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A B S T R A C T

Going beyond the user–item rating information, recent studies have utilized additional information to improve
the performance of recommender systems. Graph neural network (GNN) based approaches are among the
most common. However, existing models that utilize text data require a lot of computing resources and
have a complex structure that makes them difficult to utilize in real-world applications. In this research,
we propose a new method, keyword-enhanced graph matrix completion (KGMC), which utilizes keyword
sharing relationships in user–item graphs. Our model has a simpler structure and requires less computing
resources than existing models that utilize text data, but it has the advantage of cross-domain transferability
while providing an intuitive understanding of the inference results. KGMC consists of three steps: (1) keyword
extraction from the review text, (2) subgraph extraction and keyword-enhanced subgraph construction, and
(3) GNN-based rating prediction. We have conducted extensive experiments over eight benchmark datasets
to examine the relative superiority of the proposed KGMC method, compared to state-of-the-art baselines.
Additional experiments and case studies have been also conducted to demonstrate the transferability as well
as keyword-based explainability of KGMC. Our findings highlight the practical advantages of our model for
recommender systems and support its effectiveness in inductive graph-based link prediction.
1. Introduction

As the number of choices in our daily lives is rapidly increasing,
matching potentially relevant items to users is becoming increasingly
important. In particular, the recent development of artificial intelli-
gence technologies has rekindled the need to develop highly sophis-
ticated recommender systems. Deep learning methods have enabled
multi-modal data such as texts and images, to be better utilized in
recommender systems (Zhang et al., 2019, 2022; Sharma et al., 2023;
Valcarce et al., 2019).

In recent years, graph neural networks (GNNs) have emerged as a
new representation approach to enable multi-modal learning for rec-
ommender systems (Ying et al., 2018). Relative to other deep-learning
approaches, GNNs can model the user–item relationships in a more
intrinsic way (Wu et al., 2022a). While each GNN layer propagates
node features, additional features can be smoothly utilized by inserting
new nodes on an existing graph, allowing the potential for GNNs to be
exploited for multi-modal learning (Shi et al., 2023). For GNN multi-
modal learning approaches, individual embedding generation models
such as VGG (Simonyan and Zisserman, 2015) and Word2Vec (Mikolov
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et al., 2013) have been adapted to the type of input (i.e., text or
image). Then, those embeddings have been aggregated to represent
node features (Ying et al., 2018). To extract more latent relation-
ships from user–item interactions, side information such as reviews,
timestamps, and item attributes have also been actively utilized (Gao
et al., 2020). These approaches, however, require excessive computing
resources because they need to utilize models with many parameters.

Recently, Transformer-based language models and convolutional
neural network (CNN)-based image models have become popular for
utilizing multi-modal data (Radford et al., 2021; Xu et al., 2023;
Gajbhiye and Nandedkar, 2022; Parvaiz et al., 2023), but they require
a great amount of GPU resources. Furthermore, adding embedding
generation models to the recommender system to utilize multi-modal
data also increases the overall system and infrastructure complexity.
Conversely, existing multi-modal approaches utilize text and images
converted to embeddings, making it difficult for humans to intuitively
understand the results. In the context of e-commerce, monitoring is
important to prevent recommender systems from performing poorly
over time due to problems such as filter bubbles (Jiang et al., 2019)
or echo chambers (Ge et al., 2020).
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Fig. 1. Utilizing keyword sharing relationships in addition to user–item ratings.
Another useful property that a recommender system needs is trans-
ferability; the ability to leverage data from other domains to operate
a recommender system is important if sufficient training data is not
available in the early stages. Undoubtedly, transferable models have
been widely used in computer vision and natural language processing,
with some significant progress in the GNN field (Zhu et al., 2021;
Han et al., 2021). However, transferable GNNs have only focused on
learning node features from the structure of the graph. User reviews
are highly valuable information, and enabling the transformers to
be review-aware may further enhance GNN-based recommender sys-
tems. However, when user reviews are transferred to multi-dimensional
vectors, it is difficult for them to be used with the graph structure
simultaneously; thus, some studies have attempted to utilize user re-
views in a message-passing step, requiring additional execution time
and resources as they need additional graph attention layers (Gao et al.,
2020). As the architecture does not fully support transferability for a
new domain, additional information such as user reviews should be
used as graph components when building a graph.

In this study, we focus on capturing additional information from
the text to improve the quality of recommendations and propose a
keyword-enhanced graph matrix completion (KGMC) method, which
utilizes keywords of users and items in an inductive graph-based rating
prediction model. The proposed model generates documents based on
user reviews and uses keywords extracted from the documents as side
information. Specifically, the target user, items, and their neighbors are
extracted as a subgraph, and keyword co-occurrences between nodes
are added as additional edges into the subgraph. Additional edges are
categorized into three types: user–user, item–item, and user–item, and
each type is learned in different message passage layers. By doing so,
the proposed model also becomes explainable as those keywords can
serve as explicit information in understanding the prediction results.
Also, unlike existing models, our model does not convert text data into
embeddings, resulting in a simpler and lighter model structure. These
advantages reduce operational risk in real-world applications. Another
important advantage of our model is transferability. As we mentioned
earlier, our model learns additional relationships between nodes by
converting keywords into edges in the graph, enabling transfer learning
based on graph structure. This transferability is useful in e-commerce
environments where there are multiple categories.

Fig. 1 shows the use of keyword-sharing relationships in addition
to user–item ratings. Shared keywords between user–user, item–item,
and user–item can be represented as additional edges, which can reveal
additional relationships that are traditionally difficult to discover using
ratings alone. In particular, relationships between homogeneous nodes
are not found in rating-based relationships. In e-commerce, similar
items may be registered with different IDs, such as when a renewed
product is released, and it is difficult for existing rating-based models to
2

capture the similarity between two items (Liu et al., 2020). The method
we propose can solve these problems through additional keyword
sharing relationships, while at the same time providing an intuitive
interpretation of the results.

In short, the main contributions of our study are as follows:

• We propose a transferable keyword-enhanced graph matrix com-
pletion (KGMC) model that utilizes keywords as relationships
between nodes.

• We show that the proposed model’s outcomes are explainable by
investigating keywords in target subgraphs.

• We show that the proposed model outperforms other GNN-based
models and review-aware models by conducting extensive exper-
iments on various cross-domain datasets.

The remainder of this paper is structured as follows. Section 2 re-
views related studies and Section 3 provides the overview and detailed
procedures of KGMC. Section 4 demonstrates the effectiveness of the
KGMC using multiple datasets. Lastly, Section 5 concludes the study
with key highlights.

2. Related work

This section reviews several relevant studies on exploiting GNN-
based recommender models and review-based recommendation mod-
els, followed by some prominent studies on keyword-extraction meth-
ods.

2.1. GNN-based recommender models

GNNs have been widely used in recommender systems and vari-
ous studies have been conducted to apply them to large-scale data.
Currently, the inductive method is considered the mainstream in GNN-
based recommender systems (Wu et al., 2022a), as it produces high
performance through subgraph learning (Ying et al., 2018; Hamilton
et al., 2017; Zhang and Chen, 2020) and can infer unseen cases as well
as achieve scalability to large graphs.

GraphSAGE (Hamilton et al., 2017) is a generic inductive model
that extracts subgraphs through a k-hop random walk from each node.
In each subgraph, a representation of the central node is obtained
through graph convolutional networks. In this way, the model learns
the topological structure of each subgraph as well as the neighboring
node features. Given the advantages, new models that seek to further
extend the original work have been proposed (Ying et al., 2018; Afoudi
et al., 2023). For example, PinSAGE (Ying et al., 2018) is a model that
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extends GraphSAGE for multimodal data collected from Pinterest.1 The
Pinterest dataset contains images, texts, and connections between them.
Each node feature is given by concatenating an image vector and a text
vector.

