
Research Article
Energy Efficient and Real-Time Remote Sensing in
AI-Powered Drone

Bongjae Kim ,1 Jinman Jung ,2 Hong Min ,3 and Junyoung Heo 4

1Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
2Department of Computer Engineering, Inha University, Incheon 22212, Republic of Korea
3School of Computing, Gachon University, Seongnam 13120, Republic of Korea
4Division of Computer Engineering, Hansung University, Seoul 02876, Republic of Korea

Correspondence should be addressed to Jinman Jung; jmjung@inha.ac.kr and Hong Min; hmin@gachon.ac.kr

Received 24 December 2020; Revised 9 March 2021; Accepted 23 March 2021; Published 1 April 2021

Academic Editor: Hoon Ko

Copyright © 2021 Bongjae Kim et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Remote sensing using drones has the advantage of being able to quickly monitor large areas such as rivers, oceans, mountains, and
urban areas. In the case of applications dealing with large sensing data, it is not possible to send data from a drone to the server
online, so it must be copied to the server offline after the end of the flight. However, online transmission is essential for ap-
plications that require real-time data analysis. +e existing computation offloading scheme enables online transmission by
processing large amounts of data in a drone and transferring it to the server, but without consideration for real-time constraints.
We propose a novel computation offloading scheme which considers real-time constraints while minimizing the energy con-
sumption of drones. Experimental results showed that the proposed scheme satisfied real-time constraints compared to the
existing computation offloading scheme. Furthermore, the proposed technique showed that real-time constraints were satisfied
even in situations where delays occurred on the server due to the processing of requests from multiple drones.

1. Introduction

Remote sensing has the advantage of being able to monitor a
wide range of areas over long distances. In large areas such as
rivers, oceans, mountains, and urban areas, remote sensing
drones can collect a lot of data in a short period of time.
+ese data are copied to a high-performance computer to
obtain the desired information through analysis algorithms.
Due to the mobility of drones and the advantage of remote
sensing, the development of remote sensing applications
using drones is increasing [1–3].

Sensors that are commonly used for remote sensing in-
clude image sensors, hyperspectral image sensors, and lidar.
Image sensors are also widely used in hobby drones, and data
transmission is sufficiently affordable with current network
technology. However, in the case of hyperspectral image
sensors and lidar, the size of sensing data can be more than
several gigabytes per minute, so real-time transmission is very
difficult. It is common for drones to store sensing data in the

drone’s storage device when flying and then copy the stored
data to the computer for analysis after the flight is completed.
Such offline analysis cannot satisfy the requirements of ap-
plications that require real-time information.

To satisfy real-time information requirements, we can
think of how to obtain information by analyzing sensing
data inside the drones. However, analyzing large-scale
sensing data requires a high-performance computer, which
is challenging to fit into drones because of its heavyweight
and energy consumption. Because drones fly, they are very
sensitive to load weight and battery capacity.

Considering the energy consumption and load weight,
the performance of CPUs or NPUs available in embedded
devices such as drones is much lower than that of high-
performance servers with GPUs. +erefore, the sensing data
analysis algorithm performed by the server cannot be used in
drones as it is. +ese problems are more severe because the
analysis algorithms are based on deep learning. To address
this, the computation offloading scheme has been proposed

Hindawi
Mobile Information Systems
Volume 2021, Article ID 6650053, 8 pages
https://doi.org/10.1155/2021/6650053

mailto:jmjung@inha.ac.kr
mailto:hmin@gachon.ac.kr
https://orcid.org/0000-0002-4310-6687
https://orcid.org/0000-0001-7818-9622
https://orcid.org/0000-0002-9099-0890
https://orcid.org/0000-0001-6407-6678
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6650053
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2021%2F6650053&domain=pdf&date_stamp=2021-04-01


to perform some of the analytical algorithms on drones and
perform the remaining algorithms after transferring the
intermediate results to the server [4].

