storage. On the
other hand, client-side deduplication is executed on the
user’s side. +at is, before outsourcing a file, a user sends a
corresponding tag to the MCSP to check whether the file
already exists and, if so, to omit the further upload.

4.2. Bilinear Pairings and Hard Problem

Bilinear Map. Let G and GT be two multiplicative cyclic
groups of prime order p. Let g be a generator ofG. A bilinear

map is an injective function e: G × G⟶ GT with the
following properties:

(i) Bilinearity: for all u, v ∈ G and all a, b ∈ Z∗p , we have
e(ua, vb) � e(u, v)ab

(ii) Nondegeneracy: e(g, g)≠ 1
(iii) Computability: there is an efficient algorithm to

compute e(u, v) for ∀u, v ∈ G

Bilinear Diffie–Hellman (BDH) Problem. Let a, b, c ∈ Z∗p be
chosen at random and let g be a generator of G. +e BDH
problem is to compute e(g, g)abc ∈ GT given
g, ga, gb, gc ∈ G as input. +e BDH assumption [34] states
that no probabilistic polynomial time algorithm can solve
the BDH problem with nonnegligible advantage.

4.3. Random Binary Tree. A binary tree is referred to as a
random binary tree if it is constructed at random from a
probability distribution (e.g., a uniform distribution) of
binary trees. A random binary tree of size n ∈ N is formed in
the following way. First, a random permutation 􏽑 of n

elements is chosen, and the elements in 􏽑 are added one by
one into a binary tree. +e addition of elements is similar to
the way that elements are inserted into a binary search tree.
A root node for a random binary tree is obtained from the
first element in 􏽑. Each subsequent element is then eval-
uated on the tree from the root until it reaches a leaf. +e
evaluation result b ∈ Left,Right􏼈 􏼉 directs the child node for
the next evaluation.

5. Serverless and Efficient
Encrypted Deduplication

SEED consists of two building blocks: file encryption and
deduplication. We first present these building blocks in
Section 5.1 and then describe a data outsourcing protocol
constructed upon them in Section 5.2.

5.1. Building Blocks

5.1.1. File Encryption. We introduce some notations prior to
giving details on our file encryption algorithm. LetG andGT

be two multiplicative groups with the prime order p, and let
H1: 0, 1{ }∗ ⟶ G be a hash function family. Let SEk be a
symmetric encryption algorithm with an encryption key
k ∈ K, where K is a key space of the underlying block cipher
(e.g., AES), and let K: GT⟶ K be a key derivation
function.

〈PK, SK〉⟵KeyGen (J). Given global information
J � 〈p, g〉, this algorithm runs as follows:

(1) Pick a random value x⟵Z∗p and compute gx

(2) Set PK � gx as its public key and SK � x as its secret
key, then return 〈PK, SK〉

〈C, MK, τ〉⟵Encrypt(SK, M). Given a secret key
SK � x and a message M, this algorithm runs as follows:

4 Security and Communication Networks

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

(1) Compute a decryption key dk � μx and a tag τ � vx,
where μ � H1(M) and v � H1(μ)

(2) Pick a random value s⟵GT, and compute
C1 � SEk(M), where k � K(s)

(3) Pick a reencryption key rk⟵Z∗p , and compute
C2 � e(μrk, v) · s and T � (vx−1

)rk

(4) Return a ciphertext C � 〈C1, C2, T〉, a message-de-
rived key MK � 〈dk .rk〉, and a tag τ

T′⟵ReEnc(MK, T). Given a reencryption key rk in a
message-derived key MK and a part of a ciphertext T, this
algorithm computes T′ � Trk and returns T′.

M,⊥{ }⟵Decrypt(SK, MK, C). Given a secret key SK,
a message-derived key MK � 〈dk , rk〉, and a ciphertext
C � 〈C1, C2, T〉, this algorithm runs as follows:

(1) If T is not reencrypted (Without a loss of security,
we assume that the information about whether E
is reencrypted or not is implicitly augmented with
the ciphertext C), then recover s by computing.

C2

e(dk, T)
�

e μrk, v(􏼁 · s

e μx, vx−1rk(􏼁

�
e(μ, v)rk · s

e(μ, v)rk

� s.

(1)

(2) If T is reencrypted with another reencryption key
rk′, recover s by computing.

C2

e dk , Trk−1
(􏼁

�
e μrk′ , v􏼐 􏼑 · s

e μx, vx−1rk·rk′􏼐 􏼑
rk−1

�
e(μ, v)rk′ · s

e(μ, v)rk′

� s.

(2)

(3) Compute a symmetric decryption key κ � K(s) and
recover M by decrypting C1 � SEκ(M) with κ.

(4) (Integrity check) Compute dk′ � μ’x, where
μ′ � H1(M), and check whether dk � dk′. If both
values are the same, return M as output. Otherwise,
return ⊥.

True, False{ }⟵Test(δi, δj). Parse δi and δj as 〈PKi, τi〉

and 〈PKj, τj〉, respectively. +en, given public keys PKi �

gxi and PKj � gxj and tags τi �]xi and τj � (]′)
xj , this

algorithm runs as follows:

(1) Check whether the following equation holds.

e PKi, τj􏼐 􏼑 �
?

e PKj, τi􏼐 􏼑,

⟺ e g
xi ,]′(􏼁

xj􏼐 􏼑 �
?

e g
xj ,]xi(􏼁.

(3)

(2) If the equation holds, return True. Otherwise, return
False.

5.1.2. Deduplication. +e performance of deduplication
depends on the computational complexity of the algorithm
used to find file duplicates in the storage. To achieve efficient
deduplication that is as fast as a binary search algorithmwith
logarithmic complexity, we define a D-tree, a binary-tree-
based data structure for deduplication. A D-tree is a random
binary tree of size n, where n is the number of all the distinct
outsourced files in the storage. Each nodeNi (0≤ i≤ n − 1) in
a D-tree contains deduplication information δi for each
outsourced file.