IGMC (Zhang and Chen, 2020) is a model that applies an inductive
approach to rating prediction using a rating matrix. While existing
inductive methods extract subgraphs based on a single node, IGMC
samples a subgraph from a user–item bipartite graph based on a user–
item pair and their k-hop neighbors. IGMC achieves higher performance
by using only graph structure information without any node features.
Another advantage of IGMC is transferability; training large graphs de-
mands a large amount of resources, making transferability an important
requirement.

EGI (Zhu et al., 2021) is an unsupervised model that learns sub-
graphs that sample k-hop neighbors around the target node. The model
consists of a GNN encoder and decoder, and the central node em-
beddings are obtained from each subgraph. In Zhu et al. (2021),
the transferability of the model was demonstrated and it was shown
that transferability is based on the structural similarity of graphs. In
addition, to measure the transferability between different graphs, they
proposed an EGI gap that compares structural similarity, arguing that
transfer learning in GNNs depends on graph structure information.

Heterogeneous GNNs have been proposed to more effectively learn
heterogeneous graphs composed of various types of nodes and edges
(Bing et al., 2023). Heterogeneous Graph Transformer (HGT) (Hu
et al., 2020) is a representative heterogeneous GNN model that utilizes
queries from target nodes and generates keys and values from neigh-
bors. It also reflects heterogeneity by using different weight metrics
for each node and edge type. SeHGNN (Yang et al., 2023) simplifies
complexity by pre-computing neighbor aggregation using a lightweight
mean aggregator to capture structural information. This method en-
hances semantic understanding through a single-layer structure with
an extended receptive field via long metapaths and a transformer-based
fusion module for combining features from diverse metapaths.

Recently, contrastive learning has emerged as an important research
stream in the GNN field to address data sparsity and noise (Xie et al.,
2023). NCL (Lin et al., 2022) takes into account the potential in-
fluence of neighboring nodes in constructing contrastive pairs. This
model considers both the structural neighbors obtained from the in-
teraction graph and the semantic neighbors based on the semantic
space. SimGCL (Yu et al., 2022) eliminates the need for intricate
graph augmentations and instead introduces uniform noise into the
embedding space to create contrasting views. This method not only
simplifies the process but also demonstrates improved recommendation
accuracy and more efficient training compared to traditional graph
augmentation-based methods. XSimGCL (Yu et al., 2023) is an ex-
tremely streamlined variant of SimGCL, in which the concurrent GNN
layer dedicated to a contrasting task is eliminated. Instead, node em-
beddings are derived by a sequence of perturbated GNN layers. The
contrastive task is executed by assessing the cross-layer distinctions
between the final node embeddings and the node embeddings form the
first GNN layers. Combining the two streams of research on heteroge-
neous GNN and contrastive learning, HGCL (Chen et al., 2023) utilizes
diverse relationships in heterogeneous graph data through contrastive
learning, improving user–item interaction modeling. It incorporates
meta-networks for personalized contrastive augmentation, leading to
enhanced recommendation performance on real-world datasets.

2.2. Review-based recommendation models

Another use for the recommender system is to extract and utilize
the potential relationships between users and items by employing user
reviews in text. As users’ reviews have been accumulated in various

1 https://www.pinterest.co.kr/.
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web services, significant research efforts have been made to utilize
them through natural language processing techniques.

TopicMF (Bao et al., 2014) is a topic-aware rating prediction model.
This model utilizes topics in reviews along with the user–item rating
matrix in conjunction with the matrix factorization method.

DeepCoNN (Zheng et al., 2017) is a CNN-based review-aware model
that generates item and user features from review text; two parallel
CNN layers generate user and item embeddings from a set of reviews,
respectively.

NARRE (Chen et al., 2018) is a model that learns the importance of
individual reviews through neural attention regression on two parallel
CNN layers that generate user and item embeddings. In this way,
the model judges the usefulness of each review and improves its
explainability.

Recently, there have been attempts to use review text as additional
information in graph-based models. AGCR (Kumar, 2022) learns re-
view text through CNN and predicts the rating by using the review
embeddings in a graph convolutional network (GCN) based model. This
method constructs a user–item bipartite graph including ratings and
reviews, and creates node embeddings using the attention mechanism
for each domain of the rating and review.

RGCL (Shuai et al., 2022) is a review-aware graph contrastive
learning model that utilizes review text through BERT-Whitening. The
review vectors are employed as edge features in the user–item graph.
This graph is then processed using a GCN to generate representations
of both the user and item nodes. Furthermore, higher performance was
achieved by utilizing contrastive learning to better distinguish different
types of nodes and edges.

MEGCF (Liu et al., 2022) utilizes entities extracted from multimodal
data such as images and text by adding them to the user–item graph
as nodes. MEGCF employs GNN layers to capture intricate seman-
tic relationships and collaborative filtering signals, while sentiment
information from reviews further refines the recommendation process.

AHOR (Wang et al., 2023) predicts user–item links by incorporating
not only user and item relationships, but also their respective aspects
into the graph. The aspects of each user and item are obtained through
diverse methods such as topic analysis from review text.

Although these review-based models have achieved high perfor-
mance, no performance comparison with inductive models such as
IGMC has been made. Also, the models using the review text in the GNN
have relied on the method of converting the review text into vectors
and utilizing them as edge features. The model we propose is different
in that it uses the review text as additional graph structural information
based on keywords rather than vectors. In this way, the model achieves
high transferability and explainability.

2.3. Keyword-extraction methods

TF-IDF (Sammut and Webb, 2010) is one of the most well-known
keyword extraction methods. It leverages term frequency (TF) and in-
verse document frequency (IDF) scores to select words that best represent
a document. TF measures term occurrences in a document, favoring
frequent terms. Conversely, IDF gauges how rarely a keyword appears
across documents, valuing unique terms. The product of TF and IDF
prioritizes frequent and distinctive terms for document representa-
tion. However, calculating IDF requires multiple documents, making
it unsuitable for single documents.

TextRank (Mihalcea and Tarau, 2004) is an algorithm that uses
PageRank (Gleich, 2015), an algorithm that calculates the rank of nodes
in a graph. In TextRank, an edge between words is created and a
graph is constructed using the co-occurrence relationships of words.
The constructed graph calculates the rank of each word through the
PageRank algorithm and extracts the top-ranked words as keywords.

KeyBERT (Grootendorst, 2020) is a keyword extraction method

based on the BERT model (Devlin et al., 2019), which has been widely

https://www.pinterest.co.kr/
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Fig. 2. The overall framework of the proposed KGMC (keyword-enhanced graph matrix completion) method.
used in recent studies in the NLP field. The previous two keyword ex-
traction methods do not consider the meaning of words and sentences.
In contrast, KeyBERT uses a pre-trained language model to compare
the meanings of candidate words and sentences, and selects words with
high similarity to the relevant document as keywords.

In our study, we compare the performances of inductive graph-
based methods using all of the three aforementioned keyword extrac-
tion methods. Instead of evaluating each keyword extraction method
at the item and user document level, a suitable keyword extraction
method is determined based on the contribution to rating prediction
performance improvement.

