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ABSTRACT A hybrid architecture composed of a convolutional neural network (CNN) and a Transformer
is the new trend in realizing various vision tasks while pushing the limits of learning representation. From
the perspective of mechanisms of CNN and Transformer, a functional combination of them is suitable for the
image quality assessment (IQA) since which requires leveraging both local distortion perception and global
quality aggregation, however, there has been scarce study employing such an approach. This paper presents
an end-to-end CNN-Transformer hybrid model for full-reference IQA named convolved quality transformer
(CQT). The CQT is inspired by the human’s perceptual characteristics and is designed to unify the advantages
of both CNN and Transformer for evaluating quality score. In CQT, convolutional layers specialize in local
distortion feature extraction whereas Transformer aggregates them to estimate holistic quality via long-range
interaction between them. Such a series of processes is repeated on multi-scale feature maps to capture
quality representation sensitively. To verify submodules in CQT perform their roles properly, we in-depth
analyze the interaction between local distortions inferring global quality with attention visualization. Finally,
the perceptually pooled information from stage-wise feature embeddings derives the final quality level. The
experimental results demonstrate that the proposed model achieves superior performance in comparison to
previous data-driven approaches, and which is even well-generalized over standard datasets.
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INDEX TERMS Full-reference image quality assessment, human visual system, CNN-transformer hybrid
model.

I. INTRODUCTION18

THE goal of image quality assessment (IQA) is to predict19

an objective score of the given image equivalent to that20

perceived by humans. The IQA tasks have continued to21

receive attention since objective image quality is able to play22

a role as a quantitative criterion without human judgments23

while developing an end-display product, producing visual24

content, and improving the associated service. In several25

practical scenarios, visual information suffers a wide variety26
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of distortions during acquisition, compression, transmission, 27

rendering, etc [1]. An objective approach for an evaluation of 28

image quality is to quantify the visible differences between 29

the reference and distorted images [2]. In this context, IQA 30

methods are generally categorized into three approaches in 31

accordance with the presence or absence of a reference image 32

(pristine image in general), full-reference IQA (FR-IQA), 33

reduced-reference IQA (RR-IQA), and no-reference IQA 34

(NR-IQA) [3]. Although RR- and NR-IQA methods are pre- 35

ferred for practical usage as an evaluation criterion, owing 36

to the benefits of the relative information delivered by a 37

pair-wise comparison between the utilized reference and 38
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target distorted images, the FR-IQA method guarantees to39

achieve superior predictive power than them [4].40

The quality prediction accuracy is determined by the con-41

sistency degree with the human’s opinion. Almost of IQA42

dataset provides an image quality ground-truth as a mean43

opinion score (MOS) which is an averaged value over sub-44

jective scores rated by several participants. That is, in order45

to achieve the construction of a FR-IQA metric/model highly46

correlated with MOS, it is an ultimate factor that how the47

perceptual characteristics based on the human visual sys-48

tem (HVS) can be well considered to evaluate the quality49

score [5]. Hereby, various previous works attempted to design50

IQAmetrics involved in the lower- and higher-level HVS [2],51

[6], [7], [8], [9].52

Nevertheless, because of the unfathomable complex mech-53

anism of HVS, it is difficult to model high-performance54

IQA evaluators by reflecting some of the fragmentary55

factors. For this reason, in the past decade, data-driven56

approaches based on CNN (convolutional neural network)57

rapidly emerged [10], [11], [12], [13], [14]. The key idea58

underlying CNN-based IQA is local connectivity to extract59

meaningful representations of local distortions. By stacking60

multiple convolutional layers, the effective receptive fields61

may enlarge to capture global quality-related characteris-62

tics [15]. To cope with the weakness caused by the inductive63

bias underlying CNN, in more recent years, Transform-64

ers starts unleashing the power in entire computer vision65

fields [16], [17], [18], and several Transformer-based IQA66

models were also introduced [19], [20], [21], [22], [23]. Such67

existing works for Transformer-based IQA methods were68

all early studies that just applied Transformer architecture69

to their quality predictors without any consideration of the70

perceptual characteristics of IQA.71

In this paper, we introduce a learning-based FR-IQA72

model, convolved quality transformer (CQT), which deploys73

a hybrid architecture composed of CNNs and Transformers74

to achieve reliable performance by reflecting visual charac-75

teristics regarding that a human perceives degradation in an76

image over both local and global regions together to deter-77

mine quality level. As shown in Fig. 1, some distortions are78

highlighted and some others are less noticeable even though79

the same level distortions are uniformly distributed over all80

spatial regions (i.e., globally added Gaussian noise as seen in81

the absolute difference). In other words, we easily perceive82

the distortions in homogeneous regions (e.g., sky and road),83

but those in textural regions (e.g., trees and gardens) are less84

sensitive. After observing such locally regional distortion,85

human aggregates all perceived information and interpret it86

to a higher level by considering their global relationship to87

determine the holistic image quality [4], [24].88

In terms of designing the proposed CQT, such obser-89

vation inspires that the representations of local distortions90

are differently abstracted following the corresponding region91

characteristics in spite of the equal distortion level, and it92

is well-known that the convolutional layer is powerful to93

capture the local features to understand the overall image94

FIGURE 1. Overview of the proposed image quality evaluator. The
reference and distorted images are fed into the model to extract local
distortion features. The model estimates the long-range relationship
between every local information and predicts the degree of image quality.