In drone-based remote sensing applications with real-
time constraints, computational offloading can be a good
solution. +e existing computational offloading finds an
optimal layer that minimizes the sum of the energy for
performing deep learning-based analysis algorithms up to a
specific layer and the energy for transferring intermediate
result data to the server. However, this does not consider the
real-time constraints at all, which may result in exceeding
the deadline during computation up to the optimal layer or
during computation on the server. When a GPU server
handles requests frommultiple drones, the latency on a GPU
server often leads to an inability to satisfy the deadline.

In this paper, we propose a novel computation offloading
considering the real-time constraints and delays in the
server. +e delay can be caused by requests from multiple
drones to the server. +e proposed technique calculates the
time to perform deep learning-based analysis algorithms to
the specific layer, the time to transmit intermediate result
data to the server, and the time to wait on the server.+en, it
calculates the energy consumed by performing the analysis
algorithm on drones and the energy consumption required
to transmit the intermediate result data to the server. Using
these calculations, we find the optimal layer to minimize
energy consumption while meeting the deadline.

Experimental results show that the proposed scheme,
compared to the existing techniques, satisfies the real-time
constraints while minimizing energy consumption. It also
shows that the proposed scheme satisfies the real-time
constraints even when multiple drones send requests to the
server.

+is paper is organized as follows: Section 2 describes the
related works. Section 3 shows the proposed computation
offloading. +e experimental environments and results are
described in Section 4, and the concluding remarks are given
in Section 5.

2. Related Works

2.1. Offloading Schemes for Mobile Devices. Wu and Wolter
estimated the energy consumption and delay under two
delayed offloading policies, partial offloading and full off-
loading, and two types of network infrastructures, Wi-Fi and
cellular [5]. +e authors found some meaningful results. +e
full offloading is best if the deadline is extremely long, but
partial offloading and Wi-Fi transmission are considered if
the deadline is short. To reduce energy consumption, a
mobile device commits its tasks as much as possible to the
cloud and uses the cellular network.

Kim et al. proposed a dynamic computation offloading
scheme for tracking a flying object [6]. +e authors consider
the mobility of the frying target and the communication
failure rate between a drone and the base station to reduce
object detection and controlling decision time.

Edge computing-based schemes have been studied to
reduce the network delay caused by physical distance and to
support real-time applications. Performance guaranteed

computation offloading scheme was proposed to minimize
the total energy consumption of mobile devices in mobile-
edge computing [7]. In this scheme, the offloading is decided
by the energy condition of each mobile device, the com-
putational capacity of each edge server, and channel
bandwidth.

Moussa et al. proposed a task offloading strategy based
on load balancing for mobile-edge computing environments
[8]. +e authors designed an offloading model based on M/
M/1 queuing system and 5G network features, for instance,
orthogonal subchannels. +eir optimization scheme finds a
minimum delay of offloading by using several iteration
searches.

Mobile-edge computation offloading was devised by
Gou et al. for ultradense IoT networks [9]. +e authors
proposed a two-tier game-theoretic greedy offloading
scheme to improve the single-tier offloading. +e resource
capacity of edge servers changes dramatically because a large
number of tasks arrive randomly to edge servers in ultra-
dense IoT networks. +e limitation of wireless channels is
also considered to reduce the overall computation overhead
of all tasks. +e two-tier model includes outer and inner
layers. +e outer layer is used for finding a globally optimal
offloading decision, and the inner layer is used for finding a
locally optimal offloading strategy.

2.2. Offloading Schemes for Deep Learning. +ere are many
studies that use deep learning frameworks to decide on
offloading for saving energy consumption of mobile devices
and reducing task completion time [10–15]. However, we
have a different view that is selectively offloading as the input
size of each layer and finding an optimal partitioning point.

