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Advanced non-dimensional dynamic
influence function method considering
the singularity of the system matrix for
accurate eigenvalue analysis of
membranes

Sangwook Kang

Abstract
An advanced non-dimensional dynamic influence function method (NDIF method) for highly accurate free vibration anal-
ysis of membranes with arbitrary shapes is proposed in this paper. The existing NDIF method has the weakness of not
offering eigenvalues and eigenmodes in the low frequency range when the number of boundary nodes of an analyzed
membrane is increased to obtain more accurate result. This paper reveals that the system matrix of the membrane
becomes singular in the lower frequency range when the number of the nodes increases excessively. Based on this fact,
it provides an efficient way to successfully overcome the weaknesses of the existing NDIF method and still maintain its
accuracy. Finally, verification examples show the validity and accuracy of the advanced NDIF method proposed.
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Introduction

The non-dimensional dynamic influence function
method (NDIF method) are for the first time intro-
duced by the author for the extraction of highly accu-
rate eigenvalues and mode shapes of membranes
arbitrary shapes.1 Furthermore, the NDIF method was
extended to arbitrarily shaped acoustic cavities with the
rigid-wall boundary2 and plates with various boundary
conditions.3–5 Until recently, in-depth studies have been
conducted by the author to overcome the frequency-
dependent problem of the system matrix in the NDIF
method.6–11

Although a vast literature exists on analytical and
semi-analytical methods for obtaining accurate eigen-
values of membranes having no exact solution and the
author has scrutinized the vast literature, only relatively

recent studies are introduced in the paper. Gol’dshtein
and Ukhov12 obtained estimates for the first non-trivial
eigenvalues of membranes in conformal regular
domains. Zheng et al.13 solved the nonlinear free vibra-
tion problem of axisymmetric circular membrane by
both the Galerkin method and the large deflection the-
ory. Ouakad14 extracted the natural frequencies and
mode shapes of rectangular membranes with rounded
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edges utilized in practical engineering applications.
Bahrami and Teimourian15 proposed a systematic
method for free vibration analysis of non-uniform
annular and circular membranes and obtained the nat-
ural frequencies of the membranes using the wave pro-
pagation approach. Siedlecka et al. obtained
eigenfrequencies of composite circular and annular
membranes with nonuniform material property.16

Yakhno and Ozdek17 solved the free vibration problem
of a composite circular membrane whose density and
tension change piecewisely by approximately commu-
tating the Green’s function. Lastly, Wang and Chien18

Ming derived exact solutions for eigenvalue analysis of
circular, annular and sector membranes and investi-
gated the effect of shape variables of the membranes on
natural frequencies. As a result of reviewing the vast lit-
erature including the recent studies as mentioned
above, it is confirmed that there are no studies that
provide more accurate eigenvalues of arbitrarily shaped
membranes than the NDIF method.

On the other hand, the NDIF method has the
advantage of needing a small amount of numerical cal-
culation and offering much more accurate results than
other numerical analysis methods such as the finite ele-
ment method19 and the boundary element method.20

This is because the basis functions of the NDIF method
exactly satisfy the governing differential equation and
at the same time the boundary of an analyzed mem-
brane is discretized by a small number of nodes unlike
the two methods.19,20

However, the NDIF method has the disadvantage
that lower-order eigenvalues and eigenmodes are not
extracted if more boundary nodes are used to obtain
more accurate higher-order ones. For this reason, it
also has the disadvantage that the membrane should be
analyzed once more after decreasing the number of the
boundary nodes if lower-order eigenvalues are not
extracted. In the paper, the reason why low-order eigen-
values and eigenmodes are not obtained is first identi-
fied and then an advanced NDIF method is proposed
to achieve both low-order and higher-order eigenvalues
(including eigenmodes) without losing the accuracy of
the existing NDIF method when using many nodes.