A D-tree is an index structure for the storage of the
MCSP. Once file F has been uploaded to the storage, the
MCSP checks whether it has a duplicate. For this, it performs
a binary search over a D-tree using the Test algorithm given
in the previous section. +e search path for F is determined
at random based on a globally publicized random seed. If a
node that contains information δ of F is found, then the
MCSP performs deduplication. Otherwise, it creates a new
node for F and inserts it at the leaf node on the search path.

We will introduce here some notation for our dedu-
plication scheme. Let Δ be a D-tree of size n, and let
N0, . . . , Nn−1 be its nodes. δi � 〈PKj, τj〉 denotes dedu-
plication information assigned to node Ni, where j indicates
initial uploader uj who outsourced τj and the corresponding
file. Let π be a maximum height of Δ, and let ψ ∈ 0, 1{ }λ be a
random seed chosen from a uniform distribution. Let D �

〈ψ, π〉 be global publicly known information.
H2: 0, 1{ }∗ ⟶ 0, 1{ }λ denotes a hash function family, and
P: 0, 1{ }∗ ⟶ 0, 1{ } denotes a digest function. Let
p � (b1, . . . , bπ) be a binary vector of length π, and let p[i] �

bi ∈ 0, 1{ } be the ith element of p. Vector p denotes a search
path from a root node on Δ: the bit value of bi indicates left
or right child of the node at the (i − 1)th level of Δ.

Figure 1 shows an instance of a D-tree of size n � 7 and
π � 3 and its storage structure. Nodes in the tree are tra-
versed from a root node N0 with respect to a search path p,
in which the bit information of each element indicates the
next child node: bit 0 directs the traversal to the left child and
bit 1 to the right child. For example, nodes traversed along a
path p � 0, 1, 0{ } includeN0, N1, N4, andN7, with which the
corresponding deduplication information δ0, δ1, δ4, and δ7
are sequentially evaluated using the Test algorithm.

Details of the D-tree based deduplication algorithms are
given below.

InsertNode(Ni, p). Given a node Ni and a path p, this
algorithm inserts Ni at the leaf node of Δ on p.

DeleteNode(Ni). Given a node Ni, this algorithm deletes
the node fromΔ. IfNi is a non–leaf node, then the deletion is
performed by replacing it with one of its child nodes.

Security and Communication Networks 5

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

⊥, Nc􏼈 􏼉⟵GetChildNode(Ni, c). Given node Ni and
c ∈ Left,Right􏼈 􏼉, this algorithm returns the left or right child
node Nc of Ni according to c. If the node does not have Nc,
then it returns ⊥.

p⟵DPath(M,D). Given message M and global in-
formation D � 〈ψ, π〉, this algorithm runs as described in
Algorithm 1. It outputs a path vector p � (b1, . . . , bπ), where
each bi (0≤ i≤ π) is 0 or 1.

〈DuplicatedFound, k〉⟵ FindDuplicate (p, δi).
Given path vector p of message M and its corresponding
deduplication information δi � 〈PKi, τi〉, this algorithm
runs as follows (the detailed procedure is presented in
Algorithm 2).

(1) Get the root node N0 of a D-tree Δ.
(2) If Nk � ⊥, return 〈False, k〉 (initially k � 0). Oth-

erwise, run a test algorithm b⟵Test (δi, δk) for the
deduplication information δk of node Nk.

(3) If b is True, then return 〈True, k〉 and halt.
(4) If b is False, then get child node Nc of Nk by running

GetChildNode. Choosing a child node depends on
p[k]: a left child node is selected for p[k] � 0, and
vice versa. Set k⟵ k + 1 and Nk⟵Nc, and then
repeat step 2.

5.2. Data Outsourcing Protocol

5.2.1. Data Outsourcing in Server-Side Deduplication. We
first present the data outsourcing protocol in server-side
deduplication. It consists of four operations: system setup,
file upload, file download, and file deletion. For clarity, we
denote the public key and secret key that belong to user ui as
PKi and SKi, respectively. We also denote a message-derived
key calculated from SKi as MKi. +e details of the proposed
protocol are given as follows.

System Setup. Given security parameter λ, the system gen-
erates public information Pub � 〈J,D〉.J. I consists of
the generator g of G and the order p, and D consists of the
randomly generated integer ψ ∈ 0, 1{ }λ and the maximum
height π of a D-tree Δ. Each user ui generates a pair of public

key PKi and secret key SKi by running
〈PKi, SKi〉⟵KeyGen(J). +en, PKi is made public,
while SKi is kept secret.

File Upload. Suppose that a user ui wishes to upload a file F

to the MCSP. ui performs a file uploading operation as
follows:

(1) ui encrypts F by running Encrypt(SKi, F) with his/
her secret key SKi to get its ciphertext
C � 〈C1, C2, Ti〉, a message-derived key MKi, and a
tag τ

(2) ui computes a path vector pby running DP ath(F,ψ)

(3) +en, ui sends 〈i, τ, p, C〉 to the MCSP, where i is the
identifier of ui, and keeps MKi secret for later use

Once the encrypted fileC, as well as its corresponding tag
τ and p are uploaded, the MCSP tries to eliminate the
duplicate of F by running deduplication as follows:

(1) Given 〈i, τ, p〉, the MCSP runs the
FindDuplicate(p, δi) algorithm, where
δi � 〈PKi, τ〉.

(2) If the result is 〈False, k〉, then C has been previously
uploaded to the storage. k is the position of a new
node Nk where deduplication information of file F

will be assigned. Nk is on p (if k≥ 1) or a root node if
the D-tree Δ is empty (i.e., k � 0). +e MCSP inserts

N0 (root)

b1 = 0

b2 = 1

b3 = 0

N1 N2

N5 N6N4

N7

N3

δ0

δ2

δ6δ5δ4δ3

δ1

δ7

(a)

k Node Storage Initial uploader

0

1

2

3

N0 δ0 ≤ PK1, τ1 >, loc0 u1

u2

u3

u4

δ1 ≤ PK2, τ2 >, loc1

δ4 ≤ PK3, τ3 >, loc4

δ7 ≤ PK4, τ4 >, loc7

N1

N4

N7

lock: location to the cipher text C corresponding to δk

(b)

Figure 1: D-tree and its storage. (a) D-tree. (b) Storage of nodes on path P� (b1, b2, b3)� (0, 1, 0).