3. Method

This section explains the structure and the training process of the
proposed method. As shown in Fig. 2, KGMC consists of four main
steps. First, user and item documents are constructed from reviews
and keywords are extracted from each document (keyword extraction).
Second, a user–item bipartite graph is constructed and subgraphs are
extracted based on the target user–item node and their neighbors
(subgraph extraction). Third, keyword co-occurrence edges are added
to the subgraph (keyword-enhanced subgraph construction). Finally,
node embeddings are obtained from R-GCN layers (graph-based rating
prediction). In this final step, the target user–item rating is obtained
from a fully connected layer. In the subsequent subsections, each step
is described in detail. In addition, Algorithm 1 describes the KGMC
training process where  is the entire user–item bipartite graph and
𝑠 is the target subgraph. 𝑅 and 𝐾 denote the ratings and keywords set
in graphs, respectively. Keyword co-occurrence edges 𝐸𝑘𝑤 are added to
𝑠 and a GNN-based rating prediction model 𝛹 predicts rating �̂� from
the subgraph 𝑠.

3.1. Keyword extraction

For keyword extraction, user and item documents are first con-
structed. The proposed method KGMC uses keywords, instead of em-
bedding vectors, obtained from the review text, differentiating itself
from existing review-based models. Fig. 3 describes the keyword ex-
traction process. To extract keywords representing each user and each
4

Algorithm 1 KGMC training algorithm
Input: Graph (𝑉 ,𝐸,𝑅); Keyword set 𝐾;
Output: GNN model 𝛹 ;
1: for each minibatch do
2: Extract 𝑠(𝑉𝑠, 𝐸𝑠, 𝑅𝑠) from (𝑉 ,𝐸,𝑅)
3: Generate keyword co-occurrence edges 𝐸𝑘𝑤 from subgraph 𝑠

and keyword set 𝐾
4: �̂� ← 𝛹 (𝑠(𝑉𝑠, 𝐸𝑠 + 𝐸𝑘𝑤, 𝑅𝑠))
5: Backward propagation 𝐿(𝑟, �̂�)
6: end for

item, user documents and item documents are constructed from re-
views, respectively. The figure shows four reviews written on an item.
From them, an item document is constructed and a set of keywords
is extracted by one of the three keyword extraction methods. User
keywords are extracted using the same processes.

We extract 𝑛 keywords from each document. TF-IDF, TextRank, and
KeyBERT are used as keyword extraction techniques. TF-IDF extracts
keywords considering the frequency of appearance in other documents
through the IDF index (Sammut and Webb, 2010), whereas TextRank
and KeyBERT extract keywords while receiving a single document
as the input. TF-IDF can consider the appearance of words globally.
However, given that only the frequency of words is considered, it
is difficult to reflect the meanings and contexts of the words in the
document. In contrast, KeyBERT can consider the sentiments and con-
texts of words. KeyBERT and TextRank are more efficient for a web
application environment where documents are gradually accumulated
because keyword extraction is required only for the added documents.

3.2. Subgraph extraction

A user–item bipartite graph constructed from the user–item inter-
action contains rating information. Each node represents a user or an
item, and each edge represents the rating left by the user on the item.
Similar to the IGMC, target users, item nodes, and their neighbors are
extracted as subgraphs. The entire graph consists of two nodes: user
and item. The ratings between users and items are utilized as edges. The
rating is divided into five levels, each with a different type of edge. The
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Fig. 3. User/item document construction & keyword extraction.
Fig. 4. Subgraph extraction process. Dash lines represent target interactions, and in the second step, orange lines represent interactions with the target user’s 1-hop neighbors,
blue lines represent interactions with the target item’s 1-hop neighbors, and purple lines represent interactions between neighboring nodes.
subgraph contains four types of nodes: target user, target item, target
user’s neighbors, and target item’s neighbors. The edges connecting the
chosen nodes are included in the subgraph. To maintain the size of
the subgraph below a certain scale, the number of neighboring nodes
is limited. Fig. 4 shows the subgraph extraction process. In the first
step, the target user and item nodes are selected. In the second step,
the neighbors that are directly connected to the two target nodes are
selected. The selected neighbors are marked with orange and blue
outlines. Finally, the subgraph including the edges between the selected
nodes is extracted.

To initialize the node vectors in the subgraph, the target user
and item labels are set to 0 and 1, respectively. The labels for the
neighboring users are set to 2 and those for the neighboring items are
set to 3. For each node, one hot label vector is assigned as the initial
node feature. These node features contain only graph structure infor-
mation without any information about the user or item. This minimal
requirement is very useful in cases where user and item information is
not available, and it is also useful from a transfer learning perspective
because it can be applied to cases where the user and item information
have different schemas depending on the domain. Fig. 5 shows the node
feature initialization process.
5

3.3. Keyword-enhanced subgraph construction

Edges are added to connect items and users that share common
keywords, based on their co-occurrences. Algorithm 2 presents the
pseudocode for the keyword-enhanced subgraph construction. 𝑘𝑢 de-
notes keywords representing node 𝑢 and an additional edge connecting
two nodes is added to subgraph 𝑠 when two nodes have one or more
common keywords. Three types of keyword edges are created according
to the type of node pair. A heterogeneous edge connects users and items
and a homogeneous edge connects nodes of the same type, such as
user–user and item–item. 𝑒𝑢, 𝑒𝑖, and 𝑒𝑢𝑖 denote keyword co-occurrence
edges between user–user, item–item, and user–item, respectively. The
subgraph to which the keyword co-occurrence edges are added is
named the keyword-enhanced subgraph.

Fig. 6 shows the keyword co-occurrence edge generation process. In
the example shown in the figure, for a homogeneous keyword edge, the
edge is created because the 𝑢1-𝑢2 node pair shares keyword 𝐵, and the
𝑖1-𝑖3 node pair shares keyword 𝐷. For a heterogeneous keyword edge,
the edge is created because the 𝑢2-𝑖3 node pair shares keyword 𝐵, and
for the 𝑢3-𝑖2 node pair, the edge is created because they share keyword
𝐴.
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Fig. 6. Keyword co-occurrence edge generation process.
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Algorithm 2 Keyword-enhanced subgraph construction algorithm
Input: User-item rating bipartite graph ; Target user ID 𝑢𝑖𝑑𝑡; Target

item ID 𝑖𝑖𝑑𝑡; Keyword set 𝐾;
utput: Target subgraph 𝑔;

1: /* Extract subgraph & add keyword edges */
2: initialize node set 𝑉
3: add 𝑢𝑖𝑑𝑡, 𝑖𝑖𝑑𝑡 to 𝑉
4: 𝑁𝑢 ← get 1-hop neighbor item node set of 𝑢𝑖𝑑𝑡 from 
5: 𝑁𝑖 ← get 1-hop neighbor user node set of 𝑖𝑖𝑑𝑡 from 
6: 𝑉 ← 𝑚𝑒𝑟𝑔𝑒(𝑉 ,𝑁𝑖, 𝑁𝑢)
7: 𝑠 ← extract subgraph from  with 𝑉
8: 𝑃 ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑉 , 2)
9: for 𝑢, 𝑣 in 𝑃 do 𝑘𝑢, 𝑘𝑣 ← 𝐾(𝑢), 𝐾(𝑣) /* get keywords of node 𝑢 and

𝑣 */
0: if keyword co-occurrence in 𝑘𝑢, 𝑘𝑣 then /* check 𝑢 and 𝑣 share

same keywords */
1: if 𝑢, 𝑣 are all user node then
2: 𝑠(𝑢, 𝑣) ← 𝑒𝑢
3: else if 𝑢, 𝑣 are all item node then
4: 𝑠(𝑢, 𝑣) ← 𝑒𝑖
5: else
6: 𝑠(𝑢, 𝑣) ← 𝑒𝑢𝑖
7: end if
8: end if
9: end for
0: Return 𝑔

By combining the two types of edges, three variants are proposed.
n a prior study, it was shown that augmenting the inter-class, edge-
onnecting nodes of the same type is effective in GNN (Zhao et al.,
021). Extending the finding, we analyze whether there is a difference
n performance among the three variants. The first variant (KGMC-
etero) is a model that uses only one heterogeneous edge and only
eyword co-occurrence information between the user and item. The
econd variant (KGMC-homo) is a homogeneous type that uses only
eyword co-occurrence information between nodes of the same type
nd creates an edge that connects user–user and item–item. User–user
nd item–item edges are divided into two different edge types. The
6

𝑟

last variant (KGMC-mixed) is a mixed type that uses both of the two
edge types, heterogeneous and homogeneous. Fig. 7 shows how these
variants are different in adding additional edges, relative to IGMC.