Existing NDIF method reviewed

In Figure 1, when a unit displacement is excited at one
point Pk in an infinite membrane, displacement at
another point P is given by the non-dimensional
dynamic influence function (NDIF) as follows:

NDIF= J0(L r� rkj j) ð1Þ

which is the Bessel function of the first kind of order
zero.1,8 In equation (1), r� rkj j means the distance
between P and Pk of which the position vectors are r

and rk , respectively. Also, L=v=
ffiffiffiffiffiffiffiffiffi
T=r

p
is a frequency

parameter where v, T , and r are the angular frequency,
the uniform tension per unit length, and the mass per
unit area, respectively. The NDIF satisfies Helmholtz
equation (equation (2)), which is the governing equa-
tion for free vibration of the finite-sized membrane
depicted by the dotted line in Figure 1.

r2W (r)+L2W (r)= 0, ð2Þ

where W (r) is the transverse displacement of the finite-
sized membrane.

For free vibration analysis of the finite-sized mem-
brane shown in Figure 1, N boundary points are first
distributed at points P1, P2, . . . , PN along the ficti-
tious boundary (dotted line) of the membrane. If the
amplitudes of displacements excited simultaneously at
points P1, P2, . . . , PN are A 1, A 2, . . . , AN , respec-
tively, the displacement response at the point P inside
the membrane can be obtained by the linear combina-
tion of NDIFs as follows.

W (r)=
XN

k = 1

AkJ0(L r� rkj j), ð3Þ

In the NDIF method, equation (3) is utilized as an
approximate solution for free vibration of the finite-
sized membrane, which has an arbitrary shape. It
should be noticed that equation (3) that is the linear
combination of NDIFs naturally satisfies the governing
equation.

Next, if the boundary of the membrane is fixed, a
discrete boundary condition for points
P1, P2, . . . , PN is given by

Figure 1. Infinite membrane with harmonic excitation points
(P1, P2, ::: , PN) distributed along the fictitious contour
(dotted line) that is the same shape as the finite-sized membrane
of interest.
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W (ri)= 0, i= 1, 2, . . . , N ð4Þ

where ri denotes the position vector for point Pi. Then,
substituting the approximate solution into the discrete
boundary condition gives

W (ri)=
XN

k = 1

AkJ0(L ri � rkj j)= 0, i= 1, 2, . . . , N : ð5Þ

Finally, equation (5) may be written in a simple
matrix form:

SM(L) A= 0, ð6Þ

where SM(L) is called system matrix in the NDIF
method and is a function of the frequency parameter
L. In equation (6), the contribution vector A represents
the contribution strength of the NDIFs defined at each
boundary point. The elements of the system matrix of
which the size is N 3 N are calculated by

SMik = J0(L ri � rkj j): ð7Þ

The condition for equation (6) to have a non-trivial
solution is that the determinant of the system matrix
becomes zero as follows.

det SM(L)ð Þ= 0: ð8Þ

The j th eigenvalue can be calculated from equation
(8) and the j th eigenvector can be obtained by applying
the singular value decomposition21 to the system matrix
SM(Lj) where Lj represents the j th eigenvalue. As
mentioned earlier, equation (8) doesn’t give lower-order
eigenvalues and eigenmodes if the number of the
boundary points (= boundary nodes) is increased to
obtain higher-order ones. In the following section, an
advanced NDIF method is presented to obtain both
lower-order and higher-order eigenvalues and eigen-
modes, regardless of the number of boundary nodes
used.

Advanced NDIF method

Eigenvalue extraction characteristics of the existing
NDIF method

A rectangular membrane as shown in Figure 2 is consid-
ered to investigate how eigenvalues extraction character-
istics of the existing NDIF method change with the
number of the boundary nodes. The horizontal and ver-
tical lengths of the membrane are 1.2 and 0.9m, respec-
tively. First, the boundary of the membrane is
discretized with 16 nodes as shown in Figure 2(a). For
N=16, logarithmic values of det SM(L)ð Þ are plotted
using the dotted line as a function of the frequency para-
meter in Figure 3 where values of the frequency para-
meter corresponding to the troughs (L1–L5, L7) denote
the eigenvalues of the membrane. Note that The loga-
rithm values of det SM(L)ð Þ are calculated by a commer-
cial software such as MATLAB or Mathematica. It is
confirmed in Table 1 that these eigenvalues agree well
with the exact solution22 within 0.19% error but the
sixth and eighth eigenvalues are not extracted because
the number of the nodes is not enough.