Input: M, ψ
Output: p� (b1, · · ·, bπ)
(1) h0⟵H2(ψ||M)
(2) b0⟵ 0
(3) for each i ∈ [1, π] do
(4) hi⟵H2(hi − 1||bi − 1)
(5) bi⟵P (hi)
(6) end for
(7) return (b1, · · ·, bπ)

ALGORITHM 1: D-path.

6 Security and Communication Networks

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

δi � 〈PKi, τ〉in the position k in Δ and stores C with
a link to δi. +e user ui is then assigned as the initial
uploader of F.

(3) If the result is 〈True, k〉, then ui is a subsequent
uploader of F. k indicates a position of node Nk

that has stored the deduplication information of F.
Hence, the MCSP does not have to store C1, C2 in C

but Ti. Prior to storing Ti, the MCSP finds the
initial uploader uj assigned to Nk and asks uj to
reencrypt Ti. Upon receipt of the request, uj

computes Ti
′ � ReEnc(MKj, Ti) with his/her own

key MKj and returns Ti
′. +e MCSP appends Ti

′ to
the end of the stored tuple C � 〈C1, C2, Tj, . . . , Tl

′〉,
where l is the identifier of another subsequent
uploader.

File Download. User ui interacts with theMCSP to download
an outsourced file F. +e details are as follows:

(1) ui sends a request to download the outsourced file F

to the MCSP
(2) Upon receiving the request, the MCSP sends the

corresponding ciphertext C � 〈C1, C2, Ti〉 to ui

(3) Given message-derived key MKi and secret key SKi,
ui recovers F by running Decrypt(SKi, MKi, C)

(4) If the result is ⊥, then ui drops the ciphertext

File Deletion. Upon receiving a deletion request for F from
user ui, the MCSP runs the following steps:

(1) If ui is the only user who owns the file F, the MCSP
removes C in the storage. It also deletes the corre-
sponding node in Δ by running the DeleteNode
algorithm.

(2) Otherwise, the MCSP only removes Ti in C.

5.2.2. Data Outsourcing in Client-Side Deduplication.
+e previously described protocol of SEED is based on server-
side deduplication.We can easilymodify the protocol to operate
in a client-side deduplication mode. Specifically, it can be
modified such that instead of fully uploading 〈i, τ, C〉, user ui

first sends 〈i, τ, Ti〉 to theMCSP.+e encrypted filesC1 andC2
will be uploaded later only if FindDuplicate (PKi, τ) returnsNil.

Lazy Encryption. SEED takes advantage of lazy encryption to
further enhance the computational efficiency of the file
uploading process in client-side deduplication. Lazy encryption
is a novel technique that delays file encryption until the MCSP
requests to upload subsequent ciphertexts as a result of the
FindDuplicate function. It allows a user to omit the job of file
encryption when a duplicate is found in the remote storage. In
the file uploading process, the task of encryption (i.e., executing
SE in the Encrypt algorithm) comprises the majority of com-
putation. Hence, lazy encryption significantly reduces the
computational burden of the client. +is is a crucial perfor-
mance factor in mobile devices because it is directly related to a
reduction of power consumption.

+e lazy encryption technique is enabled in SEED due to
the concurrency property of the Encrypt algorithm (in
Section 5.1.1). More specifically, in the encryption algorithm,
a tag τ can be computed concurrently and independently of
the computation of a ciphertext. Figure 2(a) intuitively
depicts the concurrent processing of the file encryption. +e
concurrency property is only found in the proposed scheme.
All the existing schemes, including MLE [14] and DupLESS
[8], have sequential processing; the encryption and tag
generation process are performed inherently in a sequential
way (see Figure 2(b)).

Input: p, δi
Output: DuplicateFound, k
(1) Get the root node N0 of a D-tree ∆
(2) DuplicateFound⟵ False
(3) k⟵ 0
(4) while Nk !�⊥ do
(5) Get deduplication information δk assigned to Nk.
(6) if Test (δi, δk)�True then
(7) DuplicateFound⟵True
(8) break
(9) else
(10) if p[k]� � 0 then
(11) Nc⟵GetChildNode(Nk, Left)
(12) else
(13) Nc⟵GetChildNode(Nk, Right)
(14) end if
(15) k⟵ k+ 1
(16) Nk⟵Nc
(17) end if
(18) end while
(19) return (DuplicateFound, k)

ALGORITHM 2: FindDuplicate.

Security and Communication Networks 7

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Side-Channel Prevention. Client-side deduplication is in-
herently vulnerable to a side-channel attack [35], by which
adversaries can infer information about the existence of a
specific file in the cloud storage. To defend against such an
attack, we use a randomized-threshold approach [35]. In this
technique, a randomly chosen threshold tF (2≤ tF ≤d, where
d is a security parameter) is assigned to each F in the storage,
along with a counter cF that counts the number of previous
uploads of F. Unless cF reaches tF, a user will be required to
fully upload F as server-side deduplication despite the ex-
istence of the file in the storage.

6. Security Analysis

In this section, we analyze the security of SEED regarding
data confidentiality, data integrity, and collusion resistance.

6.1. Data Confidentiality. As mentioned in the previous
section, our primary security goal with SEED is to guarantee the
confidentiality of users’ outsourced data. In our threat model,
we consider an MCSP that is no longer fully trusted although it
is faithful. +erefore, any leakage of users’ data should be
prevented from adversaries, including the MCSP and unau-
thorized users. Because our threat model considers various
types of attacks from both internal and external adversaries, we
analyzed data confidentiality according to these attacks. In the
analysis, we assume that all public information, including the
public keys of users, are known a priori to the adversaries.

6.1.1. Security against Offline Brute-Force Attacks

Definition 1. An adversary A runs the following security
game: a challenger picks a random bit b⟵ 0, 1{ }.A makes
multiple encryption queries with the restriction that only
distinct messages are permitted. On each query M, if b � 1,
the challenger computes the ciphertext C for M and returns
it to A. If b � 0, the challenger simply returns a random
value r⟵ 0, 1{ }|C| toA. At the end of the game,A outputs
b′ ∈ 0, 1{ }. An encryption scheme is D-IND$-CPA secure if
the advantage A dvD−IND$−CPA

A � Pr[b � b′] − 1/2 is
negligible.