with ignoring the contextual relation of them that are outside 95

of the receptive field [25], [26]. After that, the extracted 96

local features have to be aggregated into the global fea- 97

tures with capturing their long-range dependencies. However, 98

it is difficult for local information to be interacted with 99

and merged by using only the convolutional layers which 100

have a small field of view to capture global quality, thus 101

previous IQA approaches were explicitly pool information 102

by taking an average [4], [27]. Whereas, ViT is designed to 103

exhaustively encode long-range dependencies between local 104

regional information over an image through multi-head self- 105

attention (MHSA) [16]. In CQT, MHSAs are employed to 106

empower the model with the ability to long-range interact 107

between local quality perceptions, and convolutional layers 108

are also embedded in between to extract regional distortion 109

features affecting the degree of perceived quality, as depicted 110

in Fig. 1. 111

The proposed CQT leverages a convolutional projection 112

into the Transformer block to maximize the advantage of uti- 113

lizing both CNN and Transformer which maintains local dis- 114

tortion perception and long-range interaction between them. 115

Moreover, our model consists of the image encoders, CQT 116

blocks, and a prediction head utilizing perceptual poolings, 117

which is designed stage-wise manner to efficiently build 118

multi-scale feature maps regarding addressing coarse and 119

fine-grained distortions. The main contribution of this work 120

is three-fold: (1) We newly introduce CQT, a novel learning- 121

based FR-IQAmodel composed of the hybrid structure which 122

takes advantage of both CNNs and Transformers. (2) We 123

demonstrate by visualization that the proposed model is pos- 124

sible to extract local distortion features effectively and to 125

understand their long-range interactions over spatial regions 126

similar to HVS characteristics. (3)We present comprehensive 127
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ablations studies of the model architecture and verify the128