Neurosurgeon [16] is a hybrid approach between cloud
and mobile-only-based deep learning framework. In this
scheme, the data and layers are partitioned and committed
some data and layers to the cloud for reducing energy
consumption and computational latency. +e authors found
that the optimal partitioning point is changed according to
deep learning models, hardware platforms, server load
levels, and wireless channel bandwidth.

A Heuristic Offloading Method called HOM was de-
veloped to assign deep learning tasks to a proper computing
infrastructure in 5G networks [17]. +e key factor of off-
loading decision is the transmission delay that is changed by
the path length between a mobile device and a deep learning
computational unit. During the offloading path identifica-
tion, the transmission delay of each path is estimated in a
heuristic manner. +e path is confirmed by using the
shortest offloading path finding mechanism.

Li et al. proposed an edge computing-based deep
learning framework for the Internet of things [18]. Edge
servers conduct several learning network layers to reduce
input size until the input size is enough to be small to send
data to the centralized cloud. Scheduling between IoT de-
vices and an edge server is considered the service capacity
and network bandwidth. If the service capacity of an edge
server and the network bandwidth between an IoT device
and an edge server are enough to handle an n-layered

2 Mobile Information Systems

 9071, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6650053 by H

ansung U
niversity, W

iley O
nline L

ibrary on [07/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



network task, the whole task is offloaded to the edge server.
In the case of not enough to handle an n-layered network
task, it checks the (n− 1)-layered network repeatedly.

DeepWear was proposed to decide on deep learning
tasks for wearable devices [19]. A wearable device sends its
task to a paired mobile device because wearable devices do
not have a direct connection to the Internet. Under these
environments, DeepWear supports partial offloading, con-
text-aware scheduling, and pipelined processing to utilize
the resources of the paired mobile device.

3. Proposed Computation Offloading

3.1. Our System Models and Assumptions. In our proposed
systemmodel, an AI-powered drone uses a mounted camera
to monitor its remote areas, such as rivers. Figure 1 shows an
overview of our system. Drones monitor their target field
and analyze image data. Analyzing image data with a deep
learning mechanism requires a different number of re-
sources for each layer. One layer can handle on-device re-
sources, but another layer cannot handle within the
deadline. Our system, that is, applied offloading mechanism,
can optimize resource consumption by deciding whether to
offload each layer or not.

+e AI-powered drone can analyze the problems in the
monitoring area using the captured picture and the CNN
(Convolution Neural Network) for analysis.+e AI-powered
drone can transmit the result to the mobile base station. An
AI-powered drone can process inferences using CNNs lo-
cally or offload some of the inference jobs to servers with
GPUs that are more computationally powerful than itself.
For example, if the CNN-based inferencemodel is composed
of N layers, an inference job can be processed to the n-th
layer on the drone. +e GPU server can perform the rest of
the inference job from the n+ 1-th layer to the N-th layer,
where O≤ n≤N. It is also assumed that multiple AI-pow-
ered drones are operating simultaneously. We assume that
each inference task is given a deadline to complete the task.

3.2. Expected ExecutionTimeModel. +e expected execution
time of an inference task by offloading can be calculated
according to our model as follows: ETtotal (n) denotes the
expected execution time of an inference job when the AI-
powered drone processes the inference job until the n-th
layer and offloads the rest of the inference job to a GPU
server where 0≤ n≤N. S (n) means the total amount of
computing operation to process up to the n-th layer. Cdrone
denotes the computing power in terms of the clock speed of
the AI-powered drone. D (n) denotes the total size of the
intermediate result data inferred up to the n-th layer. Bdrone
denotes the network bandwidth between the AI-powered
drone and the GPU server. Tserver (n) means the time re-
quired to perform the rest of the inference task after the n-th
layer on the GPU server. Since we can assume that we know
the GPU server’s specifications, Tserver (n) can use a pre-
computed value. EDserver denotes the expected processing
delay of the GPU server like queuing delay due to multiple
inference requests. EDserver value can be estimated by

sending an inference request from each drone and mea-
suring the time to return the inference result. EDserver ex-
cludes Tserver (n), which can be calculated and used in
advance. +e cost for receiving the recognition result is a
small constant value and is not considered in the expected
execution time model:

ETtotal(n) �
S(n)

Cdrone
+

D(n)

Bdrone
+ Tserver(n) + EDserver. (1)

3.3. Expected Energy ConsumptionModel. Since AI-powered
drones are battery-operated, energy consumption must be
considered when offloading inference tasks. +e expected
energy consumption of an inference task by offloading can
be calculated as follows:N denotes the total number of layers
of a given inference model. EECtotal (n) denotes the expected
energy consumption of an inference job when the AI-
powered drone processes the inference job until the n-th
layer and offloads the rest of the inference job to a GPU
server where 0≤ n≤N. Pprocessing denotes the power con-
sumption (unit is Watt) per unit time of an AI-powered
drone. Ptransmit denotes the power consumption for trans-
mitting data in an AI-powered drone. +erefore, the total
expected energy consumption of the AI-powered drone can
be calculated, as shown in the following equation:

EECtotal(n) �
S(n)

Cdrone
× Pprocessing + D(n) × Ptransmit. (2)

3.4. Proposed Inference Offloading Scheme. Algorithm 1
shows our inference offloading scheme for AI-powered
drones. We can find the layer number n that minimizes the
energy consumption of the AI-powered drone while meeting
a given deadline constraint. EECmax denotes the required
maximum energy consumption for an inference job off-
loading. EECmin indicates the required minimum energy
consumption for an inference job in the AI-powered drone.
DT denotes a deadline constraint of an inference job. Off-
loadingpoint means the layer number of the inference model
which minimizes the energy consumption of the AI-pow-
ered drone while meeting the deadline.

4. Evaluation

4.1. Simulation Environments. For the evaluation of the
proposed scheme, we measured the execution time and
energy consumption of a deep learning model in Raspberry
Pi 3 with Google Coral, which is a popular NPU (Neural
Processing Unit) for embedded devices. We used a model
based on VGG16 as a deep learning algorithm and measured
energy consumption using the Monsoon power monitor,
which is widely used as a measurement of energy for mobile
devices. +e information and measured values of each layer
in the deep learning model can be found in Table 1.

We assumed that the drone operates in the form of
performing recognition by photographing the area to be
sensed in the size of 384× 384× 3 (width× height×

Mobile Information Systems 3

 9071, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6650053 by H

ansung U
niversity, W

iley O
nline L

ibrary on [07/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(i) Result: Offloadingpoint//layer number n to offload
(ii) EECmin �EECmax
(iii) Offloadingpoint � 0
(iv) n� 0
(v) while n≤N do
(vi) Calculate ETtotal (n)
(vii) Calculate EECtotal (n)
(viii) if EECtotal (n)≤ EECmin then
(ix) if ETtotal (n)≤DT then
(x) Offloadingpoint � n
(xi) EECmin �EECtotal (n)
(xii) end
(xiii) end
(xiv) n� n+ 1
(xv) end.

ALGORITHM 1: Find n while meeting deadline constraints and minimizing energy consumption in an AI-powered drone.

Control & command station

Computing server

On-device processing Offloading

Communication

Data

Result

Figure 1: System overview.

Table 1: Information and measured values of each layer in the deep learning model.