Theorem 1. SEED is D-IND$-CPA secure in the random oracle
model assuming that underlying symmetric encryption algorithm
SEis semantically secure and the BDH problem is intractable.

Proof. In the security game, the adversary A will be given a
correct ciphertext for each query M in the case of b � 1. We
will show that even in such a case, A cannot get any in-
formation about M from the ciphertext and cannot dis-
tinguish from random with nonnegligible advantage.
Suppose that the challenger responds to A’s queries as
follows: for H1-random oracle query of M, the challenger
picks a random μ ∈ G and returns it toA. For Encrypt oracle
query, the challenger returns the corresponding ciphertext
C � 〈C1, C2, T〉 � 〈SEk(M), e(μrk, v) · s, vx−1rk〉 and the tag
τ �]x to A. □

Because the underlying symmetric encryption algorithm SE

is semantically secure, the ciphertext C1 is indistinguishable
from randomdata.+at is, because s ∈ GT is chosen at random,
the symmetric encryption key κ, which is derived from s, as well
as C1 � SEκ(M), are made pseudorandom. +erefore, A

cannot get any useful information from C1 except a negligible
advantage, unless s is known to A.

Recovering s from C2 and T is as hard as solving the
BDH problem. Suppose thatA can compute s from C2 and
T in polynomial time with nonnegligible probability ε. We
can construct an algorithm B that solves the BDH
problem using A: given a BDH instance 〈ga, gb, gc〉, B
sets up the instance of A such that 〈PK, C2, T〉 �

〈ga, R, gb〉, where R is chosen at random from GT, and
runs A. For an H1-query of M, B responds to A with
μ � gc. From the view of A, the instance is a valid ci-
phertext of M, such that

PK � g
x

� g
a
,

T �]x−1
􏼒 􏼓

rk

� g
b
,

C2 � e μrk
,]􏼐 􏼑 · s � e(μ, T)

x
· s � e(g, g)

abc
· s � R,

(4)

where s and rk are random values from GT and Z∗p , re-
spectively. If A terminates and returns s′ as its output, then
B outputs O � R/s′ as the solution of the BDH problem.
With nonnegligible probability ε, the output O is the correct

F μ υ
H1 H1

(P1) Tag generation

F
SE

C

τ
exp

(P2) File encryption

Hashing

(a)

SEF C H(C) τHashing

(P1) File encryption and tag generation

(b)

Figure 2: Various types of file encryption processing (H_1: hash, SE: symmetric encryption, and exp: exponentiation). (a) Concurrent
processing. (b) Sequential processing.

8 Security and Communication Networks

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

answer of the BDH problem, which contradicts the BDH
assumption. +erefore, computing s from C2 and T is
infeasible.

Moreover, because the ciphertexts C2 and T are blended
with two random values s and rk, these ciphertexts are
indistinguishable from random data, except with a negligible
probability. With regard to a tag τ �]x(� H1(H1(M))x),A
also cannot distinguish it from random, because for any
distinct messages the random oracle H1 makes]
randomized.

+erefore, SEED makes ciphertexts and tags indistin-
guishable from random data, which implies that A has a
negligible advantage in winning the security game.

6.1.2. Security against Online Brute-Force Attacks. Now, we
analyze the security of SEED against online brute-force
attacks. We consider outside adversaries (e.g., unauthorized
users) with a dictionary that contains candidates for a file of
interest F. +e attack proceeds as follows: the adversary
repeatedly performs a file upload operation for each can-
didate F′ until he/she observes a deduplication event, which
indicates the candidate file matches F in the storage.

If the proposed scheme is run under the mode of server-
side deduplication, such an attack cannot succeed, this is
because all candidates in the dictionary will eventually be
sent to the MCSP during the operation, and thus the ad-
versary can infer no information about whether dedupli-
cation takes place. In the case of client-side deduplication,
the uploading of a certain file may be omitted if it already
exists in the storage, which may give information to the
adversary. However, the randomized-threshold strategy
makes the adversary fully upload the file even if it exists in
the storage and thus obfuscates the information about the
file. As analyzed in [35], the adversary cannot obtain the
information with probability 1 − 1/(d − 1), where d is a
security parameter.

6.2. Data Integrity. +e integrity of outsourced data can be
compromised by data corruption due to defects in the
storage system or adversaries’ intentional attacks. SEED
provides users with the ability to detect alteration in the
outsourced data easily. Say that a user has downloaded an
outsourced ciphertext C � 〈C1, C2, T〉from the MCSP.
While running the Decrypt algorithm, the user can restore
the plain data F′ from the ciphertext and then compute
dk′ � μ′

SK � H1(F′)SK. If dk′ and a decryption key dk(�

μSK) are different, Decrypt outputs ⊥, and the user knows
that the outsourced file has been modified. Notice that the
probability of Decrypt yielding an output other than ⊥ is
negligible for F≠F′, thanks to the collision-resistant
property of the cryptographic hash function H1.+us, SEED
offers an integrity model that allows users to validate the
outsourced data effectively.

6.3. Collusion Resistance. SEED also provides security
against any collusion attacks. Let us consider the colluding of
unauthorized users who do not have valid ownership of file

of interest F. Although they have access to ciphertext C of
the file, they need the correct decryption key dk(� μx) to
decrypt the ciphertext. Suppose that the colluding users have
obtained sufficiently many decryption keys for other files.
Even with these decryption keys, it is impossible to compute
the correct decryption key dk for F unless they know both μ
and secret key x.

We also consider an attack in which unauthorized users
collude with an MCSP. In addition to decryption keys for
other files, they would have access to ciphertexts other than
C on the storage. However, because other ciphertexts
contain no information about F, these adversaries learn
nothing about F. +is is the same as in the former case that
requires the adversary to compute the correct decryption key
dk of F to succeed in the attack. +erefore, the proposed
scheme resists attacks by colluding adversaries.