To extract the sixth and eighth eigenvalues, the num-
ber of the boundary nodes is increased to 32 as shown
in Figure 2(b). For N=32, logarithmic values of
det SM(L)ð Þ are plotted using the solid line in Figure 3
where it may be seen that higher-order eigenvalues
(L4–L8) including the sixth and eighth eigenvalues are
extracted but lower-order eigenvalues (L1

–L3) are not
found. This is confirmed to be because there are cases
where the values of det SM(L)ð Þ are negative in the low
frequency parameter range where L1

–L3 exist. Further
consideration of the problem that the determinant of
the system matrix becomes negative will continue in the
next section. In Table 1, note that the eigenvalues (L4–
L8) obtained by the existing NDIF method using only
32 nodes exactly coincide with the exact solution,22

while the eigenvalues obtained by FEM (ANSYS) using
1089 nodes have relatively large errors with respect to
the exact solution.

Table 1. Eigenvalues of the rectangular membrane obtained by the existing NDIF method, the exact solution,22 FEM (ANSYS),6 and
the advanced NDIF method (parenthesized values: errors (%) relative to the exact solution).

Existing NDIF method Exact
solution22

FEM (ANSYS)6 Advanced NDIF
method

N = 16 N = 32 1089 nodes 289 nodes 49 nodes N = 32

L1 4.3633 (0.00) None 4.3633 4.3651 (0.04) 4.3703 (0.16) 4.4133 (1.15) 4.3633 (0.00)
L2 6.2927 (20.003) None 6.2929 6.3006 (0.12) 6.3240 (0.49) 6.5166 (3.55) 6.2929 (0.00)
L3 7.4549 (20.01) None 7.4560 7.4669 (0.15) 7.4996 (0.58) 7.7682 (4.19) 7.4560 (0.00)
L4 8.6001 (0.06) 8.5947 (0.00) 8.5947 8.6213 (0.31) 8.7013 (1.24) 9.1287 (6.21) 8.5947 (0.00)
L5 8.7101 (20.19) 8.7266 (0.00) 8.7266 8.7407 (0.16) 8.7828 (0.64) 9.3523 (7.17) 8.7266 (0.00)
L6 None 10.5083 (0.00) 10.5083 10.5370 (0.27) 10.6234 (1.10) 11.3284 (7.80) 10.5083 (0.00)
L7 10.7881 (20.06) 10.7943 (0.00) 10.7943 10.8313 (0.34) 10.9428 (1.38) 11.8467 (9.75) 10.7943 (0.00)
L8 None 11.0384 (0.00) 11.0384 11.1029 (0.58) 11.2974 (2.35) 12.7802 (15.78) 11.0384 (0.00)
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In the following sections, the reason why the lower-
order eigenvalues are not found when the number of
boundary nodes increases is revealed. Furthermore, an
advanced NDIF method for extracting both the lower-
order and higher-order eigenvalues is presented on the
basis of the reason revealed.

Rank of the system matrix

As confirmed in the previous section, the existing
NDIF method provides far more accurate results than
FEM (ANSYS), despite the use of much fewer nodes.
However, it has the weakness of failing to extract
lower-order eigenvalues when the number of nodes
increases. To establish the cause of this weakness, the

rank of the system matrix is first investigated in the fre-
quency parameter range of interest.

Values of the rank R(L) of the system matrix for the
rectangular membrane are plotted as a function of the
frequency parameter in Figure 4 where the dotted and
solid lines are for N=16 and N=32, respectively. It
may be seen in Figure 4 that values of the rank of the
system matrix for N=16 remain constant across the
entire frequency parameter range, with a value of 16.
On the other hand, it should be noticed in Figure 4 that
values of the rank of the system matrix for N=32 are
less than the order of the system matrix, 32, in the
range where the frequency parameter is less than about
8.3. This means that rows or columns in the system
matrix are not independent of each other and the sys-
tem matrix becomes singular in the low frequency para-
meter range when using 32 nodes. As a result, the

(a) (b)

Figure 2. Rectangular membranes discretized with 16 and 32 boundary nodes, respectively: (a) N = 16 and (b) N = 32.