Layer # Layer type Dimension and size of output Execution time (s) Power (J)
Input — (384, 384, 3) 0.1267 —
1 C (112, 112, 64) 0.1346 0.546
2 C (112, 112, 64) 0.0107 0.256
3 M (56, 56, 64) 0.0801 0.265
4 C (56, 56, 128) 0.1727 0.471
5 C (56, 56, 128) 0.0120 0.540
6 M (28, 28, 128) 0.0150 0.005
7 C (28, 28, 256) 0.1336 0.209
8 C (28, 28, 256) 0.2562 0.626
9 C (28, 28, 256) 0.0352 0.881
10 M (14, 14, 256) 0.0767 0.006
11 C (14, 14, 512) 0.1413 0.366
12 C (14, 14, 512) 0.1826 0.604
13 C (14, 14, 512) 0.0087 0.731
14 M (7, 7, 512) 0.3299 0.034
15 F (4096) 0.0481 1.198
16 F (2048) 0.0374 0.203
17 F (2) 0.1346 0.147
∗Layer type: C (convolution), M (max pooling), and F (fully connected).

4 Mobile Information Systems

 9071, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6650053 by H

ansung U
niversity, W

iley O
nline L

ibrary on [07/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



channels) in succession using the camera mounted on the
drone. +e data taken by the drone while flying for about
10minutes are about 8GB.

We assumed that the server’s processing power is 10
times or 1000 times better than the embedded device
equipped with a drone. We also assumed that the queuing
delay in the server is 500ms on average and 1000ms on
maximum. +e average queuing delay of the GPU server is
set to an average of 500ms, which is based on the server
queuing model proposed by Lu et al. [20]. +e delay is
caused by the server’s processing of multiple requests from
drones simultaneously.

We assumed the network between the drone and server
is Wi-Fi and measured the transmission time and the
transmission energy in Raspberry Pi 3. We used the mea-
sured values as simulation parameters. +e transmission
energy used in the simulation was 3.335 J/MB, and the
transmission rate was 10MB/s.

In the experiment, we conducted a simulation of four
schemes: Local-only, Server-only, Offloading, and Realtime-
Offloading, and compared results. A total of 10,000 simu-
lations were performed, and the results were averaged. In the
case of the Local-only scheme, the drone does not offload by
completing all executions on the drone. In the case of the
Server-only scheme, the drone transfers images of the
camera to the server without any execution of the deep
learning model. In the case of the Offloading scheme, the
drone runs the existing computation offloading scheme that
only considers minimizing energy consumption without
considering real-time constraints. In the case of the Off-
loading scheme, the offloading point is always fixed because
it aims to minimize energy consumption. In the given ex-
perimental environment, the Offloading scheme processes
up to the 6-th layer of the CNN model and offloads sub-
sequent computations to the GPU server. In the case of the
Realtime-Offloading scheme, the proposed scheme, the
drone finds an optimal layer where the real-time constraints
are to be met while considering minimizing energy con-
sumption. +erefore, the proposed scheme’s offloading
point varies according to real-time constraints.

4.2. Simulation Results. In this section, we evaluate the
performance of the Realtime-Offloading scheme through the
simulation based on experimental energy consumption and
execution studies. Our detailed simulation study showed
that the Realtime-Offloading scheme meets the deadline
considering energy consumption better than the existing
schemes. We compare the Realtime-Offloading scheme,
Local-only, Server-only, and existing offloading across a
range of deadlines. In our experiment, we simulate a situ-
ation in which the deadline times are generated from a
random distribution on [m,m+ 1]. As them value increases,
the deadline time required for an inference job increases. We
used the deadline meet ratio as a real-time metric. To
quantify the real-time characteristic of offloading schemes,
the simulation measured the ratio between the number of
jobs executed to meet the deadline constraint and the total
number of inference jobs during some time interval.

Figure 2 shows the comparison of the execution time
according to the deadline randomly assigned in the range of
[0, 1], [1, 2], and [2, 3] for existing schemes. +e range of
execution times varies with the deadline times for all al-
gorithms. +e Local-only scheme has a very large execution
time among the existing ones.+is means that inference jobs
with relatively large running times are not suitable to per-
form only on a drone.While the Server-only scheme appears
to have the smallest average execution time, the energy
consumption can be very high as all input data must be
transferred to the server. Our Realtime-Offloading scheme
has a similar or small execution time on average compared to
the existing offloading scheme for various deadline ranges.
+is means that our scheme can be suitable for applications
that meet the requirements very well in time.