3.4. Graph-based rating prediction

In this step, the constructed keyword-enhanced subgraph in the pre-
vious step is passed through the relational graph convolutional network
(R-GCN) layer to generate node representations. First, the relationships
between items and users are represented as shown in Eq. (1),

𝑅𝑟 = [ 1, 2, 3, 4, 5 ]

𝑅𝑘 =
[

𝑒𝑢𝑖, 𝑒𝑢𝑢, 𝑒𝑖𝑖
]

𝑅 = 𝑅𝑟 ∪ 𝑅𝑘 ,

(1)

where 𝑅𝑟 refers to the set of five rating types and 𝑅𝑘 refers to the set of
three keyword co-occurrence edge types in which 𝑒𝑢, 𝑒𝑖 and 𝑒𝑢𝑖 denote
keyword co-occurrence edges between user–user, item–item, and user–
item, respectively. The two edge type sets are combined as 𝑅, which is
used to pass messages at each layer. Five rating types are used because
most datasets contain five-level ratings. However, depending on the
dataset, various numbers of rating levels and edge-type layers can be
used.

As shown in Eq. (2), R-GCN performs message passing by classifying
layers according to the edge types as

𝑥(𝑙+1)𝑖 = 𝑡𝑎𝑛ℎ
⎛

⎜

⎜

⎝

𝑊 (𝑙)
0 𝑥(𝑙)𝑖 +

∑

𝑟∈𝑅

∑

𝑗∈ 𝑟
𝑖

𝑊 (𝑙)
𝑟 𝑥(𝑙)𝑗

⎞

⎟

⎟

⎠

, (2)

where 𝑥(𝑙+1)𝑖 is a representation vector of node 𝑖 obtained from the 𝑙th
-GCN layer. In the equation,  𝑟

𝑖 is a set of neighbors connected to
ode 𝑖 by edge type 𝑟, 𝑥𝑗 is a feature of node 𝑗, and 𝑊𝑟 is the weight
or the linear transformation for each relation. We use the 𝑡𝑎𝑛ℎ as the
ctivation function.

Eq. (3) shows the process of predicting the final rating from node
epresentation as
′
𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥1𝑖 , 𝑥

2
𝑖 ,… , 𝑥𝐿𝑖 )

= 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥′𝑠, 𝑥
′
𝑒) (3)
̂ = 𝜎(𝑊 ℎ + 𝑏) .
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Fig. 7. Comparison of additional edge addition methods.
Table 1
Basic statistics of eight datasets.

Dataset Movie Music Game Sport Office Grocery Yelp Epinions

#Reviews 52,326 125,454 252,518 385,689 399,555 1,143,470 484,211 25,442
#Users 7559 19,498 31,603 60,504 57,374 127,487 40,610 5654
#Items 5744 21,155 25,501 63,511 43,883 41,320 27,668 4380
#Reviews per User 6.92 6.43 7.99 6.96 6.37 8.97 11.92 4.50
#Reviews per Item 9.11 5.93 9.90 9.11 6.07 27.67 17.50 5.81
#Words per Review 33.37 20.75 56.19 31.12 27.07 37.37 106.60 17.77
Density 0.121% 0.030% 0.031% 0.010% 0.016% 0.02% 0.04% 0.10%
Table 2
Comparison of baselines.

Component NMF PMF SVD++ DeepCoNN NARRE IGMC SimGCL XSimGCL RGCL MEGCF AHOR KGMC

MF ✓ ✓ ✓

CNN ✓ ✓

BERT ✓ ✓

GNN ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rating ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Review ✓ ✓ ✓ ✓ ✓ ✓
The final node representation 𝑥′𝑖 is obtained by concatenating the
representations 𝑥𝑙𝑖 of node 𝑖 obtained from each R-GCN layer 𝑙. The
node representations 𝑥𝑢 and 𝑥𝑖 of the target user and item are extracted
through different poolings and then concatenated into a single vector.
The concatenated vector ℎ is subjected to a fully-connected layer and
a sigmoid function 𝜎 to obtain a predicted rating �̂�.

The mean square error (MSE) is used as a loss function. Eq. (4)
shows how MSE loss is calculated:

𝑀𝑆𝐸 = 1
𝑁

∑𝑛
𝑖=1(𝑟𝑖 − 𝑟𝑖)2 , (4)

where 𝑟𝑖 and 𝑟𝑖 denote the actual and predicted ratings of the user–
item interaction 𝑖, respectively, and 𝑁 denotes the total number of
interactions in the training dataset. Adam optimizer (Kingma and Ba,
2015) is also used for training.

4. Experiment and analysis

This section describes the experimental environment and results of
our analysis. Here, we compare the proposed KGMC with existing rating
prediction models and seek to answer the following research questions:

RQ1 Can the performance of the GNN-based rating prediction be
improved by utilizing keyword-sharing relationships?

RQ2 How does the performance change in conjunction with the edge
addition methods?

RQ3 Does the proposed method effectively handle sparse graphs?
RQ4 How does rating prediction performance change depending on

the keyword extraction method?
RQ5 How does the performance of the model depend on the type of

GNN layer?
RQ6 Is the keyword utilization method for graphs effective in transfer

learning?
7

RQ7 Does the proposed method provide explainable results that hu-
mans can understand?

4.1. Dataset

Experiments were conducted using datasets from eight different
domains to examine whether the proposed method works across diverse
areas. Data collected from three platforms were used. Among the Ama-
zon review datasets, 5-core datasets (i.e., datasets in which all nodes
have 5 or more neighbors) from six domains were used: Movie, Music,
Game, Sport, Office, and Grocery. Yelp is a review dataset for various
businesses, and 5-core users/items were selected. Finally, Epinions is
a review dataset for products written on an online platform and 3-
core users/items were selected. Datasets of various sizes, ranging from
25,000 to 1.14 million, were selected. All datasets contained the user
ID, item ID, review text, rating, and timestamp. The basic statistics for
the datasets are summarized in Table 1. Datasets of various densities
were selected to examine the effect of sparsity. Some reviews were
excessively long; therefore, the maximum length was limited to 300
words per review to eliminate the influence of outliers. Reviews with
more than 300 words were only 3.53% on average across the datasets.

4.2. Baselines

To compare the proposed method with various existing rating pre-
diction methods, three different approaches were selected as base-
lines: matrix factorization, the review-aware method, and a GNN-based
method. Table 2 lists the elements comprising each baseline. A detailed
description of each baseline model is provided below.
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4.2.1. Matrix factorization
• NMF (Lee and Seung, 2000) is a method of predicting unobserved

ratings from the user–item rating matrix through non-negative
matrix factorization.

• PMF (Mnih and Salakhutdinov, 2007) is a probabilistic linear
model that transforms matrix factorization into a probabilistic
model.

• SVD++ (Koren, 2008) is a model that extends singular value
decomposition based on a rating matrix by using item similarity.

4.2.2. Review-aware models
• DeepCoNN (Zheng et al., 2017) is a CNN-based review-aware

model that generates user and item representations from review
documents and predicts ratings between users and items.