Figure 3. Logarithm values of the determinant of the system
matrix obtained by the existing NDIF method for the
rectangular membrane (dotted line: 16 nodes, solid line: 32
nodes).

Figure 4. Rank (R(L)) of the system matrix for the rectangular
membrane (dotted line: 16 nodes, solid line: 32 nodes).
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determinant of the system matrix theoretically becomes
zero but, in numerical computations of the NDIF
method, results in a meaningless value close to zero.
The reason why the system matrix becomes singular is
because NDIF’s used in equation (3) are not indepen-
dent of each other and the distances between two adja-
cent nodes become closer. Furthermore, it turns out
that the reason why some logarithm values for N=32
in Figure 3 do not exist in the low frequency parameter
range is that values of the determinant of the system
matrix are calculated as negative values close to zero.

Calculating the determinant of the singular system
matrix

As revealed in the previous section, the determinant of
the system matrix is calculated as a meaningless value
in a frequency parameter range where the matrix
becomes singular because the rank of the matrix is less
than the order of the matrix. In the section, a practical
way is proposed to ensure that the determinant of the
system matrix has a valid value when the matrix is sin-
gular in numerical computations of the NDIF method.

A newly proposed way is based on the fact that the
determinant of a matrix is equal to the product of eigen-
values of the matrix.23 From this fact, the determinant
of the system matrix may be calculated by

det (SM(L))=
YN
i= 1

li(L)

=l1(L)l2(L) . . . lR(L)(L)lR(L)+ 1(L) . . . lN (L)

ð9Þ

where N is the order of the system matrix correspond-
ing to the number of nodes used and li(L), which is a
function of L, denotes the i th eigenvalue that satisfies
the following the eigenvalue problem.

SM(L) vi = li(L) vi, i= 1, 2, . . . , N ð10Þ

where vi is the i th eigenvector for li(L).
It is explained using equation (9) why the determi-

nant of the system matrix is calculated as a meaningless
value in the low frequency parameter range of L \ 8.3
for N=32 in Figure 3. Although N eigenvalues are
numerically calculated from equation (10) in the range
of L \ 8.3, the higher-order eigenvalues lR(L)+ 1,
lR(L)+ 2, ., lN become meaningless values because the
rank R(L) is less than N. Thanks to this fact, equation
(9) calculated by the product of the N eigenvalues
including the higher-order eigenvalues also has a mean-
ingless value. Based on this findings, the determinant of
the system matrix is calculated by the product of only
the valid eigenvalues l1, l2, ., lR(L) excluding the inva-
lid eigenvalues lR(L)+ 1, lR(L)+ 2, ., lN for R(L)\N as
follows.

det (SM(L))=
YR(L)

i= 1

li(L)= l1(L)l2(L) . . . lR(L)(L)

ð11Þ

where R(L) is given by the solid line of Figure 4. In
order to help understand equation (11), it is assumed
that R(L) changes as expressed in equation (12) in the
frequency parameter range of interest.

R(L)=

R 1 ,
R2 ,

:
RN ,

C0 ł L\C1

C1 ł L\C2

:
CN�1 ł L\CN

8>><
>>:

ð12Þ

where Ci�1 ł L\Ci denotes the i th frequency para-
meter range of which the minimum and maximum
values are Ci�1 and Ci, respectively, and Ri is a constant
rank in the range Ci�1 ł L\Ci. If applying equation
(12) to equation (11), equation (11) is expressed in an
easy-to-understand manner as follows.

det (SM(L))=

QR 1

i= 1

li(L)= l1(L)l2(L) � � � lR1
(L) , C0 ł L\C1

QR2

i= 1

li(L)= l1(L)l2(L) � � � lR2
(L) , C1 ł L\C2

:
QRN

i= 1

li(L)= l1(L)l2(L) � � � lRN
(L) , CN�1 ł L\CN

8>>>>>>>>><
>>>>>>>>>:

ð13Þ

Figure 5 shows the determinant curve for the rectan-
gular membrane (N=32) obtained by using equation
(11) or (13). It may be seen in Figure 5 that the eight

Figure 5. Logarithm values of the determinant of the system
matrix with discontinuity obtained by the advanced NDIF
method using equations (11) for the rectangular membrane
(N = 32).
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eigenvalues including L1–L3 are successfully extracted
although 32 many nodes are used. The eight eigenvalues
are tabularized in the last column of the Table 1 and
are found to exactly match the exact solution22 without
any error. Note that the eigenvalues obtained by FEM
(ANSYS) have some errors with respect to the exact
solution even though FEM uses much more nodes than
the advanced NDIF method. It may be said that the
advanced NDIF method proposed in the paper success-
fully offers accurate eigenvalues in the entire frequency
parameter range irrespective of the number of nodes.

On the other hand, it is observed in Figure 5 that
the determinant curve changes discontinuously. This is
because the number of the eigenvalues (l1, l2, .,
lR(L)) multiplied by each other in equation (11) or (13)
changes due to the change of the rank (R(L)) as shown
in Figure 4 (N=32). Although the proposed method
successfully gives accurate the lower-order eigenvalues
as well as the higher-order ones as confirmed in
Figure 5 and Table 1, a more complete method is pro-
posed to eliminate the discontinuity of the determinant
curve. First, the amount D log ( det (SM(L))) of change
in log ( det (SM(L))) caused by the change of R(L) is
obtained as a function of L as shown in Figure 6. Next,
subtracting D log ( det (SM(L))) of Figure 6 from
log ( det (SM(L))) of the Figure 5 is defined by
log ( det (SM(L)))ne t as follows:

log ( det (SM(L)))� D log ( det (SM(L)))

[ log ( det (SM(L)))ne t
ð14Þ

Finally, log ( det (SM(L)))ne t of equation (14) gives a
determinant curve where the discontinuity is removed,
as shown in Figure 7. It should be noticed that the eight

eigenvalues obtained in Figure 7 naturally have the
same values as those obtained in Figure 5.

Extracting mode shapes from the singular system
matrix

In the section, an appropriate way of obtaining mode
shapes of the membrane of interest is proposed after a
deep study. The j th mode shape for the j th eigenvalue
Lj extracted by equation (11) for the rectangular mem-
brane (N=32) can be obtained by utilizing equation
(10) as follows. Inserting L=Lj into equation (10)
yields

SM(Lj) vi = li(Lj) vi, i= 1, 2, . . . , N ð15Þ

from which the N eigenvectors v1, v2, . . . , vN can be
obtained. If the rank of the system matrix SM(Lj) is
R(Lj), which is given by the rank curve of the Figure 4,
the j th mode shape can be drawn using equation (3) in
which Ak ’s are replaced by the elements of the R(Lj) th
eigenvector vR(Lj).

On the other hand, if the j th mode shape belongs to
low-order mode shapes, it may not be drawn by the
R(Lj) th eigenvector vR(Lj). In this case, it turns out that
using one of the eigenvectors with lower order than
R(Lj) successfully gives the j th mode shape, which is
explained in detail in Figure 8.

Figure 8 shows the 1st–12th mode shapes of the rec-
tangular membrane (N=32) obtained by the advanced
NDIF method using equations (3) and (15). It is con-
firmed that they agree well with the exact mode
shapes.22 The additional information ‘‘v21 and R=23’’

Figure 6. Amount of change in logarithm values of the
determinant equation (11) of the system matrix caused by the
change of the rank for the rectangular membrane (N = 32).