Figure 3 shows the average energy consumption
according to the deadline requirements for several schemes.
Among other schemes, the Local-only scheme shows the
largest average energy consumption. +e energy con-
sumption for Local-only is 7.09 J/operation. +e result re-
mains high regardless of whether the deadline time
increases. +at is why offloading is needed in battery-based
drones. In particular, the Server-only scheme also requires
the transfer of large amounts of input data regardless of the
deadline, which consumes a lot of transmission energy. It
can also be an unacceptable overhead considering the
communication environment between drones and the off-
loading server where the network may be unstable. +e
Realtime-Offloading scheme offloads the server while con-
sidering the deadline, resulting in relatively slightly larger
energy consumption compared to the existing offloading
schemes. However, as the deadline increases in time, energy
consumption can be decreased.

Figure 4 shows that Realtime-Offloading scheme gives
the best performance among the evaluated in terms of the
deadline meet ratio and energy consumption. +is figure
shows the deadline meet ratio according to the deadline
requirements for Local-only, Server-only, existing off-
loading, and Realtime-Offloading scheme. For Server-only,
the transmission consumes a lot of energy, but we assume
that the performance of the server is very high, so real-time
constraints can mostly be satisfied for cases where the
deadline >1. Our experiments show that, for these cases, the
proposed technique can obtain high deadline meet ratios
with 65% at most of the energy consumption of Server-only.
Compared with the existing offloading scheme, we confirm
that the energy consumption of the proposed scheme is
slightly larger, but the real-time constraints are well-
matched regardless of all deadline requirements. Further-
more, as the timely requirements of the deadline increase,
energy consumption decreases because optimal layers can be
found to minimize energy consumption. Note that our
Realtime-Offloading finds the layer number n that mini-
mizes the energy consumption of the AI-powered drone
while meeting a given deadline constraint.

Figure 5 shows the deadline meet ratio according to the
server’s processing power. In this experiment, the deadline is
randomly generated from the range of [1, 3], assuming that
the performance of the server is 10, 100, and 1000 times the

Mobile Information Systems 5

 9071, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6650053 by H

ansung U
niversity, W

iley O
nline L

ibrary on [07/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



local performance, respectively. All schemes show that the
deadline meet ratio increases as the server’s processing
power increases. +is is because the average execution time
is shortened due to the increased processing power of the
server. More importantly, the rate of increase of Proposed-
Offloading in the deadline meet ratio was the highest as the
processing power of the server increased. +e simulation
result shows that the Proposed-Offloading has a deadline
meet ratio of at least 97% with 61% of the energy con-
sumption of Server-only scheme. +is means that the
Proposed-Offloading scheme is suitable for inference ap-
plications with deadline constraints.

Figure 6 shows the deadline meet ratio for the server’s
queuing delay of average of 100ms, 500ms, and 1000ms,
which are randomly distributed from (0, 200], (0, 1000],
and (0, 2000]. +e figure shows that, as the average
queuing delay increases on the server, the deadline meet
ratio of all schemes is reduced except for Local-only. Note
that Local-only is not affected by queuing delays on the
server because inference requests are handled locally.
Even if the queuing delay increases, the decrease rate of
Realtime-Offloading is relatively lower than that of
existing offloading schemes, which satisfies the deadline
requirements well.

Deadline [0, 1] Deadline [1, 2] Deadline [2, 3]
Average execution time (unit: ms)

1801.63 1801.63 1801.63
845.59 847.57 850.92

1198.39 1200.38 1198.35

Local-only
Server-only
Offloading
Realtime-offloading 873.72 1133.78 1198.35

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

Ex
ec

ut
io

n 
tim

e (
un

it:
 m

s)

Figure 2: +e execution time according to the deadline requirements.