• NARRE (Chen et al., 2018) is a model that improves rating
prediction performance and identifies useful reviews by applying
an attention mechanism to a review-aware model using CNN.

4.2.3. Graph-based models
• SimGCL (Yu et al., 2022) is a contrastive learning-based GNN

method, which replaces graph augmentations with uniform noise
added to the embedding space, resulting in improved recommen-
dation accuracy and training efficiency.

• XSimGCL (Yu et al., 2023) is an extremely simplified variant of
SimGCL that uses only a path of GNN layers and contrasts the first
and the last node embeddings.

• RGCL (Shuai et al., 2022) is a GNN-based model that utilizes
a review vector extracted using BERT. RGCL utilizes the review
embeddings obtained from BERT as edge features.

• MEGCF (Liu et al., 2022) integrates semantic-rich entities from
multimodal data into a user–item interaction graph and employs
a GNN to capture semantic correlations and collaborative filtering
signals. Sentiment information from reviews is also used to weight
neighbor aggregation, enhancing the effectiveness of MEGCF in
modeling multimodal user preferences. However, in our experi-
ment, we only had access to user reviews; therefore, only review
text and ratings were used for this model, which is also true for
the other baseline and proposed models.

• AHOR (Wang et al., 2023) is a GNN-based model that utilizes
aspects extracted from review text. Among the graph-based rating
prediction models, AHOR is the most recent model that uses
reviews.

• IGMC (Zhang and Chen, 2020) is a subgraph-based inductive
model that captures graph structure information. It is robust for
sparse data and transfer learning has been confirmed possible
through experiments (Zhang and Chen, 2020).

4.3. Experimental settings

4.3.1. Keyword extraction
Three keyword-extraction methods were used to examine the per-

formance differences associated with the keyword-extraction meth-
ods: KeyBERT, TF-IDF, and TextRank. Each document was created by
combining the reviews of each user and item, followed by keyword
extraction. A maximum of five keywords were extracted from each
document, and only single nouns and adjectives were used as keyword
candidates. KeyBERT used the distilbert-base-nli-mean-tokens pre-trained
model (Reimers and Gurevych, 2019) from the Sentence Transformers
library.2 The extracted keywords were assigned to each user and item
node and were used to build the keyword-enhanced subgraphs.

2 https://www.sbert.net/.
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4.3.2. Evaluation metric

𝑅𝑀𝑆𝐸 =
√

1
𝑁

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2 (5)

The root mean square error (RMSE), as described in Eq. (5), was
sed as the evaluation metric. 𝑦𝑖 and 𝑦𝑖 denote the actual and predicted
atings of the user–item interaction 𝑖, respectively, and 𝑁 denotes the
otal number of interactions in the test dataset. In our rating prediction
ask, a lower RMSE indicates a better performance.

𝐷𝐶𝐺@𝑘 = 1
𝑁

𝑁
∑

𝑖=1

1
𝑙𝑜𝑔2(𝑝𝑖 + 1)

(6)

𝑀𝑅𝑅@𝑘 = 1
𝑁

𝑁
∑

𝑖=1

1
𝑝𝑖 + 1

(7)

We also evaluated our model with normalized discounted cumula-
tive gain (NDCG) and mean reciprocal rank (MRR), considering that
recommender systems are commonly evaluated using top-k metrics.
Both metrics have been widely used in recommendation system stud-
ies (Wu et al., 2022b). When applying a recommendation system to a
web application, multiple item candidates are shown to the user, and
only some of them are selected. Therefore, in order to evaluate in a
similar way to the real-world web environment, prior studies randomly
generated negative pairs to apply top-k metrics (Wang et al., 2022;
Zhang et al., 2023; Yang et al., 2022). In our datasets, as there were
no negative pairs, we also had to randomly generate them. Therefore,
for the NDCG and MRR evaluations, we selected two thousand random
users and their last positive interactions, and generated 99 randomly
sampled negative interactions, which do not exist in the test datasets,
as it was done identically in a prior recommender system study (Wang
et al., 2022). Eqs. (6) and (7) present how to evaluate with NDCG@k
and MRR@k. 𝑁 is the total number of test users and 𝑝𝑖 is the position
of a positive item in the 𝑡𝑜𝑝 − 𝑘 list of the 𝑖th user.

4.3.3. Train setting
Our KGMC model was implemented using PyTorch (Paszke et al.,

2019) and DGL (Wang et al., 2019). The datasets were split into train
(60%), validation (20%), and test (20%) subsets based on chronological
order. The mean squared error (MSE) was used for the loss function,
as our evaluation metric was RMSE. Adam optimizer (Kingma and
Ba, 2015) was used with initial learning rates of [2e−3, 1e−3, 5e−3].
The batch size was fixed at 128, and the node-embedding dimensions
in the hidden layers of the GNN were fixed at 32; 1-hop enclosing
subgraphs were used for all of the datasets. After subgraph extraction,
we randomly dropped out the edges of each subgraph with a probability
of 0.2 during training. Four R-GCN layers were used in the study. These
hyperparameters were also used in the IGMC baseline experiments for
a fair comparison. Each experiment was repeated five times and the
mean was computed for reporting.

4.4. Experiment results

4.4.1. Performance comparison to baselines
To answer RQ1, we compared the performance of KGMC with the

performance of the baseline models. Table 3 shows the experimental
results comparing the baseline models and KGMC. The numbers shown
in bold indicate the best model outcome in each domain, and the un-
derlined numbers indicate the best baseline outcomes. Among the three
variants of KGMC, created by varying the edge types, KGMC with the
homogeneous type edges (KGMC-homo), produced better performance
than KGMC with the heterogeneous type edges (KGMC-hetero) and
KGMC with the mixed type edges (KGMC-mixed). Furthermore, KGMC-
homo achieved the best-performing results, outperforming each of the
baseline models across the eight datasets, without exception. Among
the three keyword extraction techniques, all three variants of KGMC
were implemented via KeyBERT for the results reported in the table.

https://www.sbert.net/
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Fig. 8. Visualization of keyword-enhanced subgraphs based on alternative edge addition methods.
Table 3
RMSE performance of the baseline models and KGMC.

Model\Dataset Movie Music Game Sport Office Grocery Yelp Epinions

NMF 1.1050 0.7846 1.2043 1.1653 1.1214 1.1608 1.3084 1.2284
SVD++ 1.0250 0.6805 1.1139 1.0033 0.9926 1.0789 1.1965 1.1913
PMF 1.1211 0.6940 1.1491 1.0211 1.0140 1.1361 1.3422 1.2212
DeepCoNN 0.9272 0.6160 1.0472 0.9675 0.9737 1.1012 1.2101 1.1890
NARRE 0.8919 0.5906 1.0387 0.9932 0.9865 1.0954 1.2959 1.1926
SimGCL 0.9689 0.6589 1.0904 0.9836 0.9722 1.1301 1.2100 1.1920
XSimGCL 0.9899 0.6782 1.1033 0.9923 0.9836 1.1126 1.2366 1.2420
RGCL 0.9998 0.6700 1.1140 0.9978 0.9905 1.0756 1.1742 1.1880
MEGCF 0.9625 0.6201 1.0870 0.9609 0.9110 1.1082 1.2110 1.1713
AHOR 0.9718 0.6598 1.0867 0.9784 0.9719 1.1096 1.1905 1.1929
IGMC 0.8659 0.5828 0.9990 0.9210 0.8903 1.0192 1.0661 1.1184

