
Citation: Eum, S.; Kim, H.; Song, M.;

Seo, H. Optimized Implementation of

Argon2 Utilizing the Graphics

Processing Unit. Appl. Sci. 2023, 13,

9295. https://doi.org/10.3390/

app13169295

Academic Editors: Zhe Xia, Mingwu

Zhang and Lein Harn

Received: 25 July 2023

Revised: 10 August 2023

Accepted: 15 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Optimized Implementation of Argon2 Utilizing the Graphics
Processing Unit
Siwoo Eum , Hyunjun Kim, Minho Song and Hwajeong Seo *

Division of IT Convergence Engineering, Hansung University, Seoul 02876, Republic of Korea;
21213203@hansung.ac.kr (S.E.); amdjd0704@hansung.ac.kr (H.K.); smino732@hansung.ac.kr (M.S.)
* Correspondence: hwajeong@hansung.ac.kr; Tel.: +82-760-8033

Abstract: In modern information technology systems, secure storage and transmission of personal
and sensitive data are recognized as important tasks. These requirements are achieved through secure
and robust encryption methods. Argon2 is an advanced cryptographic algorithm that emerged as
the winner in the Password Hashing Competition (PHC), offering a concrete and secure measure.
Argon2 also provides a secure mechanism against side-channel attacks and cracking attacks using
parallel processing (e.g., GPU). In this paper, we analyze the existing GPU-based implementation of
the Argon2 algorithm and further optimize the implementation by improving the performance of
the hashing function during the computation process. The proposed method focuses on enhancing
performance by distributing tasks between CPU and GPU units, reducing the data transfer cost for
efficient GPU-based parallel processing. By shifting several stages from the CPU to the GPU, the
data transfer cost is significantly reduced, resulting in faster processing times, particularly when
handling a larger number of passwords and higher levels of parallelism. Additionally, we optimize
the utilization of the GPU’s shared memory, which enhances memory access speed, especially in the
computation of the hash value generation process. Furthermore, we leverage the parallel processing
capabilities of the GPU to perform efficient brute-force attacks. By computing the H function on
the GPU, the proposed implementation can generate initial blocks for multiple inputs in a single
operation, making brute-force attacks in an efficient way. The proposed implementation outperforms
existing methods, especially when processing a larger number of passwords and operating at higher
levels of parallelism.

Keywords: Argon2; password hash function; GPU; optimized implementation; cracking

1. Introduction

Graphics Processing Units (GPUs) are processors with remarkable parallel processing
capabilities that accelerate computations for large-scale data. Research based on this
technology has received consistent attention and continues to progress as a field. The
domain of research utilizing GPUs spans various areas and, among them, the investigation
into password decryption has been an ongoing endeavor in recent years.

Chu-Hsing Lin et al. [1] conducted a study utilizing cloud computing and GPU
parallel computing to find hash collisions in SHA-1, which is still widely used today. While
SHA-1 is a popular hash function in the context of IoT, this research demonstrates the
security vulnerabilities of SHA-1 and highlights the need for stronger hash functions. They
implemented a simple hash value matching algorithm on the Hadoop cloud system and
NVIDIA GeForce GTX650Ti GPU parallel system, measuring the execution time and speed
based on various numbers of nodes and threads. To break the hash value of a 7-digit code
word within a minute, approximately 110 physical computers (330 compute nodes) were
required and the GTX650Ti GPU exhibited similar performance to 120 worker nodes. This
indicates that SHA-1 is not secure in the era of cloud computing and GPU parallelization.

Appl. Sci. 2023, 13, 9295. https://doi.org/10.3390/app13169295 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169295
https://doi.org/10.3390/app13169295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9583-5427
https://orcid.org/0000-0003-0069-9061
https://doi.org/10.3390/app13169295
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169295?type=check_update&version=1

Appl. Sci. 2023, 13, 9295 2 of 16

Ibrahim Alkhwaja et al. [2] evaluated the performance of parallel computing tech-
niques in brute-force algorithms and dictionary attacks. To do so, they implemented
password cracking programs using various languages and tools such as Python, C++, and
hashcat, and analyzed the impact of hardware configurations (CPU, GPU, and CUDA)
and character sets. The experimental results showed that parallel processing using GPUs
and CUDA significantly improved the speed and accuracy of password cracking. This
research provides valuable insights into the development of password cracking techniques
and contributes to raising awareness about the vulnerabilities of passwords and potential
ways to strengthen them.

Radek Hranický et al. [3] conducted a study on distributed password cracking using
BOINC and hashcat. BOINC is a framework for network computing, while hashcat is a
tool that utilizes GPUs to efficiently crack various hash algorithms. The paper proposes
a strategy for effectively partitioning and allocating tasks based on hashcat’s different
attack modes and introduces the Fitcrack system, which implements this strategy. Fitcrack
features a user-friendly web interface called WebAdmin and utilizes the BOINC client
along with Runner, a hashcat wrapper. Furthermore, a comparison between Fitcrack and
another distributed cracking tool called Hashtopolis is presented to analyze the strengths
and weaknesses of Fitcrack.

GPU-driven decryption techniques leverage parallel processing capabilities effectively,
leading to impressive performance in the decryption process. This plays a pivotal role in
detecting and addressing vulnerabilities in encryption algorithms.

In this paper, we perform the optimization of the Argon2 hashing function using
GPUs. Argon2 is an advanced password hashing function that emerged as the winner in
the Password Hashing Competition (PHC), and is regarded as a robust algorithm [4,5].
It is considered as the next-generation password hashing function and is expected to be
widely used.

Argon2 provides a secure mechanism against cracking attacks [5,6]. Therefore, due to
this mechanism, Argon2 does not show much efficiency in parallel implementations using
GPUs. To compensate for this, I would like to propose an implementation using a more
efficient GPU through task distribution of CPU and GPU. The contributions of this paper
are as follows.

Contributions

Efficient Argon2 Implementation on GPU: The main contribution of this study is the
development of a more efficient implementation of Argon2. We improved performance
by utilizing both the CPU and GPU, and efficiently distributing tasks. By shifting the
processing of several stages from the CPU to the GPU, we significantly reduced the data
transfer cost. This new method resulted in faster processing times compared to previous
implementations, particularly when dealing with a larger number of passwords and higher
levels of parallelism than previous works.

GPU Shared Memory Utilization: The proposed approach optimally uses the GPU’s
shared memory, which provides faster memory access. This is particularly beneficial in
the computation of process, where a hash value is repeatedly generated until the desired
output size is achieved.

GPU Parallel Processing for Brute-Force Attacks: Another significant contribution is
leveraging the GPU’s parallel processing capabilities for efficient brute-force attacks. By
performing the H function computation on the GPU, the proposed implementation can
generate initial blocks for multiple inputs in a single operation, thus resulting in optimal
brute-force attacks.

In-depth Performance Evaluation of Argon2: The performance evaluation reveals that
our proposed implementation performs better than existing ones, especially when process-
ing a larger number of passwords and at higher levels of parallelism than previous works.

Appl. Sci. 2023, 13, 9295 3 of 16

2. Related Work
2.1. Password Hash Algorithm

Password hashing algorithms are important functions used in cryptography that take
an input (or ‘plaintext’) and return a fixed-size string of bytes, typically a ‘digest’ that is
unique for each unique input. Hash functions are deterministic, meaning that they always
return the same output for the same input. Password hashing algorithms play a crucial role
in maintaining the security of stored passwords. Instead of storing a user’s actual password,
a system stores the hash of that password. During the login process, when a user enters
their password, the system applies the hash function to this password and compares the
result with the stored hashed password. If the two hashes match, the user is granted access.
Well-designed password hashing algorithms possess several important characteristics.
Firstly, it should be computationally difficult to compute the original input given only
the hash output, a property known as ‘pre-image resistance’. Secondly, given a specific
input and its hash, it should be computationally difficult to find a different input with
the same hash, a property known as ‘second pre-image resistance’. Thirdly, it should be
difficult to find two different inputs that produce the same hash output, a property known
as ‘collision resistance’. Lastly, the algorithm should be able to use random data known as
‘salt’ as additional input, which prevents identical passwords from producing identical hash
outputs and protects against attacks using pre-computed tables of hash outputs (rainbow
tables [7]). Examples of password hashing algorithms include bcrypt, scrypt, Argon2, and
PBKDF2 [6,8–11]. Among these, bcrypt and Argon2 are widely recommended because
they include built-in salting and their computational cost makes brute-force attacks slower.
Notably, Argon2 was the winner of the Password Hashing Competition in July 2015 and is
considered the state-of-the-art technology.

2.2. Argon2

Argon2 [6] is one of the algorithms used for password hashing, with the purpose of
transforming a user’s plaintext password into a hashed format. This algorithm is notably
the winner of the Password Hashing Competition in 2015. Fundamentally, Argon2 has
several configurable parameters that allow adjustments to CPU and memory usage. There
are three variants of Argon2: Argon2d, Argon2i, and Argon2id.

• Argon2d maximizes data dependence to fortify resistance against parallel hardware
such as GPUs. However, this variant can be sensitive to side-channel attacks.

• Argon2i, conversely, is designed to resist side-channel attacks, but may sacrifice some
resistance against parallel hardware.

• Argon2id combines the two aforementioned approaches, operating like Argon2i in the
early stages and like Argon2d in the subsequent stages. This hybrid aims to amalga-
mate the advantages of both and is currently the most broadly recommended variant.

One of Argon2’s most salient features is its ability to optimize both CPU and memory
usage simultaneously, increasing the cost for attackers attempting brute-force attacks to
guess the password. Furthermore, Argon2 uses unique salts, preventing hash collisions
among users employing the same password. Salts are random values added to the pass-
word, modifying the process of hash generation; therefore, even with identical passwords,
each user will generate a unique hash. This characteristic is crucial in thwarting precom-
puted hash attacks such as rainbow tables. Internally, the Argon2 algorithm consists of
several stages, as depicted in Figure 1.

1. Initialization: The algorithm first creates an initial block using input values received
from the user such as password, salt, and optionally provided secret data (associated
data). This initial block fills a sequence of blocks using memory.

2. Block Filling: The algorithm then populates these memory blocks up to the set memory
amount. Each block’s computation depends on previous blocks, making this stage
data-dependent. Argon2d and Argon2i take distinct approaches during this block-
filling process.

Appl. Sci. 2023, 13, 9295 4 of 16

3. Final Block Creation: After filling all blocks, the algorithm selects one block as the
final block.

4. Hash Generation: Finally, the algorithm passes this final block to a hash function to
generate the final password hash.

Figure 1. Algorithm of Argon2.

These stages work together to ensure the security and strength of the password
hashing process in Argon2. By utilizing memory-hard operations and data dependence,
Argon2 aims to make password cracking attempts more computationally expensive and
time-consuming.

Argon2 strives to maximize data dependence, aiming to make attacks like brute force
or GPU-based attacks more difficult. Because of this, Argon2 is widely recognized as a
robust password hashing algorithm.

The input parameters used in the Argon2 algorithm can be summarized as follows:

• Password: The user’s password. This is used to generate the encrypted hash value.
• Salt: A randomly generated value. The salt is added to each user’s password to

enhance the encryption process. This ensures that users with the same password do
not have the same hash value.

• Time Cost: A parameter that adjusts the amount of time consumed during the en-
cryption process. A higher time cost increases the security by requiring more time for
encryption but it may result in a slower processing speed.

• Memory Cost: A parameter that adjusts the amount of memory used for encryp-
tion. A higher memory cost requires more memory for encryption, increasing the
computational cost for an attacker trying to crack the password.

• Parallelism Degree: A parameter that determines the number of threads or tasks
processed concurrently. A higher parallelism degree allows for more simultaneous
processing, resulting in faster encryption.

In addition, parameters such as Lane Count, Iterations, and Type are also used in the
Argon2 algorithm. These parameters have an impact on the security and performance of
the Argon2 algorithm and need to be appropriately adjusted.

2.3. Blake2b Hash Function

Blake2b is a high-performance cryptographic hash function that efficiently generates
fixed-size, short digests for data. It is based on the original BLAKE algorithm and is
optimized for 64-bit platforms. The algorithm utilizes a block cipher-based round function
to transform input data into a hash and incorporates bitwise operations and nonlinear
transformations to modify the internal state. This process minimizes the risks of collision
attacks and pre-image attacks. Blake2b can be easily applied to various use cases and
security requirements by utilizing unique keys, salts, and personalization parameters.

Appl. Sci. 2023, 13, 9295 5 of 16

Overall, Blake2b is recognized as a reliable cryptographic hash function that combines fast
processing speed with high security.

Additionally, Blake2b is an algorithm that allows flexible configuration of the output
hash length. This means that the length of the generated hash can be adjusted according
to specific needs. As a result, Blake2b can produce digests of various lengths, making it
versatile for different purposes. This flexibility enables Blake2b to be widely used and
facilitates the generation of optimized digests tailored to specific applications. Therefore,
Blake2b is not dependent on a fixed output length and is evaluated as a cryptographic hash
function that provides both flexibility and stability.

Internally, the Argon2 algorithm utilizes the Blake2 hash function. Blake2 participated
in the SHA-3 competition but ultimately was not victorious, losing to Keccak. Nevertheless,
Blake2 remains fast and secure, supporting outputs of various lengths, making it valuable
in many projects.

In Argon2, the Blake2 hash function is employed in the following key parts:

1. Initialization: Blake2b is used to generate the initial block.
2. Block Filling: Blake2b is used in the computation of each block, based on previ-

ous blocks.
3. Final Hash Generation: The final block is passed to the Blake2b hash function to

generate the final password hash.

2.4. Graphics Processing Units

The use of GPUs has become an integral and widespread component in modern
computing systems. These GPUs are highly parallel processors with significant arithmetic
and memory bandwidth capabilities that far surpass those of CPUs [12–14]. For our study,
we utilized an Nvidia RTX 3060 Laptop GPU, which boasts an impressive 3840 cores and
operates at a clock rate of 1702 MHz. It is important to note that clock rates may vary
depending on the specific GPU manufacturer. The GPU we used is designed with the
Ampere architecture, which has a Compute Capability (CC) of 8.3. CC refers to the device’s
ability to perform computations.

To leverage the parallel processing power of the GPU, we employed the Compute
Unified Device Architecture (CUDA), a GPGPU (General-Purpose Computing on Graphics
Processing Units) technology. CUDA allows programmers to write parallel processing
code using the C language. Developed and maintained by Nvidia, CUDA requires an
Nvidia GPU and the corresponding stream processing driver. The CUDA GPU architecture
comprises functional kernels, threads, blocks, grids, and warps (bundles of 32 threads) that
run on the GPU. Multiple warps execute concurrently on a Streaming Multi-processor (SM),
enabling efficient parallel computation [14,15].

The GPU provides several memory types, including register, shared memory, local
memory, constant memory, texture memory, and global memory.

• Global memory is the largest memory on the GPU and is commonly used for storing
and accessing data. However, it is the slowest memory due to its off-chip location.

• Local memory is used to temporarily store register values when the number of registers
used by a thread exceeds the available capacity. Excessive usage of local memory can
impact performance as it relies on global memory.

• Texture memory is read-only memory designed for efficient data visualization. It
allows for optimized texture access patterns.

• Constant memory is read-only memory that can be initialized before executing the
kernel function. It utilizes a separate constant cache within global memory, resulting
in faster access when multiple threads access the same address.

• Shared memory is memory shared among threads within a block. Although it provides
a smaller memory space, it offers fast access speed. Shared memory employs a banking
mechanism, allowing 32 threads executed in warp units to access it simultaneously,
minimizing latency.

Appl. Sci. 2023, 13, 9295 6 of 16

CUDA manages GPU memory by dividing it into on-chip and off-chip memory.
Register and shared memory are located on-chip for faster access, while other memory
types reside off-chip. Maximizing on-chip memory can help reduce memory transmission
delays and enhance performance. Efficient utilization of the available on-chip memory size
is crucial.

3. Implementation

We propose optimizing the implementation for Argon2id as our target variant. Ar-
gon2id combines the stability of Argon2i and the parallelism of Argon2d. It ensures stability
by initially using Argon2i’s data-dependent approach and later enables parallel processing
through independent memory filling similar to Argon2d. By doing so, Argon2id combines
the strengths of both algorithms to provide a more efficient password hashing scheme.

3.1. Previous Implementation [16]

The Argon2 encryption algorithm consists of three stages: initialization (init), filling
memory blocks (fill memory blocks), and termination (final). In the previous GPU im-
plementation, as shown in the left of Figure 2, only the ‘fill memory blocks’ stage was
processed on the GPU.

Figure 2. Changes in workload distribution between CPU and GPU.

A key advantage of this approach is that the Blake hash function works quickly on
the CPU, making it efficient for processing small amounts of passwords. However, this
does not hold true when processing multiple passwords. Even though Blake2b operations

Appl. Sci. 2023, 13, 9295 7 of 16

are performed quickly on the CPU, when handling a large number of passwords, more
computations can be done on the GPU.

In the ‘init’ stage of Argon2, various parameters (such as password and salt) are
inputted and the blake2b hash function is applied to obtain a 64-byte hash value. This hash
value is then used to generate the initial memory block for further computations. The size
of the generated memory block is determined by the following formula.

Lanes × 2 × ArgonBlockSize(1024 − Byte)

‘Lanes’ refers to the number of rows in the memory block and ‘ArgonBlockSize’ is
1024 bytes. Therefore, if ‘lanes = 1’, the size of the initial memory block generated in the
‘init’ stage is 2048 bytes.

As mentioned, the size of the initial memory block generated after the ‘init’ stage
is larger compared to the input parameters, resulting in an increased amount of data
transferred from the CPU to the GPU. Consequently, the overall computational speed
is slowed down. In the ‘final’ stage, multiple blocks are also selected and copied to the
CPU for the calculation of the final hash. Similar to the previous stages, the problem of
significant copying costs arises as multiple memory blocks are selected and copied to the
CPU for processing.

We have discovered that the size of the data to be copied is large and we have focused
on optimizing this aspect.

3.2. Our Implementation

To solve these issues, we propose a new technique that processes both stages—‘init’
and ‘fill memory blocks’—on the GPU, aiming to handle multiple passwords. By doing
this, the amount of data transferred to the GPU is significantly less than that of the data
after initialization in the previous implementation. This reduces the delay in data transfer
from the CPU to the GPU. The same reduction applies to the ‘final’ stage.

3.2.1. Advantages from the Perspective of Memory

GPUs are designed for parallel processing of large data sets and processing of these
significant amounts of data requires copying to GPU memory. The data transfer process
has a significant impact on GPU performance. CUDA supports various features such as
stream mechanisms and directly storing data in fixed memory to reduce the cost of data
transfer. This means that the data transfer process affects GPU performance. We have tried
to reduce the cost of copying these data.

By performing the initial block creation process, which was traditionally executed on
the CPU, on the GPU, we reduce the cost of data transfer. The process of creating an initial
memory block and the method for reducing data copy cost are as follows.

Blake2b supports various output lengths and the output length parameter can be
adjusted to obtain the desired length of the hash value. Therefore, the output length of
Blake2b can be set according to the required length in the application. As shown in Figure 3,
the initial block creation process can be divided into two stages. The first stage is the
h1 process, where the initial hash value is generated using the input parameters. The
parameters used in this stage are summarized in Section 2.2. The input parameters are used
to generate an initial hash value of 64 bytes in length through the blake2b hash function.
This generated value is then expanded to a size of 1024 bytes to fill the initial memory block
of Argon2.

Appl. Sci. 2023, 13, 9295 8 of 16

Figure 3. The initialization stage of Argon2.

The process of expansion described above corresponds to the h2 step in the diagram. In
h2, the initial hash value is used as the basis to generate a 1024-byte value through blake2b,
which supports various output lengths. This resulting 1024-byte hash value corresponds to
a single initial memory block. This can increase depending on the parameters, as it involves
the number of lanes and the need to generate two initial memory blocks for each lane.

In the previous implementation, the computation of H(h1 + h2) was performed on the
CPU. However, in our approach, we divided it so that the h1 process is still computed on
the CPU, while the h2 process is computed on the GPU. Through the analysis mentioned
above, we observed that the initial hash value generated in h1 is a small size of 64 bytes. In
the previous implementation, the data size before copying from the CPU to the GPU was a
minimum of 2048 bytes, which is significantly larger compared to the small data size in h1.

By looking at the numbers alone, the data size in the previous implementation is
only around 3% of the total. This indicates that the cost of copying data from the CPU to
the GPU is significantly reduced. While the size of the data to be copied has decreased,
there is a trade-off in moving the processing from the CPU to the GPU. This is because
more computations need to be performed on the GPU, resulting in increased workload
for the GPU. We need to analyze the comparison between the decrease in data transfer
cost and the increase in computational workload on the GPU to determine the efficiency of
our implementation.

Also, to achieve efficient implementation of the h2 process moved to the GPU, we
utilize the GPU’s shared memory. Shared memory on the GPU has faster memory access
compared to global memory, providing advantages in terms of read and write speeds [17,18].
The h2 computation process involves generating a 64-byte hash value and using the
generated hash value as input to generate the next 64-byte hash value, repeating this
process until the desired output size is achieved. In other words, to create a 1024-byte
memory block, this hashing process is performed 16 times, resulting in significant memory
accesses. In summary, shared memory on the GPU is leveraged to optimize the computation
of the h2 process. By using shared memory, which offers faster memory access, the repeated
hashing process for generating the required memory block can be executed more efficiently
on the GPU.

3.2.2. Advantages from the Perspective of Cracking

By leveraging GPUs for parallel optimization implementation, it is possible to handle
different input values in parallel during a brute-force attack. This means that the high
parallel processing capabilities of GPUs can be utilized to compute multiple input values
simultaneously and produce results. Utilizing the parallel processing capabilities of GPUs
can enhance the speed and efficiency of brute-force attacks, enabling faster and more
effective decryption of passwords. Such techniques are considered crucial research topics
in the fields of password decryption and security, attracting interest from both attackers
and defenders. Due to its specialization in parallel processing, GPUs can effectively utilize
the parallel optimization implementation of the ‘init’ stage in Argon2. If the H function
computation is performed on the CPU, it would require generating individual initial blocks
for each different input. However, by performing the computation on the GPU, the same
operation can be applied to all inputs, enabling the generation of initial blocks in a single
computation. This allows for the efficient utilization of the GPU’s parallel processing

Appl. Sci. 2023, 13, 9295 9 of 16

capabilities, resulting in a more efficient implementation of the ‘init’ stage in Argon2. In
the case where the parameters other than the input password are the same, as depicted in
Figure 4, only the parameter information is transmitted and each thread can perform the
hashing operation for different passwords.

However, Argon2 is designed to utilize a significant amount of memory in order to
prevent cracking attacks using GPUs. Additionally, the computation process and imple-
mentation of Argon2 become more complex and challenging depending on the parameters.
In this study, we did not carry out an implementation based on the structure depicted in
Figure 4; instead, we propose theoretical implementation techniques.

Figure 4. Parallel implementation structure of Argon2 from a cracking point of view.

4. Evaluation

The implementation and benchmarking were carried out using an AMD Ryzen 7
4800H CPU and an NVIDIA GTX 3060 laptop GPU. The implementation was carried
out using CUDA in Visual Studio, utilizing CUDA version 11.8 runtime. The project
was built in release mode to measure performance during execution. Furthermore, for
additional comparative analysis, additional performance measurements were conducted
solely using the CPU on a 2018 15-inch MacBook Pro equipped with a 2.6 GHz 6-core
Intel Core i7. The proposed technique proved more efficient as the number of passwords
to be processed increased. Therefore, we gradually increased the number of passwords
processed in parallel and compared the performance with the previous implementation.
We compared the time taken based on three parameters: memory cost (m) at 1 MB, time
cost (t) at 1, and parallelism (p) at 1, by incrementally increasing t and p, respectively. The
password length was selected as 64 bytes and the output length as 32 bytes.

4.1. Comparison with Reference Code

To compare performance against using only the CPU, measurements were taken using
the reference code. In this case, the parameters remained consistent as described above.
The performance results for both the implementation utilizing both the CPU and GPU,
and the implementation using only the CPU are presented in Table 1. The CPU–GPU
configuration measured the time taken for parallel computation of 32 passwords and
calculated the time for hashing a single password. Overall, using the GPU in conjunction
with the CPU demonstrated a speed approximately five to six times faster compared to
using only the CPU.

Appl. Sci. 2023, 13, 9295 10 of 16

Table 1. Performance comparison with CPU-only performance (parameters: t = 1, p = 1, m = 1024,
output length = 32 byte).

Type

Argon2i Argon2d Argon2id

Only CPU 0.93 0.9 0.91

CPU + GPU 0.147 0.144 0.16

4.2. Comparison with Existing CPU–GPU Implementation

Figure 5 and Tables 2–4 compare the performance of our implementation with that
of the previous one at the parallelism levels (p) of 1, 2, and 4 for the Argon2d id version.
The relationship between the Number of Passwords and Total Time (ms) was compared.
As seen in Figure 6, overall, the time approximately doubles each time the number of
passwords doubles. The increase in time decreases as the number of passwords being
processed increases. As illustrated in Table 1, the time per password decreases as the
number of passwords increases. This is most prominent in GPU computation. When
processing 4096 passwords, it deals with 128 times more passwords than when processing
32 but the computation time increases by about 25 times. This confirms that more efficient
operations are possible when there are more passwords processed in parallel on the GPU.
However, it is relatively inefficient in terms of data transfer time between the CPU and GPU.
The greatest delay in GPU computation was confirmed to be the data transfer time between
the CPU and the GPU. Generally, our implementation has a shorter processing time than
the existing implementation. It was more efficient when there were more passwords
being processed and when the level of parallelism was higher. The increase in the level of
parallelism affected the delay in data transfer between the CPU and GPU. In the case of the
existing implementation, computation was somewhat reduced but, in our implementation,
the time taken increased when the number of passwords was large (more than 1024). The
difference between the two implementations was not significant at a parallelism level
of 1 but, as the level of parallelism increased, the performance difference became more
significant and the difference increased as the number of passwords increased. In our
work, as the fillblock operation and finalize operation run on the GPU, the amount of
memory transfer between the CPU and GPU is reduced, and the computation time in the
kernel increased. Therefore, although the computation was more efficient in the existing
implementation, the overall time was reduced by reducing the larger delay factor, the data
transfer time between the CPU and the GPU. These characteristics were the same in the i
version and d version, as shown in Figures 6 and 7, and Tables 5–10.

28 29 210 211 212
0

50
100
150
200
250
300
350
400

Number of Passwords

To
ta

lT
im

e(
m

s)

Mosnáček lane = 1
Our lane = 1

Mosnáček lane = 2
our lane = 2

Mosnáček lane = 4
our lane = 4

Figure 5. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 1, 2, and 4 for Argon2id versions.

Appl. Sci. 2023, 13, 9295 11 of 16

28 29 210 211 212
0

50
100
150
200
250
300
350
400

Password Number

To
ta

lT
im

e(
m

s)

Mosnáček lane = 1
Our lane = 1

Mosnáček lane = 2
our lane = 2

Mosnáček lane = 4
our lane = 4

Figure 6. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 1, 2, and 4 for Argon2i versions.

28 29 210 211 212
0

50
100
150
200
250
300
350
400

Password Number

To
ta

lT
im

e(
m

s)

Mosnáček lane = 1
Our lane = 1

Mosnáček lane = 2
our lane = 2

Mosnáček lane = 4
our lane = 4

Figure 7. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 1, 2, and 4 for Argon2d versions.

Table 2. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 1 for Argon2id versions (Ours/Mosnáček).

PWD Num Writing (ms) Computation (ms) Reading (ms) Total (ms) Time Per Num

4096 150.07/155.42 26.23/28.92 137.63/141.01 313.93/325.35 0.077/0.079

2048 77.25/77.97 13.82/14.93 73.51/71.27 164.59/164.17 0.080/0.080

1024 41.84/41.06 7.82/8.95 37.23/37.41 86.90/87.43 0.085/0.085

512 21.14/21.06 3.76/4.76 18.00/18.01 42.89/43.83 0.084/0.086

256 10.00/11.46 2.42/3.51 9.28/9.84 21.69/24.81 0.085/0.097

128 5.09/5.97 2.05/3.05 4.78/4.93 11.91/13.95 0.093/0.109

64 2.93/3.33 1.81/2.83 2.13/2.59 6.87/8.75 0.107/0.137

32 1.91/1.52 1.80/2.83 1.41/1.31 5.13/5.65 0.160/0.177

Appl. Sci. 2023, 13, 9295 12 of 16

Table 3. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 2 for Argon2id versions (Ours/Mosnáček).

PWD Num Writing (ms) Computation (ms) Reading (ms) Total (ms) Time/Num

4096 211.09/161.54 26.67/30.44 138.05/136.60 375.80/328.58 0.092/0.080

2048 101.06/91.92 13.58/15.69 77.03/70.27 191.68/177.88 0.094/0.087

1024 53.12/43.84 7.13/9.50 36.84/37.60 97.09/90.94 0.095/0.089

512 25.47/20.67 3.93/5.91 18.14/18.35 47.53/44.92 0.093/0.088

256 13.75/11.63 1.93/3.89 10.16/8.75 25.84/24.28 0.101/0.095

128 6.65/7.14 1.30/3.19 4.40/4.74 12.35/15.08 0.096/0.118

64 3.12/4.36 1.10/3.00 2.32/2.49 6.53/9.86 0.102/0.154

32 1.62/3.15 0.98/2.82 1.20/1.21 3.79/7.18 0.119/0.224

Table 4. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 4 for Argon2id versions (Ours/Mosnáček).

PWD Num Writing (ms) Computation (ms) Reading (ms) Total (ms) Time/Num

4096 298.81/162.53 25.93/33.71 138.04/141.54 462.78/337.78 0.113/0.082

2048 153.27/83.51 13.21/17.31 75.02/68.66 241.51/169.47 0.118/0.083

1024 78.58/44.58 6.75/11.29 36.58/36.70 121.90/92.57 0.119/0.090

512 38.23/25.01 3.60/7.40 19.29/18.56 61.12/50.98 0.119/0.100

256 19.97/12.51 2.00/5.70 9.18/9.44 31.15/27.66 0.122/0.108

128 9.58/8.68 1.06/4.73 4.90/4.76 15.54/18.16 0.121/0.142

64 4.70/6.27 0.75/4.43 2.17/2.63 7.62/13.32 0.12/0.208

32 2.48/4.84 0.65/4.20 1.29/1.23 4.42/10.27 0.14/0.321

Table 5. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 1 for Argon2i versions (Ours/Mosnáček).

PWD Num Writing (ms) Computation (ms) Reading (ms) Total (ms) Time/Num

4096 167.53/151.47 26.03/28.96 141.57/154.89 335.12/335.32 0.082/0.082

2048 81.93/87.62 13.81/14.87 72.61/71.53 168.35/174.02 0.082/0.085

1024 40.27/41.94 7.71/8.65 36.87/36.02 84.85/86.62 0.083/0.085

512 20.48/21.27 3.77/4.78 18.57/18.99 42.82/45.05 0.084/0.088

256 10.17/10.92 2.42/3.50 12.54/9.01 25.14/23.43 0.098/0.092

128 5.40/5.89 2.02/3.04 4.92/4.39 12.34/13.32 0.096/0.104

64 2.72/3.48 1.78/2.80 2.46/2.51 6.96/8.79 0.109/0.137

32 1.65/1.59 1.75/2.79 1.31/1.14 4.71/5.52 0.147/0.173

Appl. Sci. 2023, 13, 9295 13 of 16

Table 6. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 2 for Argon2i versions (Ours/Mosnáček).

PWD Num Writing (ms) Computation (ms) Reading (ms) Total (ms) Time/Num

4096 205.18/163.22 26.77/30.74 145.71/142.95 377.66/336.91 0.092/0.082

2048 100.84/81.77 13.64/16.43 76.58/70.86 191.06/169.06 0.093/0.083

1024 49.97/43.09 7.18/9.43 35.96/36.48 93.11/88.10 0.091/0.087

512 39.50/21.94 4.07/5.92 27.25/18.02 70.82/45.88 0.138/0.090

256 12.59/15.20 1.93/3.88 8.79/13.72 23.31/32.81 0.091/0.128

128 6.49/6.91 1.31/3.20 5.07/4.93 12.86/15.04 0.100/0.117

64 3.41/4.52 1.10/3.00 2.25/2.71 6.76/10.23 0.106/0.160

32 1.70/3.17 0.99/2.84 1.03/1.27 3.71/7.28 0.116/0.227

Table 7. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 4 for Argon2i versions (Ours/Mosnáček).

PWD Num Writing (ms) Computation (ms) Reading (ms) Total (ms) Time/Num

4096 297.37/165.81 26.28/33.94 142.90/137.33 466.54/337.08 0.114/0.082

2048 159.57/87.44 13.38/19.07 76.57/68.57 249.52/175.08 0.122/0.085

1024 77.49/42.23 6.86/11.13 36.69/35.80 121.04/89.17 0.118/0.087

512 39.12/24.85 3.62/7.44 19.95/19.12 62.69/51.42 0.122/0.100

256 18.84/14.32 2.02/5.75 9.44/8.69 30.30/28.76 0.118/0.112

128 9.44/8.27 1.05/4.78 4.63/4.87 15.11/17.91 0.118/0.140

64 4.86/5.90 748.20/4.43 2.28/2.16 755.35/12.49 11.80/0.195

32 2.54/5.12 639.10/4.17 1.22/1.16 642.86/10.45 20.09/0.326

Table 8. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 1 for Argon2d versions (Ours/Mosnáček).

PWD Num Writing (ms) Computation (ms) Reading (ms) Total (ms) Time/Num

4096 172.82/160.34 25.98/28.92 139.74/143.14 338.54/332.40 0.083/0.081

2048 80.73/79.39 13.47/14.87 71.25/70.80 165.46/165.06 0.081/0.081

1024 41.11/48.68 7.66/8.57 37.32/36.33 86.09/93.58 0.084/0.091

512 20.01/21.19 3.65/4.69 19.38/18.89 43.04/44.77 0.084/0.087

256 10.42/10.87 2.33/3.40 9.19/9.69 21.94/23.95 0.086/0.094

128 6.52/5.92 1.94/2.97 4.59/4.75 13.06/13.64 0.102/0.107

64 2.76/3.46 1.68/2.76 2.01/2.46 6.45/8.67 0.101/0.135

32 1.82/1.46 1.64/2.74 1.14/1.45 4.59/5.65 0.144/0.177

Appl. Sci. 2023, 13, 9295 14 of 16

Table 9. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 2 for Argon2d versions (Ours/Mosnáček).

PWD Num Writing (ms) Computation (ms) Reading (ms) Total (ms) Time/Num

4096 206.03/160.76 26.62/30.38 142.46/136.48 375.11/327.62 0.092/0.080

2048 100.22/83.14 13.57/16.04 76.18/69.55 189.97/168.72 0.093/0.082

1024 53.23/42.41 7.01/9.39 38.72/38.31 98.95/90.11 0.097/0.088

512 27.11/21.50 3.96/5.86 18.84/19.85 49.91/47.21 0.097/0.092

256 13.27/11.82 1.86/3.83 9.73/9.24 24.86/24.89 0.097/0.097

128 6.40/6.83 1.24/3.18 4.97/4.65 12.61/14.66 0.099/0.115

64 4.14/4.27 1.09/2.96 3.29/2.51 8.51/9.75 0.133/0.152

32 1.58/3.17 927.20/2.80 1.30/1.36 930.08/7.32 29.065/0.229

Table 10. Comparison of the performance of the implementation with that of the previous implemen-
tation at levels of parallelism (p) of 4 for Argon2d versions (Ours/Mosnáček).

PWD Num Writing (ms) Computation (ms) Reading (ms) Total (ms) Time/Num

4096 306.64/156.27 26.21/33.56 149.90/141.93 482.75/331.76 0.118/0.081

2048 157.82/87.29 13.29/17.83 72.71/68.76 243.81/173.87 0.119/0.085

1024 77.60/44.14 6.81/11.12 37.96/36.17 122.37/91.43 0.120/0.089

512 38.20/23.95 3.58/7.38 18.45/18.42 60.22/49.75 0.118/0.097

256 20.67/13.35 1.99/5.72 9.15/9.51 31.81/28.58 0.124/0.112

128 9.95/8.26 1.01/4.69 4.74/4.83 15.69/17.78 0.123/0.139

64 4.77/6.04 714.70/4.36 2.12/2.33 721.59/12.72 11.275/0.199

32 3.60/4.83 606.70/4.16 1.12/1.28 611.42/10.27 19.107/0.321

5. Conclusions

In this study, we proposed a new implementation technique for Argon2 that leverages
GPU for both the ‘init’ and ‘fill memory blocks’ stages, aiming to efficiently handle multiple
passwords. This implementation significantly reduces the amount of data transferred from
CPU to GPU, consequently decreasing the overall delay in data transfer. By shifting the
processing of the ‘h2’ process from CPU to GPU, we further reduced the data transfer cost.
The proposed method capitalizes on the GPU’s shared memory, which offers faster memory
access, optimizing the computation of the ‘h2’ process. The repeated hashing process
needed to generate the required memory block can be executed more efficiently on the GPU.
The proposed approach also takes advantage of GPU’s parallel processing capabilities for an
efficient execution of brute-force attacks. By performing the H function computation on the
GPU, initial blocks for multiple inputs can be generated in a single operation, resulting in a
more efficient implementation of the ‘init’ stage in Argon2. Through rigorous evaluation,
we found that, as the number of passwords to be processed concurrently increased, the
proposed method exhibited enhanced performance. Even though the computation time in
the kernel increased, the proposed technique reduced the overall time by decreasing the
significant delay factor (i.e., the data transfer time between the CPU and GPU). Overall,
the proposed implementation demonstrated a more efficient execution time compared
to the existing one, particularly when processing a larger number of passwords and at
higher levels of parallelism. A more efficient execution time means more hash operations
can be carried out in the same amount of time. This can be expected to reduce the cost of
cracking attacks by showing less energy consumption when performing the same hash

Appl. Sci. 2023, 13, 9295 15 of 16

operation. Although Argon2 is designed to utilize significant memory to prevent cracking
attacks, our findings reveal that an optimized implementation leveraging the GPU can
provide substantial advantages in terms of performance and efficiency. This research
suggests a promising direction for future developments and improvements in the password
decryption and security fields.

Author Contributions: Investigation, S.E., H.K. and M.S.; Writing—original draft, S.E.; Writing—
review & editing, H.S.; Supervision, H.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00540,
Development of Fast Design and Implementation of Cryptographic Algorithms based on GPU/A-
SIC, 100%).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, C.H.; Liu, J.C.; Chen, J.I.Z.; Chu, T.P. On the Performance of Cracking Hash Function SHA-1 Using Cloud and GPU

Computing. Wirel. Pers. Commun. 2019, 109, 491–504. [CrossRef]
2. Alkhwaja, I.; Albugami, M.; Alkhwaja, A.; Alghamdi, M.; Abahussain, H.; Alfawaz, F.; Almurayh, A.; Min-Allah, N. Password

Cracking with Brute Force Algorithm and Dictionary Attack Using Parallel Programming. Appl. Sci. 2023, 13, 5979. [CrossRef]
3. Hranickỳ, R.; Zobal, L.; Ryšavỳ, O.; Kolář, D. Distributed password cracking with BOINC and hashcat. Digit. Investig. 2019,

30, 161–172. [CrossRef]
4. Hatzivasilis, G.; Papaefstathiou, I.; Manifavas, C. Password hashing competition-survey and benchmark. Cryptol. ePrint Arch.

2015. Available online: https://eprint.iacr.org/2015/265 (accessed on 8 July 2023).
5. Wetzels, J. Open sesame: The password hashing competition and Argon2. arXiv 2016, arXiv:1602.03097.
6. Biryukov, A.; Dinu, D.; Khovratovich, D. Argon2: New generation of memory-hard functions for password hashing and other

applications. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbrucken, Germany,
21–24 March 2016; pp. 292–302.

7. Kumar, H.; Kumar, S.; Joseph, R.; Kumar, D.; Singh, S.K.S.; Kumar, A.; Kumar, P. Rainbow table to crack password using MD5
hashing algorithm. In Proceedings of the 2013 IEEE Conference on Information & Communication Technologies, Thuckalay,
India, 11–12 April 2013; pp. 433–439.

8. Provos, N.; Mazieres, D. Bcrypt Algorithm; USENIX: Berkeley, CA, USA, 1999. Available online: https://www.usenix.org/legacy/
events/usenix99/provos/provos_html/node5.html (accessed on 8 July 2023).

9. Percival, C.; Simon, J. The Scrypt Password-Based Key Derivation Function. No.rfc7914. 2016. Available online: https:
//www.rfc-editor.org/rfc/rfc7914?trk=public_post_comment-text (accessed on 11 July 2023).

10. Moriarty, K.; Kaliski, B.; Rusch, A. Pkcs# 5: Password-Based Cryptography Specification Version 2.1. RFC 8018. 2017. Available
online: https://www.rfc-editor.org/info/rfc8018 (accessed on 16 July 2023). [CrossRef]

11. Ertaul, L.; Kaur, M.; Gudise, V.A.K.R. Implementation and performance analysis of pbkdf2, bcrypt, scrypt algorithms. In-
ternational Conference on Wireless Networks (ICWN). 2016; p. 66. Available online: http://mcs.csueastbay.edu/~lertaul/
PBKDFBCRYPTCAMREADYICWN16.pdf (accessed on 21 July 2023).

12. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU computing. Proc. IEEE 2008, 96, 879–899.
[CrossRef]

13. Choi, H.; Seo, S.C. Fast implementation of SHA-3 in GPU environment. IEEE Access 2021, 9, 144574–144586. [CrossRef]
14. Iwai, K.; Nishikawa, N.; Kurokawa, T. Acceleration of AES encryption on CUDA GPU. Int. J. Netw. Comput. 2012, 2, 131–145.

[CrossRef]
15. CUDA C Programming Guide V6.0. Available online: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

(accessed on 11 July 2022).
16. GPU Is Unfriendly for WebDollar-argon2-gpu for WebDollar. Available online: https://github.com/WebDollar/argon2-gpu

(accessed on 1 July 2023).

http://doi.org/10.1007/s11277-019-06575-9
http://dx.doi.org/10.3390/app13105979
http://dx.doi.org/10.1016/j.diin.2019.08.001
https://eprint.iacr.org/2015/265
https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node5.html
https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node5.html
https://www.rfc-editor.org/rfc/rfc7914?trk=public_post_comment-text
https://www.rfc-editor.org/rfc/rfc7914?trk=public_post_comment-text
https://www.rfc-editor.org/info/rfc8018
http://dx.doi.org/10.17487/RFC8018
http://mcs.csueastbay.edu/~lertaul/PBKDFBCRYPTCAMREADYICWN16.pdf
http://mcs.csueastbay.edu/~lertaul/PBKDFBCRYPTCAMREADYICWN16.pdf
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/ACCESS.2021.3122466
http://dx.doi.org/10.15803/ijnc.2.1_131
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/WebDollar/argon2-gpu

Appl. Sci. 2023, 13, 9295 16 of 16

17. Chen, L.; Agrawal, G. Optimizing mapreduce for gpus with effective shared memory usage. In Proceedings of the 21st
International Symposium on High-Performance Parallel and Distributed Computing, Minneapolis, MN, USA, 27 June–1 July
2022; pp. 199–210.

18. Fang, M.; Fang, J.; Zhang, W.; Zhou, H.; Liao, J.; Wang, Y. Benchmarking the GPU memory at the warp level. Parallel Comput.
2018, 71, 23–41. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.parco.2017.11.003

	Introduction
	Related Work
	Password Hash Algorithm
	Argon2
	Blake2b Hash Function
	Graphics Processing Units

	Implementation
	Previous Implementation WebDollar-argon2-gpu
	Our Implementation
	Advantages from the Perspective of Memory
	Advantages from the Perspective of Cracking

	Evaluation
	Comparison with Reference Code
	Comparison with Existing CPU–GPU Implementation

	Conclusions
	References