Figure 7. Logarithm values of the determinant of the system
matrix without discontinuity obtained by the advanced NDIF
method using equations (11) and (14) for the rectangular
membrane (N = 32).
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given for the first mode in Figure 8 denote that the first
mode shape is drawn using the 21th eigenvector v21

obtained from equation (15) and that the rank of
SM(L1) is 23, respectively. The additional information
given for each of the 2nd–12th modes is also described
in the same way as the 1st mode. It is confirmed in
Figure 8 that the 1st–6th mode shapes are drawn by
lower-order eigenvectors than the rank of the system
matrix, while the 7th–12th mode shapes are drawn by
the same order eigenvectors as the rank. The reason
why the orders of eigenvectors used for the first to sixth
modes in Figure 8 are not equal to the rank of the sys-
tem matrix is currently under investigation, and the
findings will be reported in the following paper.

Verification examples

Example studies for two arbitrarily shaped membranes
are conducted to verify the validity and accuracy of the
advanced NDIF method established in this paper.

Arbitrarily shaped quadrilateral membrane

Figure 9 shows the geometry and boundary node loca-
tions of an arbitrarily shaped quadrilateral membrane

discretized with 32 nodes. Figure 10 shows the determi-
nant curve obtained by the existing NDIF method. It
may be observed in the curve that the lower-order
eigenvalues (L1–L3) are not extracted because too many
nodes are used and as the result the system matrix
becomes singular. The extracted eigenvalues (L4–L15)
are summarized in the second column of Table 2.

Figure 8. Mode shapes of the rectangular membrane (N = 32) obtained by the advanced NDIF method using equations (3) and (15):
(a) 1st mode (v21, R = 23), (b) 2nd mode (v25, R = 28), (c) 3rd mode (v26, R = 30), (d) 4th mode (v29, R = 32), (e) 5th mode
(v29, R = 32), (f) 6th mode (v31, R = 32), (g) 7th mode (v32, R = 32), (h) 8th mode (v32, R = 32), (i) 9th mode (v32, R = 32), (j) 10th
mode (v32, R = 32), (k) 11th mode (v32, R = 32), and (l) 12th mode (v32, R = 32).

Figure 9. Arbitrarily shaped quadrilateral membrane
discretized with 32 boundary nodes.
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In order of resolve the problem that the lower-order
eigenvalues are not extracted, the advanced NDIF
method using equations (11) and (14) is applied to the
membrane and the resulting determinant curve is shown
in Figure 11. It is confirmed in the curve that the all 15
eigenvalues (L1–L15) are successfully extracted and also
the discontinuity of the curve explained in Figure 5 is
eliminated. The 15 eigenvalues are summarized in the
third column of Table 2 where they are compared with
the eigenvalues obtained by FEM (ANSYS) using 2538
nodes. It may be said from the comparison that the
advanced NDIF method gives very accurate eigenva-
lues within 0.03% error except for the 11th eigenvalue,
which also has a very small error (0.29%). Note that it

cannot be concluded that which is more accurate, the
advanced NDIF method or FEM using 2538 nodes,
because the membrane does not have the exact solution.
Importantly, the advanced NDIF method provides
results that are almost similar to those of FEM
(ANSYS) using 2538 node despite using only 32 fewer
nodes. In Table 1, the accuracy of the advanced NDIF
method has already been verified in the rectangular
membrane having the exact solution.

Figure 12 shows the 1st–15th mode shapes obtained
by the advanced NDIF method using equations (3) and
(15). Although the 15 modes shapes (Figure 12) use
only 32 fewer nodes, it can be confirmed that they

Table 2. Eigenvalues of the arbitrarily shaped quadrilateral membrane obtained by the existing NDIF method, the advanced NDIF
method, and FEM (ANSYS) (parenthesized values: errors (%) relative to FEM results using 2538 nodes).