KGMC-hetero 0.8374 0.5499 0.9826 0.9011 0.8698 1.0032 1.0531 1.1098
KGMC-homo 0.8331 0.5487 0.9804 0.9003 0.8692 1.0013 1.0482 1.1080
KGMC-mixed 0.8357 0.5508 0.9823 0.9012 0.8707 1.0025 1.0495 1.1109

Improvement 3.78% 5.85% 1.85% 2.25% 2.37% 1.76% 1.69% 0.85%

The best results are highlighted in bold, and the best results among the baselines are underlined. Each experiment was repeated five times and the mean was reported. The
improvement shows the percentage of improvement made by the best model over the second-best model for each dataset. T-tests confirmed that the improvements were all
significant at a p-value < 0.01.
t

On average, KGMC achieved performance improvement by an av-
erage of 2.6% when compared with the best baseline model. For each
of the datasets, its performance was better than any of the baseline
models, without exception. Out of all of the datasets, KGMC showed
a performance improvement by 12.4% compared with the best MF
baseline model, 7.6% compared with the best review-aware baseline
model, and 2.6% compared with the best graph-based baseline model,
on average. In a review-based rating prediction study, a relative perfor-
mance improvement above 1% is regarded as a significant change (Tay
et al., 2018; Li et al., 2021; Shuai et al., 2022). In our study, our
proposed model achieved more than 1% performance improvement in
every domain, except Epinions (0.85%), over IGMC which achieved the
second-best performance in every domain dataset, as shown in Table 3.

Regarding the experimental results of the baseline models, IGMC
achieved the highest performance for every dataset. Thus, we have
confirmed that the inductive graph-based approach is superior for
rating prediction. The performance improvement made by IGMC over
the other baseline models was the largest in the Music dataset and
smallest in the Epinions dataset. Epinions is characterized as a 3-core
dataset, which means that all nodes have at least 3 neighbors. The
inductive graph method appears to be more effective when 𝑘 is large
in the k-core settings. From this observation, we attribute the relatively
smaller performance gains of the KGMC models in Epinions to the
nature of the dataset.

4.4.2. Comparison of the edge addition methods
To answer RQ2, three KGMC variants were created and tested

using alternative edge generation methods. As shown in Table 3, in
all of the cases that used additional keyword co-occurrence edges,
higher performance was achieved over IGMC, which used rating edges
9

a

only. This proves that the keyword information we added helps ac-
curately predict ratings. The highest performance was achieved only
when homogeneous edges were added across all of the datasets. From
these results, we can infer that a learning method that includes the
relationships between homogeneous nodes is beneficial in enhancing
the inductive graph-based method.

We visualized samples of keyword-enhanced subgraphs for intuitive
understanding. Fig. 8 shows sample subgraphs extracted from the Yelp
dataset. We can observe that the subgraph structure changes depending
on how keyword co-occurrence edges are added, and we found that
adding homogeneous edges improves performance because it enables
our model to additionally utilize relationships between homogeneous
nodes that are not found in conventional rating relationships. On the
other hand, adding heterogeneous edges has the potential to perturb
the explicit rating relationship, so the performance improvement was
limited.

4.4.3. Top-K performance evaluation
To further investigate the performance superiority of KGMC relative

to IGMC, we compared the two models by applying the top-k evaluation
metrics. Table 4 shows the experimental results between IGMC and
KGMC with top-k metrics. KGMC outperformed IGMC in all evaluation
metrics, leading us to conclude that more appropriate items will be
recommended when KGMC is applied to commercial recommendation
systems, where top-K choices are likely to play a critical role for their
success.

4.4.4. Data sparsity
To answer RQ3, we compared performance improvements based on

he density of the datasets. Even on very sparse datasets like Sport

nd Office, KGMC showed significant performance gains. IGMC has
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Table 4
Top-k performance comparison of IGMC and KGMC.

Model Metric Music Games Office Sports movie Grocery Epinions Yelp

IGMC NDGC@5 0.1115 0.1705 0.1490 0.0977 0.1556 0.0969 0.0285 0.0871
NDGC@10 0.1237 0.2011 0.1487 0.1298 0.1775 0.1141 0.0561 0.1098
NDGC@20 0.1403 0.2276 0.1936 0.1508 0.2077 0.1357 0.0647 0.1316

MRR@5 0.1023 0.1433 0.1300 0.0873 0.1321 0.0863 0.0232 0.0758
MRR@10 0.1073 0.1563 0.1383 0.0998 0.1410 0.0932 0.0307 0.0844
MRR@20 0.1120 0.1635 0.1449 0.1068 0.1491 0.0993 0.0353 0.0907

KGMC NDGC@5 0.1224 0.1933 0.1600 0.1174 0.2124 0.1159 0.0629 0.1015
NDGC@10 0.1470 0.2148 0.1795 0.1465 0.2386 0.1288 0.0770 0.1174
NDGC@20 0.1705 0.2391 0.2171 0.1688 0.2659 0.1436 0.1003 0.1584

MRR@5 0.1061 0.1699 0.1381 0.1070 0.1925 0.1080 0.0522 0.0907
MRR@10 0.1163 0.1786 0.1499 0.1146 0.2034 0.1133 0.0579 0.0992
MRR@20 0.1229 0.1851 0.1576 0.1232 0.2106 0.1175 0.0642 0.1089

The best results are highlighted in bold.
Fig. 9. Comparing the number of parameters between models.
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een shown to be effective for sparse datasets in a prior study (Zhang
nd Chen, 2020). KGMC outperformed IGMC in the datasets of various
ensities in our study, strongly supporting the robustness of KGMC
gainst sparse datasets.

.5. Comparing the number of learnable parameters

The number of model parameters is an important factor in deter-
ining training time and memory usage. We compared the number

f parameters in the baseline and our proposed models to analyze
ot only the performance but also the cost of the models. Fig. 9
hows the number of parameters for the models we employed in our
xperiments. The analysis confirms that KGMC is not only superior in
erformance but also efficient in terms of the number of parameters.
eview-based models such as RGCL, NARRE, and DeepCoNN have a
ery large number of parameters, which require more computational
esources for training and inference. MEGCF, which is based on Light-
CN, has relatively fewer parameters, but is inferior to KGMC in terms
f performance.

.6. Ablation study

We performed ablation studies to evaluate the effectiveness of our
ethod. Two ablation studies were conducted from two perspectives:

eyword extraction method and GNN layer type.

.6.1. Comparison of keyword-extraction methods
To answer RQ4, which questions if the rating prediction perfor-

ance changes depending on the keyword extraction method, the per-
ormance of KGMC was compared using the three keyword-extraction
ethods: KeyBERT, TextRank, and TF-IDF. The experiment was per-
10

ormed only for the homogeneous type of edge addition as it was found
he most effective. Table 5 presents the experimental results of KGMC
btained while varying the keyword-extraction methods. The keyword
xtraction method that achieved the highest performance across the
atasets was inconsistent. There was no single keyword extraction
ethod that performed the best all the time and the performance
ifferences were marginal. KeyBERT achieved the highest performance
n the five datasets, indicating that it can perform as well or better
han TF-IDF, except for the Office dataset, without referring to all
ocuments. The pre-trained model was already trained with many other
ocuments and was able to extract high-quality keywords.

The differences in the datasets resulted in different appearance
atterns of meaningful keywords in each domain. To compare key-
ord qualities of the keyword-extraction methods, we extracted and

ompared the top 10 most frequently used keywords in each do-
ain. Tables 6 and 7 compare the keywords of users and items in
ifferent domains. Keywords that express users’ tastes or item char-
cteristics are marked in bold. Assessing the qualities of keywords in
specific domain is a challenging task (Abulaish et al., 2022). We
anually marked domain-specific keywords and excluded expressions

hat indicated general positive preferences such as good, great and
love. A relatively clear difference in keyword quality was observed
in the Grocery and Yelp datasets where KeyBERT exhibited the high-
est performance. Compared with other keyword-extraction methods,
domain-specific keywords were extracted at a high rate from key-
words extracted with KeyBERT. In the case of the Yelp and Grocery
datasets, where KeyBERT achieved the highest performance, more
domain-specific keywords were observed with KeyBERT than with the
other keyword-extraction methods. The item keywords extracted from
the Grocery dataset using TF-IDF had a high proportion of domain-
specific keywords, but there were few domain-specific keywords among
the user keywords. However, in the case of Office and Movie, there
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Table 5
RMSE performance of KGMC using the keyword-extraction methods.

Method\Dataset Movie Music Game Sport Office Grocery Yelp Epinions

KeyBERT 0.8331 0.5487 0.9804 0.9003 0.8692 1.0013 1.0482 1.1080
TextRank 0.8332 0.5476 0.9810 0.9013 0.8678 1.0074 1.0493 1.1496
TF-IDF 0.8327 0.5488 0.9827 0.9022 0.8696 1.0058 1.0505 1.1511

The best results are highlighted in bold.
Table 6
Keyword samples from Yelp and Grocery datasets.

Method KeyBERT TextRank TFIDF

User Item User Item User Item

Grocery flavor tea great great great coffee
chocolate flavor taste good good tea
tea coffee good taste coffee chocolate
coffee chocolate flavor flavor tea candy
cookies taste like like love sauce
taste love coffee love product sugar
favorite delicious tea tea taste salt
vanilla favorite product coffee delicious good
delicious cookies love product flavor bars
cinnamon vanilla chocolate best like organic

Yelp pizza burger great great good food
burger pizza food food great pizza
steak salad good good food chicken
dinner steak service service place coffee
salad dinner like order pizza car
sushi lunch place like delicious breakfast
taco sandwich order place husband store
restaurant bacon chicken chicken really sushi
sandwich taco time time wife good
shrimp restaurant best pizza order burger

Table 7
Keyword samples from Office and Movie datasets.

Method KeyBERT TextRank TFIDF

User Item User Item User Item

Office love love great great great great
great great good good good good
good happy work work product pen
printer good pen pen love ink
pencil quality quality product work printer
ink nice nice work pen product
nice printer product quality price work
perfect amazon love nice nice love
happy favorite color ink quality paper
favorite ink ink color perfect card

Movie movie movie movie movie movie movie
love love great great great series
great favorite good good good great
good dvd film love love good
favorite great love film film love
dvd fun story story excellent fun
fun happy like series series film
best christmas films like ok season
christmas good series excellent classic christmas
enjoy husband classic action awesome classic

was no significant difference between the sample keyword sets. From
these results, we can infer that domain-specific keywords affect the
performance of rating prediction. Also, it should be noted that there
are limitations to evaluating the quality of the entire keyword set
using sample keywords; however, significant insights can be observed
through the keyword sampling analysis.

4.6.2. Comparison of GNN layers
To answer RQ5, we experimented with utilizing the keyword-

nhanced graph of KGMC with different GNN layers to observe per-
ormance variations across GNN layers. We experimented with five
11
different GNN layer types, including R-GCN used in KGMC. Light-
GCN (He et al., 2020) is a lightweight GCN model, GIN (Xu et al., 2019)
is a model utilizing structural information based on graph isomorphism,
GATv2 (Brody et al., 2022) is an improvement of the graph attention
network to learn the importance of neighbors, and HGT (Hu et al.,
2020) is a model to reflect the characteristics of heterogeneous graphs.
The experiment was performed only for the homogeneous type of edge
addition.

Table 8 shows the RMSE performance of each variant of GNN
layers as well as the number of learnable parameters. HGT achieved
the highest performance on five datasets, while R-GCN achieved the
highest performance on three datasets. However, the performance gap
between the two GNNs is marginal on all datasets, and HGT has twice as
many as R-GCN in terms of the number of learnable parameters. These
results show that our proposed model utilizing R-GCN is efficient from
a computational cost perspective.

4.7. Cross-domain experiment

To verify how well KGMC maintains the capability of general-
izability and transferability, which are known as the strengths of
IGMC (Zhang and Chen, 2020), cross-domain experiments were con-
ducted. As shown in Tables 6 and 7, each domain contains different
keywords, and in a general approach, these differences in keywords
make transfer learning difficult. However, we conducted experiments
to check whether KGMC can overcome these domain-specific key-
word differences and perform cross-domain transfer learning. Two
experiments were conducted: direct-transferring, which performs rating
prediction without fine-tuning, and fine-tuning, which trains the model
with a target dataset again (Zhu et al., 2021). The pre-trained models
were trained on three datasets (i.e., Yelp, Office, Grocery) and the
cross-domain experiments were performed on the other five datasets
(i.e., Music, Game, Sport, Movie, Epinions).

We tested the cross-domain transferability and generalization ability
of KGMC to answer RQ6, which asks if the keyword utilization method
for graphs is effective in transfer learning. Table 9 presents the perfor-
mance of direct-transferring and Table 10 presents the performance of
fine-tuning. We tested both models in the same way to compare the
cross-domain performances of IGMC and KGMC.

In the direct-transferring experiment, the pre-trained models were
evaluated with a different domain dataset without any fine-tuning. For
example, the IGMC-Yelp model was created by training IGMC using
the Yelp dataset and tested using a different dataset while the IGMC-
original model was created by training IGMC using the domain dataset
to which it was applied for testing. The results of the direct-transferring
experiment show that both IGMC and KGMC can perform well similar
to the original training results. Overall, KGMC showed higher perfor-
mance than IGMC for all of the datasets in the direct-transferring test,
as shown in Table 9. Remarkably, the KGMC direct-transferring perfor-
mance, in some cases, exceeded that of the IGMC-original, indicating
that KGMC inherits the generalization ability of IGMC and achieves
higher performance by utilizing additional information.

As presented in Table 10, the fine-tuning experimental results show
that KGMC achieved higher performance than IGMC for all of the
datasets. In most cases, pre-training with the Grocery dataset achieved
the highest performance, probably because the Grocery dataset was

the largest dataset and contained diverse patterns. However, for the
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Table 8
RMSE performance of KGMC with alternative GNN layers.

GNN #parameters Movie Music Game Sport Office Grocery Yelp Epinions

R-GCN 58.8K 0.8331 0.5487 0.9804 0.9003 0.8692 1.0013 1.0482 1.1080
LightGCN 33.2K 1.0434 0.6843 1.1399 1.0125 1.0060 1.1256 1.2443 1.2607
GIN 33.2K 1.2122 0.7324 1.3078 1.0361 1.1216 1.2899 1.5773 1.2627
GATv2 46.6K 1.0375 0.6815 1.1384 1.0121 1.0048 1.1246 1.2402 1.2575
HGT 116.7K 0.8231 0.5448 0.9843 0.9012 0.8607 0.9975 1.0446 1.1893

The best results are highlighted in bold, and the second-best results are underlined.
w
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Table 9
RMSE performance of the direct-transferring.

Model\Dataset Music Game Sport Movie Epinions

IGMC-original 0.5848 1.0044 0.9240 0.8659 1.1184

IGMC-Yelp 0.6557 1.0270 0.9559 0.8928 1.1264
IGMC-Office 0.5904 1.0056 0.9230 0.8588 1.1642
IGMC-Grocery 0.6107 1.0026 0.9248 0.8647 1.1562

KGMC-original 0.5487 0.9804 0.9003 0.8331 1.1080

KGMC-Yelp 0.6196 0.9989 0.9368 0.8615 1.1168
KGMC-Office 0.5692 0.9861 0.9046 0.8317 1.1316
KGMC-Grocery 0.5710 0.9827 0.9026 0.8286 1.1177

Improvement 3.59% 1.98% 2.22% 3.52% 0.86%

The best results are highlighted in bold, and the second-best results are underlined.
The improvement shows the percentage of improvement made by KGMC over IGMC
for each dataset.