7. Evaluation

7.1. Comparative Analysis. We comparatively analyzed se-
cure deduplication schemes regarding attack resistance,
mobility support, file encryption, and deduplication cost.
+e result is summarized in Table 1.

CE (orMLE) has the cheapest computational cost among
deduplication schemes, because any math operations, such
as exponentiation or group multiplication, are not required
to perform file encryption. However, because of its weak
security against brute-force attacks, this scheme cannot
guarantee strong confidentiality to the outsourced data. +is
implies that CE is also vulnerable to server-compromise
attacks, because attackers who compromised cloud servers
can easily revert CE ciphertexts to plaintexts by brute-force
recovery.

Server-aided encryption schemes achieve resistance
against brute-force attacks using an OPRF protocol (and its
variants) with key servers. However, they also have vul-
nerability to server-compromise attacks. +is is because if
one of the key servers is compromised and a secret key is
leaked from the server, then the security of the whole system
is downgraded to the level of CE. +is implies that it fails to
guarantee strong confidentiality of outsourced data. Several
works by Miao et al. [11] and Duan [10] tried to alleviate the
risk of such attacks. However, these approaches still fail if
more than k (i.e., threshold) servers are compromised.

Besides, in server-aided encryption, the cost of key
computation is larger than in other solutions, and clients are
requested to interact with key servers for the generation of
convergent keys.+is inevitably adds a nonnegligible latency
to file outsourcing operations. Such intrinsic latency and the
need for key servers, which usually reside in central data
centers, make server-aided encryption solutions less at-
tractive in MCC environments, where the support of low-
latency service and mobility is critically important.

Liu et al.’s scheme [31] eliminates the need for key
servers. Instead of OPRF, this scheme uses a PAKE protocol
to achieve security against brute-force attacks. +e lack of
additional servers inherently leads to improved security that
prevents server-compromise attacks. In this scheme, how-
ever, executing many PAKE protocols with online checkers

Security and Communication Networks 9

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

(i.e., users) is mandatory for each file encryption. Like
server-aided encryption, this will incur high latency in
performing file encryption, which degrades the effectiveness
of the scheme and makes it unsuitable for MCC
environments.

Abadi et al.’s scheme [15] requires neither additional
servers nor interactive protocols with any entities in file
encryption. However, full randomization in file encryption
incurs an extremely high computational cost for ciphertext
computation. In addition, randomized ciphertexts con-
sequently lose ordering information that is necessary to
allow deduplication using a tree-based index structure.
Jiang et al. [36] addressed the problem of Abadi et al.’s
scheme and proposed a method that achieves logarithmic
complexity in searching duplicate files for the fully ran-
domized deduplication. +eir method uses a tree-based
data structure called a decision tree, which is similar to a
D-tree. Despite sharing the underlying tree-based ap-
proach, there are significant differences; in Jiang et al.’s
scheme, a user is required to interactively query the cloud
server for each node on a path to find duplicates, while this
can be achieved in a noninteractive manner in the pro-
posed scheme.

As analyzed in Section 6.1, SEED guarantees strong
confidentiality against brute-force attacks without using any
additional key servers. Even if the MCSP is compromised,
plain data cannot be recovered because the success proba-
bility of a brute-force attack is negligible. +erefore, SEED
offers further security against server-compromise attacks.
Although more math operations for ciphertext computation
are needed than in server-aided encryption schemes, any
interactions with servers are unnecessary while conducting
file encryption. In addition, SEED achieves low latency in file
encryption because it supports the novel property of lazy
encryption, which is infeasible for other client-side dedu-
plication schemes that require full ciphertext computation
for tag generation. Using a random binary tree reduces the

complexity of the deduplication algorithm to O(log n),
which makes SEED much more efficient and scalable in
MCC environments.

7.2. Experiments. To evaluate the computational efficiency,
we implemented SEED and other deduplication schemes
using Charm [37], a Python-based framework for proto-
typing cryptosystems. Charm provides useful math opera-
tions, such as group multiplication, exponentiation, and
bilinear pairing, through Python wrap-up modules of the
native C libraries GNU Multiple Precision Arithmetic Li-
brary (GMP) and Paring-Based Crypto Library (PBC).
+erefore, the performance overhead caused by the use of
Python is limited to less than 1% [37]. We selected the SS501
curve in our experiment, which is a supersingular elliptic
curve with symmetric Type 1 pairing. We chose SHA-256 as
the cryptographic hash function and AES-CBC with 128-bit
keys as the symmetric block cipher algorithm.

Our implementation consists of two modules: a client-
side program simulating a file-uploading user and a server-
side program simulating MCSP, which oversees dedupli-
cation. In all our experiments, the client-side program was
executed on a PC with an Intel Core i7-4770 3.4 GHz CPU
and 4GB of RAM, and the server-side program was executed
on a server with an Intel Xeon E5-2676 2.4 GHz CPU and
8GB of RAM. Ubuntu 14.04 LTS (64 bits) was installed and
run on both the PC and the server. For server-aided en-
cryption schemes, we used a LAN with a 100Mbps Ethernet
link to execute interactive protocols with a remote key
server.

7.3. File Encryption. In secure deduplication schemes, file
encryption makes up the majority of a user’s computational
burden for the file uploading phase. +erefore, we measured
the execution time of file encryption in SEED and other
schemes. For server-aided encryption, we chose DupLESS as

Table 1: Comparison of secure deduplication schemes.

CE
(MLE)

Server-aided encryption Serverless encryption
DupLESS Miao et al. Duan et al. Liu et al. Abadi et al. SEED

Attack resistance
Brute-force attack × ○ ○ ○ ○ ○ ○
Server-comp.

attack × × Δ Δ ○ ○ ○

Key server requirement × ○ ○ ○ × × ×

File encryption
cost

Key computation H H+ 2M+ 2E H+ 2κ+ 2E H+ (2 + κ)
M+ 2E H+ 2HE H H+E

Key computation
(↔) — OPRF κOPRF κOPRF cPAKE — —

Ciphertext
computation SE SE H+ SE H+ SE SE S(H+ SE+M+E+P) SE + 3E+ P

Tag computation H H H H H 2E E
Lazy encryption NO NO NO NO NO NO Yes

Deduplication
cost Time complexity O(log n) O(log n) O(log n) O(log n) O(log n) O(n) O(log n)

H: file hash computation, SE: symmetric encryption,M: group multiplication, E: group exponentiation, P: pairing, HE: homomorphic encryption, k: number
of key servers, c: number of online checkers,↔: interactive protocol between user and other entities, s: number of shares, and n: number of files in cloud
storage.

10 Security and Communication Networks

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

a comparative scheme because its computational cost is the
cheapest of its kind [17].

We conducted the experiment for both deduplication
architectures (i.e., client-side and server-side deduplication)
with sample files whose size varied from 1MB to 1GB.
Regarding client-side deduplication, we assumed that
deduplication always happens for all the sample files. For
each experiment, the measurement was repeated 1,000
times. +e results of the experiments are shown in Figure 3.
+e term “Execution time” on the y-axis refers to the elapsed
time to compute a ciphertext C from a corresponding file F.
For client-side deduplication, it actually means the required
time to generate a tag τ, because of the above assumption.

As shown in Figure 3, SEED shows better computational
performance than DupLESS [8], Liu et al.’s scheme [31], and
Abadi et al.’s scheme [15], which essentially require large
computational tasks or high-latency interactions with re-
mote entities during file encryption. Among server-side
deduplication schemes, CE shows the least execution time
because of its simplicity. However, in the case of being
operated as client-side deduplication (Figure 3(b)), SEED
shows the best computational performance owing to the
novel property of lazy encryption. +is is because the en-
cryption of a file (i.e., SE operation) can be omitted when
deduplication takes place. All other schemes, including CE,
must generate a full ciphertext whatever the deduplication
result is, because the ciphertext is required for computing
the corresponding tag. Hence, those schemes in client-side
deduplication showed no difference in the performance of
file encryption with server-side deduplication.

7.4. Deduplication. In our second experiment, we measured
the computational efficiency of the D-tree-based dedupli-
cation algorithm. +e data set for the experiment consisted
of files sampled from Windows system files, media files,
Office files, and so on.+e number of files varied from 100 to
20,000. +e maximum height of the D-tree was set to be
π � 15.

For the comparison, we also implemented the dedu-
plication algorithms of other schemes. We chose a red-black
tree as the indexing structure of our implementations for CE,
DupLESS, and Liu et al.’s scheme. A red-black tree is a type
of self-balancing binary search tree that guarantees searching
in O(log n) time in the average case [38]. For Abadi et al.’s
scheme, we used sequential search, because the equality test
algorithm does not support a binary search tree.

Figure 4 shows the result of the experiment. +e term
“Number of test operations” refers to the number of op-
erations to test equality between ciphertexts for each
deduplication. For SEED, it means the number of executions
of the Test algorithm. Because D-tree allows binary search
for tags, the number of Test executions for each data set is
almost the same as in the other schemes using red-black
trees. SEED achieves 2-3 orders of magnitude higher per-
formance (i.e., fewer equality-test operations) than Abadi
et al.’s scheme.

We also measured the actual elapsed time during the
execution of deduplication algorithms. Figure 5 presents the

execution time to complete deduplication for each data set.
SEED needed slightly more execution time than the other
schemes that use red-black trees, because the Test algorithm
includes bilinear pairing operations, which incur high
computational costs. Despite the computational overhead,
however, the execution time does not exceed 150ms even for
the data set with the maximum number of files. We believe
that the computational overhead can be further reduced
using high-performance computing technologies, such as
distributed and concurrent processing.

8. Discussion

8.1. Reliability of the Initial Uploader. In the proposed
scheme, an initial uploader contributes to subsequent file
upload processes by reencrypting a part of a ciphertext.
Because the reencryption is crucial for subsequent uploaders
to access the encrypted content, it is required that the initial
uploader remains online to serve requests without inter-
ruption. In a mobile environment, for which the proposed
scheme is intended, mobile devices are likely to be connected
to the Internet most of the time. Hence, we reasonably
assume that the reliability of the participation of an initial
uploader (i.e., a mobile device) will be acceptable in most
cases.

1MB

Ex
ec

ut
io

n
tim

e
(m

s)

3500

3000

2500

2000

1500

1000

500

0
2MB 4MB 16MB 32MB 64MB 128MB8MB

SEED

DupLESS

CE

Liu et al.

Abadi et al.

(a)

1MB 2MB 4MB 16MB 32MB 64MB 128MB8MB

SEED

DupLESS

CE

Liu et al.

Abadi et al.

Ex
ec

ut
io

n
tim

e
(m

s)

3500

3000

2500

2000

1500

1000

500

0

(b)

Figure 3: Execution time for file encryption. (a) Server-side
deduplication. (b) Client-side deduplication.

Security and Communication Networks 11

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

However, we should consider the possibility that the
initial uploader might not be available due to various reasons
(e.g., temporary loss of the connection). For the sake of more
reliable service, we may relax the protocol, so that the first
N(N≥ 1) users that uploaded a file are regarded as the initial
uploaders. Subsequent uploaders will be able to successfully
conduct the file upload process if at least one initial uploader
responds to the reencrypting request.

We analyzed the reliability of file uploading for subse-
quent uploaders with regard to the number of initial
uploaders. Consider the case where an initial uploader is not
available when a reencryption request has been sent. Sup-
pose that this event happens with a probability p

independently from each other. +en, the probability that at
least one initial uploader will successfully respond to the
request is 1 − pN. Figure 6 shows the probability with regard
to N and p. Commercial cloud services such as AWS and
Azure usually provide an Service-Level Agreement (SLA)
that guarantees more than 95% in terms of service avail-
ability. With this information, we can choose the appro-
priate parameter N. For instance, we choose N � 1 for the
case of p � 0.05 and N � 2 for p � 0.1.

8.2. Storage Overhead due to Ciphertext Expansion. +e
proposed scheme relies on a bilinear pairing-based

100

100,000

10,000

1,000

100

10

1
2,000 4,000

N
um

be
r o

f t
es

t o
pe

ra
tio

ns

6,000 8,000 10,000

Number of files in the storage server

12,000 14,000 16,000 18,000 20,000

SEED

CE

Liu et al.