superiority of CQT outperforming previous works on LIVE129

[28], CSIQ [29], TID2013 [30], TID2008 [31] IQA datasets.130

II. RELATED WORK131

In order to clarify the status and limitations of the IQA field,132

we state the previous works in three categories–conventional133

metrics reflecting HVS, CNN-based data-driven approaches,134

and Transformer-based learning methods.135

A. FUNDAMENTAL APPROACHES FOR HVS-BASED IQA136

The conventional metrics on IQA focused on imitating HVS137

as a closed-form weight function and applying it to esti-138

mate the pixel-wise error between reference and distorted139

images. SSIM [2] is a de-facto standard index in image140

processing fields which reflects that HVS is sensitive to141

structural information. Tsai and Liu [6] demonstrated that the142

non-uniform resolving power of the retina (i.e., foveation)143

weighting guides determining the overall quality of an image.144

FSIM [7] showed that HVS understands an image via local145

perception, which is highly correlatedwith phase congruency.146

Zhang et al. [8] proposed the VSI index which computes local147

distortion quality based on visual saliency and pools them.148

Laparra et al. [32] assumed that image quality is dominated149

by local luminance error according to the early visual path-150

way (area V1), and applied Laplacian pyramid decomposition151

into preprocessing. Xue et al. [33] estimated the local quality152

of each small patch in the distorted image based on gradient153

magnitude similarity and pooled the values to derive the final154

score.155

Several HVS-based IQA methods have been proposed,156

but there is no clear definition of structural distortion in157

a perceptual meaning, and most methods were limited to158

their assumed functional forms regarding the interaction159

between local distortions. Despite such limitations, previ-160

ous HVS-related IQA studies share a common two-step161

framework–local distortion extraction at first and then com-162

puting the global quality. This fundamental strategy inspired163

us to design CQT model which implicitly integrates both164

learning local distortion features and understanding their165

dependency to determine the holistic quality score in a per-166

ceptual manner.167

B. CNN-BASED IQA METHODS168

In the past decade, CNN-based IQA models were actively169

studied. The first CNN-based method was used for NR-170

IQA. Kang et al. [27] employed a patch-wise approach171

where divided and locally normalized patches were fed into172

a shallow CNN to craft features and the pooled value was173

supervised by MOS. Liang et al. [10] proposed a dual-174

path FR-IQA model using locally normalized patches. They175

employed weight-sharing CNNs for non-aligned reference176

and distorted image pairs, and the concatenated learned vec-177

tors were regressed onto subjective scores. Bosse et al. [34]178

subdivided images into patches and estimated local patch-179

wise qualities. And then to estimate image-wise quality by180

aggregating them, similar to DeepQA [35], the visual weight 181

for each patch was learned during the model training. 182

However, such local patch-based learning approaches had 183

a weakness in estimating a global score since the aggregating 184

over the obtained local information was performed without 185

any prior relation to human perception. To handle this issue, 186

more recent studies explored the semantic feature-level IQA 187

methods. Gao et al. [11] studied how mid-level representa- 188

tions of pre-trained VGGNet can be used to determine image 189

quality. The local similarity between the extracted feature 190

maps from reference and distorted images was calculated, 191

and the global picture-quality scores were pooled. LPIPS [12] 192

showed that the calibrated `2 distance between reference 193

and distorted images on the feature space learned by a deep 194

network represents perceptual similarity measure, i.e, image 195

quality. PieAPP [36] utilized a pairwise learning framework 196

for IQA which learns the preference of one distorted image 197

over the other based on an estimated perceptual error from 198

the extracted features. DISTS [14] considered both structural 199

and textural similarities. This metric was explicitly designed 200

to tolerate texture resampling where the score is measured in 201

a SSIM-like way between feature embeddings mapped by the 202

pre-trained CNN. 203

C. TRANSFORMER-BASED IQA METHODS 204

Transformer network is being applied in a wide vision field, 205

hereby various Transformer-based IQA techniques have been 206

also proposed. You and Korhonen’s work [20] was the first 207

attempt to utilize Transformer for NR-IQA. The extracted 208

features were linearly projected and an extra learnable 209

embedding of the Transformer encoder was regressed onto 210

MOS. To imitate human behavior, Zhu et al. [37] attached 211

a saliency detector, and the estimated region of interest on 212

feature level was served to MHSA as a query for NR-IQA. 213

Ke et al. [38] introduced a multi-scale embedding approach 214

including hash-based 2D spatial embedding and a scale 215

embedding strategy to handle various resolutions and aspect 216

ratios for the generalized NR-IQA. Cheon et al. [19] expand 217

Transformer-based long-range understanding to FR-IQA. 218

The semantic feature difference was extracted by using a 219

pre-trained CNN classifier backbone and was passed to 220

Transformer to predict the final score. Jiang et al. [21] cal- 221

culated the non-linear residuals between distorted and refer- 222

ence features captured from the CNN backbone, and which 223

were fed into Transformer layers for quality evaluation. 224

Chubarau and Clark [22] employed the probabilistic sam- 225

pler to extract multi-scale patches implying representative 226

quality difference, and then the MHSA modules encoded 227

long-range dependencies between those embedded patches. 228

Keshari et al. [23] adopted the bagging ensemble method to 229

cope with multi-scale issues in IQA. The Transformer-based 230

models were trained on different image scales, and the 231

inferred quality scores were averaged. However, the previous 232

studies have been limited to naïve approaches to applying 233

Transformer to the IQA field as the regressor ignoring the 234

specialized characteristics to determine perceptual quality. 235
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FIGURE 2. The proposed CQT model architecture for FR-IQA.