Existing NDIF method Advanced NDIF method FEM (ANSYS)

N = 32 N = 32 2538 nodes 1337 nodes 509 nodes

L1 None 4.461 (20.04) 4.463 4.463 4.463
L2 None 6.527 (20.02) 6.528 6.528 6.528
L3 None 7.471 (20.01) 7.472 7.472 7.472
L4 8.878 (20.01) 8.879 (0.00) 8.879 8.879 8.879
L5 8.989 (20.08) 8.993 (20.03) 8.996 8.996 8.997
L6 10.613 (0.01) 10.613 (0.01) 10.612 10.612 10.613
L7 11.009 (0.05) 11.009 (0.05) 11.004 11.004 11.004
L8 11.306 (20.03) 11.306 (20.03) 11.309 11.309 11.310
L9 11.936 (20.02) 11.936 (20.02) 11.938 11.938 11.938
L10 13.219 (0.03) 13.219 (0.03) 13.215 13.215 13.216
L11 13.370 (20.29) 13.370 (v0.29) 13.409 13.409 13.410
L12 13.772 (0.01) 13.772 (0.01) 13.770 13.770 13.772
L13 13.935 (20.01) 13.935 (20.01) 13.936 13.936 13.937
L14 14.988 (0.01) 14.988 (0.01) 14.986 14.986 14.988
L15 15.431 (20.03) 15.431 (20.03) 15.436 15.436 15.438

Figure 10. Logarithm values of the determinant of the system
matrix obtained by the existing NDIF method for the arbitrarily
shaped quadrilateral membrane (N = 32).

Figure 11. Logarithm values of the determinant of the system
matrix without discontinuity obtained by the advanced NDIF
method using equations (11) and (14) for the arbitrarily shaped
quadrilateral membrane (N = 32).
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Figure 12. Mode shapes of the arbitrarily shaped quadrilateral membrane (N = 32) obtained by the advanced NDIF method using
equations (3) and (15): (a) 1st mode (v21, R = 23), (b) 2nd mode (v23, R = 28), (c) 3rd mode (v25, R = 29), (d) 4th mode (v27, R = 31),
(e) 5th mode (v29, R = 31), (f) 6th mode (v29, R = 32), (g) 7th mode (v29, R = 32), (h) 8th mode (v30, R = 32), (i) 9th mode
(v30, R = 32), (j) 10th mode (v30, R = 32), (k) 11th mode (v30, R = 32), (l) 12th mode (v30, R = 32), (m) 13th mode (v30, R = 32),
(n) 14th mode (v31, R = 32), and (o) 15th mode (v30, R = 32).

Table 3. Eigenvalues of the arbitrarily shaped membrane obtained by the existing NDIF method, the advanced NDIF method, and
FEM (ANSYS) (parenthesized values: errors (%) relative to FEM results using 4375 nodes).

Existing NDIF method Advanced NDIF method FEM(ANSYS)

N = 32 N = 32 4375 nodes 1614 nodes 431 nodes

L1 None 2.709 (20.07) 2.711 2.711 2.711
L2 None 4.229 (20.07) 4.232 4.232 4.232
L3 None 4.358 (0.00) 4.358 4.358 4.358
L4 5.570 (20.05) 5.569 (20.07) 5.573 5.573 5.573
L5 5.934 (0.00) 5.934 (0.00) 5.934 5.934 5.934
L6 6.117 (20.02) 6.117 (20.02) 6.118 6.118 6.118
L7 7.006 (20.10) 7.006 (20.10) 7.013 7.013 7.014
L8 7.187 (20.01) 7.187 (20.01) 7.188 7.188 7.188
L9 7.761 (20.01) 7.761 (20.01) 7.762 7.762 7.763
L10 7.835 (20.03) 7.835 (20.03) 7.837 7.837 7.838
L11 8.449 (20.09) 8.449 (20.09) 8.457 8.458 8.459
L12 8.552 (20.02) 8.552 (20.02) 8.554 8.554 8.555
L13 9.018 (20.03) 9.018 (20.03) 9.021 9.021 9.023
L14 9.481 (20.05) 9.481 (20.05) 9.486 9.486 9.489
L15 9.544 (20.03) 9.544 (20.03) 9.547 9.548 9.550
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exactly match those (Figure 13) obtained by FEM
(ANSYS) using 2538 nodes.

Arbitrarily shaped membrane

Figure 14 shows an arbitrarily shaped membrane whose
boundary is discretized with 32 nodes and consists of a

semicircle of unit radius and two equilateral edges
ffiffiffi
2
p

m in length. The determinant curve obtained by the
existing NDIF method is shown in Figure 15 where it is
may be seen that only the higher-order eigenvalues
(L4–L15) are extracted. The extracted eigenvalues (L4–
L15) are summarized in the second column of Table 3.