Abadi et al.

DupLESS

Figure 4: Number of test operations for deduplication (π �15).

100,000

10,000

1,000

100

10

1

D
ed

up
lic

at
io

n
tim

e (
m

s)

100 2,000 4,000 6,000 8,000 10,000

Number of files in the storage server

12,000 14,000 16,000 18,000 20,000

SEED

CE

Liu et al.

Abadi et al.

DupLESS

Figure 5: Execution time for deduplication (π �15).

12 Security and Communication Networks

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

cryptosystem. +erefore, a ciphertext generated under the
proposed scheme consists of several components whose size
is directly related to the pairing. More specifically, the
Encrypt algorithm, described in Section 5.1.1, generates a
ciphertext C � 〈C1, C2, T〉, among which C2 is an element of
GT and T is an element of G, where G and GT are multi-
plicative groups that form a pairing e: G × G⟶ GT.
Hence, the ciphertext size expands exactly by |G| + |GT|.
Regarding the storage overhead for the cloud service pro-
vider (i.e., MCSP), the ciphertext expansion may cause a
certain level of performance degradation.

However, the storage overhead can be minimized due to
the deduplication feature of the proposed scheme. +at is, it
is not necessary to store all the ciphertext components for
deduplicated files in the storage. As described in Section
5.2.1, only Tin C � 〈C1, C2, T〉 needs to be stored in the case
where a duplicate file is found.

9. Conclusion

In this paper, we addressed the problem of deduplication
over encrypted data in MCC environments by proposing
SEED, a serverless and efficient encrypted deduplication
scheme. +e novelty of SEED originates from the elimina-
tion of key servers, which severely restrict user mobility,
while not losing effective data confidentiality. +e compu-
tational efficiency of file encryption is achieved through
noninteractive file encryption and support for lazy en-
cryption. As a result, SEED offers efficient, low-latency file
uploading for mobile cloud storage.

Furthermore, a D-tree-based deduplication algorithm
successfully reduces the time complexity of deduplication to
O(log n). +is makes SEED much more efficient and

scalable, even in the case of large data items being out-
sourced in the storage.

+e security of SEED was rigorously analyzed in this
paper, and it was shown that the proposed scheme strongly
guarantees security against brute-force attacks without the
help of any key servers. +e analysis showed that other
desired security properties, such as data integrity and col-
lusion resistance, were also achieved by SEED.

Extensive comparative analysis and experiments were
conducted to evaluate the performance of SEED.We showed
that SEED has advantages in security and efficiency com-
pared to other encrypted deduplication solutions.

Data Availability

+e experimental results used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

+e authors declare that they do not have any conflicts of
interest regarding the publication of this paper.

Acknowledgments

+is work was extended from the poster presented at IEEE
CloudCom [33]. +is research was conducted under a Re-
search Grant from Kwangwoon University in 2020. +is
work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grants funded by the Korean Government (MSIT) (No.
2019-0-00533, Research on CPU Vulnerability Detection
and Validation), (No. 2019-0-00426, Development of Active

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pr
ob

ab
ili

ty
 (%

)

Number of initial uploaders (N)

p = 0.2

p = 0.05

p = 0.1

p = 0.5

p = 0.7

Figure 6: Reliability of file uploading for subsequent uploaders with regard to the number of initial uploaders (N).

Security and Communication Networks 13

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Kill-Switch and Biomarker-Based Defense System for Life-
+reatening Internet of +ings Medical Devices), and (No.
2020-0-00325, Traceability Assurance Technology Devel-
opment for Full Lifecycle Data Safety of Cloud Edge).

References

[1] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A
survey of mobile cloud computing application models,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 1,
pp. 393–413, 2014.

[2] F. Liu, P. Shu, H. Jin et al., “Gearing resource-poor mobile
devices with powerful clouds: architecture, challenges and
applications,” IEEE Wireless Communications Magazine,
Special Issue on Mobile Cloud Computing, vol. 20, no. 3,
pp. 14–22, 2013.

[3] E. Ahmed and M. H. Rehmani, “Mobile edge computing:
opportunities, solutions, and challenges,” Future Generation
Computer Systems, vol. 70, 2017.

[4] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya,
“Cloud-based augmentation for mobile devices: motivation,
taxonomies, and open challenges,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 1, pp. 337–368, 2014.

[5] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani,
“Demystifying data deduplication,” in Proceedings of the Acm/
ifip/usenix Middleware ’08 Conference Companion (COM-
PANION’08), pp. 12–17, Leuven, Belgium, December 2008.

[6] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, M. +eimer,
and P. Simon, “Reclaiming space from duplicate files in a
serverless distributed file system,” in Proceedings of the 22nd
International Conference on Distributed Computing Systems
(ICDCS 2002), pp. 617–624, Vienna, Austria, July 2002.

[7] M. W. Storer, K. Greenan, D. D. E. Long, and E. L. Miller,
“Secure data deduplication,” in Proceedings of the 4th ACM
International Workshop on Storage Security and Survivability
(STORAGESS’08), pp. 1–10, Fairfax, VA, USA, October 2008.

[8] M. Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS:
server-aided encryption for deduplicated storage,” in Pro-
ceedings of USENIX Security Symposium, pp. 179–194,
Washington, DC, USA, August 2013.

[9] H. Tang, “Enabling ciphertext deduplication for secure cloud
storage and access control,” in Proceedings of the 2016 ACM
Asia Conference on Computer and Communications Security
(ASIACCS’16), pp. 59–70, Xi’an, China, May 2016.

[10] Y. Duan, “Distributed key generation for encrypted dedu-
plication,” in Proceedings of the 6th ACMWorkshop on Cloud
Computing Security (CCSW’14), pp. 57–68, Scottsdale, AZ,
USA, November 2014.

[11] M. Miao, J. Wang, H. Li, and X. Chen, “Secure multi-server-
aided data deduplication in cloud computing,” Pervasive and
Mobile Computing, vol. 24, pp. 129–137, 2015.