III. PROPOSED CQT MODEL FOR FR-IQA236

The proposed IQA model has a hybrid structure that237

aims for taking advantage of Transformers to extract238

long-range dependency, and that of CNNs to capture a239

quality representation of the local regions. The proposed240

model architecture is depicted in Fig. 2 which consists of241

three substructures–image encoding CNNs, CQT blocks,242

and a score predictive MLP (multi-layer perceptron) head.243

Both distorted and reference images are encoded into the244

lower-dimensional representations by the shared CNNs, and245

the subtracted features of them are fed into the CQT to246

reason an overall quality degradation. Here, the CQT block247

employs the MHSA module and several convolution layers248

which is for an effective understanding of the quality differ-249

ence between the distorted and reference images in terms of250

both holistic and local perception. After capturing short- and251

long-range dependencies over the multi-scale quality feature252

difference through multi-stage CQT blocks, those are pooled253

as the final features where a perceptual pooling function is254

designed to reflect the human visual characteristics. Finally,255

the MLP head predicts the degree of quality as an objective256

score by using them.257

A. IMAGE ENCODER258

In order to reduce the dimension, both distorted and ref-259

erence images are encoded by CNNs sharing the parame-260

ters. In previous approaches, an image is generally split into261

the non-overlapped patches for the construction of a token262

sequence when a Transformer-based model is utilized [16],263

[39], [40], [41], [42], [43]. Such a patch-based way has a 264

problem that it is difficult to achieve extracting local percep- 265

tual features. To cope with this, recent approaches adopted 266

early convolution for information abstraction [44], [45], [46], 267

[47], [48]. The encoded spatial information is treated as 268

a token sequence on the feature level, and it is passed to 269

the Transformer for understanding its long-term relationship, 270

thus the CNN plays the role of the kind of learnable image 271

downsampler. 272

In the proposed model, the input images are encoded 273

through the dual path. Here, two encoders are employed 274

including the quality encoderEq and the semantic encoderEs. 275

First of all, the role of both encoders is the same in that 276

they reduce the dimension and generate a token sequence, 277

however, their fundamental purposes are distinct. 278

1) QUALITY ENCODER Eq 279

The quality encoder Eq is designed to extract the represen- 280

tative distortion features, and which encodes the pristine and 281

distorted images
(
I r , Id ∈ Rh×w×3

)
to feature maps f rq and 282

f dq having the reduced spatial size. 283

f rq = Eq
(
I r ; θq

)
, 284

f dq = Eq
(
Id ; θq

)
, (1) 285

where θq indicates the parameters of Eq. Here, Eq is a train- 286

able network and its architectural design is inspired by the 287

encoder of VQGAN [49] which effectively reduces the spatial 288

dimension of input images, from 256 × 256 to 32 × 32. 289
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FIGURE 3. The detailed layer structure of the proposed model. (a) the quality encoder Eq. (b) CQT block.

The detailed architecture of Eq is depicted in Fig. 3 (a).290

At first, an image channel is expanded to ng = 64 by291

convolution, and the final extracted feature maps f rq and f dq292

have the shape R
h
8×

w
8×dm , where the embedding dimension293

dm is set to 128. After encoding both reference and distorted294

images by the weight-sharing CNNs, the degraded quality295

feature is obtained by subtracting two features, i.e., f rq − f
d
q .296

This encoding path is mainly to capture the degree of local297

quality degradation, thus Eq is trained to resolve distortion298

sensitively.299

2) SEMANTIC ENCODER Es300

It is well known that an unnaturally corrupted semantic region301

in an image attracts the attention of a human [50], and which302

implies that the semantic distance is also important infor-303

mation to determine the image quality. Human judgment of304

similarity depends on high-order image structure, thus sev-305

eral previous works utilized the semantic features to predict306

image quality and to reflect perceptual characteristics on307

image restoration tasks (e.g., perceptual loss) [12], [19], [51],308

[52]. Thus, we employed the pre-trained Inception-ResNet-309

V2 [53] on ImageNet dataset as the semantic encoder Es.310

Differ from Eq, the parameters θs of Es are frozen and not311

updated during the model training, and which extracts the312

semantic feature maps f rs and f ds from both reference and313

distorted images.314

f rs = Es
(
I r ; θs

)
,315

f ds = Es
(
Id ; θs

)
, (2)316

The total six feature maps are obtained by the interme-317

diate layers in Es (i.e., mixed_5b, block35_2, block35_4,318

block35_6, block35_8, block35_10 layers) where the same319

setting as used in the model proposed by Cheon et al. [19].320

The feature maps are concatenated, and whose representa- 321

tion along the channel dimension is compressed by applying 322

1 × 1 convolution. As a result, the semantic feature maps f rs 323

and f ds have the same shape R
h
8×

w
8×dm as the quality feature 324

maps f rq and f dq . Similar to the quality encoding path, the 325

final output of the semantic path is the difference between the 326

features encoded from reference and distorted images, i.e., 327

f rs − f
d
s . 328

Note that in our structure, the trainable quality encoder 329

Eq plays the dominant role in capture the quality degra- 330

dation, and the semantic encoder Es complements it while 331

the pre-trained network in previous works has been gener- 332

ally utilized as the main backbone to extract the features 333

[12], [19]. 334

B. CQT BLOCK 335

Several studies incorporating convolutions into the vision 336

Transformer models are emerging [45], [54], [55], and there 337

are infinite possibilities enabling the combination of CNN 338

and Transformer regarding model architecture. The proposed 339

CQT is also a type of hybrid structure applying convolu- 340

tion to Transformer whose main purpose is understanding 341

long-range interaction between locally degraded quality by 342

self-attention to estimate global quality. As shown in Fig. 2, 343

the encoded feature differences f rq − f dq and f rs − f ds are 344

concatenated as 345

fd =
[
f rq − f

d
q , f

r
s − f

d
s

]
, (3) 346

where fd ∈ R
h
8×

w
8×2dm . fd is spatially flatten for being token 347

sequence having N = h
8 ×

w
8 length, and then an additional 348

learnable embedding pd ∈ RN×2dm is added to this as usually 349

used in the Transformer based models for maintaining the 350
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positional information as351