Local-only
Server-only
Offloading
Realtime-offloading

Deadline [0, 1] Deadline [1, 2] Deadline [2, 3]
Average energy consumption (J/Operation)

7.09 7.09 7.09
5.63 5.63 5.63
3.36 3.36 3.36
5.37 3.67 3.36

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Av
er

ag
e e

ne
rg

y 
co

ns
um

pt
io

n
(J

/O
pe

ra
tio

n)

Figure 3: +e average energy consumption for several schemes.

6 Mobile Information Systems

 9071, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6650053 by H

ansung U
niversity, W

iley O
nline L

ibrary on [07/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Local-only
Server-only
Offloading
Realtime-offloading

Deadline [0, 1] Deadline [1, 2] Deadline [2, 3]
Deadline meet ratio (%)

0.00 0.20 1.00
0.34 0.98 1.00
0.05 0.76 1.00
0.21 0.94 1.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

D
ea

dl
in

e m
ee

t r
at

io

Figure 4: +e deadline meet ratio according to the deadline requirements.

Local-only
Server-only
Offloading
Realtime-offloading

10 times 100 times 1000 times
Deadline meet ratio (%)

0.60 0.59 0.59
0.99 1.00 1.00
0.88 0.91 0.91
0.97 0.99 0.99

0.00

0.20

0.40

0.60

0.80

1.00

1.20

In
fe

re
nc

e s
uc

ce
ss

 ra
tio

Figure 5: +e deadline meet ratio according to server’s processing power.

Local-only
Server-only
Offloading
Realtime-offloading

100ms 500ms 1000ms
Deadline meet ratio (%)

0.590.60 0.60
1.00 1.00 0.87
1.00 0.91 0.68
1.00 0.99 0.82

0.00

0.20

0.40

0.60

0.80

1.00

1.20

In
fe

re
nc

e s
uc

ce
ss

 ra
tio

Figure 6: +e deadline meet ratio according to server’s queuing delay.

Mobile Information Systems 7

 9071, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6650053 by H

ansung U
niversity, W

iley O
nline L

ibrary on [07/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5. Conclusions

In this paper, we proposed an energy-efficient and real-time
remote sensing in AI-powered drones.+e proposed scheme
can offload a deep learning-based analysis job while mini-
mizing the energy consumption of the AI-powered drone
and meeting a given deadline constraint. It calculates the
time to perform the deep learning-based analysis algorithms
to the specific layer, the time to transmit intermediate result
data to the server, and the time to wait on the server.+en, it
calculates the energy consumed by performing the analysis
algorithm on drones and the energy consumption required
to transmit the intermediate result data to the server. Using
these calculations, we find the optimal layer to minimize
energy consumption while meeting the deadline. Experi-
mental results showed that the proposed scheme satisfies the
real-time constraints while reducing energy consumption. It
also showed that the proposed scheme satisfies the real-time
constraints even when multiple drones send requests to the
server.

We plan to model the communication delay caused by
multiple drones’ connections to GPU servers in more detail
and study more sophisticated computational offloading
techniques in future works.

Data Availability

No data were used to support this study.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+e authors thank DuHyeuk Chang who helped with the
experiment. +is work was supported by the Korea Agency
for Infrastructure Technology Advancement (KAIA) grant
funded by the Ministry of Land, Infrastructure and Trans-
port (Grant 20DPIW-C153746-02) and Gachon University.

References

[1] H. Min, J. Jung, B. Kim, J. Hong, and J. Heo, “Dynamic
rendezvous node estimation for reliable data collection of a
drone as a mobile IoT gateway,” IEEE Access, vol. 7,
pp. 184285–184293, 2019.

[2] Y. Nimmagadda, K. Kumar, Y.-H. Lu, and C. G. Lee, “Real-time
moving object recognition and tracking using computation
offloading,” in Proceedings of the 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pp. 2449–2455, Taipei, Taiwan, October 2010.

