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Abstract: In this paper, we propose an improved parallel resampling technique. Parallel resampling is
a deformable object generation method based on volume data applied to medical simulations. Existing
parallel resampling is not suitable for massive computing, because the number of samplings is high
and floating-point precision problems may occur. This study addresses these problems to obtain
improved user latency when performing medical simulations. Specifically, instead of interpolating
values after volume sampling, the efficiency is improved by performing volume sampling after
coordinate interpolation. Next, the floating-point error in the calculation of the sampling position
is described, and the advantage of barycentric interpolation using a reference point is discussed.
The experimental results showed a significant improvement over the existing method. Volume
data comprising more than 600 images used in clinical practice were deformed and rendered at
interactive speed. In an Internet of Everything environment, medical imaging systems are an
important application, and simulation image generation is also valuable in the overall system.
Through the proposed method, the performance of the whole system can be improved.

Keywords: massive computing for volume deformation; parallel resampling; GPU parallel
computing; low-latency image generation; IoE medical simulation

1. Introduction

Virtual medical procedures are being applied to clinical education and surgical plan-
ning, contributing to the improvement in medical services on the Internet of Everything
(IoE). Generally, virtual medical procedures concern performing simulations of deforming
human body data using volume-based and surface-based methods for volume deformation
and rendering. Surface-based methods are advantageous in that they require fewer compu-
tational data and are faster compared to other methods. This is because the computation
considers only the surface of the object. However, it has a disadvantage in that it is difficult
to apply to topological changes such as cutting or merging. Although cutting has been
studied extensively [1–3], merging is a difficult problem.

Medical simulation involves operations such as incision and suturing and, thus,
it is appropriate to apply a volume-based deformation method that is independent of
topology changes. Due to the large size of volume data, calculating the deformation is
time consuming, and more efficient methods are desired. Recently, parallel deformation
algorithms using GPU (chainmail [4], mass-spring [5], position-based dynamics [6], etc.)
have been well used.

It is important to visualize the deformed data along with the deformation calculation.
To render more precise results, the volume resolution needs to be expressed as large
as 5123 and, thus, visualization becomes time consuming. In this study, we visualized
high-resolution deformed volumes by utilizing GPU parallelization.

The visualization of volume deformation is largely divided into two types (assuming
that the general ray-casting method is used). The first method generates deformed viewing
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rays while leaving the volume data unchanged, and the second method generates new
deformed volume data using straight viewing rays.

The first method performs iterative sampling for each ray in the original data. To
calculate each sampling position in a deformed viewing ray, the inverse transform of the
user deformation needs to be calculated, which becomes difficult when calculating a large
number of inverse transforms. It becomes difficult to handle exceptions, such as the cut
region, where inverse transformations do not exist, and the process is slow and potentially
erroneous due to the use of iterative numerical solutions such as the Newton–Raphson or
gradient-descent-like methods [7].

This issue has been addressed in the literature. When only a portion of the entire
volume data was deformed, the screen area corresponding to the deformed portion was
calculated in advance, and supersampling was applied to that area during rendering in [8].
In [9], an efficient approach to decompose the entire volume unequally was proposed.
However, since the inverse transformation vector was simply defined as the opposite
vector of the forward transformation, a large error may occur when the amount of change
in the transformation vector is large. Since the inverse transformation does not exist in the
cut region, this exception can be handled by making a special mark in the region where the
inverse transformation does not exist. In [10], this problem was solved by introducing an
alpha volume indicating the cut region. In [11], it was considered that when sampling was
performed through inverse transform, and errors occur in the interpolation and gradient
calculation process. In their study, image quality improvement in fine areas was realized
by interpolation using a nonlinear higher-order function and by considering deformation
in the gradient calculation.

The second method is to directly create deformed volume data from original volume
data. If point-based forward mapping is applied, holes or overlapping problems generally
occur. Although image-based backward mapping is a possible solution [12], it is time
consuming to identify corresponding particles for each output grid position. Therefore, we
used tetrahedron-based forward mapping using rasterization to address this problem. This
technique was not considered feasible previously due to the high computation times, but
recent advances in GPUs have made it possible. Parallel resampling is a typical tetrahedron-
based forward mapping method for volume deformation using GPU parallelization.