f0 =
[
fd0 + pd0 , fd1 + pd1 , . . . , fdN + pdN

]
, (4)352

and then CQT identify the relationship between quality infor-353

mation of each token contained in f0.354

Our CQT block is mainly inspired by the work of355

Guo et al [48], and which consists of local quality percep-356

tion unit (LQPU), MHSA module, and an inverted residual357

feed-forward network (InvResFFN). The overall architecture358

of CQT block is presented in Fig. 3 (b). It is well known359

that convolution and MHSA compensate for drawbacks of360

each other, and the convolutional layer in an early stage361

is better at processing local patterns [54]. In this context,362

the LQPU attempts to understand the quality relation and363

the structural information contained in a local spatial region364

(i.e., unflattened token sequence). The LQPU deploys the365

depth-wise convolution and retains the feature dimension.366

The output feature of the LQPU is normalized and fed into the367

MHSA after linear projections to query ql , key kl , and value368

kl at l th block. The MHSA aims for long-range interaction369

between the locally perceived quality degradation whose the370

number of multi-head nh is set to 4. The shortcut from LQPU371

is inserted to promote gradient propagation, and the output372

of the MHSA is inputted to InvResFFN where the expanding373

ratio is set to 4. The calculation of the CQT block is formu-374

lated as:375

x0 = f0,376

x ′l = LN (LQPU (xl−1)) ,377

ql = kl = vl = x ′l ,378

x ′′l = MHSA (ql, kl, vl)+ LQPU (xl−1) ,379

xl = InvResFFN
(
LN

(
x ′′l
)
+ x ′′l

)
. (5)380

Note that we adopt the hierarchical (i.e., multi-stage)381

Transformers structure which deals with the convolutional382

features in the token embeddings with attention projec-383

tion since it is shown that such a multi-scale setting leads384

the improved performance over several image reasoning385

tasks [40], [45]. As depicted in Fig. 2, The proposed model386

consists of a total of two stages, and each stage has two CQT387

blocks, respectively. The output feature of the first stage is388

projected to token embeddings f1 ∈ R
h
16×

w
16×4dm which is389

formed by 3 × 3 convolution. f1 is spatially reduced in half390

compared to f0 which is fed into the second stage and the391

output token embeddings f2 ∈ R
h
32×

w
32×8dm can be obtained,392

and then both f1 and f2 is used to estimate the final degree of393

perceptual image quality.394

C. MLP PREDICTION HEAD395

Through the MLP prediction head at the end of the model,396

final objective image quality score is estimated based on the397

extracted feature embeddings f1 and f2. Our MLP prediction398

head consists of two linear layers with having 12dm latent399

variables. Here, f1 and f2 are indirectly fed into the MLP400

prediction head, we employed two types of pooling strate-401

gies including the global average pooling and p-percentile402

pooling. It is well-known that taking an average represents the 403

global image quality in holistic manner [27], [56]. In addition, 404

the most severe distortion of visual content has a dominant 405

effect on the overall perceived quality [57], thus we capture 406

such spatially localized severe distortions by averaging the 407

upper pth percentiles from the feature value distribution in 408

order to reflect human’s visual characteristics [24]: 409

pm (f ) =
1
Nt

Nt∑
i=1

f hi,j, (6) 410

pp (f ) =
1

N p
t

∑
i>np+

f hi,j, (7) 411

where i and j are spatial (i.e., token) and channel (i.e., 412

embedding dimension) indices of the input feature f , and np+ 413

represents the upper pth percentiles in the histogram of feature 414

values f h. Nt and N p
t indicate the total number of feature 415

values and the number of p-percentile local qualities (i.e., 416

N p
t = Nt · p/100), respectively, and we set p = 5. 417

As presented in Fig. 2, the feature embeddings at different 418

stages f1 and f2 are separately pooled and concatenated to 419

keep the multi-scale characteristics of image distortion. Thus, 420

four pooled feature vectors pm (f1) ∈ R4dm , pp (f1) ∈ R4dm , 421

pm (f2) ∈ R8dm and pp (f2) ∈ R8dm can be obtained, andwhich 422

are concatenated together to form the final feature fp ∈ R24dm . 423

TheMLP head predicts the final image quality score ŝ from fp. 424

IV. EXPERIMENTS 425

A. DATASETS 426

In order to verify the predictive power of the proposed 427

method, five public IQA databases were utilized in our 428

experiments. 429

• KADID-10k [58]: contains 81 reference images and 430

10,125 distorted images using 25 fine-grained distortion 431

types including blurs, color distortions, compression, 432

noise, brightness changes, sharpening, contrast change, 433

and the other spatial distortions. A total of 30.4k subjec- 434

tive ratings were collected by crowdsourcing. 435

• CSIQ [29]: contains 30 references with 866 distorted 436

images using six types having five levels of distortions 437

(i.e., JPEG, JPEG2000, contrast decrements, Gaussian 438

noise, and Gaussian blur) where whose 5k subjective 439

scores are from the lab environment. 440

• LIVE [28]: contains 29 pristine images and whose 441

779 distorted versions by applying five synthetic distor- 442

tion types (i.e., JPEG, JPEG2000, white noise, Gaussian 443

blur, and fast fading). To construct MOS, a total of 25k 444

ratings are collected under the lab environment. 445

• TID2013 [30]: contains 25 pristine images and whose 446

3k distorted versions using 25 distortion types where 447

each having five levels of degradations, and the MOSs 448

were constructed by 524k subjective ratings under the 449

lab environment. 450

• TID2008 [31]: contains 25 references and their 1700 dis- 451

torted images using 17 types of distortions having 452
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FIGURE 4. Scatter plots of MOS against the predicted quality score of the CQT on three benchmark datasets, (a) LIVE, (b) CSIQ, (c) TID2013, and
(d) TID2008.

four levels. The subjective test was performed by453

838 observers in the lab environment.454

These datasets are de-facto standards for FR-IQA, and we455

determined to use KADID-10k as a training dataset in this456

study since its scale is larger compared to the others, and457

ratings were collected from crowdsourcing.458

B. IMPLEMENTATION DETAILS459

Each reference and distorted image pair was randomly460

cropped as 256 × 256 size, horizontally and vertically461

flipped, and rotated in the training step. The MOS value of462

the original image was employed as a supervisor for each463

cropped patch [19], [23]. All of the images were normalized464

with 0.5 mean and 0.5 standard deviation for each channel.465

32 channels of the feature maps were grouped for group466

normalization in the quality encoder. Since we utilized a two-467

stage hierarchy, a total of four CQT blocks were used, and the468

number of heads in MHSA was equally set to 4 (nh = 4) for469

all blocks. The embedding dimension was set to 128 (dm =470

128), thus the dimension of the final feature fp was 3072471

(24dm), and the latent space dimension was 2048 (12dm) in472

MLP prediction head with 0.1 dropout rate. ADAMoptimizer473

was used with a batch size 8, and a learning rate scheduler474

with cosine decay was applied with an initial learning rate of475

0.0001. A mean absolute error was employed as a training476

loss function targeting MOS values. Because the fixed-size477

image has to be fed into our model, for testing, each image478

was subdivided 256 × 256 size overlapping patches, and479

the predicted scores were averaged. Our implementation was480

based on the PyTorch framework, and it took about six hours481

to train the model to achieve the desired performance (about482

30 epochs) with a single NVIDIA RTX3090 GPU.483

C. PERFORMANCE MEASURES484

Since each dataset has a different subjective score range485

and distribution, the following well-known statistical mea-486

surements were used to benchmark the performance of487

previous IQA methods: Pearson linear correlation coef-488

ficient (PLCC) [61], Spearman rank correlation coeffi-489

cient (SRCC) [62], and Kendall rank correlation coefficient490

(KRCC) [63]. In the experiment, each correlation coeffi-491

cient is an average of values obtained over 30 training and492

testing iterations. The prediction of the proposed model is493

compared with several previous IQA methods. Here, all the 494

Transformer-based models trained onto KADID-10k dataset. 495

The results are tabulated in Table 1. As shown in the result, the 496

proposed CQT delivers competitive performance in compar- 497

ison to both conventional closed-form metrics and learning- 498

based methods. In particular, the CQT outperforms the other 499

learning-based methods across four databases. Overall, out- 500

standing performances over each database are achieved with 501

the Transformer-based models. The result demonstrates that 502

the improved understandability of long-range dependency 503

over spatial domain delivered by Transformer layers is effec- 504

tive to determine the level of visual quality. Whereas, the 505

better performances over each database are achieved by the 506

conventional metrics, for example, VIF [60] and FSIMc [7] 507

for LIVE, GMSD [33] for CSIQ, and VSI [8] for TID2013 508

and TID2008 datasets. It is noteworthy that such well-known 509

datasets have been re-used over several years throughout 510

the design processes, and these FR-IQA methods might be 511

intentionally over-adapted to certain subjective opinions and 512

degradation patterns [14]. Otherwise, the proposed method 513

shows consistent and outstanding performance for all datasets 514

proving that the CQT is a good generalized IQA model. 515

Figs. 4 (a)-(b) depict the correlation results for the image 516

quality predicted by the CQT and the ground-truth MOS 517

as scatter plots. As shown in these results, it is obvious 518

that the predicted image quality scores are closely regressed 519

onto the ground-truth, i.e., the proposed model is highly 520

correlated with the subjective opinions over the different 521

databases. 522

In order to demonstrate the proposed model well under- 523

stands the representative quality factors in latent space to 524

infer the degree of image quality, the pooled feature vector 525

fp ∈ R24dm prior to the MOS regression layer is visualized by 526

being embedded into a lower dimension. Fig. 5 shows a gen- 527

erated two-dimensional manifold of CSIQ datasets obtained 528

using t-SNE [64], where each point represents an image, and 529

the points are labeled in accordance with the distorted type. 530

Note that although none of the information associated with 531

distortion type has been provided when training the model, 532

the data points in the graphed manifold are clearly separated 533

according to their distortion type. This indicates that the CQT 534

is effectively trained to predict image quality with reasoning 535

degradation and extracting meaningful features. 536
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TABLE 1. PLCC, SRCC and KRCC comparison on the four databases including LIVE [28], CSIQ [29], TID2013 [30], and TID2008 [31]. The top three values are
highlighted as bold face.

FIGURE 5. Visualization of two-dimensional manifold obtained by t-SNE.
The manifold is projected from the extracted features (i.e., fp in Fig. 1) of
CSIQ dataset through the CQT. Each point indicates an image, and the
points labeled according to the distorted type.

Fig. 6 depicts the examples of attention maps from the537

proposed CQT model. The left is the reference and dis-538

torted images pair in order. The images in the upper right539

and lower right are the attention maps obtained through the540

first and second stages, respectively. At each row, the four541

obtained attention maps are visualized since there are four542

multi-heads in each CQT block. Here, each attention map is543

averaged over all attention weights of each head. As shown544

in the figure, although there are some overlapped regions545

that the attention maps focus on, each attention map looks546

to play a different role from others for inference of quality.547

For example, in (a)-(c) which are globally distorted images548

by impulse noise, change of color saturation, and Gaussian549

blur, respectively. Some of the attention maps have higher550

weights on the monotonous regions where the artifacts are551

perceived more easily by humans than those of the high-552

frequency regions. Whereas, some attention maps concen-553

trate on the textured regions which are not dealt with by the554

others, and whose distortions may also affect the perceptually555

degraded holistic quality. Moreover, some of the attention 556

maps show that the proposed model also considers under- 557

standing the higher-level semantics to predict the degree of 558

quality. (d)-(f) show locally distorted images by JPEG2000 559

compression, local block-wise distortion, and masked noise. 560

In such cases, the attention map groups are more clearly 561

separated where some of them focus on the local distorted 562

regions and the others, and vice versa. 563

Because the proposed model consists of a multi-stage hier- 564

archy, we observed that the attention maps at each stage 565

differently resolve an image at scale. That is, multi-heads 566

in the second stage more globally attend the image regions. 567

In a way, it is obvious since the receptive field for LQPUs is 568

wider than those of the first layer, and the spatial feature size 569

is smaller which means MHSA deals the fewer tokens and 570

each token interacts with the others in the longer range. Such 571

visualization proves that the proposed CQT works correctly 572

and whose each component plays its own role to predict 573

image quality. 574

D. ABLATIONS 575

1) EFFECT OF ENCODERS 576

Two types of projectors are utilized in the proposed model 577

including the quality and semantic encoders as aforemen- 578

tioned in the previous Section III-A. In order to achieve the 579

best predictive performance, we conducted ablation exper- 580

iments to investigate the effect of the encoder. Four kinds 581

of scenarios are considered and whose performances are 582

tabulated in Table 2. The semantic encoder (i.e., pre-trained 583

Inception-ResNet-V2, encoder type B) for downsampling an 584

image showed better performance rather than employing the 585

8 × 8 patch tokenization approach as used in ViT (encoder 586

type A) [16]. When the frozen network was substituted by 587

the learnable encoder (i.e., the quality encoder, encoder type 588

C), the predictive power was slightly improved. As shown in 589

the results, employing both the quality and semantic encoders 590

had the best performance, thus encoder type D was chosen as 591

the final model. 592
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FIGURE 6. Visualized attention map examples (please zoom in to see details). Left side images show the reference and
distorted image pair. Distortion types are (a) impulse noise, (b) change of color saturation, (c) Gaussian blur, (d) JPEG2000
compression, (e) local block-wise distortion, and (f) masked noise. The images on the right side are attention maps obtained
from the stage 1 (upper) and 2 (lower), respectively.
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FIGURE 6. (Continued.) Visualized attention map examples (please zoom in to see details). Left side images show the reference
and distorted image pair. Distortion types are (a) impulse noise, (b) change of color saturation, (c) Gaussian blur, (d) JPEG2000
compression, (e) local block-wise distortion, and (f) masked noise. The images on the right side are attention maps obtained from
the stage 1 (upper) and 2 (lower), respectively.

TABLE 2. Performance comparison on four standard IQA databases depending on the type of image encoder.

