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Abstract: Individual-level modeling is an essential requirement for effective deployment of smart
urban mobility applications. Mode choice behavior is also a core feature in transportation planning
models, which are used for analyzing future policies and sustainable plans such as greenhouse gas
emissions reduction plans. Specifically, an agent-based model requires an individual level choice
behavior, mode choice being one such example. However, traditional utility-based discrete choice
models, such as logit models, are limited to aggregated behavior analysis. This paper develops
a model employing a deep neural network structure that is applicable to the travel mode choice
problem. This paper uses deep learning algorithms to highlight an individual-level mode choice
behavior model, which leads us to take into account the inherent characteristics of choice models
that all individuals have different choice options, an aspect not considered in the neural network
models of the past that have led to poorer performance. Comparative analysis with existing behavior
models indicates that the proposed model outperforms traditional discrete choice models in terms of
prediction accuracy for both individual and aggregated behavior.

Keywords: discrete choice model; deep neural network; mode choice behavior; smart urban mobility;
individual-level choice prediction; agent-based model; random utility model; logit model

1. Introduction

The capabilities of artificial intelligence (AI) are recognized in various fields. This paper aims to
implement the concept of deep learning (DL) algorithms, one branch of the AI family, for a prediction
model of travel mode choice. Random utility models (RUMs) and discrete choice models derived
from [1–7] are traditionally used to predict travelers’ choice, which is an essential component of
transportation planning models. However, RUMs typically have strong underlying assumptions and
limitations to their accuracy. RUMs assume that individuals select the alternative which has maximum
utility and that an individual’s utility can be calculated using linear combinations of deterministic
elements and unseen errors.

Deep learning is a promising approach in many academic fields. It is commonly applied
to computer vision, pedestrian detection, language modeling, picture classification, and speech
recognition [8–11]. However, to the best of the authors’ knowledge, the use of deep learning-based
mode choice models in transportation planning remains in its infancy.

AI approaches have been used to analyze travel behaviors or predict traffic conditions since
the late 1990s, but the performance of such approaches was often disputed. Some researchers
argued that AI models do not guarantee improvements compared to traditional models [12–15].
Multilayer perceptron models (MLP) were the most commonly used AI schemes for mode choice
models. From several experiments, Carvalho et al. [12] stated that it was not clear if MLP offered any
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advantages (computational or otherwise) over a logit model in terms of capturing travelers’ choice
behavior. Hensher and Ton [13] compared the performance of nested logit models (NLM) with MLP
in modeling commuter mode choice. They found that although artificial neural network (ANN)
forecasts individuals’ choices better than NLM, NLM predicts market share ratios slightly better.
Cantarella and Luca [15] examined a multilayer feedforward neural network model by comparing it
with random utility models (RUMs), but they could not determine which model was better, as two
case studies showed different results. There are also some recent studies [16–21] that show AI models
to outperform RUMs such as NLM and cross-nested logit model (CNLM) in predicting travel mode
choice. In summary, the results from past research based on AI approaches are somewhat mixed in
comparing the performance of traditional discrete choice models and neural network models.

This disappointing performance is due to the inherent shortcomings of AI approaches. One of
the major reasons is an overfitting problem that makes the estimated model fit too closely to the
sample training data while performing poorly on a real dataset. In addition, lack of computing power
often results in too many costs in terms of physical time and energy. However, these problems have
been largely addressed recently, especially since Hinton proposed novel techniques for deep learning
structures [22]. Followed by his pioneering study, some other improvements have been applied in
order to avoid overfitting and to allow more complexity, depth, and accuracy to neural network models,
such as Rectified Linear Unit (ReLU) [23] and dropout [24]. During this period, there has been a
dramatic increase in computational power based on graphics processing units (GPU).

Despite these developments, scholars in the transportation discipline have paid less attention
to apply these improved methodologies to their research. To fill this gap, this study proposes an
application of deep neural networks (DNN), a member of the family of deep learning algorithms,
to predict travelers’ mode choice behavior. The next section briefly describes previous mode choice
models such as random utility models and MLPs, and introduces DNN. Section 3 describes how we
construct our mode choice models. Section 4 explains the experimental data and evaluation methods
used in the study. The performance of each model is evaluated in the Section 5. Finally, we close our
paper with conclusions and remarks on future research.

2. Choice Model Description

2.1. Random Utility Model

A mode choice model estimates the probability that a traveler will select a certain travel mode
for his/her travel. The most popular choice model is the random utility model (RUM), which is an
umbrella term for the family of logit, nested logit, and cross-nested logit models. The main assumption
of RUM is that the probability of selecting an alternative is based on a utility of a certain travel
alternative. A utility consists of observable variables (X) and an unobserved component (ε), as shown
in Equation (1). McFadden [25] describes the estimation method of a vector of parameters β′ by the
maximum likelihood method with the assumption that the error term of each alternative is independent
(independence of irrelevant alternatives, IIA).

Un
m = β′X + ε (1)

Travel mode choice problems have an inherent limitation in that some of the alternatives are
not independent. A well-known extreme case is a traveler who commutes either by car or by a
bus. Even adding a color attribute (blue and red) in the bus alternatives brings unreasonable results.
A detailed explanation is addressed in [26]. One of the common approaches for this limitation is
nested logit. A nested logit model structure has a choice hierarchy. An upper level estimates the
choice probability of ‘Auto’ and ‘Bus,’ then applies the conditional probability of the color of buses.
The cross-nested logit model (CNL) is also used when alternatives have mixed interactions that a
nested logit model would not capture. Small [2] initially proposed CNL, which many researchers have
theoretically analyzed thereafter [27].
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The availability of alternatives in the choice set for each traveler is also an important feature in a
mode choice model. For example, a non-vehicle owning person should be considered unavailable to a
car option [28]. Cascetta and Papolar [29] propose a method to consider the availability of options to
the utility function of traditional discrete choice models, which are now commonly applied in logit,
nested logit, and cross-nested logit models [27,30–32].

2.2. Artificial Neural Network and Multilayer Perceptron Models

Artificial neural network (ANN) is a learning algorithm that imitates the human neural system.
An ANN consists of multiple nodes, called neurons, that communicate through synapses. Typically,
there are three sets of nodes: Input nodes, intermediate (hidden) nodes, and output nodes, and each
node category plays a different role. Input nodes receive input information, output nodes yield output
signals, and intermediate nodes receive signals from input nodes, and manipulate those signals to
give results to output nodes. Input nodes in a mode choice model are connected to the independent
variables such as travel time and cost—the output nodes associate with the probability of alternatives,
implying that the number of output nodes should be the same as the number of alternatives. An ANN
model can have multiple intermediate layers that contain sets of intermediate nodes, and if there exist
more than two layers, we call it a multilayer perception (MLP) model. If it only has one intermediate
layer with the same number of nodes with the independent variable, the model could be designed to
have a logit model structure with a linear utility function. By increasing the number of the intermediate
layers, a model can consider the non-linearity of input and output relationship, which will be further
described in Section 3.1. A logit model also can incorporate the non-linearity characteristics; however,
a model should manually define the nonlinear function—such as log, exponential—for an independent
variable, which MLP automatically characterizes.

MLPs typically use backpropagation, starting with randomly weighted synapses, and trains them
with input and output values. The simplest type of MLP is a feedforward network in which the signals
move in only one direction, from the input nodes, via hidden layers, to the output nodes. MLPs have
some advantages compared to simple perception models, with respect to their greater learning and
prediction power. In addition, MLP employs transfer functions that modify input signals and pass
them to nodes in the next intermediate layer, using weights and biases. Equation (2) presents a specific
transfer function. It should be noted that there are various types of functions such as sigmoid, tanh,
and ReLU, to estimate parameters. Figure 1 shows the input and output relationship of each function.
A sigmoid function is a generalized form of a logistic curve, which outputs the conditional probability
of each alternative as logit model, so past ANN models for the travel mode choice prediction have
employed a sigmoid function [13,15].

ReLU is a rectified linear unit that Nair and Hinton proposed in 2010 [23], which has become a
popular activation function in recent research. One advantage of this non-saturated function is that it
speeds up the convergence of optimization. The other advantage is in tackling the vanishing gradient
problem [33]. The detailed advantages will be addressed in the next session.

Y = f (
n∑

i=1

(WiZi + β)) (2)

where
n = number of input signals to a node
W = weights
Z = inputs
β = bias term
Another characteristic of an MLP model is that there are training processes to estimate parameters

that minimize the cost function. There are several ways to train multilayer perceptron models.
MLP finds each layer’s parameter using backpropagation methods and optimization techniques.
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MLP is a nonlinear problem, and previous research efforts have focused on heuristics such as genetic
algorithms or a gradient descent method [14,18]. But these heuristics could be trapped in poor local
optima when the learning process is initiated from a wrong starting point [9,15]Sustainability 2020, 12, x FOR PEER REVIEW 4 of 20 
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3. Deep Neural Network (DNN) with a Function for Availability of Alternatives

3.1. Deep Neural Network Structure Design

Deep neural network (DNN) is a class of ANN and its structure is essentially similar to MLP.
The difference with MLP is that a DNN has a significantly greater number of hidden (intermediate)
layers than an MLP. With MLP, it has been reported that increasing the number of hidden layers leads to
several problems. Firstly, more hidden layers exponentially increases the required computing resources.
Secondly, although more hidden layers and nodes contribute to model accuracy and prediction power,
the local optimum or overfitting problems arise as tradeoffs. Lastly, processing time varies highly
depending on parameter initializations. Therefore, many researchers in the past have concluded that
adding more hidden layers brings no benefits or even adverse effects in model estimations.

To cope with these problems, in 2006, Hinton [22] suggested implementing unsupervised learning
to initialize parameters and then executing supervised learning in order to estimate parameters
efficiently. Subsequently, Glorot and Bengio [34] devised a simplified version of the initialization
process known as Xavier initialization (after Glorot’s first name), which improves the initialization
process. The dramatic evolution of parallel computing by utilizing graphical processing units (GPU)
further spurred the adoption of deep learning models.

The number of hidden layers and perceptrons in the neural network characterize the complex
relationship between input variables and outputs. To illustrate this, we synthesize three small samples
of data sets, assuming travel time (x1) and cost (x2) as the explanatory variables, as in Figure 2—the
two colors, red (Auto) and blue (Train), showing the binary mode choices associated with each data
point. It is noteworthy that the synthesized data is only designed for examples by using the Scikit-learn
dataset for classification (moons, circles, and linearly separable) [35]. For better understanding the role
of hidden layers, we use a simple neural network with two input variables (x1, x2) and two perceptrons
for this data. Figure 2 then graphically indicates with the same color regions where the neural network
would predict the choices in a classification problem, for different numbers of hidden layers. A region
colored blue represents highly likely to be transit. The color transitions to red as the probability of
transit decreases. The numbers in the subgraphs show the fraction of accurate predictions for a test set.

One hidden layer with two perceptrons linearly divides the space (Figure 2(1-a,2-a,3-a). If we
assume that the travel mode decision is based on complex combinations between time and cost,
one hidden layer might not explain the travelers’ mode choice behavior well. Increasing the number of
hidden layers improves the overall predictive potential since the next layer divides the space of the
previous step, which could unearth more complex decision-making patterns. This process is illustrated
in Figure 2. As we increase the number of hidden layers, the decision areas are formed in similar
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patterns as in the original data sets. However, too many hidden layers could reduce the prediction
potential because of overfitting issue.
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The first issue to address is overfitting. While DNN is a powerful machine learning model,
just like in any statistical method the danger of overfitting always exists. This happens when the
model captures noises of the dataset, which could exist in the training set but not in real data, although
they have the same distribution. The obvious evidence of overfitting is when the model has a high
prediction power only with the training set and fails to replicate its performance on non-training data.
Figure 2(1-d,2-d,3-d) are examples of overfitting. The number in the figure indicates the accuracy of a
test set of a trained model. Too many hidden layers provide worse predictions for test sets.

One of the most popular techniques to prevent overfitting is regularization. It provides
modifications or weight penalties to a learning algorithm in order to reduce its generalization
error while leaving the training error untouched. However, this method incurs prohibitively expensive
computing costs with a large neural network. Alternatively, the “dropout” method resolves both the
overfitting and computational efficiency issues. The term “dropout” means that it drops random nodes
of each layer, and generates a thinned network per each training process, as marked “X” on perceptrons
in Figure 3. With dropout, we can easily handle overfitting even in large networks. Furthermore,
the ReLU function reduces overfitting because it regularizes an activated value to zero if a value from a
perceptron is less than a certain value (zero). In other words, the ReLU function inherently generates a
zero value when an input value is less than zero.

However, from our initial experience, we found that configuring a network with full ReLU
functions could not provide each alternative’s choice probability. This is a serious drawback since
calculating the market share ratio from the model is an important purpose of a choice model. It does not
mean that applying the ReLU function is not suitable for the travel choice model because ReLU function
is experimentally known to increase prediction accuracy [36,37], and is efficient in the optimization
process [9]. Thus, the last hidden layer of the proposed neural networks is connected to the sigmoid
activation function for our travel choice model. This enables us to attain each alternative’s choice
possibility, which is a similar output as from RUMs.

The perceptrons of the last layer are connected to the softmax function to convert the signal of a
perceptron into a probability of each category j in a choice set of individual n (Cn). The dimension of
the perceptrons is the same as the number of total choice mode set. The softmax (Equation (3)) is a
generalization of the method of forecasting the probability of a logit model. Then k j can be interpreted
as the nonlinear utility function for the stochastic choice function, the nonlinearity is characterized by
the structure of the deep neural network.
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Pr( j
∣∣∣Cn) = so f tmax( j ∈ Cn, K) =

exp
(
k j
)∑

m∈Cn exp(km)
(3)
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Figure 3. The overall structure of the proposed deep neural network model.

The cost function we set for these models is a cross-entropy function (Equation (4)), which is
derived from the canonical form of log-likelihood function for random utility models [38].

C = −
1
N

N∑
n

∑
j∈Cn

[
yn

j ln Pr
(
j
∣∣∣∣Cn) + (1− yn

j ) ln
(
1− Pr( j

∣∣∣Cn
)
)
]

(4)

We designed a deep neural network (DNN) for a model for travel mode choice behavior, as shown
in Figure 3. From our experiments, we found that a deep neural network with four layers functions
with a combination of ReLU and a sigmoid function that performs well for the given dataset. We call
it DNN(RRRS), DNN with activation functions (ReLU, ReLU, ReLU and Sigmoid). The first three
layers include 80 perceptrons with ReLU activate functions. The last layer consists of three perceptrons,
which are the same number of choice sets, with the sigmoid function. An input layer is connected to the
first hidden layer. The normalization of input data helps the training process in the fast convergence
of a gradient-based optimization [39]. The proposed model applies Min-Max normalization that
transforms the minimum value to 0 and the maximum value to 1.

In addition, deep neural networks require fine-tuning of hyperparameters: Initialization,
the number of epochs for training, and a learning rate. As part of the deep learning used in
our work, we initialize the neural networks with Xavier’s initialization technique, as in Glorot and
Bengio (26).

An epoch, as is well-known, is a single pass through the whole training set. As shown in Figure 4,
the log-likelihood of the test set becomes maximum at a certain epoch number, whereas that of the
training set keeps increasing as the iterations keep processing, which is over-fitting.

Another feature of deep learning is an optimizer for the training process. We applied Adam
(adaptive moment estimation) optimizer [40], which is an algorithm for gradient-based optimization
with the stochastic objective function. Adam requires hyperparameters such as alpha (learning rate),
beta 1, beta 2, and epsilon. A larger value of alpha facilitates faster initial training.
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A certain ratio of neurons in each network is randomly dropped out to prevent overfitting.
This ratio and the training set ratio are important factors in the model’s performance. To determine the
appropriate dropout ratio and training set ratio, a sensitivity analysis of the network’s performance
is conducted. Figure 5a shows an example of the sensitivity analysis for our data set that will be
described in Section 4. The percentage of correct prediction is calculated by applying the trained model
to the test data set. In each combination, the average value of the performance index is calculated
from 10 replica sets. When the dropout ratio is below 0.3, there are critical gaps between the trained
model performance and test set performance. When the dropout ratio is too high, the accuracy is too
low. At a dropout ratio of 0.6, the model is very stable, with a training set ratio of 0.5 (Figure 5b),
which means that the small size of the learning data set could also explain overall observations without
an over-fitting issue.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 20 

 

Figure 5. Sensitivity analysis with drop out ration and training set rate. 

3.2. Deep Neural Network with Available Alternative Function 

The next item to discuss in the DNN structure in Figure 3 refers to the alternatives in the choice 

set of individuals. We constructed our proposed model (DNN-A) with AAF (availability of 

alternatives function) as in Equation (6). Our DNN-A structure refers to the alternatives in the choice 

set of individuals. In a choice prediction model, some alternatives that are unavailable to certain 

individuals should be addressed. Without this, an unavailable alternative can be predicted as their 

choice. For instance, for individuals who do not own a vehicle, that travel mode should be eliminated 

from the choice set. Cascetta and Papolar [29] introduced a utility function for implicit 

availability/perception of choice alternatives for traditional discrete choice models. In conventional 

discrete choice models, such as logit, nested logit, and cross-nested logit models [27], unavailable 

alternatives are controlled by increasing the alternative’s disutility. For a neural network, we need to 

develop a method to handle the issue. 

We propose the availability of alternatives function (AAF) for the DNN(RRRS), shown as a 

vertical box in Figure 3. From the feedforward process in Equation (5) below, the dimension of the 

perceptron in the last hidden layer becomes the same as the number of alternatives. Previous DNN 

models have not considered unavailable alternatives in their methodology. These alternatives could 

also have a non-zero value in those models, since the softmax function in the last step (Equation (4)) 

calculates each alternative’s choice probability based on the last layer’s output. It is, therefore, 

important to force the probability of unavailable alternatives to be zero. Otherwise, the model might 

predict unreasonable results for certain individuals. We refer to Cascetta and Papolar’s [29] utility 

function, as shown in Equation (6). The logarithm transformation represents the availability of 

alternatives. If an alternative is available, 𝑢𝑐(𝑗) is 1, then the logarithm of it becomes zero. If not 

available, 𝑢𝑐(𝑗) is zero, and the perceptron value (𝑧𝑗) for the alternative becomes minus infinity. A 

generalization is the AAF control function, as formulated in Equation (7). AAF controls the value of 

the output hidden layer (𝑧𝑗). If the alternative j is unavailable for individual n, the 𝑧𝑗 is altered to 

negative infinity, so the alternative does not affect the probability of all other choices, outcomes of 

AAF are directed by the softmax function, Equation (8) 

az
𝑖 = ɸ𝑧(𝑎𝑘

𝑖 ) =  ɸ𝑧(𝑊𝑧(ɸℎ𝑘(W𝑘𝑎𝑘−1
𝑖 + 𝑏𝑘) + 𝑏𝑧) (5) 

Z = AAF(ao) = az
𝑖 + ln 𝑢𝑐 (𝑗) (6) 

(a) Average % of correct predictions (b) Performances according to drop-out ratio

Drop out ratio: 0.2

Drop out ratio: 0.5

Drop out ratio: 0.8

Learning set rate

Learning set rate

Learning set rate

Learning set Test set

66

65

64

63

62

61

60

59

0 . 8 0 . 1

59

60

61

62

63

64

65

66

Figure 5. Sensitivity analysis with drop out ration and training set rate.



Sustainability 2020, 12, 7481 8 of 19

3.2. Deep Neural Network with Available Alternative Function

The next item to discuss in the DNN structure in Figure 3 refers to the alternatives in the choice set
of individuals. We constructed our proposed model (DNN-A) with AAF (availability of alternatives
function) as in Equation (6). Our DNN-A structure refers to the alternatives in the choice set of
individuals. In a choice prediction model, some alternatives that are unavailable to certain individuals
should be addressed. Without this, an unavailable alternative can be predicted as their choice.
For instance, for individuals who do not own a vehicle, that travel mode should be eliminated from the
choice set. Cascetta and Papolar [29] introduced a utility function for implicit availability/perception
of choice alternatives for traditional discrete choice models. In conventional discrete choice models,
such as logit, nested logit, and cross-nested logit models [27], unavailable alternatives are controlled by
increasing the alternative’s disutility. For a neural network, we need to develop a method to handle
the issue.

We propose the availability of alternatives function (AAF) for the DNN(RRRS), shown as a vertical
box in Figure 3. From the feedforward process in Equation (5) below, the dimension of the perceptron
in the last hidden layer becomes the same as the number of alternatives. Previous DNN models have
not considered unavailable alternatives in their methodology. These alternatives could also have a
non-zero value in those models, since the softmax function in the last step (Equation (4)) calculates each
alternative’s choice probability based on the last layer’s output. It is, therefore, important to force the
probability of unavailable alternatives to be zero. Otherwise, the model might predict unreasonable
results for certain individuals. We refer to Cascetta and Papolar’s [29] utility function, as shown in
Equation (6). The logarithm transformation represents the availability of alternatives. If an alternative
is available, uc( j) is 1, then the logarithm of it becomes zero. If not available, uc( j) is zero, and the
perceptron value (z j) for the alternative becomes minus infinity. A generalization is the AAF control
function, as formulated in Equation (7). AAF controls the value of the output hidden layer (z j). If the
alternative j is unavailable for individual n, the z j is altered to negative infinity, so the alternative does
not affect the probability of all other choices, outcomes of AAF are directed by the softmax function,
Equation (8)

ai
z = φz

(
ai

k

)
= φz(Wz(φhk

(
Wkai

k−1 + bk
)
+ bz) (5)

Z = AAF(ao) = ai
z + ln uc( j) (6)

Z = AAF(ao) =

{
z j = az i f j ∈ Cn f or ∀ j, n
z j = − ∞ i f j < Cn f or ∀ j, n

}
(7)

Pr( j
∣∣∣Cn) = so f tmax(Z) =

exp
(
z j
)∑

k∈Cn exp(zk)
(8)

where
ai

z : output value o f perceptron i o f the last hidden layer z
ai

k : output value o f perceptron i of a value of a prior hidden layer k
φz : activation f unction of the last hidden layer z
φk : activation f unction of a prior hidden layer k
Wz : weight matrix o f hidden layer z
Wk : weight matrix o f hidden layer k
bk : bias o f hidden layer k
z j : the output o f the last hidden layer f or mode j after AAF function
Cn : choice set o f individual n

4. Experimental Setting

To explore the performance of the deep neural network model, we utilized data from a mode
choice survey of long-distance travel. Abay [41] conducted the revealed preference (RP) and stated



Sustainability 2020, 12, 7481 9 of 19

preference (SP) surveys to estimate the hypothetical demand for Swiss Metro, a new innovative intercity
passenger transport in Switzerland. Several studies utilized this data for evaluating their proposed
model [6,20,27,41–44]. The SP survey data is available on the Biogeme website with discrete choice
estimation packages [27]. There are three alternative travel modes in the choice set: Car (only for car
owner), rail, and Swiss Metro. Car and rail are existing modes, and Swiss Metro (SM) is a hypothetical
travel mode. The dataset also contains various attributes such as travel time, travel cost, age, luggage,
currently available mode, annual season pass, number of seats, and frequency [6]. Note that the travel
option for car is only available for a traveler who owns a personal vehicle. Some 17.15% of individuals
in the dataset cannot travel by car.

NL, CNL, MLPs, and DNN are compared to DNN-A, the proposed model. A large number of
input variables to a neural network could make it too complex for a network to train. Therefore, instead
of including all possible explanatory variables in MLPs and DNN, we identify significant variables from
traditional discrete choice models, such as a nested logit model, to increase computational efficiency.
DNN has a considerably complex network structure with many layers. All perceptrons in the first
hidden layer are directionally linked from input variables, which affects the results. The concept of
selecting input variables from a traditional model is very significant, in that we can avoid unnecessary
computational overhead.

Table 1 shows the variables and basic statistics. The total number of individual observations is
6768. Mode share of SM is dominant at 60.43%. Mode shares of car and rail are 26.15% and 13.42%,
respectively. In the nested logit model (NL) and the cross-nested logit model (CNL), our research
refers to Bierlaire’s utility functions and nested structure [6,7] as the base models for comparison with
the proposed model. With the two nests, a choice is determined by the combination of the existing
modes and the mode’s attributes. The utility function of a nested logit model has shared unobserved
attributes (errors). Equation (9) indicates the utility function for the NL and CNL.

Un
em = Vn

e + Vn
m + Vn

em + εn
e + εn

em (9)

where
Un

em : utility of travel mode e, m for an individual n
e : existing travel mode (Car, Rail)
m : future travel mode (Swiss Metro)
Vn

e : deterministic component of the utility of existing
Vn

m : deterministic component of the utility of Swiss Metro
Vn

em : deterministic component of the common utility among existing and Swiss Metro
εn

e : error term for existing or future− assumed Gumbel(0, ue)

εn
em : error term f or combination o f two nests− assumed Gumbel(0, uem)

When we assume that there is no distinctive preference difference between existing and non-existing
modes, the utility function of each mode becomes as in Equation (10). In here, εn

e is assumed an
independent and identical distribution (IID) Gumbel distribution with (0, ue). εn

em is also assumed an
IID Gumbel distribution with (0, uem). Mathematically, the error term on the upper nest (εn

e ) does not
involve the lower level.

Un
em = Vn

m + εn
e + εn

em (10)

In both nested structures, with the Bayes theorem, the probability of choosing the existing mode
(e) and the travel mode (m) for individual n is calculated by multiplying the marginal probability and
the conditional probability, as follows in Equation (11). The detailed information about NL and CNL
for the data set is explicitly explained in [27].

Prn(e, m|Cn) = Prn(e
∣∣∣E)Prn(m

∣∣∣e) (11)
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We used Biogeme software for the model [27]. It is noteworthy that Biogeme also incorporates
the availability of alternatives in the same way as our proposed model They found that both travel
time and travel cost generally affect all travel modes’ choice probability and that relevance of other
variables depended on the modes. The variable ‘Luggage’ only influences the car choice. Frequency,
annual season pass, and age are selected as additional explanatory variables for rail. The probability of
selecting the Swiss Metro (SM) alternative is dependent on frequency, annual pass, and the number
of seats.

Table 1. Variables used in experiments and basic statistics.

Frequency(trips) Ratio

General
Car Rail SM Car Rail SM

Mode share 1770 908 4090 26.15% 13.42% 60.43%

Mean Standard deviation

Variable Name Explanation Data type Car Rail SM Car Rail SM

Mode-specific

ASC Constant Continuous

TT Travel time
(minutes) Continuous 123.2 166.1 84.5 91.7 69.8 47.1

Cost Travel cost (CHF) Continuous 78.7 490.9 641.1 55.9 1062.6 1411.7
Freq Frequency (minutes) Integer 30.0 20.0 0.0 8.2
Seats Seat configuration Binary 0.1 0.3

Variable
Name Explanation Data type Categorical variable Frequency

General

GA Annual pass Binary no 5868
yes 900

Age Age in class Category

less than and equal to 24
from 24 to 39
from 39 to 54;
from 54 to 65;

over 65
unknown

423
1944
2763
1197
432
9

Luggage Pieces of luggage Integer
none 2727

one piece 3852
several pieces 189

Our proposed method, DNN-A (RRRS) is compared with other neural network models. Table 2
contains the details of other models. We first examine a single hidden layer MLP with a sigmoid
function (MLP-S). This structure has been generally used in previous MLP research. We refer to
Hensher and Ton’s travel choice model [13] for MLP-S. We used the same 30 perceptrons and 1000
epochs for MLP-S.

Secondly, we test multiple hidden layer structures to understand the importance of deep learning
techniques and to devise the structure of DNN model. Note that a multiple hidden layer structure can
also be called a deep network structure, but we do not call it ‘deep learning’ since it does not implement
any deep learning techniques. For comparisons, we constructed this multilayer perceptron (MLP)
neural network with four hidden layers functioning with sigmoid functions and call it MLP(SSSS).
This MLP(SSSS) was first compared with an MLP(RRRS) network where the first three layers have
ReLU functions and the last layer has a sigmoid function to explore the benefit of the ReLU function.
This is to analyze the advantage of using the ReLU activation function. Each hidden layer has 110
neurons, and 500 epochs are used. The next model we compare is a deep neural network (DNN) that
uses an RRRS structure, based on our preliminary MLP results that showed the RRRS hidden layer
structure to outperform the SSSS structure. This DNN model is called DNN(RRRS).

Hyperparameters for the models were selected from our experiments, as described in Table 2.
A 500-epoch training scheme was selected after we observed that too many epochs induce the
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over-fitting problem, as exemplified in Figure 4. At a certain epoch number, the log-likelihood of the
test set becomes maximum, whereas that of the training set keeps increasing as the iterations keep
processing, which is over-fitting. We set the dropout ratio of the proposed neural network to be 0.55.
We set the learning rate at 0.001 for the Adam optimizer, which is the recommended value by [40].
We also follow their recommendations for other hyperparameters.

Table 2. The details about neural network models for the comparative analysis.

Hidden Layer Optimizer Training Strategy

Model
The

number of
layers

The number of
perceptrons in

a layer
Optimizer Learning

rate Initializer Drop out
ratio Epoch Batch

size
Training
set ratio

MLP-S 1 30 SGD 0.100 uniform
random N/A 1000 100 0.7

MLP
(SSSS) 4 110 SGD 0.100 uniform

random N/A 500 100 0.7

MLP
(RRRS) 4 110 SGD 0.100 uniform

random N/A 500 100 0.7

DNN
(RRRS) 4 110 Adam 0.001 Xavier 0.55 500 100 0.7

DNN-A
(RRRS) 4 110 Adam 0.001 Xavier 0.55 500 100 0.7

For the evaluation of the models, randomly divided data sets are used to reduce the occurrence
of a biased sample, which could cause spurious results. This is because the mechanism of DNN
has various random terms. Although the results of DNN are reliable because the estimation process
generally converges, each output of DNN could be slightly different across multiple trials. To reduce
this problem, prior machine learning research has proposed the partitioning of their observations
into two subsets: A training set and test set [12,15,17,18], or three subsets: Training set, validation set,
and test set [16].

We apply the cross-validation technique by randomly dividing the observations into 30 training
and test sets. The same common replica sets are used for each model’s estimation and validation.
The total number of the sample is equal to the sum of the training set and the test set. The training set
is independent of the test set and they have no common observations. The training set is used to train
the model by pairing the input with the selected alternatives, which can be regarded as “supervised
learning.” The degree to which the trained model explains the travelers’ choice behavior is evaluated
by applying the model to the test set. A small training set could induce overfitting since a small
number of data is unlikely to represent the behavior of all participants. Inferring the behavior of
entire participants from a high portion of the training set could have high explanatory power for the
observation set. However, allocating a high learning rate is undesirable in that a small test set could
also be biased. In this research we have also examined the effect of the learning rate to these stated
problems by changing the rate from 0 to 1, and we selected a training set ratio of 0.7 on the dataset

Keras and TensorFlow [8] with Python 3.6 are used to analyze both MLPs and DNNs by
fully utilizing a parallel GPU computing environment. The GPU has 2048 processors boosting the
optimization speeds. The tests are conducted under Windows 10 with Intel I9-9900k 3.60 GHz quad-core
CPU and 64 GB memory (Redmond, WA, USA). The average training time of 0.7 training set rate in
this scenario is 22.60 s. When GPU is not employed, training the model takes 265.13 s, on average

5. Comparisons of DNN and Against Other Mode Choice Models

5.1. Performance Measurements for the Comparisons

In mode choice research, log-likelihood, rate of correct predictions, and a confusion matrix are
commonly used to evaluate model performance. The model’s overall performance is measured with
the log-likelihood (LL) and the rate of correct prediction. Log-likelihood (Equation (12)) indicates
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how probabilistically well fitted the model is, to the data. The log-likelihood is the log-sum of the
selected alternative’s probability (likelihood, L), Equation (13). This index is usually applied in a logit
model family.

L =
N∏

n=1

∏
∀m∈Cn Pr(m

∣∣∣Cn)
yn

m (12)

LL = lnL =
∑N

n

∑
∀m∈Cn yn

mPr(m
∣∣∣∣∣Cn) (13)

In contrast, agent-based modeling requires an individual-level choice; thus, the rate of correct
prediction (Equation (14)) can be a critical measurement for the evaluation of a choice model. This index
is common in the machine learning area in that it measures how the model correctly predicts each
individual’s choice.

% o f corrected prediction =
1
N

∑N

n

∑
j∈Cn

yn
j (14)

We can consider two types of choice predictions from given probabilities. The first approach is
the argmax max function, which is popular in machine learning research, assuming that an individual
selects an alternative having maximum probability among alternatives, as shown in Equation (15).
For example, if there are three choices and probabilities are Prn = (0.40, 0.45, 0.15), then the argmax
function converts it to yn = (0, 1, 0), meaning that the second option (Pr( j

∣∣∣Cn) = 0.4) is selected.
yn

j = 1 i f j = argmax(Pr( j
∣∣∣∣Cn)

yn
j = 0 i f j , argmax(Pr( j

∣∣∣∣Cn)

 (15)

However, the argmax function is likely to bias to an alternative that has a higher probability than
others irrespective of magnitude. For instance, if all individuals have the same probability, as a tuple
Prn = (0.40, 0.45, 0.15), the argmax function predicts that every individual selects the sole alternative.
Then, the mode share of the second mode becomes 100%, which cannot explain the real-world
observations. Thus, actual agent-based models such as activity-based regional transportation models
(i.e., The San Diego Association of Governments (SANDAG) [45] and the California Statewide Travel
Demand Model (CSTDM) [46]) apply the Monte-Carlo simulation method (MCS), as shown in Equation
(16) and Equation (17). τ j is a randomly generated number for alternative j and used to choose an
alternative between two consecutive alternatives with relative cumulated probabilities (Equation
(16)). For example, the tuple is converted to a cumulative curve (0.40, 0.85, 1.00), and generates a
random number between 0 and 1. If the number is drawn at 0.30, the first travel mode will be selected,
yn = (1, 0, 0)

j−1∑
i=1

Pr(i) < τ j ≤

j∑
i=1

Pr(i) (16)

 yn
j = 1 i f j = τ j)

yn
j = 0 i f j , τ j)

 (17)

Additionally, estimating the mode share ratio is more interesting for policymakers and planners [47].
The market share ratio of N individuals, the aggregate proportion choosing Cj, can also be calculated in
two ways: An average of the predictions for alternative j across the individuals for argmax (Equation
(18)) and Monte Carlo simulation (Equation (19)).

Mode share (arg Max) = MS j(arg Max) =
1
N

N∑
n

yn
j (18)
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Mode share (Monte Carlo Simulation) = MS j(MC) =
1
N

N∑
n

yn
j (19)

A confusion matrix, also called an error matrix, can provide a summary of prediction accuracy for
each travel mode. A confusion matrix consists of n by n cells. Each cell represents the total number
of individuals who selected (row)/are predicted (column) kth travel mode. A value in diagonal cells
represents the number of correct predictions, and other cells are for false predictions. Additionally,
we can also compare an estimated mode share with observations.

5.2. Results

For nested logit model (NL) and cross-nested logit model (CNL), multiple training sets are
imported to the Biogeme software [27], and the estimated models are tested on both the test sets and
the total observation set. In all trials in both models, the input variables, except for “number of seats”
and “constant for car,” are statistically significant since the p-value of each variable is lower than 0.05.
The two variables just mentioned are insignificant over half the training sets, which make us drop
them from the input variable set. All estimated models have a pseudo ρ2 less than 0.260 except for one
case. Thus, we concluded that the models are indicative of a good model fit.

Table 3 is a summary of log-likelihood comparisons. A cell in the table includes a mean and
standard deviation of 30 runs. Overall, the proposed DNN-A and DNN predict both aggregate
behavior and individuals’ behavior well, as indicated in Table 3. In terms of log-likelihood (LL) of
test set, DNN-A and DNN have the highest average value with −1329.74 and −1327.29, respectively.
The difference of performance is statistically insignificant, note the standard deviation of two models.
When we consider that even cross-nested logit CNL improves the LL only to−1567.56 from the−1571.95
shown by NL, the result of both DNN and DNN-A are outstanding. Note that MLP’s performance is
far worse than the random utility models (RUMs). This finding is a consistent result with previous
research, as mentioned above. These results strongly demonstrate that designing deep structures
without deep learning techniques is undesirable.

Table 3. Comparative results of predictive potential between the proposed model and other models.

Log-likelihood

Model Learning Test

Nested Logit −3659.88 ± 25.85 −1571.95 ± 26.64
CNL −3643.49 ± 29.51 −1567.56 ± 23.68

MLP(S) −3719.89 ± 32.97 −1607.86 ± 24.40
MLP(SSSS) −3929.01 ± 43.54 −1691.41 ± 25.45
MLP(RRRS) −2601.23 ± 561.76 −1610.94 ± 234.11
DNN(RRRS) −2817.07 ± 29.22 −1327.29 ± 28.76

DNN-A(RRRS) −2831.86 ± 34.99 −1329.74 ± 30.97

Table 4 shows the individual-level prediction accuracy of both the training sets and the test
sets. It is not likely for all models to have overfitting, except for MLP(RRRS). This model has large
accuracy gaps between the training set (75.36%) and test set (67.76%) for argmax assumption 68.65%,
and 62.31% for the Monte Carlo simulation assumption. This method only applies the ReLU function
and does not apply other deep learning techniques such as dropout, initialization, and optimizer.
DNN-A and DNN’s correct prediction rates of argmax are 71.84% and 72.08%, respectively, which are
higher than the rates obtained from other models, meaning that the DNN-A forecasts individuals’
choice more accurately as well. The accuracy rates of DNN-A and DNN are higher than the value of
70.3% obtained from TasteNet [21] that also utilizes the Swiss Metro dataset. Again, neural networks
without DNN techniques could not improve the accuracy of predictions. As shown in the results of
MLP(SSSS), even higher complexity with the increased number of multiple layers makes a model worse.
This implies that deep learning techniques enhance neural network models significantly. The table also
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summarizes the results of the function for individual choice assumptions (argmax and Monte Carlo
simulation). The correct prediction percentage of Monte Carlo Simulation also rises to 62.8% (DNN-A)
from 52.1% (CNL). Although the accuracy is lower than argmax behavior assumption, our further
analysis on the detailed results of argmax assumption recommends Monte Carlo simulation approach
for applications of individual-level prediction. The next paragraph will address the detailed arguments
in terms of travel mode share.

Table 4. Comparisons of % of accurate predictions with respect to individual choice function.

Argmax Monte Carlo Simulation

Model Learning Test Learning Test

Nested Logit 63.95 ± 0.25 63.72 ± 0.80 51.84 ± 0.59 52.52 ± 1.19
CNL 63.77 ± 0.37 63.16 ± 1.01 51.84 ± 0.52 52.12 ± 0.86

MLP(S) 63.65 ± 0.49 63.52 ± 0.92 52.36 ± 0.96 52.05 ± 1.31
MLP(SSSS) 60.61 ± 0.70 60.63 ± 0.92 48.85 ± 1.07 48.61 ± 1.30
MLP(RRRS) 75.36 ± 5.72 67.76 ± 5.23 68.65 ± 4.68 62.31 ± 4.20
DNN(RRRS) 75.49 ± 0.52 72.08 ± 0.71 65.32 ± 0.72 62.28 ± 1.27

DNN-A(RRRS) 75.47 ± 0.86 71.84 ± 0.81 65.13 ± 0.73 62.80 ± 1.26

The detailed predictive characteristics for each travel mode using confusion matrices are shown in
Tables 5 and 6. Table 5 shows the average mode share of the 30 test sets having 2031 trips, based on the
argmax behavior assumption, selecting the choice giving maximum probability among alternatives.
CNL (a) underestimates the mode share of rail at only 4%. This is because RUMs tend to underscore
the alternative that has low frequencies of the observation. Similarly, the argmax function with CLN
overestimates the ratio of SM (90.7%). The average values of observed mode shares are rail: 13.6%, SM:
60.4%, and car: 26.0%. A naïve predictor might have at least 60.4% accuracy if a model predicts the
probability of all individuals’ SM choice to be highest among alternatives. The prediction accuracy of
CNL is slightly higher at approximately 63.3%.

DNN and DNN-A with the argmax assumption have higher accuracy than CNL. DNN’s mode
share is (rail: 10.7%, SM: 67.4%, car: 21.9%). Furthermore, the results of DNN-A and DNN show that
underestimating or overestimating of specific alternatives are significantly reduced. For example,
the argmax assumption predicts 90.7% mode share for SM. DNN-A better predicts 69.8%, which is
approximately 9% higher than the observed mode share. These mode shares are closer to the observed
share but there still remain gaps. This implies that this approach might be problematic when used to
predict each individual’s choice using the maximum probability alternative (argmax). This problem has
been recognized in the past, and Shalaby [48] has argued that the percentage of correct predictions is an
inappropriate measure to check the goodness-of-fit for such models. However, predicting individual
choices becomes important in transportation services’ marketing and agent-based travel modeling.

The Monte-Carlo simulation behavior assumption (Table 6) is likely to better predict the actual
shares for all choice models. The gap between predicted SM share and observed value for DNN-A
decreased to 0.8%. In addition, it is also clear that applying the proposed AAF (availability of
alternatives function) has led to an increase in the DNN’s performance even further in the mode share
of both SM and rail. The accuracy of SM of DNN-A increases to 70.7% from 70.2% (DNN), and rail of
DNN-A is 44.4 which is 1.2% higher than DNN. Those improvements are from individuals who do not
own a car. The predicted mode shares of DNN-A are rail: 13.3%, SM: 61.2%, car: 25.5%, which are
closer to the observed ratio than other models.
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Table 5. Confusion matrices and mode share prediction accuracy (argmax).

(a) Cross Nested Logit Predicted mode Observed

Mode Rail SM Car Trips Mode share

Rail 52 216 8 276 13.6%
SM 26 1168 33 1227 60.4%
Car 3 459 66 528 26.0%

Trips (predicted) 81 1843 108 2031 100%
Mode share (predicted) 4.0% 90.7% 5.3% 100%

Correct prediction 64.5% 63.4% 61.3% 63.3%

(b) DNN (RRRS) Rail SM Car Trips Mode share

Rail 125 136 15 276 13.6%
SM 60 1053 115 1227 60.4%
Car 6 236 286 528 26.0%

Trips (predicted) 191 1425 415 2031 100.0%
Mode share (predicted) 9.4% 70.2% 20.5% 100%

Correct prediction 65.5% 73.9% 68.8% 72.1%

(c) DNN-A (RRRS) Rail SM Car Trips Mode share

Rail 122 138 16 276 13.6%
SM 54 1047 126 1228 60.4%
Car 5 233 290 528 26.0%

Trips (predicted) 182 1418 431 2031 100%
Mode share (predicted) 8.9% 69.8% 21.2% 100%

Correct prediction 67.3% 73.8% 67.2% 71.8%

Table 6. Confusion matrices and mode share prediction accuracy (Monte Carlo simulation).

(a) Cross Nested Logit Predicted mode Observed

Mode Rail SM Car Trips Mode share

Rail 82 156 38 276 13.6%
SM 147 776 305 1228 60.4%
Car 35 294 199 528 26.0%

Trips (predicted) 263 1226 542 2031 100%
Mode share (predicted) 12.9% 60.4% 26.7% 100%

Correct prediction 31.1% 63.3% 36.8% 52.0%

(b) DNN (RRRS) Rail SM Car Trips Mode share

Rail 114 139 23 276 13.6%
SM 128 882 217 1228 60.4%
Car 23 235 270 528 26.0%

Trips (predicted) 265 1256 510 2031 100%
Mode share (predicted) 13.0% 61.8% 25.1% 100%

Correct prediction 43.2% 70.2% 53.0% 62.4%

(c) DNN-A (RRRS) Rail SM Car Trips Mode share

Rail 120 132 24 276 13.6%
SM 128 879 221 1228 60.4%
Car 23 232 273 528 26.0%

Trips (predicted) 270 1243 517 2031 100.0%
Mode share (predicted) 13.3% 61.2% 25.5% 100%

Correct prediction 44.4% 70.7% 52.8% 62.7%
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6. Conclusions and Discussion

This paper proposes a deep neural network model for travel choice prediction by considering
individual-level prediction. Deep learning techniques are at the forefront of various fields of research
and inquiry because of their ability to represent many functional forms and their strong prediction
potential. Test implementation of deep neural networks shows that they outperform traditional discrete
choice models such as nested logit and cross-nested logit models, as well as the simpler multilayer
perceptron neural nets attempted in the past. In addition, we recognize that unavailable alternatives
for certain individuals can result in unreasonable outputs from such models. Thus, our research
develops a function to handle the availability of alternatives and incorporate it into the deep neural net
model. Although setting the probabilities of unavailable alternatives is common in random utility
models practice, existing neural network models have not implemented it, leading to poor performance.
We address this issue in our study. Deep neural network structures allow for several environmental
settings such as a hidden layer structure, activation functions, the number of epochs for training,
the dropout ratio, and the training set ratio. By examining the characteristics of each such detail,
our research finds appropriate structures and parameters to propose the successful final model.

The research used a publicly available dataset of stated preference data for Swiss Metro,
and compared the performances of the proposed model with other models. Experiments show
that our model yields better performance than existing models. In terms of overall predictive potential,
the proposed model has the highest log-likelihood and percentage of correct predictions among models.
Both versions of deep neural networks that we studied showed high predictive potential, but the
version that incorporates a function for the availability of alternatives shows better model accuracy.
Market share (Mode share ratio) is also predicted well by the proposed model. The mode share ratio is
estimated in both average probabilities of each mode and predicted choices’ ratio. Whereas random
utility models suffer from underestimation for the relatively less used modes (rail in our study case)
and overestimation for the most preferred mode (Swiss Metro), the deep neural networks estimate the
mode choice closer to the observed mode choice.

In addition, our experiments recommend that Monte Carlo simulation approach better estimates
travel mode share than an argmax assumption that machine learning studies commonly apply.
This finding is important for smart mobility applications because service managers need to estimate
the possible market share of each travel mode to design service and to predict individual behavior
accurately at the same time. Besides, the success of agent-based modeling, which provides insights into
sustainable transportation policies, depends on the accurate prediction of both aggregated behavior
(mode share) and individual behavior. An agent-based model generates travelers and predicts travel
modes of each traveler. Our analysis implies that a traditional mode choice model is not capable of
capturing individual choice. Predictions using both argmax and Monte Carlo simulation bring poor
results. Although DNN models can predict individual choice better, mode share might be worse if a
modeler assumes that a traveler selects a travel option that has the best utility (probability), which is a
commonly used method (argmax) in machine learning applications. In contrast, our proposed DNN-A
with Monte Carlo simulation predicts reasonable mode share and provides correct predictions of
individual mode choice behavior compared to other models.

This research utilized a stated preference data set that assumes that a proposed new alternative
mode will affect travel mode choice behavior. This virtual alternative could introduce certain biases
since people are generally sympathetic to it in such surveys. Thus, future studies with our models will
need to employ revealed-preference data sets. The major argument against neural network models
has always been that their input-output process is like a black box, in that it does not offer means
for statistical interpretations such as odds ratio, elasticity, and sensitivity. The authors acknowledge
this criticism and offer improved accuracy of these models as a tradeoff, which our study amply
demonstrates. Alternative suggestions could be considered, such as the simulation approach in
Mohammadian and Miller [14] to assess the model output changes by changing input values. We leave
these enhancements for future work.
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