[12] Y. Shin, D. Koo, J. Yun, and J. Hur, “Decentralized server-
aided encryption for secure deduplication in cloud storage,”
IEEE Transactions on Services Computing, pp. 1–13, 2019.

[13] M. Naor and O. Reingold, “Number-theoretic constructions
of efficient pseudo-random functions,” Journal of the ACM,
vol. 51, no. 2, pp. 231–262, 2004.

[14] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-Locked
Encryption and secure deduplication,” in Advances in
Cryptology-Eurocrypt, T. Johansson and P. Q. Nguyen, Eds.,
Vol. 7881, Springer, Berlin, Heidelberg, 2013.

[15] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and
G. Segev, “Message-locked encryption for lock-dependent

messages,” Advances in Cryptology-CRYPTO 2013, vol. 8042,
pp. 374–391, 2013.

[16] M. Bellare and S. Keelveedhi, “Interactive message-locked
encryption and secure deduplication,” Public-Key Cryptog-
raphy-PKC, vol. 9020, pp. 1–29, 2015.

[17] Y. Shin, D. Koo, and J. Hur, “A survey of secure data
deduplication schemes for cloud storage systems,” ACM
Computing Surveys, vol. 49, no. 4, pp. 1–38, 2017.

[18] J. Hur, D. Koo, Y. Shin, and K. Kang, “Secure data dedu-
plication with dynamic ownership management in cloud
storage,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 28, no. 1, pp. 1–14, 2016.

[19] L. González-Manzano and A. Orfila, “An efficient confi-
dentiality-preserving Proof of Ownership for deduplication,”
Journal of Network and Computer Applications, vol. 50,
pp. 49–59, 2015.

[20] J. Xu, E.-C. Chang, and J. Zhou, “Leakage-Resilient client-side
deduplication of encrypted data in cloud storage,” in Pro-
ceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security (ASIACCS’13),
p. 195, Hangzhou, China, May 2013.

[21] J. Li, Y. K. Li, X. Chen, P. P. C. Lee, and W. Lou, “A hybrid
cloud approach for secure authorized deduplication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26,
no. 5, pp. 1206–1216, 2015.

[22] M. Li, C. Qin, and P. P. C. Lee, “CDStore: toward reliable,
secure, and cost-efficient cloud storage via convergent dis-
persal,” in Proceedings of the 2015 USENIX Annual Technical
Conference (ATC’15), pp. 1–20, Santa Clara, CA, USA, July
2015.

[23] M. Li, C. Qin, P. P. C. Lee, and J. Li, “Convergent dispersal:
toward storage-efficient security in a cloud-of-clouds,” in
Proceedings of the 6th USENIX Conference on Hot Topics in
Storage and File Systems (HOTSTORAGE’14), Philadelphia,
PA, USA, June 2014.

[24] J. Li, X. Chen, M. Li, J. Li, and P. P. C. Lee, “Secure dedu-
plication with efficient and reliable convergent key manage-
ment,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 6, pp. 1615–1625, 2014.

[25] X. Lou, R. Lu, J. Shao, X. Tang, and A. Ghorbani, “Achieving
efficient secure deduplication with user-defined access control
in cloud,” IEEE Transactions on Dependable and Secure
Computing, pp. 1–5, 2020.

[26] Q. Huang, Z. Zhang, and Y. Yang, “Privacy-preserving media
sharing with scalable access control and secure deduplication
in mobile cloud computing,” IEEE Transactions on Mobile
Computing, p. 1, 2020.

[27] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “Lattice-
based forward secure public-key encryption with keyword
search for cloud-assisted industrial Internet of things,” IEEE
Transactions on Dependable and Secure Computing, 2019.

[28] X. Zhang, H. Wang, and C. Xu, “Identity-based key-exposure
resilient cloud storage public auditing scheme from lattices,”
Information Sciences, vol. 472, pp. 223–234, 2019.

[29] W. Cui, Y. Xin, Y. Yang, and X. Niu, “A new blind signature
and threshold blind signature scheme from pairings,” in
Proceedings of International Conference on Computational
Intelligence and Security Workshops (CISW 2007), pp. 699–
702, Harbin, China, December 2007.

[30] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou, and X. Lin,
“HealthDep: an efficient and secure deduplication scheme for
cloud-assisted eHealth systems,” IEEE Transactions on In-
dustrial Informatics, vol. 14, no. 9, pp. 4101–4112, 2018.

14 Security and Communication Networks

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

[31] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of
encrypted data without additional independent servers,” in
Proceedings of the 22th ACM SIGSAC Conference on Computer
and Communications Security (CCS 2015), pp. 874–885,
Denver, CO, USA, October 2015.

[32] S. M. Bellovin and M. Merritt, “Encrypted key exchange:
password-based protocols secure against dictionary attacks,”
in Proceedings of the IEEE Symposium on Security and Privacy
(S&P 1992), pp. 72–84, Oakland, CA, USA, May 1992.

[33] Y. Shin, D. Koo, J. Yun, and J. Hur, “SEED: enabling serverless
and efficient encrypted deduplication for cloud storage,” in
Proceedings of the 8th IEEE International Conference on Cloud
Computing Technology and Science (CLOUDCOM 2016),
pp. 482–487, Luxembourg City, Luxembourg, December
2016.

[34] D. Boneh and M. Franklin, “Identity-based encryption from
the weil pairing,” SIAM Journal on Computing, vol. 32, no. 3,
pp. 586–615, 2003.

[35] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in
cloud services: deduplication in cloud storage,” IEEE Security
& Privacy Magazine, vol. 8, no. 6, pp. 40–47, 2010.

[36] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou,
“Secure and efficient cloud data deduplication with ran-
domized tag,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 3, pp. 532–543, 2017.

[37] J. A. Akinyele, C. Garman, I. Miers et al., “Charm: a
framework for rapidly prototyping cryptosystems,” Journal of
Cryptographic Engineering, vol. 3, no. 2, pp. 111–128, 2013.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Red-
black trees,” in Introduction to Algorithms, pp. 273–301, MIT
Press, Cambridge, MA, USA, second edition, 2001.

Security and Communication Networks 15

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3046595 by H

ansung U
niversity, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