For reference, the term parallel resampling is also used for particle filter
techniques [13,14], which are common methods used to estimate the evolving state of
nonlinear, non-Gaussian time-variant systems. However, the parallel resampling used in
this study was different from the above studies, as it is a volume-based sampling technique.
The basic parallel resampling method [15,16] cannot handle many tetrahedra due to the
fact of its performance limitations. To implement more sophisticated deformations, new
methods should be explored. In this study, we generated deformed volume data at a high
speed by considering parallel resampling. By improving the resolution of the deformation,
5123 data were deformed and visualized in real time.

The contributions of this paper are as follows:

1. We propose an efficient volume deformation computing for massive data;
2. User latency was improved through a high-speed deformable object creation

algorithm;
3. We present a more reliable barycentric interpolation method suitable for GPUs.

Overall Flow of Our System

The overall flow of this study is illustrated in three steps as shown in Figure 1. (Step 1)
The entire volume data that needed to be transformed were composed of cells that were
hexahedrons of a fixed size. Each cell was decomposed into five tetrahedra. The vertex
matrices, X0 and X1, were created using the coordinate values of the four vertices constitut-
ing one tetrahedron as column vectors. For reference, it was assumed that the coordinate
values after deformation corresponding to X1 were already calculated through simulation
methods such as 3D chainmail [4] or mass-spring [5], and physical simulation was not
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within the scope of this study. (Step 2) The goal of this study was to store the resampling
value for each grid point inside every tetrahedron to generate the entire deformed volume
data. Therefore, first, in order to quickly extract the area inside the tetrahedron, the axis-
aligned bounding box (AABB) of the tetrahedron was calculated in deformed coordinates
(Step 3). For each grid point belonging to the AABB region, it was tested whether the grid
point was inside the tetrahedron. The resampling value was calculated at the grid points
that passed the test.
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Figure 1. Overall flow of the proposed method.

The structure of this paper is as follows: Section 2.1 describes Steps 1 and 2 of Figure 1
as a related study. In this study, Step 3 of Figure 1 is efficiently performed by applying
the two proposed methods. Section 2.2 describes how to efficiently calculate resampling
values, and Section 2.3 describes how to efficiently calculate the resampling position using
the coordinate system. Next, in Section 3, the experimental results are presented, and in
Section 4, the conclusions are drawn.

2. Materials and Methods
2.1. Related Work—Parallel Resampling

Parallel resampling is a method of storing forward mapping results in new volume
data. When forward mapping is performed in a point-based manner, as shown in Figure 2a,
problems such as overlaps or holes occur. If a kernel filter is used instead of a point,
as shown in Figure 2b, overlap occurs a different number of times for each pixel, and
parallelization becomes difficult.
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Figure 2. Forward mapping with problems: (a) holes and overlapping in a point-based manner;
(b) messy overlapping in the splatting method.

If rasterization is performed by connecting these points to a triangle, holes and overlaps
can be avoided, and parallelization is also possible. The four vertices constituting the
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rectangle in the undeformed space are transformed into two adjacent triangles in the
deformed space (Figure 3a,b). Since the output occurs only when the center of the pixel in
the deformed space is in the triangle, the resampling operation occurs only once at each
output coordinate.
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Figure 3. Rasterization process: (a) triangles comprising grid points in undeformed space; (b) trans-
formed into deformed space for resampling when the grid point is included in the triangle; (c) judg-
ment performed on the grid points within the axis-aligned bounding box (AABB) of each triangle.

In three dimensions, eight vertices constitute a hexahedral cell. As shown in Figure 4,
the cell is divided (Figure 4a,b) into 5 tetrahedra (Figure 4c).
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Figure 4. (a) Volume data; (b) a group of cells; (c) each cell is decomposed into 5 tetrahedra.

Each tetrahedron is transformed by changing the coordinates of each vertex comprising
the cell. The process of resampling inside each tetrahedron is as follows. For example,
it is assumed that 23 voxels constitute one cell. Volume data with a size of L × M × N
voxels comprise (L – 1) × (M – 1) × (N – 1) cells. If the cell comprises B3 voxels, the volume
data comprise approximately L/B × M/B × N/B cells. A cell is decomposed into five
tetrahedra regardless of the cell size, and the size of each tetrahedron is proportional to the
cell size.