Table 10
RMSE performance of the fine-tuning.

Model\Dataset Music Game Sport Movie Epinions

IGMC-original 0.5828 0.9990 0.9210 0.8659 1.1184

IGMC-Yelp 0.5805 0.9950 0.9200 0.8558 1.1171
IGMC-Office 0.5811 0.9954 0.9200 0.8562 1.1181
IGMC-Grocery 0.5797 0.9955 0.9195 0.8583 1.1176

KGMC-original 0.5487 0.9804 0.9003 0.8331 1.1080

KGMC-Yelp 0.5464 0.9797 0.8986 0.8236 1.1081
KGMC-Office 0.5456 0.9784 0.8997 0.8226 1.1121
KGMC-Grocery 0.5440 0.9776 0.8990 0.8176 1.1092

Improvement 6.15% 1.75% 2.28% 4.46% 0.76%

The best results are highlighted in bold, and the second-best results are underlined.
Each experiment was repeated five times and the mean was reported. The improvement
shows the percentage of improvement made by KGMC over IGMC for each dataset.
T-tests confirmed that the improvements were all significant at a p-value < 0.01.

pinions dataset, there was no performance improvement through fine-
uning probably due to the structural difference in the k-core setting.
verall, the results indicate that adding additional information in the

orm of graph edges is also effective for fine-tuning except for the
atasets with very small k-core settings. The datasets used for pre-
raining were 5-core, which were different from the Epinions dataset
n terms of graph structure. Therefore, we attributed the lack of per-
ormance improvement with transfer learning on Epinions, a 3-core
ataset, to the fact that transfer learning in GNNs is highly correlated
ith graph structure information (Zhu et al., 2021). The proposed
ethod can be similarly applied not only to keywords but also to cases
here features are shared between nodes. Therefore, the proposed
dge-enhancing method can be extended to various types of data.

.8. Keyword-based explainability

Another advantage of KGMC is its explainability. Along with high
redictive power, the ability to interpret results is crucial for recom-
ender systems. Explainable recommendation models with knowledge

raphs have previously been proposed (Li et al., 2022). Going fur-
her, KGMC not only improves performance by using the extracted
eywords but also identifies those keywords that connect users and
tems through the keywords included in the subgraph. To answer RQ7,
12
hich asks if the proposed method is explainable, we demonstrate
eyword-based explainability using several examples. For this purpose,
e introduce a method for explaining results by comparing keywords
f target users and items with keywords of neighboring nodes in the
eyword-enhanced subgraph.

Table 11 presents a list of keywords included in the keyword-
nhanced subgraphs extracted from the four datasets. The table con-
ains the target user keywords, item keywords, neighboring keywords,
nd the appearance frequencies of users and items from each sample
ubgraph. The five most frequently used keywords among the neighbor-
ng node keywords have been selected as neighboring keywords. Those
eywords that occur commonly in the target user, item, and neighbor
re displayed in bold. From the table on the left, we can see that the
eyword beef appears in common in the subgraph extracted from the

Yelp dataset. The keywords beef and sandwich frequently appear among
the keywords of the neighboring nodes. Based on these results, we
can infer that the beef keyword connects the user and the item and
it is an important component of the subgraph. From the table on the
right, we can see that the keyword chicken appears in common in the
case of samples from the Grocery dataset. Among the keywords of the
neighboring nodes, the keywords chicken, soup appear frequently. Thus,
it can be inferred that the subgraph is about chicken soup. As shown
by these examples, KGMC has the advantage of enabling an intuitive
interpretation of results without additional processes.

As demonstrated earlier, keyword-based methods are useful to intu-
itively understand the results. More specifically, these results can be
used from two perspectives. The first is to understand the detailed
tastes of users and the characteristics of items. The tastes of users
in e-commerce platforms are becoming increasingly diverse, and it is
important to understand their tastes in detail. The detailed tastes of
users can be understood through the keyword-based interpretations we
illustrated. The second is to use the insights gained from the keywords
to develop new items. It is an important and risky task to develop new
products that can satisfy users. By capturing keyword pairs that appear
together within the subgraph, they can be used to develop insights into
new products that can better appeal to users.

5. Conclusion

In this study, we proposed KGMC, which is a new keyword-
enhanced graph-based rating prediction model. We created user and
item documents based on reviews, and extracted keywords using Key-
BERT, TFIDF, and TextRank, separately. The extracted keywords were
used to create additional edges in the subgraph consisting of the target
user, item, and its neighbors. In this way, we sought to utilize the latent
information contained in the review while maintaining its inductive
characteristics.

In our experiment, we found that the proposed model was superior
to the state-of-the-art baselines, including the most recent graph-based
models such as RGCL and MEGCF. In addition, cross-domain exper-
iments confirmed that generalizability and transferability, which are
the strengths of the inductive model, were effectively maintained. In
our ablation studies, we observed that the proposed model performed
the best when utilizing keyword co-occurrence edges between homo-
geneous nodes. In addition, we compared the prediction performances
while varying the keyword extraction methods. For most datasets,
KeyBERT showed the best performance.
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Table 11
Keywords in subgraph samples.

Sample Yelp User ID 4602 Item ID
1835

Grocery User ID 103161 Item ID
9760

Category User keywords Item keywords Neighbor-
ing
keywords

Users count Items count User keywords Item keywords Neighbor-
ing
keywords

Users count Items count

mediocre mushroom burger 3 4 flavor onions chicken 31 4
beef beef beef 7 1 chicken chicken soup 15 7
chef onions salad 3 1 chili noodles flavor 6 2
pasta sandwich sandwich 7 3 popcorn soup tasty 4 4
lunch steak pizza 3 2 tasty macaroni chili 2 3

Sample Game User ID 13610 Item ID
1488

Sport User ID 33780 Item ID
5627

Category User keywords Item keywords Neighbor-
ing
keywords

Users count Items count User keywords Item keywords Neighbor-
ing
keywords

Users count Items count

irritating toadstool nintendo 7 6 wide secure bike 12 4
gameboy nintendo wii 7 7 long tire tire 6 3
mario gameboy gamecube 5 3 fat bike cheap 4 2
nintendo wii gameboy 5 3 tire efficient easy 2 4
wii weakest mario 4 8 bike cheap efficient 2 3
KGMC can provide an intuitive explanation using the keywords
ncluded in the subgraphs. This method not only makes it possible
o understand the various tastes of users, but also provides insights
hrough the keyword pairs that appear together within the subgraph
or new product development. Furthermore, it is worth noting that
he proposed method can also mitigate the data sparsity problem as
atent information between additional users and items extracted from
ide information is actively exploited during the learning process (Ah-
adian et al., 2022; Chen et al., 2022; Ali et al., 2023). Indeed,
eveloping robust models on the sparse dataset is one of the main re-
earch topics in recommender systems, and the proposed model shows
romising results for tapping into the potential of essential aspects of
he inductive graph-based learning approach for the enhancement of
ecommendation accuracy even on a sparse dataset.

For future research, we are in the process of designing a method to
dentify and evaluate keywords with high importance for each domain
nd reflect the varying importance of each keyword in the model.
his keyword importance identification method is expected to further
nhance the explainability of the proposed model.
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