Figure 13. Mode shapes of the arbitrarily shaped quadrilateral membrane obtained by FEM (ANSYS, 2538 nodes): (a) 1st mode,
(b) 2nd mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, (f) 6th mode, (g) 7th mode, (h) 8th mode, (i) 9th mode, (j) 10th mode,
(k) 11th mode, (l) 12th mode, (m) 13th mode, (n) 14th mode, and (o) 15th mode.

Figure 14. Arbitrarily shaped membrane discretized with 32
boundary nodes.

Figure 15. Logarithm values of the determinant of the system
matrix obtained by the existing NDIF method for the arbitrarily
shaped membrane (N = 32).
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The determinant curve obtained by the advanced
NDIF method using equations (11) and (14) is shown
in Figure 16 where it is confirmed that the all 15 eigen-
values (L1–L15) are successfully extracted and also the
discontinuity of the curve is eliminated. The 15 eigenva-
lues are summarized in the third column of Table 3
where they are compared with the eigenvalues calcu-
lated by FEM (ANSYS) using 4375 nodes. It may be
said from the comparison that the advanced NDIF
method using only 32 nodes has very small error within
0.09% with respect to FEM using 4375 nodes. For the
reference, the computational times of the existing
NDIF method, the advanced NDIF method, and
ANSYS using 4375 nodes are approximately 81, 96,
and 127 s, respectively. Figures 17 and 18 show mode
shapes obtained by the advanced NDIF method and
FEM (ANSYS), respectively. It can be confirmed that
the mode shapes by the proposed method using only 32

Figure 16. Logarithm values of the determinant of the system
matrix without discontinuity obtained by the advanced NDIF
method using equations (11) and (14) for the arbitrarily shaped
membrane (N = 32).

Figure 17. Mode shapes of the arbitrarily shaped membrane (N=32) obtained by the advanced NDIF method using equations (3)
and (15): (a) 1st mode (v19, R = 23), (b) 2nd mode (v23, R = 28), (c) 3rd mode (v23, R = 29), (d) 4th mode (v25, R = 31), (e) 5th mode
(v27, R = 32), (f) 6th mode (v27, R = 32), (g) 7th mode (v27, R = 32), (h) 8th mode (v29, R = 32), (i) 9th mode (v31, R = 32), (j) 10th
mode (v30, R = 32), (k) 11th mode (v31, R = 32), (l) 12th mode (v32, R = 32), (m) 13th mode (v32, R = 32), (n) 14th mode (v32, R = 32),
and (o) 15th mode (v32, R = 32).
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nodes exactly matches those by FEM (ANSYS) using
4375 nodes.

Conclusion

In the paper, we have developed the advanced NDIF
method that can overcome the weakness of the existing
NDIF method that lower-order eigenvalues are not
extracted when the number of boundary nodes
increases. Furthermore, the advanced NDIF method is
confirmed to maintain the high accuracy of the existing
NDIF method, which has been recognized in a much
more accurate method than other numerical analysis
methods such as FEM and BEM. The validity and
accuracy of the developed method were confirmed by
two case studies. It is expected that the developed
method can be applied to the eigenanalysis of arbitra-
rily shaped plates and acoustic cavities.

In the case of membranes with other boundary con-
ditions or with complex shapes (e.g. a membrane having
a hole inside or a concave shape), further theoretical
development different from the proposed method is
required, and the related research is currently in
progress.
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Figure 18. Mode shapes of the arbitrarily shaped membrane obtained by FEM (ANSYS, 4375 nodes): (a) 1st mode, (b) 2nd mode,
(c) 3rd mode, (d) 4th mode, (e) 5th mode, (f) 6th mode, (g) 7th mode, (h) 8th mode, (i) 9th mode, (j) 10th mode, (k) 11th mode,
(l) 12th mode, (m) 13th mode, (n) 14th mode, and (o) 15th mode.
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