Whether the output voxels are inside the transformed tetrahedron is determined using
the barycentric coordinates, and resampling is performed at each voxel position inside the
tetrahedron. The area near the tetrahedron is defined by the AABB of the tetrahedron, as
shown in Figure 3c. For each candidate voxel inside the AABB, the barycentric coordinates
(for the four vertices of the tetrahedron) are calculated. Since the calculated value (b) is the
barycentric coordinates in the three-dimensional space, it is expressed as a four-dimensional
vector. When each component of the vector is between 0 and 1, it is determined to be inside
a tetrahedron.

Representative existing studies using this approach include [15,16]. A tetrahedron
was generated using a relatively large cell in [15], and a cell with the same voxel size was
generated in [16]. This parallel resampling method can be performed in real time using a
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touch screen [17], and it can be applied by generating a tetrahedral mesh in an intermediate
step [18] when generating volume data from a general mesh.

2.2. Efficient Sampling Using Coordinate Interpolation

In this study, we aimed to improve the sampling performance by combining the
advantages of parallel resampling, Gascon’s method [15], and Aguilera’s method [16].
Moreover, the characteristics of the two previous studies are explained, and the differences
from this study are shown. For convenience, each thread of the GPU is expressed as a
thread, and the combined bundle of threads is expressed as a thread block.

Gascon’s method assumes that the size of each tetrahedron is suitably large (more
than a few tens of voxels in size). Therefore, one or several thread blocks correspond to
each tetrahedron. Threads belonging to one thread block can share the information of the
tetrahedron (X0, bounding box). The transformation of the tetrahedron is performed in
the CPU, because the total number of tetrahedra was fewer than 5000 in Gascon’s study.
However, the number of tetrahedra has to be significantly increased in order to achieve
smooth movement of deformation. In this study, one tetrahedron was assumed to be as
small as the voxel size and, thus, there was no reason to configure one tetrahedron as a
thread block and activate hundreds of threads.

Aguilera’s method defines a vertex as a coordinate in deformed space and a density
value. Coordinates in deformed space use the precalculated simulation results. A cell is
a hexahedron with eight voxels as vertices, and the eight density values are obtained by
performing texture sampling at each voxel position. Resampling concerns interpolating
the density values stored at vertex positions. The resampling value at the grid points in
the transformed space is calculated and stored in the deformed volume data. Aguilera’s
method [16] is different from Gascon’s method [15]. In Gascon’s method, one large tetrahe-
dron contains several cells, whereas in Aguilera’s method, one cell is decomposed into five
very small tetrahedra. Each thread is used to process one cell, i.e., five tetrahedra.

In our study, we constructed a high-speed algorithm to generate precise results by
combining only the advantages of the two previous studies. Aguilera’s method was used for
each thread processing one cell, which was decomposed into five small tetrahedra. Gascon’s
method was used for texture sampling in the rasterization step instead of sampling eight
times for each cell in the modeling step. Our method is efficient because the tetrahedron is
small, and the actual resampling in a small tetrahedron is infrequent.

Each thread is in charge of one cell to perform parallel processing. One cell is de-
composed into five tetrahedra, and calculation is performed for each tetrahedron. The
resampling is calculated at every grid point inside the AABB of each tetrahedron in de-
formed space (output volume data). The coordinates are obtained by the weighted average
of the four tetrahedron vertices. Aguilera’s method calculates the weighted average of the
brightness values (Figure 5a 3©), while Gascon’s method calculates the weighted average of
the coordinates in the undeformed space (Figure 5b 2©). In this study, texture sampling was
performed at the interpolated coordinates according to Gascon’s method (Figure 5b 3©).
This method reduces the number of texture sampling compared to Aguilera’s method.
Since the cell size is 1 in undeformed space, on average, texture writing will occur only
once for each cell, although one cell comprises five tetrahedrons.

As many threads as the number of hexahedral cells are launched, if we assume that
the size of volume data is (volx, voly, and volz):

number of threads = number of cells = (volx - 1)·(voly - 1)·(volz - 1) (1)

Note that five tetrahedra are created for each cell:

number of tetrahedra = 5·(volx - 1)·(voly - 1)·(volz - 1) (2)
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The number of output voxels is volx·voly·volz with the same size as the input voxel.
Since the tetrahedra are adjacent to each other without overlapping, the maximum number
of resampling and writing occurs in volx·voly·volz, which is the size of the output data. The
number of outputs for one cell is approximately 1. Compared to Aguilera’s method, where
texture sampling occurs eight times for one cell, the proposed method is more efficient.

(volx)·(voly)·(volz)
(volx− 1)·(voly− 1)·(volz− 1)

≈ 1 (3)

We store both positions before and after deformation for the eight vertices of the cell,
because resampling is performed after the deformation. The data required for each thread
are 8 (vertices per cell) × 2 (before and after movement) × 3 (x, y, z) × 4 (size of float)
= 192 bytes. In Aguilera’s method, it is 8 (vertices per cell) × (3 (x, y, z) × 4 (size of float)
+ 2 (size of density value)) = 112 bytes. The proposed method uses slightly more memory
than the existing method. For reference, Gascon’s method shares the coordinates of a
tetrahedron before deformation for each block; thus, the coordinates before deformation
can be read from a precalculated memory. Gascon’s method seems to require less memory,
but it can be used only when the number of tetrahedra is small.

The last step of generating deformation data is to perform sampling and store each
sampling value in the target volume data. Equation (4) is a matrix comprising the coor-
dinates of the four vertices of a tetrahedron, where X0 is generated with coordinates in
undeformed space, and X1 is generated with coordinates in deformed space. Sampling is
performed at the coordinates, x0, before deformation, which is obtained from the coordi-
nates x1 of the grid point after deformation. Since the transformation of one tetrahedron is
assumed to be an affine transform, the barycentric coordinates of x0 and the barycentric
coordinates of x1 are the same as in Equations (5) and (6).

X0 =
(
A B C D

)
=

Ax Bx
Ay By
Az Bz

Cx Dx
Cy Dy
Cz Dz


X0 =

(
X0
1T

)
=


Ax Bx Cx Dx
Ay By Cy Dy
Az Bz Cz Dz
1 1 1 1


X1 =

(
A′ B′ C′ D′

)
=

A′x B′x
A′y B′y
A′z B′z

C′x D′x
C′y D′y
C′z D′z


X1 =

(
X1
1T

)
=


A′x B′x C′x D′x
A′y B′y C′y D′y
A′z B′z C′z D′z
1 1 1 1



(4)
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(
x0
1

)
= X0·b, b = X0

−1
(

x0
1

)
(5)(

x1
1

)
= X1·b, b = X1

−1
(

x1
1

)
(6)(

x0
1

)
= X0·b = X0·X1

−1
(

x1
1

)
(7)

To obtain the barycentric coordinates, the coordinates x1 of the voxel (Equation (6)) are
defined in the form of a four-dimensional homogeneous coordinate and multiplied by the
inverse of the matrix comprising four column vectors of the tetrahedral vertex coordinates.
As shown in Equation (7), x0 is obtained by multiplying the barycentric coordinates b by
X0, which is the column vector matrix using four vertices of a tetrahedron in undeformed
coordinates. The output data are generated with the value obtained by texture sampling on
the undeformed coordinates.

This can be expressed as an algorithm (Algorithms 1 and 2) as follows:

Algorithm 1 Parallel Resampling of Aguilera’s Method [16]

1: struct vertex
2: float x,y,z;
3: short value; /* value has already been resampled */
4: procedure SampleTetrahedron (vertex A, B, C, D, Tex3D outGrid)
5: aabb boundingBox = outGrid.computeAABB(A, B, C, D);
6: foreach (voxel in boundingBox)
7: float4 baryCoords = computeBaryCoords (voxel.center, A, B, C, D);
8: if (centerLiesInsideTetrahedron (baryCoords))
9: short newValue = interpolateValue (baryCoords, A, B, C, D);
10: setValue (voxel, newValue);
11: end if
12: end foreach
13: end procedure

Algorithm 2 Parallel Resampling of Proposed Method

1: struct vertex
2: float x,y,z;
3: float tx,tx,tz; /* original position */
4: procedure SampleTetrahedron (Mat4 X0, vertex A, B, C, D, Tex3D outGrid, Tex3D inVolume)
5: aabb boundingBox = outGrid.computeAABB(A, B, C, D);
6: foreach (voxel in boundingBox)

7: float4 baryCoords = computeBaryCoords (voxel.center, A, B, C, D); /* b = X1
−1
(

x1
1

)
in Equation (3) */
8: if (centerLiesInsideTetrahedron(baryCoords))
9: float4 inpos = X0 * baryCoords;
10: float4 newValue = tex3D (inVolume, inpos.xyz);
11: setValue (voxel, newValue);
12: end if
13: end foreach
14: end procedure

2.3. Efficient Barycentric Interpolation for a Massive Number of Tetrahedra

As described in Equation (7), the calculation of the inverse matrix occurs for each
tetrahedron. Since we considered the large number of 786 M (= 5122 × 600 × 5) tetrahedra
(Aguilera used 65 M tetrahedra [16]), efficient computation is required. Here, we explain
the importance of efficient inverse matrix computation and discuss the numerical instability
that occurs when the number of tetrahedra increases.



Sensors 2022, 22, 6276 8 of 15

2.3.1. Barycentric Interpolation and Inverse Matrix

In this study, the coordinates in undeformed space were calculated using barycentric
coordinates, and sampling was performed for each output grid point. As expressed by com-
puteBaryCoords in Algorithm 1, the barycentric coordinates are calculated using the inverse
matrix (Equation (6)). It is necessary to calculate the inverse matrix for each tetrahedron,
but as the number of tetrahedra increases and the size decreases, it becomes numerically
unstable. In the following example, the coordinates of the four points constituting a tetra-
hedron are A (255.9, 256.7, and 133.1), B (256.7, 255.9, and 133.4), C (256.7, 256.7, and 132.3),
and D (255.9, 255.9, and 132.3). Using each point as a column vector, the inverse of the
matrix X1 is obtained as:

X1 =


255.9 256.7
256.7 255.9

256.7 255.9
256.7 255.9

133.1 133.4
1 1

132.3 132.3
1 1

 (8)

However, if the inverse matrix of X1 is calculated with a single-precision floating point
(float), an error occurs. Appendix A shows finding the determinant, which is the first step
to finding the inverse matrix. The correct determinant value is 1.216, but the calculation
value using float is 2.010187, which shows an obvious error. The reason for this is that
the formulas in the form of a·b·c–d·e·f are repeated to calculate the inverse matrix. Both
a·b·c and d·e·f, which are the result of multiplying the coordinate values, are respectively
large values (>106). However, since the result of a·b·c–d·e·f is small (<10), an error easily
occurs when using float. In our study, since each cell was small, the coordinate values
of the adjacent vertices constituting a tetrahedron were similar. As the number of cells is
increased, this error becomes more prominent, and the result becomes unusable.

X1
−1

=


−0.723684 0.526316
0.723684 −0.526316

0.723684 −0.526316
0.526316 −0.723684

0.526316 0.526316
−69.631579 −69.631579

−0.526316 −0.526316
−250.243421 390.506579

 in double− precision (9)

X1
−1

=


−0.437228 0.318691

0.437228 0.318691
0.437228 −0.318691
0.318691 −0.437228

0.322577 0.318691
−42.284821 −42.284821

−0.322577 −0.320634
−151.230408 236.297531

 in sin gle− precision (10)

The basic approach is to use the double-precision floating point (double). However,
the double operation is significantly slower than the float operation, because a typical GPU
contains less double-precision computing hardware. To solve this problem, we used a
reference point for the barycentric coordinates described in next section.

2.3.2. Calculation of the Barycentric Coordinates Using the Reference Point

In this study, the inverse matrix calculation was used only to obtain the barycentric
coordinates, b, to determine whether each point was inside the tetrahedron. Even when
translating every point of the tetrahedron, the barycentric coordinates do not change. To
keep the coordinate values as small as possible, we translated each point so that it was
close to the origin (Figure 6a).

For convenience, the last vertex D among the four vertices of the tetrahedron was
translated to the origin (Figure 6b), i.e., we calculated the barycentric coordinates with
respect to D [19]. Since the size of the tetrahedron was very small, the coordinates of all
points inside the AABB of the tetrahedron were located very close to the origin. Each value
of a·b·c and d·e·f becomes smaller, and the error is negligible when float is used.
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Equation (5) can be rewritten as follows:
Ax Bx Cx Dx
Ay By Cy Dy
Az Bz Cz Dz
1 1 1 1




bA
bB
bC
bD

 =


Xx
Xy
Xz
1

 (11)

Now, if all of the points, A, B, C, D, and X, are moved in parallel by -D, it can be
expressed as: 

Ax − Dx Bx − Dx Cx − Dx Dx − Dx
Ay − Dy By − Dy Cy − Dy Dy − Dy
Az − Dz Bz − Dz Cz − Dz Dz − Dz

1 1 1 1




bA
bB
bC
bD


=


Ax − Dx Bx − Dx Cx − Dx 0
Ay − Dy By − Dy Cy − Dy 0
Az − Dz Bz − Dz Cz − Dz 0

1 1 1 1




bA
bB
bC
bD

 =


Xx − Dx
Xy − Dy
Xz − Dz

1


(12)

Therefore, if only the 3 × 3 submatrix is observed, the following is obtained:Ax − Dx Bx − Dx Cx − Dx
Ay − Dy By − Dy Cy − Dy
Az − Dz Bz − Dz Cz − Dz

bA
bB
bC

 =

Xx − Dx
Xy − Dy
Xz − Dz

 (13)

Here, b3 (bA, bB, and bC) can be obtained by calculating only the inverse of the 3 × 3
matrix of (Equation (13)) instead of the 4 × 4 matrix. Moreover, the bD value is calculated
using bA + bB + bC + bD = 1. In the process of matrix inversion, the form a·b–c·d is used
instead of a·b·c—d·e·f ; therefore, we can use float without errors. Although calculation
of the barycentric coordinates using the reference point is not a new proposal, it is worth
highlighting that float can be used instead of double.

3. Results
3.1. Experimental Setup

The program was developed using C++ based on Visual Studio. Rendering was
performed using ray casting [20] and parallelized with CUDA [21] on a laptop equipped
with a GeForce GTX 1650 Mobile and a desktop computer equipped with a GeForce RTX
2080. The volume data used in the experiment were anonymized medical image CT data,
and the details are shown in Table 1.
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Table 1. Experimental CT image size.

Size Capacity

Abdomen 512 × 512 × 300 150 MB
Lung 512 × 512 × 316 158 MB
Colon 512 × 512 × 141 70.5 MB

Leg 512 × 512 × 600 300 MB

In this study, the transformation of the volume data is not of concern. We assumed
that the transformation results existed and paid attention to generating volume data by
parallel resampling. Therefore, we did not perform physics-based deformation separately
but transformed the data with simple precalculated formulas. The three transformations
generated for testing are as follows.

The Wave transform (Figure 7b) performs transverse translation in the x-axis direction.
The Twist transform ((Figure 7c) twists and rotates about the z-direction axis. The Bubble
transform (Figure 7d) is expressed in the form of a sphere, and regional expansion and con-
traction occur. Assuming that the undeformed position is p, the center point of the volume
data is c, the current time is t, and the deformed position is p′, and each transformation is
expressed as follows. In addition, x, y, and z are unit vectors in each axis direction.

Wave : p′ = p + sin(p·z + t)·x (14)

Twist : p′ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

(p− c) + c θ = sin t·(p− c)·z (15)

Bubble : p′ =
(

1 +
sin t
|p− c|

)
·(p− c) + c (16)

Here, we show the effect of the proposed method using various testing transformations.
In order to effectively reveal the experimental results, the experimental sequence was
performed in the reverse order of the main sections. First, the results of the efficient
barycentric interpolation method, described in Section 2.3, are presented, and then the
effect of the sampling method proposed in Section 2.2 is shown.

3.2. Efficient Barycentric Interpolation

In order to show the efficiency of the barycentric interpolation method, described in
Section 2.3, various methods for the inverse matrix calculation were analyzed. The abdomen
data used and the average time of running 500 frames were measured. In Table 2, only
the resampling time is indicated, and the rendering time was measured separately. The
average rendering time was measured to be less than 1 ms on the desktop computer, and
approximately 14 ms on the laptop. This is fast enough to enable real-time visualization.

Table 2. Resampling measurement results according to the inverse matrix calculation method.

Desktop Notebook

Transform
No. Opti-
mizations

(a)

3D Double
(b) [19]

Our 3D
Float (c) (a)/(c)

No. Opti-
mizations

(a)

3D Double
(b) [19]

Our 3D
Float (c) (a)/(c)

Wave 348.14 150.55 22.55 15.43x 892.85 360.26 60.40 14.78x

Twist 376.11 166.57 26.56 14.16x 989.42 415.30 98.55 10.03x

Bubble 385.36 168.49 17.44 22.09x 940.06 402.53 58.39 16.09x
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The execution time according to different inverse matrix calculations was measured,
and as shown in the Table 2, the execution speed of test (a) was the slowest. This was
because the inverse of a 4 × 4 matrix requires significant computation. Calculating the
barycentric coordinates with respect to a vertex [19] reduces the matrix size 4 × 4 to
3 × 3. Experiment (b) calculated the inverse of a 3 × 3 matrix using the double and,
thus, the amount of computation was reduced significantly. As a result, compared to
experiment (a), the speed improved by more than double. As explained in Section 2.3 on
the relationship between data types and error, in the case of the experiment (c) using the
float operation, the speed was improved by 4 to 6 times compared to experiment (b). It
was surprising that the performance of the float on the GPU was higher compared to the
double. Comparing the execution times of the proposed method (c) with the brute-force
method (a), the performance improved by 10 to 22 times.

Although the proposed method improved the inverse matrix calculation speed, a
different pattern was observed in the degree of improvement for the desktop and laptop
computers. It improved by 14 to 22 times on the desktop and by 10 to 16 times on the laptop.
In general, the graphics memory of laptops has a lower performance compared to desktops
due to the fact of energy and heat problems. Therefore, the memory read/write bottleneck
is more severe in a laptop. In the case of experiment (a), most of the time was consumed
in calculating the inverse matrix comprising arithmetic operations. Further, in the case of
experiment (c), the memory operations, such as resampling, become important, because
the inverse matrix calculation has been optimized and reduced. Therefore, the performance



Sensors 2022, 22, 6276 12 of 15

improvement of (c) was partially reduced in the notebook. It was expected that the effect of
the proposed method will be greater in hardware with high memory speed.

In the case of Wave, it was slightly faster than Twist or Bubble in experiment (a),
because the calculation of Wave (Equation (14)) is simpler than that of the other equations.
When we added some complex instructions to the Wave, the speed of Wave became similar
to that of Twist and Bubble. For reference, the total execution time included the predefined
deformation calculation time, inverse matrix calculation time, and data generation time
using texture sampling.

In order to confirm that there were no errors in the output image of the proposed
method, the output images using the existing method and the proposed method were
compared. In the case of the output image using the proposed method and the existing
method, the values of the image difference were exactly equal to 0. As described in
Section 2.3, if the coordinate values are kept small by moving the tetrahedron to the origin,
the inverse matrix can be calculated with sufficient precision, even when we use small cells
and float operations.

3.3. Efficient Sampling Using Coordinate Interpolation

The performance improvement was analyzed by applying the sampling method
proposed in Section 2.2. The 3 × 3 float matrix calculation method, which showed the best
performance in Table 2 column (c), was commonly applied to generate Table 3. The average
time was measured for 500 frames. Aguilera’s method (a) obtained a weighted average
from the eight sampled values for a cell, but the proposed method (b) sampled only once
per output voxel by weighted averaging the coordinates in the original volume. When
the proposed method was executed, it can be seen that the speed improved by 10–20%
depending on the transform. Although the performance improvement was not significant,
it was meaningful in that it provided additional performance improvement to the already
optimized operation.

Table 3. Resampling measurement results according to the interpolation method.

Desktop Notebook

Transform Aguilera’s
Method [16] (a)

Proposed
Method (b) (a)/(b) Aguilera’s

Method [16] (a)
Proposed

Method (b) (a)/(b)

Wave 22.55 19.75 1.14x 60.40 51.27 1.17x

Twist 26.56 23.82 1.11x 98.55 90.78 1.09x

Bubble 17.44 14.08 1.23x 58.39 47.18 1.23x

In the above experiment, the degree of performance improvement varied according
to the transform. In the case of Bubble, since only a part of the data was transformed, the
data reusability of the nonmoving part was high. Moreover, the Twist was complicated, as
shown in Table 2. In addition, when multiple threads stored the deformed points using the
Twist, the memory addresses to be stored were not contiguous due to the rotation, thereby
reducing the locality and efficiency of memory access. In summary, the proposed method
was more effective with local range deformation. In medical simulations, deformation
occurs locally such as pulling or incising a part of human body data. The proposed method
is more suitable for general medical surgery simulation.

In this study, the execution time was independent of the distribution of density values
such as bone and soft tissue arrangement, because we performed the same operation for
each cell. However, the execution time was related to the transformation pattern and size of
the volume data. Applying each transformation to various data, the execution time showed
a proportional relationship with the size of the data. Table 4 presents the results of applying
Wave transform to various data. The rendering results on the lung, colon, and legs data
used are shown in Figure 8.
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Table 4. Resampling of measurement results by interpolation on multiple medical data (Wave
transform).

Data Aguilera’s Method [16] Proposed Method

Abdomen (300) 60.40 51.27
Lung (316) 63.53 54.87
Colon (141) 29.37 24.46
Legs (600) 149.37 127.19
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4. Conclusions

We proposed a novel efficient method of parallel resampling by developing volume-
based parallel resampling. In modern deformation modeling, the number of cells increases
significantly as the size of cells decreases in order to implement sophisticated movements.
Thus, considering the fact that texture sampling and inverse matrix calculation are time
consuming in existing methods, we highlighted the cause of the problems and suggested
new methods to solve them.

In order to calculate the inverse transformation in the deformation simulation, the
inverse matrix calculation using the vertex positions of the tetrahedron is frequently used.
Considering that the error is related to the size of the elements of the matrices when
calculating the inverse matrices, a method of maintaining smaller matrix elements was
described. When the number of cells increased, the correct calculation could be performed
solely by using the double in the existing method. Since modern GPUs are optimized for
floats rather than doubles, this leads to performance degradation.

In this study, we set a reference point for each tetrahedron, and all vertices inside
the tetrahedron were moved in parallel closer to the origin, as the reference point moved
to the origin. The first advantage of the proposed method is that each element of the
matrix becomes close to zero. It was possible to calculate a large number of cells without
deterioration of the output data, even when using float. The second advantage is that
the number of operations required for the inverse matrix can be reduced, because a 3 × 3
matrix can be used instead of a 4 × 4 matrix. As a result, a 10 to 20 time improvement was
seen in the results of the experiments on a laptop and a desktop computer.

In addition, we proposed a method to efficiently perform texture sampling. In a
previous study, to process one cell, texture sampling was performed at each vertex for a
total of eight samplings. The output values were calculated by interpolating the sampled
values. As the number of cells increases, the required texture sampling also increases
proportionally, and performance degradation occurs. In this study, texture sampling was
performed at the output voxel by interpolating the coordinates in the undeformed space. As
a result, the execution speed was improved by reducing the number of texture samplings.

In the experiments in this study, three different deformation patterns were proposed,
and their performances were observed accordingly. We observed a performance improve-
ment for all deformations when the deformation pattern was relatively simple. Therefore,
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the proposed approach is suitable for medical simulations where deformation occurs in a
part of the human body. As a result of measuring the speed on a desktop and a low-end
computer, such as a laptop, it was possible to realize an interactive speed of 10 fps. A
real-time speed of 40 fps or more was maintained on a general desktop.

In this study, the speed was improved without any deterioration in image quality
through the two proposed methods, and real-time deformable volume visualization was
possible for volume data of a size used clinically. Applying a predefined formula to the
volume transformation was a limitation of this study, but the proposed method is highly
scalable, because another transformation method can be combined with the proposed
method. Through this study, it is expected that the latency of medical imaging systems for
massive data in the IoE environment will be improved.
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Appendix A

template <typename T> /* T can be float or double */
T Determinant ( ) {
T n11 = 255.9, n12 = 256.7, n13 = 256.7, n14 = 255.9;
T n21 = 256.7, n22 = 255.9, n23 = 256.7, n24 = 255.9;
T n31 = 133.1, n32 = 133.4, n33 = 132.3, n34 = 132.3;
T n41 = 1, n42 = 1, n43 = 1, n44 = 1;
T t11 = n23*n34*n42 − n24*n33*n42 + n24*n32*n43 − n22*n34*n43 − n23*n32*n44 + n22*n33*n44;
T t12 = n14*n33*n42 − n13*n34*n42 − n14*n32*n43 + n12*n34*n43 + n13*n32*n44 − n12*n33*n44;
T t13 = n13*n24*n42 − n14*n23*n42 + n14*n22*n43 − n12*n24*n43 − n13*n22*n44 + n12*n23*n44;
T t14 = n14*n23*n32 − n13*n24*n32 − n14*n22*n33 + n12*n24*n33 + n13*n22*n34 − n12*n23*n34;
T det = n11*t11 + n21*t12 + n31*t13 + n41*t14;
return det;
}
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