[3] J. R. Kellner, J. Armston, M. Birrer et al., “New opportunities
for forest remote sensing through ultra-high-density drone
lidar,” Surveys in Geophysics, vol. 40, no. 4, pp. 959–977, 2019.

[4] C. Moussa, H. Zhang, H. Shamim, and K. Liu, “Task off-
loading strategies based on workload balancing in ultra-dense
networks,” in Proceedings of the Conference on Research in
Adaptive and Convergent Systems, pp. 217–223, Association
for Computing Machinery, New York, NY, USA, September
2019.

[5] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile
offloading in heterogeneous networks,” IEEE Transactions on
Mobile Computing, vol. 17, no. 2, pp. 461–474, 2018.

[6] B. Kim, H. Min, J. Heo, and J. Jung, “Dynamic computation
offloading scheme for drone-based surveillance systems,”
Sensors, vol. 18, no. 9, 2018.

[7] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance
guaranteed computation offloading for mobile-edge cloud
computing,” IEEE Wireless Communications Letters, vol. 6,
no. 6, pp. 774–777, 2017.

[8] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge
computation offloading for ultradense iot networks,” IEEE
Internet of :ings Journal, vol. 5, no. 6, pp. 4977–4988, 2018.

[9] S. Yu, X. Wang, and R. Langar, “Computation offloading for
mobile edge computing: a deep learning approach,” in Pro-
ceedings of the 2017 IEEE 28th Annual International Symposium
on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pp. 1–6, Montreal, QC, Canada, October 2017.

[10] X. Wang, X. Wei, and L. Wang, “A deep learning based
energy-efficient computational offloading method in internet
of vehicles,” China Communications, vol. 16, no. 3, pp. 81–91,
2019.

[11] D. S. Rani and M. Pounambal, “Deep learning based dynamic
task offloading in mobile cloudlet environments,” Evolu-
tionary Intelligence, vol. 165, 2019.

[12] X. Zhao, K. Yang, Q. Chen et al., “Deep learning based mobile
data offloading in mobile edge computing systems,” Future
Generation Computer Systems, vol. 99, pp. 346–355, 2019.

[13] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang,
“Deep learning empowered task offloading for mobile edge
computing in urban informatics,” IEEE Internet of :ings
Journal, vol. 6, no. 5, pp. 7635–7647, 2019.

[14] Z. Ning, P. Dong, X. Wang, J. J. P. C. Rodrigues, and F. Xia,
“Deep reinforcement learning for vehicular edge computing:
an intelligent offloading system,” ACM Trans. Intell. Syst.
Technol, vol. 10, no. 6, 2019.

[15] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian,
“Distributed deep learning-based offloading for mobile edge
computing networks,” Mobile networks and applications,
vol. 18, pp. 1–8, 2018.

[16] Y. Kang, J. Hauswald, C. Gao et al., “Neurosurgeon,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 1,
pp. 615–629, 2017.

[17] X. Xu, D. Li, Z. Dai, S. Li, and X. Chen, “A heuristic offloading
method for deep learning edge services in 5g networks,” IEEE
Access, vol. 7, pp. 734–744, 2019.

[18] H. Li, K. Ota, and M. Dong, “Learning iot in edge: deep
learning for the internet of things with edge computing,” IEEE
Network, vol. 32, no. 1, pp. 96–101, 2018.

[19] M. Xu, F. Qian, M. Zhu et al., “DeepWear: adaptive local
offloading for on-wearable deep learning,” IEEE Transactions
on Mobile Computing, vol. 19, no. 2, pp. 314–330, 2020.

[20] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg,
“Join-Idle-Queue: a novel load balancing algorithm for dy-
namically scalable web services,” Performance Evaluation,
vol. 68, no. 11, pp. 1056–1071, 2011.

8 Mobile Information Systems

 9071, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6650053 by H

ansung U
niversity, W

iley O
nline L

ibrary on [07/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense




