ﬁ Sensors

Article

K-XMSS and K-SPHINCS™: Enhancing Security in
Next-Generation Mobile Communication and Internet Systems
with Hash Based Signatures Using Korean

Cryptography Algorithms

Minjoo Sim !, Siwoo Eum !, Gyeongju Song !, Yujin Yang 2(7, Wonwoong Kim % and Hwajeong Seo **

check for
updates

Citation: Sim, M.; Eum, S.; Song, G.;
Yang, Y.; Kim, W.; Seo, H. K-XMSS
and K-SPHINCS™': Enhancing
Security in Next-Generation Mobile
Communication and Internet
Systems with Hash Based Signatures
Using Korean Cryptography
Algorithms. Sensors 2023, 23, 7558.
https:/ /doi.org/10.3390/523177558

Academic Editor: Rongxing Lu

Received: 29 June 2023
Revised: 24 August 2023
Accepted: 29 August 2023
Published: 31 August 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Information Computer Engineering, Hansung University, Seoul 02876, Republic of Korea;
alswntla@hansung.ac.kr (M.S.); smile267@hansung.ac kr (S.E.); thdrudwn98@hansung.ac.kr (G.S.)
Department of Convergence Security, Hansung University, Seoul 02876, Republic of Korea;
yangyu7@hansung.ac.kr (Y.Y.); dnjsdndeee@hansung.ac.kr (W.K.)

* Correspondence: hwajeong@hansung.ac.kr; Tel.: +82-760-8033

Abstract: As Mobile Communication and Internet Systems (MCIS) have rapidly developed, security
issues related to MCIS have become increasingly important. Therefore, the development and research
of security technologies for mobile communication and internet systems are actively being conducted.
Hash-Based Signature (HBS) uses a hash function to construct a digital signature scheme, where
its security is guaranteed by the collision resistance of the hash function used. To provide sufficient
security in the post-quantum environment, the length of hash should be satisfied for the security
requirement. Modern HBS can be classified into stateful and stateless schemes. Two representative
stateful and stateless HBS are eXtended Merkle Signature Scheme(XMSS) and SPHINCS™, respec-
tively. In this paper, we propose two HBS schemes: K-XMSS and K-SPHINCS™, which replace internal
hash functions of XMSS and SPHINCS™ with Korean cryptography algorithms. K-XMSS is a stateful
signature, while K-SPHINCS™ is its stateless counterpart. We showcase the reference implementation
of K-XMSS and K-SPHINCS™ employing Lightweight Secure Hash (LSH) and two hash functions
based on block ciphers (i.e., CHAM and LEA) as the internal hash function. In addition, K-XMSS
and K-SPHINCS™" using Advanced Vector Extensions 2 (AVX2) have been provided, demonstrating
that they can be optimized for better performance using advanced implementation techniques than
previous approaches.

Keywords: XMSS; SPHINCS'; Korean cryptography algorithms; hash based signatures; software
implementations

1. Introduction

Recently, Internet technologies and mobile communication have made rapid progress [1].
However, this technological revolution has created various security threats to ensure the
reliability and safety of MCIS [2—6]. In order to prevent these security threats, research is
being actively conducted to propose a digital signature protocol that has been proven to be
safe and efficient using hash functions that have been implemented in mobile devices [7].
Additionally, emerging technologies such as Quantum Computing, and Generative Artifi-
cial Intelligence(Al) are creating new complex security challenges. As a result, research on
MCIS security, including new technologies, is actively being conducted.

HBS [8] schemes guarantee the security with collision resistance of the hash function
used. HBS schemes are signature schemes that rely solely on the existence of a secure one-
way function (i.e., hash function). HBS schemes were developed in the 1970s by Lamport [9]
and extended by Merkle [10]. As the threat to quantum computers increases, interest in the
field is also on the rise. The hash function can respond to the threat of quantum computers

Sensors 2023, 23, 7558. https:/ /doi.org/10.3390/s23177558

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s23177558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5242-214X
https://orcid.org/0000-0002-9007-2280
https://orcid.org/0000-0003-0069-9061
https://doi.org/10.3390/s23177558
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23177558?type=check_update&version=1

Sensors 2023, 23, 7558

20f15

by increasing the output length [11]. Shor algorithm [12] is an algorithm capable of efficient
prime factorization, and Grover algorithm [13] has strong search capabilities. For this reason,
HBS schemes have attracted attention, and XMSS has proven the feasibility of HBS. Recently,
stateless SPHINCS [14], a variant of XMSS that does not need to maintain state, has been
proposed. For the the American National Institute of Standards and Technology (NIST)
Post-Quantum Cryptography(PQC) standardization project [15], SPHINCS*, an improved
version of SPHINCS, has been proposed. SHA2, SHAKE, and HARAKA hash functions
were used in the implementation of XMSS and SPHINCS™. In this paper, we show variants
of XMSS and SPHINCS™ (i.e., K-XMSS and K-SPHINCS™) by replacing the current hash
function setting with Korean cryptography algorithms (i.e., LSH hash function and hash
function based on Korean block ciphers). Korean cryptography algorithm means to a
cryptography algorithm developed in Korea and designated as a Korean standard.

The remainder of this paper is structured as follows. Section 2 describes XMSS,
SPHINCS™, and hash function based on block cipher. Section 3 describes the proposed
implementation method. Section 4 shows the performance comparison of XMSS and K-
XMSS, and the performance comparison of SPHINCS™' and K-SPHINCS™. Finally, Section 5
describes the conclusion of this work and future plan.

1.1. Contributions
1.1.1. First Implementation Korean Version of XMSS and SPHINCS™

To the best of our knowledge, this is the first trial to implement Korean version of hash-
based cryptography schemes with Korean hash functions. The original XMSS produces HBS
through the use of SHA2 and SHAKE hash functions. The original SPHINCS™ produces
HBS using the SHA2, SHAKE, and HARAKA hash functions. In response, we proposed to
generate HBS using Korean hash functions (i.e., CHAM, LEA and LSH). As the result of
evaluation performance, LSH showed the best performance among Korean hash functions
in K-XMSS and K-SPHINCS™. In addition, K-XMSS and K-SPHINCS™ using AVX2 have
been provided, demonstrating that they can be optimized for better performance using ad-
vanced implementation techniques such as NEON. Our Implementation is available in the
public domain at https:/ /github.com/minjoo97 /K-XMSS-K-SPHINCS-project (accessed
on 21 August 2023).

1.1.2. Hash Function Based on Korean Block Cipher

We implemented a hash function using Korean block ciphers. Tandem DM scheme
was applied to use the Korean block cipher as a hash function. Tandem DM can generate a
hash value having a length of 2m-bit by applying a block cipher algorithm using an m-bit
block length and a 2m-bit key length. In this approach, we implemented hash functions
using Korean block ciphers by applying CHAM and LEA Korean block ciphers.

1.2. Extended Version of MobiSec’22

The work presented in Mobisec’22 is revisited in this paper. K-XMSS and K-SPHINCS™
utilizing reference ¢ was presented in https://www.mobisec2022 [16] (accessed on 21
August 2023). In this paper, K-XMSS and K-SPHINCS™ showed that AVX2 can utilize
advanced implementation techniques to optimize for better performance using advanced
implementation techniques such as NEON.

2. Related Works
2.1. eXtended Merkle Signature Scheme (XMSS)

XMSS [17] is a stateful HBS scheme based on the Merkle Signature Scheme (MSS) [18],
and uses WOTS™ [19] as the main building block. XMSS uses one key pair (i.e., private key
and public key), and the tree height is H. XMSS can generate up-to 21 signatures, which is
illustrated on Figure 1. To ensure the security of XMSS, the used key pair (i.e., WOTS™ key)
should not be used again.

https://github.com/minjoo97/K-XMSS-K-SPHINCS-project
https://www.manuscriptlink.com/society/kiisc/conference/mobisec2022

Sensors 2023, 23, 7558 3of 15

Figure 1. Tree structure of XMSS; H is height of the tree; Bitmask is chosen uniformly at random from
(by j|[byj € {0,132).

Definitions of parameters used in XMSS are given in Table 1.

Table 1. Symbols of XMSS parameters.

Symbols Descriptions

w Winternitz parameter (w); Power of two; 16 in XMSS.

~

Length in bytes

Hash function chain

Hash function

Checksum

TlOl=|a

Length of binary message

Randomization elements; r = (r1, -+, rp—_1)

<

2.1.1. Winternitz One Time Signature (WOTS)

WOTS scheme [18,20] efficiently signs the message digest. The private key is used for
signing, where the key should not be used again. In other words, it is infeasible to sign
more than one message using a single private key. The signature size of WOTS is smaller
than Lamport OTS [9], because the message digest is signed at the same time. WOTS is
based on security against collision resistance of one-way hash function. In the signature
of WOTS, w representing the number of bits to be signed, is used as a number of 2 or
more. The signature key consists of a randomly selected [-bit string of length n, where [is
computed as Equation (1). Equation (1) is calculated based on the selected w.

m log, (I1(w — 1))
l=h+h h=—=]b=|"5—77"]+1 (1)
log, (w) log, (w)
The m-bit message M is based on w, and the checksum C for the message is calculated

as Equation (2).
I
C=Y (w—1-M) @)

i=1

Sensors 2023, 23, 7558

40f15

The hash function chain of WOTS is given in Equation (3). Using the signature key /
as an input to the function chain, we get the public key of WOTS as a result of Equation (3).

¢ (x) = h(cY(x)) = hgohgo---ohgohy, x € {0,1}", *(x) = x 3)

2.1.2. Winternitz One Time Signature Plus (WOTS™)

WOTST [19] is a descendent of WOTS scheme. WOTS™ increases the security by
adding a random value, 7, as shown in the process of applying the one-way function 4 in
the Winternitz one-time signature technique. The function chain of WOTS™ is expressed
by the following Equation (4). Unlike WOTS, WOTS™ is based on the security against
secondary pre-image resistance.

c(x) =hp(c(x) 1) = (e @r) o (he@dr) oo (h@®rig)o(h®rig) (4

XMSS uses a Merkle hash tree of height & and a binary L-tree of height [log,I]| to
reduce the size of the public key. Two trees are used to reduce 2 WOTS™ verification keys
to one XMSS public key. The overall structure can be found in Figure 2. The public key of
WOTS™ obtained using WOTS™ as described above constructs the leaf of the L-tree, which
is an unbalanced binary tree. If there is no power of 2 leaves, a node without a right sibling
is moved up until it becomes a right sibling of another node. In the case of the L-tree, the
same structure as in Figure 1 is used. However, a bitmask different from that of the Merkle
tree is used. The upper leaf node of the L-tree created in this way becomes the lower leaf
node of the Merkle hash tree. As a result, the root node of the Merkle tree becomes the
final XMSS public key. The bit length of this XMSS public key is 2(H + [log,!| + 1)n, the
signature length of XMSS is (I + H)n, and the private key of XMSS is less than 2n.

Merkle
tree

height A

height

| % s
o

L-trees

WOTS)
signatures -

[chains [chains [chains T lchains

w-1 steps

2h WOTS key pairs and L-trees

Figure 2. Structure of XMSS; Orange block indicates WOTS™ signature key, blue block indicates
WOTS™ public key, yellow block indicates L-tree root, and gray block indicates XMSS public key.

2.2. SPHINCS™

SPHINCS™ [21] is a stateless hash-based signature framework that improves the
speed and signature size of SPHINCS [14]. The main contribution of SPHINCS™ is the
introduction of FORS (i.e., few-time signature scheme). The second contribution is the
method of selecting leaf nodes. SPHINCS™ uses functions with cryptographic properties
and each parameter is defined as follows:

Sensors 2023, 23, 7558

50f 15

* I, d: parameters of Hyper-Tree
* b, k: parameters of FORS
e w: parameter of Winternitz

SPHINCS™ with specific parameters (1 =192, h=51,d =17,b =7, k =45, and w = 16)
showed 25% shorter signatures and 1.7 x faster signature routines than those of SPHINCS™.
The structure of SHPINCS™ is shown in Figure 3. SPHINCS™ is a hyper-tree of height h
and consists of d tree. The height of each tree is i /d, where d is involved in the signature
time and the signature size. In a hyper-tree, layer(d — 1) has a single tree and layer(d — 2)
has 2/? trees. The root of the layer(d — 2) tree is signed using the WOTS* key pair in
the layer(d — 1) tree. Key pairs of Layer 0 WOTS™ are used to sign the FORS public key.
Internal values are determined through seed and bitmask, and the entire structure is not
computed. For this reason, it is referred to as a “virtual structure”. More information on
SPHINCS™ can be found in [21].

h/dI XMSSd_l EEEEEEEEEEEEEEEEEED
XMSS, I h/d
h/d XMSS4_» E @
EIIII.I.I.I-I-I-.IE FORS

Figure 3. Overview of SPHINCS™ structure.

2.2.1. FORS: Forest of Random Subsets

SPHINCS™ defines and uses FORS, a few-time signature improved from HORST [21].
FORS is defined in terms of integer k, t = 2a and is used to sign ka-bit string. The private
key of FORS consists of kt random bit values and is divided by k set of t values. Overall,
it is deterministically derived from SK. seed using the pseudo-random function(PRF) and
the key address of the hypertree. To obtain the FORS public key, k binary hash trees are
constructed on the set of private key elements. Each t value is used as a leaf node and k
binary hash trees with height a are created. Figure 4 shows the hash tree of FORS with k = 6
and a = 3 for message (100 010 011 001 110 111). FORS uses H, which is addressed
using the location of the FORS key pair and the location of the function call within the tree.
With WOTS™, the root node compresses using the Tweakable hash function (Thy). Th is an
efficient function that maps a-bit message M to A-bit hash value MD using a function key
of public parameter P and tweak T, and is expressed as Equation (5). The FORS public key
is an n-bit value. The signing process of FORS is as follows. Given a message of ka bits, the
k string of a bits is extracted. This bit string k has the index of each single leaf node of FORS.
The signature consists of these nodes (indexes) and authentication paths (See Figure 4).

Th:P x T x {0,1}* — {0,1}%, 5)
Th(P,T,M) = H(P||T||M)

The verifier validates the public key by reconstructing the root using the certifica-
tion path. Since the public key is used as a message, it is implicitly verified with the
WOTS™ signature.

Sensors 2023, 23, 7558

6 of 15

o o o e o o o o o e R o o o o

Figure 4. Hash tree of FORS with k = 6 and a = 3 for message {100 010 011 001 110 111}.

2.2.2. XMSSMT

XMSSMT [22] is an extension of XMSS. The original XMSS scheme has a disadvantage
in key generation. When the height (H) of the tree exceeds 20, the execution time could
be slow. To accelerate the performance, XMSSMT uses a multi-layered XMSS tree called
a hyper-tree. A hyper-tree consists of 2 or more XMSS trees, and all XMSS trees have the
same height. The tree of the lowest layer of the hyper-tree is used to sign the actual message.
The rest of the tree is used to sign the root node of the XMSS tree in each layer.

2.3. Hash Function

The hash function is used by XMSS and SPHINCS™ to construct the signature schemes.
In this subsection, we briefly describe the LSH hash function and another hash function
based on Korean block cipher [23].

2.3.1. LSH Hash Function

LSH is a high-speed hash function developed in Korea that generates a hash value
through initialization, compression, and completion processes. The initialization process
padding the message and separating the message by the size of the block. The compression
process digests the message through message expansion, addition, mixing, and word-by-
word circulation functions. The completion process outputs the result of the compression
process as a hash value of a specific length. Figure 5 shows the operating structure of LSH.

Message m
Pap
32w 32w 32w
M) ‘ M) ‘ . M)
16 C |ww| G |16 C |16
1\ s F s F w, . 1w F i " . Hash value

Figure 5. Structure of LSH hash function.

2.3.2. Hash Function Based on Block Cipher

An iterated hash function is determined by an easily computable function h(:,-).
The function £ is called hash round function. The input message is divided into block sizes,

Sensors 2023, 23, 7558

7 of 15

and the hash round function calculates the next hash value using the divided message
block and the previous hash value. The number of iterations of the hash round function is
repeated by the number of message blocks to obtain the final hash value. Equation (6) is a
modification of the iterative hash function.

Hi = h(Hiflr Ml) i= 1,2,.n. (6)

Hash function based on block cipher uses a block cipher algorithm instead of a hash
round function [24]. Several structures have been proposed to output the desired length
of hash. We utilized the Tandem DM structure to implement hash functions using block
ciphers. Tandem DM structure applies a block cipher algorithm using a key length of 2m-bit
when the block length is m-bit, and the output hash length is 2m-bit. Figure 6 shows the
Tandem DM Scheme.

H Encryption %

-1 > " 1
key Generate
I] W,
*— Zuz

A 4 A

)
v
T

~.

key Generate

~
v
) 4
VUV
v
X

Encryption 1

Figure 6. 2m-bit hash round function based on m-bit block cipher with 2m-bit key.

In each iteration, two m-bit values (G; and H;) are computed from the previous values
H;_; and G;_; and from an m-bit message block M; as follows:

W; = Eg,_,,m; (Hi—1) 7)
H; =W; ®H; ¢ (8)
Gi = Gi_1 ® Enmw, (Gi—1))

In this paper, LEA and CHAM block cipher algorithms were used for the hash
round function.

¢ LEA Block Cipher LEA is a lightweight block cipher developed in Korea in 2013 to
provide confidentiality not only in high-speed environments (e.g., big data and cloud),
but also in lightweight environments, (e.g., IoT devices and mobile devices) [25].
The algorithm structure of LEA uses the ARX structure, and encryption proceeds by
dividing the input block into four 32-bit. The ARX structure uses Addition, Rotation,
and XOR operations.

¢ CHAM Block Cipher CHAM is a lightweight block cipher announced in ICISC’17 [26].
Subsequently, the revised version of the CHAM Block cipher was announced in
ICISC’19 [27]. The revised CHAM differs from the original CHAM only in the number
of rounds, and the other specifications are identical. The CHAM has different opera-
tions of odd rounds and even rounds. The CHAM of the generalized 4-branch Feistel
structure is based on ARX operations.

Sensors 2023, 23, 7558

8 of 15

3. Proposed Method
3.1. Hash Function Based on Block Cipher

In this paper, we construct hash function based on the Tandem DM scheme and utilize
LEA and CHAM as the underlying block ciphers. Tandem DM scheme and block ciphers
are described in Section 2.3. Algorithm 1 is a description for Figure 6.

The process of Algorithm 1 is as follows. The message received as input is divided
into block size to proceed by the number of iterations. The iteration is repeated by the
message length divided by the block size. In this paper, the message length is assumed to
be a multiple of the block size. Lines 4 and 7 perform key initialization. In line 4, G; for the
upper bit and M{[i] for the lower bit are used as a key. In line 7, M[i] for the upper bit and W
for the lower bit are used as a key. The initialized key generates a roundkey to be used for
encryption through the Roundkey generate function. Then, H; and G; generate an encrypted
value through an Encryption function, and finally XOR with W and G;. If the CHAM and
LEA algorithms are applied to the Roundkey generate function and Encryption function,
hash values can be obtained through LEA and CHAM block ciphers.

Algorithm 1 Tandem DM scheme of hash function based on block cipher

Input: M (Message), ML (Message Length)
Output: Hash value

1: n = Block size

2: fori =0toML/n do

3 M]Ji]: Size of Block size
Key + G;, M[i] (if Gy, use a initialization Vector)

RK < RoundKey Generate(Key)

W « Encrytion(H;, RK) (if Hp, use a initialization Vector)

ARSI

Key < M][i], W
: RK + RoundKey Generate(Key)
9: TEMP <« Encrytion(G;, RK) (if Gy, use a initialization Vector)

10 Hjp < H oW,

11: Gjyq < G;®TEMP

12: end for

13: return Hash value < H,G

3.2. K-XMSS

In this paper, we replaced the hash functions used in the original XMSS to Korean
cryptography algorithms. We developed the code based on the basic C reference provided
by [28].

Since XMSS has a tree height of & (10, 16, and 20), which determines the number of
signatures with one key pair, K-XMSS adopted same parameters and structures utilized
in XMSS. LSH provides the value of n only for 256 and 512. The hash function based
on CHAM and LEA provides the value of n only for 256. In other words, Korean hash
functions do not support the n value of 192, in K-XMSS. K-XMSS is performed on security
parameters n of 256 and 512. Since the Winternitz parameter w of the original XMSS is
fixed to 16, the value of w is also fixed to 16.

Functions used in K-XMSS are organized as follows:

e F:Key encryption hash function; F accepts and returns byte strings of length n using
keys of length n.

* H: Encryption hash function; H accepts n-byte keys and byte strings with a length of
2n and returns an n-byte string.

* Hysg: Encryption hash function; Hysg accepts 3n-byte keys and byte strings of arbi-
trary length and returns n-byte strings.

Sensors 2023, 23, 7558

9of 15

PRF: Pseudo-random function; PRF has an n-byte key and a 32-byte index as input
and generates pseudo-random value (length 7).

toByte(x, n): n-byte string contains a binary representation of x (in the order of big-
endian bytes);

Parameters used in K-XMSS are organized as follows:

KEY: Keys with length in bytes.
M: Strings with length in bytes.

For the n = 32 setting, K-XMSS uses Equations (10)—(12) for LSH-256, CHAM, and

LEA, respectively. For the n = 64 setting, K-XMSS use Equation (13) for LSH-512.

3.2.1. K-XMSS_LSH256

Following equation describes LSH256 function for K-XMSS.

F = LSH256(toByte(0,32)||[KEY||M),
H = LSH256(toByte(1,32)||[KEY||M),
Hyusg = LSH256(toByte(2,32)||KEY||M),
PRF = LSH256(toByte(3,32)||[KEY||M).

(10)

3.2.2. K-XMSS_CHAM

Following equation describes CHAM function for K-XMSS.

F = CHAM(toByte(0,32)||[KEY||M),

H = CHAM (toByte(1,32)||[KEY||M),
H,us; = CHAM(toByte(2,32)||[KEY||M),
PRF = CHAM (toByte(3,32)||KEY||M).

(11)

3.2.3. K-XMSS_LEA

Following equation describes LEA function for K-XMSS.

F = LEA (toByte(0,32)||KEY||M),
H = LEA(toByte(1,32)||KEY||M),
H,usg = LEA(toByte(2,32)||[KEY||M),
PRF = LEA (toByte(3,32)||[KEY||M).

(12)

3.2.4. K-XMSS_LSH512

Following equation describes LSH512 function for K-XMSS.

F = LSH512(toByte(0, 64)||[KEY||M),
H = LSH512(toByte(1,64)||[KEY||M),
Hyus; = LSH512(toByte(2,64)|[KEY||M),
PRF = LSH512(toByte(3,64)||KEY||M).

(13)

3.3. K-SPHINCS™*

Similar to XMSS, we changed the hash functions used in the existing SPHINCS™ to

Korean hash functions). Notations used in K-SPHINCS™ are organized as follows:

Functions used in K-SPHINCS™ are organized:

Hjsq: Additional key hash function that can handle messages of arbitrary length.
PREF: Pseudo-random function for generating pseudo-random keys.

PRF;5¢: Using PRF to generate randomness for message compression.

F: Second-preimage resistant, undetectable one-way function; B" x B3? x B" — B"
H: Second-preimage resistant hash function; B" x B3? x B*" — B"

T;: Weakable hash functions of the form mapping an /n-byte message M to an n-byte
hash value md; B" x B32 x B/" — B"

Sensors 2023, 23, 7558

10 of 15

Parameters used in K-SPHINCS™ are organized:

* R:Random values generated based on messages and SK.prf

e PK.seed: Public seed which is part of the SPHINCS™ public key.

e PK.root: Top root node which is part of the SPHINCS™ public key.

* ADRS: 32-byte value representing an address in five defined structures.

* SK.prf: As one of the private key elements, the value used to deterministically gener-
ate a randomized value for a randomized message hash.

* Optrand: Value added when making the value of R optionally non-deterministic.

We set the hash function parameters (i.e., n, I, d, k, w) used in SPHINCST to be the
same in K-SPHINCS™". LSH is applicable to 256 and 512-bit outputs, and CHAM and LEA
are applicable to 256-bit outputs. For this reason, we implement it based on hash function-
256. K-SPHINCS™ uses Equations (14)—-(16) for LSH-256, CHAM, and LEA, respectively.

3.3.1. K-SPHINCS " —LSH256
Following equation describes LSH256 function for K-SPHINCS™.

Hs¢ (R, PK.seed, PK.root, M) = LSH256(R||PK seed||PK.root||M,8m),
PRF(SEED, ADRS) = LSH256(SEED||ADRS, 81),

PRF,;s¢ (SK.prf, Optrand, M) = LSH256(SK.pr f||Optrand||M, 8n),
F(PK.seed, ADRS, M) = LSHE256(PK.seed||ADRS|| My, 8n),
H(PK.seed, ADRS, M ||My) = LSHE256(PK.seed|| ADRS||M; || My, 8n),
T;(PK.seed, ADRS, M) = LSHE256(PK.seed|| ADRS||M, 8n).

(14)

3.3.2. K-SPHINCSt —CHAM256
Following equation describes CHAM256 function for K-SPHINCS™*.

Hyusg (R, PK.seed, PK.root, M) = CHAM(R||PK seed|| PK.root||M,m),
PRF(SEED, ADRS) = CHAM(SEED||ADRS, n),

PRF,;5¢ (SK.prf,Optrand, M) = CHAM(SK.prf||Optrand||M, n),
F(PK.seed, ADRS, M;) = CHAM(PK.seed|| ADRS|| My, 8),
H(PK.seed, ADRS, My ||M,) = CHAM(PK.seed|| ADRS||M; || My, n),
T;(PK.seed, ADRS, M) = CHAM(PK.seed||ADRS||M, n).

(15)

3.3.3. K-SPHINCS ™ —LEA256
Following equation describes LEA256 function for K-SPHINCS™.

Hyusg (R, PK.seed, PK.root, M) = LEA(R||PK.seed || PK.root||M,m),
PRF(SEED, ADRS) = LEA(SEED||ADRS, n),

PRF,;50(SK.prf, Optrand, M) = LEA(SK.prf||Optrand||M, n),
F(PK.seed, ADRS, My) = LEA(PK.seed||ADRS|| M3, 8),
H(PK.seed, ADRS, M1||M;) = LEA(PK.seed||ADRS||M;|| My, 1),
T;(PK.seed, ADRS, M) = LEA(PK.seed||ADRS||M, n).

(16)

4. Evaluation

The implementation was evaluated on a MacBook Pro 16 with the Intel i7-9750H
processor, which can be clocked up to 2.6 GHz. Implementation is carried out on the Xcode
framework, and compiled using the compile option -03 (i.e., fastest).

Sensors 2023, 23, 7558

110f15

4.1. K-XMSS vs. XMSS

XMSS was evaluated using test/speed.c included in the basic C reference code
provided by [28]. K-XMSS was evaluated on the same setting by changing existing hash
functions to Korean hash functions. The performance evaluation of original XMSS and
proposed K-XMSS can be shown in Tables 2 and 3.

Table 2. Original XMSS and K-XMSS evaluation on Intel processors. Algorithm indicates XMSS-[Hash
function]_[10]_[256]. (mid: median, avg: average, cc: clock cycle).

Keygen Sign Verify
Algorithm
sec 10°¢c 10%cc [mid] ~ 10%cc [avg] 10°cc [mid] 10%cc [avg]
LSH 1.49 3875.89 5.91 8.36 2.09 2.14
SHAKE 1.50 3893.99 5.62 8.20 2.16 2.23
SHA2 3.53 9168.19 13.54 19.13 4.62 4.63
CHAM 5.97 15,507.85 22.66 32.19 10.61 10.47
LEA 13.22 34,369.08 49.80 69.02 16.47 16.73

Table 3. Original XMSS and K-XMSS evaluation on Intel processors. Algorithm indicates XMSS-[Hash
function]_[10]_[512]. (mid: median, avg: average, cc: clock cycle).

Keygen Sign Verify
Algorithm
sec 108¢c 10%cc [mid] ~ 10°cc [avg] 10%cc [mid] 10%cc [avg]
LSH 2.96 7668.84 11.57 16.21 3.83 3.95
SHAKE 6.19 16,043.76 28.40 36.00 8.07 8.15
SHA2 7.22 18,710.56 27.47 39.19 9.58 9.79

The performance evaluation of optimized K-XMSS using AVX2 can be shown in
Table 4. In XMSS, the smallest of the heights is 10. Therefore, K-XMSS performed only
for tree height h of 10, which determines the number of messages that can be signed with
one key pair. As described in Section 3.2, only 256 and 512 are provided for the security
parameter n of the Korean hash functions. Therefore, n of K-XMSS is 256 and 512, the
comparison target XMSS was also measured only for n values of 256 and 512.

Table 4. Optimized K-XMSS evaluation using AVX2 on Intel processors. Algorithm indicates XMSS-
[Hash function]_[10]_[n in bits]. (mid: median, avg: average, cc: clock cycle).

Keygen Sign Verify
Algorithm
sec 108¢cc 10%cc [mid] 10%cc [avg]l 10°cc [mid] 108cc [avg]
LSH_256(AVX2) 0.55 1419.14 2.14 3.01 0.90 0.95
LSH_512(AVX2) 1.36 3548.60 517 7.49 1.70 1.71

Among Korean Hash Functions, it was confirmed that LSH was significantly faster
than other hash ciphers. Furthermore, it has been confirmed that LSH_10_256 is about
3 times faster than SHA2_10_256, and achieves performance similar to SHAKE_10_256.
LSH_10_512 has been confirmed to be approximately three times faster than SHA2_10_512
and SHAKE_10_512. In addition, it has been demonstrated that K-XMSS can be optimized
for better performance by utilizing advanced implementation techniques through AVX2.

Table 5 is a performance measurement table of Dilithium selected as the NIST PQC
standard [29]. Compared to XMSS & K-XMSS, it can be seen that the performance of
Dilithium is excellent.

Sensors 2023, 23, 7558

12 0f 15

Table 5. Evaluation Crystals-Dilithium on Intel Core-i7 6600U (Skylake) [30]. (cc: clock cycle).

Keygen Sign Verify
Algorithm
10%¢cc 10%cc 10%¢cc
Reference-C 0.30 1.36 0.33
Dilithium?2
AVX2 0.12 0.33 0.12
Reference-C 0.54 2.35 0.52
Dilithium3
AVX2 0.26 0.53 0.18
Reference-C 0.82 2.86 0.87
Dilithiumb5
AVX2 0.30 0.64 0.28

4.2. K-SPHINCS™ vs. SPHINCS™*

We evaluated the performance by replacing hash functions (i.e., SHAKE, SHA, and
HARAKA) used in the SPHINCS™ with the Korean hash functions (i.e., CHAM, LSH,
and LSH).

SPHINCS™ was evaluated based on the simple code of PQClean project (https:
/ /csrenist.gov/Projects / post-quantum-cryptography accessed on 21 August 2023) [15],
K-SPHINCS™ was evaluated by changing the hash function to a Korean hash function
(i.e., LSH, CHAM, and LEA) for the same code. In the case of the original SPHINCST, the
same comparison was made based on [Hash function]_[256]. The performance evaluation
of orginal SPHINCS™ & K-SPHINCS™ can be shown in Table 6. And the performance
evaluation of optimized K-SPHINCS™ using AVX2 can be shown in Table 7.

Among Korean hash functions, it was confirmed that LSH was significantly faster than
other hash ciphers. Furthermore, it has been confirmed that LSH_256 achieves performance
similar to SHA2 and is about 0.64 times faster than SHAKE and HARAKA. In addition,
it has been demonstrated that K-SPHINCS™ can be optimized for better performance by
utilizing advanced implementation techniques through AVX2.

Table 6. Original SPHINCS™ and K-SPHINCS™ evaluation on Intel processors. Algorithm indicates
SPHINCS™"-[Hash function]-256f-simple. (avg: average, mid: median, cc: clock cycle).

Keygen Sign Verify
Algorithm 5 . .
sec[avg] 10°cc[mid] seclavg]l 10°cc [mid] sec[avg] 10°cc [mid]

SHA2 0.007 17.62 0.156 403.56 0.005 12.34
LSH 0.007 18.45 0.174 454.15 0.004 10.48
SHAKE 0.011 27.09 0.209 520.71 0.006 14.76
HARAKA 0.010 27.09 0.251 636.09 0.007 18.01
CHAM 0.035 90.85 0.598 1560.11 0.017 43.68
LEA 0.068 171.08 1.334 3424.09 0.037 94.09

Table 7. Optimized K-SPHINCS™ evaluation using AVX2 evaluation on Intel processors. Algorithm
indicates SPHINCS " -[Hash function]_[n in bits]. (avg: average, mid: median, cc: clock cycle).

Keygen Sign Verify

Algorithm
sec[avg] 10°cc [mid] sec[avg]l 10°cc [mid] sec[avg] 10°cc [mid]

LSH_256(AVX2) 0.002 6.06 0.051 129.54 0.001 3.49

Since K-XMSS and K-SHPINCS™ adopted XMSS and SHPINCS™ as quantum-resistant
encryption standards, it is judged to provide sufficient security in the Post-Quantum

https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography

Sensors 2023, 23, 7558

13 of 15

environment. Compared to SPHINCS™ & K-SPHINCS™, it can be seen that the performance
of Dilithium is excellent.
Table 8 is performace of XMSS, K-XMSS. SHPINCS™, and SHPINCS™*.

Table 8. Performance public key, private key, and signature size. It can be confirmed that K-XMSS
and K-SHPINCS™ have the same size as the original version.

Scheme Public Key (Byte) Private Key (Byte) Signature Size (Byte)
XMSS_10_256
64 1373 2500
K-XMSS_10_256
XMSS_10_512
128 2653 9092

K-XMSS_10_512
SPINCS+_10_256
K-SPINCS+_10_256

64 128 49,856

5. Conclusions

We proposed K-XMSS, K-SHPINCS™, which changed the hash functions of XMSS
and SHPINCS™ (i.e., SHA2, SHAKE, and HARAKA) to Korean hash functions (i.e., LSH,
CHAM, and LEA). In particular, we used Korean block ciphers (i.e., CHAM and LEA)
by changing them into hash functions. Finally, we evaluated the proposed K-XMSS and
K-SPHINCS™. Internal hash functions used in K-XMSS and K-SPHINCS™ used reference
codes from LSH. However, there was no code implemented for hash functions based on
block ciphers CHAM and LEA. Therefore, in this paper, we used the CHAM and LEA hash
function reference-C code we implemented. As the result of the performance evaluation, it
was confirmed that among Korean hash functions, LSH was significantly faster than other
hash ciphers(i.e., CHAM and LEA). In K-XMSS, it has been confirmed that LSH_10_256
is about 3 times faster than SHA2_10_256. In K-SPHINCST™, it has been confirmed that
LSH_256 achieves performance similar to SHA2. In addition, it has been demonstrated that
K-XMSS and K-SPHINCS™ can be optimized for better performance by utilizing advanced
implementation techniques through AVX2. Therefore, K-XMSS and K-SPHINCS™ can be
further optimized by adopting the optimal implementation code such as NEON. Since K-
XMSS and K-SHPINCS ™ adopted XMSS and SHPINCS™ as quantum-resistant encryption
standards, it is judged to provide sufficient security in the Post-Quantum environment.
Currently, since the proposed technique is based on the reference code, performance is low
when encryption except for LSH is applied. Therefore, as the future work, we propose
K-XMSS and K-SPHINCS ™, which adopt the optimal implementation code using NEON.

Author Contributions: Software, M.S. and S.E.; writing—original draft, M.S.; writing—review and
editing, G.S., Y.Y., WK. and H.S,; supervision, H.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00264, Research on
Blockchain Security Technology for IoT Services, 40%) and this work was supported by Institute
of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2022-0-00627, Development of Lightweight BIoT technology for
Highly Constrained Devices, 40%) and this work was supported by Institute for Information &
communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (<Q| Crypton>, No. 2019-0-00033, Study on Quantum Security Evaluation of Cryptography
based on Computational Quantum Complexity, 10%) and this work was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-
2020R1F1A1048478, 10%).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 7558 14 of 15

References

1. Wang, C.X,; You, X,; Gao, X,; Zhu, X,; Li, Z,; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the road to 6G: Visions,
requirements, key technologies and testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905-974. [CrossRef]

2. Liao, B,; Ali, Y.; Nazir, S.; He, L.; Khan, H.U. Security analysis of IoT devices by using mobile computing: A systematic literature
review. IEEE Access 2020, 8, 120331-120350. [CrossRef]

3. Fu,Z;Liu,M;; Qin, Y;; Zhang,].; Zou, Y;; Yin, Q.; Li, Q.; Duan, H. Encrypted Malware Traffic Detection via Graph-based Network
Analysis. In Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses, Limassol, Cyprus,
26-28 October 2022; pp. 495-509.

4. Kadhim, A.N.; Sadkhan, S.B. Security Threats in Wireless Network Communication-Status, Challenges, and Future Trends.
In Proceedings of the 2021 International Conference on Advanced Computer Applications (ACA), Maysan, Iraq, 25-26 July 2021;
pp. 176-181.

5. Rao, S.P; Chen, H.Y.; Aura, T. Threat modeling framework for mobile communication systems. Comput. Secur. 2023, 125, 103047.
[CrossRef]

6. Yang, P; Xiao, Y.; Xiao, M,; Li, S. 6G wireless communications: Vision and potential techniques. IEEE Netw. 2019, 33, 70-75.
[CrossRef]

7. Lizama-Pérez, L.A.; Montiel-Arrieta, L.J.; Herndandez-Mendoza, ES.; Lizama-Servin, L.A.; Simancas-Acevedo, E. Public hash
signature for mobile network devices. Ing. Investig. Y Tecnol. 2019, 20. [CrossRef]

8. Buchmann, J.; Dahmen, E.; Szydlo, M. Hash-based digital signature schemes. In Post-Quantum Cryptography; Bernstein, D.].,
Buchmann, J., Dahmen, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 35-93. [CrossRef]

9. Lamport, L. Constructing Digital Signatures from a One-Way Function. Technical Report, Citeseer. 1979. Available on-
line: https:/ /www.microsoft.com/en-us/research/uploads/prod /2016 /12 /Constructing-Digital-Signatures-from-a-One-Way-
Function.pdf (accessed on 21 August 2023).

10. Merkle, R.C. A certified digital signature. In Proceedings of the Conference on the Theory and Application of Cryptology; Springer:
New York, NY, USA, 1989; pp. 218-238.

11. Feynman, R.P. Simulating physics with computers. In Feynman and Computation; CRC Press: Boca Raton, FL, USA, 2018;
pp- 133-153.

12. Shor, PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,
41, 303-332. [CrossRef]

13. Grover, LK. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, Philadelphia, PA, USA, 22-24 May 1996; pp. 212-219.

14. Bernstein, D.J.; Hopwood, D.; Hiilsing, A.; Lange, T.; Niederhagen, R.; Papachristodoulou, L.; Schneider, M.; Schwabe, P.;
Wilcox-O"Hearn, Z. SPHINCS: Practical stateless hash-based signatures. In Proceedings of the Annual International Conference on the
Theory and Applications of Cryptographic Technigues; Springer: Berlin/Heidelberg, Germany, 2015; pp. 368-397.

15. NIST PQC Project. Available online: https://csrc.nist.gov/Projects/post-quantum-cryptography (accessed on 21 August 2023).

16. MobiSec’22. Available online: https://www.manuscriptlink.com/society/kiisc/conference/mobisec2022 (accessed on 21 Au-
gust 2023).

17. Buchmann,].; Dahmen, E.; Hiilsing, A. XMSS-a practical forward secure signature scheme based on minimal security assumptions.
In Proceedings of the International Workshop on Post-Quantum Cryptography, Taipei, Taiwan, 29 November-2 December 2011;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 117-129.

18. Merkle, R.C. A digital signature based on a conventional encryption function. In Proceedings of the Conference on the Theory and
Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1987; pp. 369-378.

19. Hilsing, A. W-OTS+-shorter signatures for hash-based signature schemes. In Proceedings of the International Conference on
Cryptology in Africa, Cairo, Egypt, 22-24 June 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 173-188.

20. Even, S.; Goldreich, O.; Micali, S. On-line/off-line digital signatures. J. Cryptol. 1996, 9, 35-67. [CrossRef]

21. Bernstein, D.J.; Hiilsing, A.; Kolbl, S.; Niederhagen, R.; Rijneveld, J.; Schwabe, P. The SPHINCS+ signature framework. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11-15 November 2019;
pp. 2129-2146.

22. Hilsing, A.; Rausch, L.; Buchmann,]J. Optimal parameters for XMSS MT. In Proceedings of the International Conference on
Availability, Reliability, and Security, Regensburg, Germany, 2—-6 September 2013; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 194-208.

23. Kim, D.C.; Hong, D.; Lee,].K,; Kim, WH.; Kwon, D. LSH: A new fast secure hash function family. In Proceedings of the
International Conference on Information Security and Cryptology, Seoul, Republic of Korea, 3-5 December 2014; Springer: Cham,
Switzerland, 2014; pp. 286-313.

24. Preneel, B.; Govaerts, R.; Vandewalle,]. Hash functions based on block ciphers: A synthetic approach. In Proceedings of
the Annual International Cryptology Conference, Santa Barbara, CA, USA, 22-26 August 1993; Springer: Berlin/Heidelberg,
Germany, 1993; pp. 368-378.

25. Hong, D.; Lee,] K,; Kim, D.C.; Kwon, D.; Ryu, K.H.; Lee, D.G. LEA: A 128-bit block cipher for fast encryption on common

processors. In Proceedings of the International Workshop on Information Security Applications, Jeju Island, Republic of Korea,
19-21 August 2013; Springer: Cham, Switzerland, 2013; pp. 3-27.

http://doi.org/10.1109/COMST.2023.3249835
http://dx.doi.org/10.1109/ACCESS.2020.3006358
http://dx.doi.org/10.1016/j.cose.2022.103047
http://dx.doi.org/10.1109/MNET.2019.1800418
http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018
http://dx.doi.org/10.1007/978-3-540-88702-7_3
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Constructing-Digital-Signatures-from-a-One-Way-Function.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Constructing-Digital-Signatures-from-a-One-Way-Function.pdf
http://dx.doi.org/10.1137/S0036144598347011
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://www.manuscriptlink.com/society/kiisc/conference/mobisec2022
http://dx.doi.org/10.1007/BF02254791

Sensors 2023, 23, 7558 15 of 15

26.

27.

28.

29.

30.

Koo, B.; Roh, D.; Kim, H.; Jung, Y.; Lee, D.G.; Kwon, D. CHAM: A family of lightweight block ciphers for resource-constrained
devices. In Proceedings of the International Conference on Information Security and Cryptology, Seoul, Republic of Korea,
29 November-1 December 2017; Springer: Cham, Switzerland, 2017; pp. 3-25.

Roh, D.; Koo, B.; Jung, Y.; Jeong, LW.; Lee, D.G.; Kwon, D.; Kim, W.H. Revised version of block cipher CHAM. In Proceedings of
the International Conference on Information Security and Cryptology, Seoul, Republic of Korea, 4-6 December 2019; Springer:
Cham, Switzerland, 2019; pp. 1-19.

Hiilsing, A.; Butin, D.; Gazdag, S.L.; Rijneveld, J.; Mohaisen, A. XMSS: EXtended Merkle signature scheme. RFC 8391, IRTF. 2018.
Available online: https://datatracker.ietf.org/doc/html/rfc8391 (accessed on 21 August 2023).

Ducas, L;; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. Crystals-dilithium: A lattice-based digital
signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 238-268. [CrossRef]

Crystals-Dilithium. Available online: https:/ /pq-crystals.org/dilithium/index.shtml (accessed on 21 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://datatracker.ietf.org/doc/html/rfc8391
http://dx.doi.org/10.46586/tches.v2018.i1.238-268
https://pq-crystals.org/dilithium/index.shtml

	Introduction
	Contributions
	First Implementation Korean Version of XMSS and SPHINCS+
	Hash Function Based on Korean Block Cipher

	Extended Version of MobiSec’22

	Related Works
	eXtended Merkle Signature Scheme (XMSS)
	Winternitz One Time Signature (WOTS)
	Winternitz One Time Signature Plus (WOTS+)

	SPHINCS+
	FORS: Forest of Random Subsets
	XMSSMT

	Hash Function
	LSH Hash Function
	Hash Function Based on Block Cipher

	Proposed Method
	Hash Function Based on Block Cipher
	K-XMSS
	K-XMSS_LSH256
	K-XMSS_CHAM
	K-XMSS_LEA
	K-XMSS_LSH512

	K-SPHINCS+
	K-SPHINCS+-LSH256
	K-SPHINCS+-CHAM256
	K-SPHINCS+-LEA256

	Evaluation
	K-XMSS vs. XMSS
	K-SPHINCS+ vs. SPHINCS+

	Conclusions
	References