2) EFFECT OF MULTI-STAGES593

We investigated whether the multi-scale feature extraction594

can lead the improved predictive power on image quality595

or not, and how many stages are optimal. Towards this, the596

ablation studies were performed with varying the number597

of stages. At first, a performance verification was started598

from a single-stage setting, and then an additional stage was599

stacked one by one. Here, we set the spatial resolution of600

the feature map to be reduced in half at each moving on601

to the next stage. The extracted feature embeddings from602

the third stage were also pooled by (6) and (7), and which603

were concatenated with f1 and f2 to be fed into the MLP604

prediction head. As tabulated in Table 3, when the two stages605

hierarchy was employed (case B), the model’s performance606

was overall improved rather than the single-stage architecture607

(case A). However, the predictive power decreased when the608

three stages were utilized (case C), demonstrating that it is 609

difficult to guarantee that more stages make the model have 610

better performance. Fig. 7 visualizes attention maps derived 611

byMHSA of stage 3 in case C. It can be analyzed that the spa- 612

tial size of the feature map (i.e., h
16 ×

w
16 tokens) belonging to 613

stage 3 is excessively small to extract additional information 614

from local regions. Consequently, stage 3 for understanding 615

an additional relationship between the uninformative local 616

perceptions is unnecessary as shown in Fig. 7, and this might 617

be the reason why case C showed the decreased performance. 618

3) EFFECT OF QUALITY POOLING 619

The proposed model applied average and p-percentile pool- 620

ings ((6) and (7)) to feature embeddings f1 and f2 to abstract 621

higher-level information representing global image quality. 622

To investigate the performance variation in accordance with 623
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TABLE 3. Performance comparison on four standard IQA databases depending on the number of stages considering multi-stage hierarchy.

FIGURE 7. An example shows redundant information causes degradation of performance. The left side image is a reference and
distorted image pair. Distortion type is spatially correlated noise. The images on the right side are the visualized attention maps of
stage 3 when three stages were employed. In this case, the MOS of the distorted image is 0.324, but the predicted quality score is
0.760.

TABLE 4. Performance comparison on four standard IQA databases depending on the pooling methods to abstract global quality from feature
embeddings.

the different pooling schemes, four methods were tested624

as tabulated in Table 4. We observed that the p-percentile625

pooling (method B) led the improved performance rather626

than the average pooling (method A) when only a sin-627

gle pooling method was applied. Our proposed method628

(method C) utilized both poolings together which make the629

model achieve better performance. Here, a doubt that arises630

here was whether more statistics can help increase predic-631

tive power or not. Thus, we tested method D where an632

additional pooling was added to method C which estimates633

variance over the feature embeddings along with the spatial634

domain as:635

pv (f ) =
1
Nt

Nt∑
i=1

(
f hi,j − pm (f )

)2
, (8)636

where notations are the same as in (6) and (7). This aimed637

for reflecting how much the distortion is spatially dis-638

persed [65], however, as presented in Table 4, the perfor-639

mance even deteriorated when an additional pooling method640

was applied. This indicates that simply adding an aggregation641

scheme is unimportant and the utilized poolings sufficiently642

capture global information to predict the degree of image643

quality.644

V. CONCLUSION645

A data-driven FR-IQA model CQT taking a hybrid architec-646

ture consisting of CNN and Transformer has been proposed in647

this study. Since capturing representations of local distortion648

and estimating global image quality based on their long-range649

dependency is essential to reliable IQA, the proposed model 650

aimed for taking advantage of both CNN and Transformer 651

regarding quality perception. Towards achieving the gener- 652

alized predictive performance, we designed substructures of 653

CQT to reflect HVS and explored their optimal combina- 654

tion by observing the interaction between local perceptions 655

within each stage. The CQT demonstrated the improved and 656

generalized performance over three standard datasets in com- 657

parison with the several previous IQA schemes. Moreover, 658

we showed that the local feature extraction and the global 659

quality abstraction processes work appropriately with com- 660

plement each other by visualizing their interaction and by 661

analyzing the performance varies according to model abla- 662

tions. Nevertheless, the proposed method has limitations in 663

that it requires pristine reference to predict the degree of 664

visual quality. In addition, recent studies are focusing on the 665

subjective hallucinations led by generative image restoration 666

models, but we dealt with conventional artifacts. Hence, now 667

we are attempting to construct a general-purpose IQA model 668

without reference for more practical services since recent 669

NR-IQA models still lack performance compared to FR-IQA 670

level. If we design a powerful image restoration network 671

synthesizing a pristine image from the distorted one, it would 672

be possible for the similar approach proposed in this work to 673

be migrated to NR-IQA scenario. Beyond image quality, only 674

a few studies of an objective quality metric for the rendered 675

3D scene exist, thus we also intend to form a database for 676

quantifying 3D quality and analyzing the human’s visual 677

experiences when viewing 3D objects. 678
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