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ABSTRACT A hybrid architecture composed of a convolutional neural network (CNN) and a Transformer
is the new trend in realizing various vision tasks while pushing the limits of learning representation. From
the perspective of mechanisms of CNN and Transformer, a functional combination of them is suitable for the
image quality assessment (IQA) since which requires leveraging both local distortion perception and global
quality aggregation, however, there has been scarce study employing such an approach. This paper presents
an end-to-end CNN-Transformer hybrid model for full-reference IQA named convolved quality transformer
(CQT). The CQT is inspired by the human’s perceptual characteristics and is designed to unify the advantages
of both CNN and Transformer for evaluating quality score. In CQT, convolutional layers specialize in local
distortion feature extraction whereas Transformer aggregates them to estimate holistic quality via long-range
interaction between them. Such a series of processes is repeated on multi-scale feature maps to capture
quality representation sensitively. To verify submodules in CQT perform their roles properly, we in-depth
analyze the interaction between local distortions inferring global quality with attention visualization. Finally,
the perceptually pooled information from stage-wise feature embeddings derives the final quality level. The
experimental results demonstrate that the proposed model achieves superior performance in comparison to
previous data-driven approaches, and which is even well-generalized over standard datasets.

INDEX TERMS Full-reference image quality assessment, human visual system, CNN-transformer hybrid
model.

I. INTRODUCTION

THE goal of image quality assessment (IQA) is to predict
an objective score of the given image equivalent to that
perceived by humans. The IQA tasks have continued to
receive attention since objective image quality is able to play
a role as a quantitative criterion without human judgments
while developing an end-display product, producing visual
content, and improving the associated service. In several
practical scenarios, visual information suffers a wide variety
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of distortions during acquisition, compression, transmission,
rendering, etc [1]. An objective approach for an evaluation of
image quality is to quantify the visible differences between
the reference and distorted images [2]. In this context, IQA
methods are generally categorized into three approaches in
accordance with the presence or absence of a reference image
(pristine image in general), full-reference IQA (FR-IQA),
reduced-reference IQA (RR-IQA), and no-reference IQA
(NR-IQA) [3]. Although RR- and NR-IQA methods are pre-
ferred for practical usage as an evaluation criterion, owing
to the benefits of the relative information delivered by a
pair-wise comparison between the utilized reference and
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target distorted images, the FR-IQA method guarantees to
achieve superior predictive power than them [4].

The quality prediction accuracy is determined by the con-
sistency degree with the human’s opinion. Almost of IQA
dataset provides an image quality ground-truth as a mean
opinion score (MOS) which is an averaged value over sub-
jective scores rated by several participants. That is, in order
to achieve the construction of a FR-IQA metric/model highly
correlated with MOS, it is an ultimate factor that how the
perceptual characteristics based on the human visual sys-
tem (HVS) can be well considered to evaluate the quality
score [5]. Hereby, various previous works attempted to design
IQA metrics involved in the lower- and higher-level HVS [2],
(61, [71. [8], [9].

Nevertheless, because of the unfathomable complex mech-
anism of HVS, it is difficult to model high-performance
IQA evaluators by reflecting some of the fragmentary
factors. For this reason, in the past decade, data-driven
approaches based on CNN (convolutional neural network)
rapidly emerged [10], [11], [12], [13], [14]. The key idea
underlying CNN-based IQA is local connectivity to extract
meaningful representations of local distortions. By stacking
multiple convolutional layers, the effective receptive fields
may enlarge to capture global quality-related characteris-
tics [15]. To cope with the weakness caused by the inductive
bias underlying CNN, in more recent years, Transform-
ers starts unleashing the power in entire computer vision
fields [16], [17], [18], and several Transformer-based IQA
models were also introduced [19], [20], [21], [22], [23]. Such
existing works for Transformer-based IQA methods were
all early studies that just applied Transformer architecture
to their quality predictors without any consideration of the
perceptual characteristics of IQA.

In this paper, we introduce a learning-based FR-IQA
model, convolved quality transformer (CQT), which deploys
a hybrid architecture composed of CNNs and Transformers
to achieve reliable performance by reflecting visual charac-
teristics regarding that a human perceives degradation in an
image over both local and global regions together to deter-
mine quality level. As shown in Fig. 1, some distortions are
highlighted and some others are less noticeable even though
the same level distortions are uniformly distributed over all
spatial regions (i.e., globally added Gaussian noise as seen in
the absolute difference). In other words, we easily perceive
the distortions in homogeneous regions (e.g., sky and road),
but those in textural regions (e.g., trees and gardens) are less
sensitive. After observing such locally regional distortion,
human aggregates all perceived information and interpret it
to a higher level by considering their global relationship to
determine the holistic image quality [4], [24].

In terms of designing the proposed CQT, such obser-
vation inspires that the representations of local distortions
are differently abstracted following the corresponding region
characteristics in spite of the equal distortion level, and it
is well-known that the convolutional layer is powerful to
capture the local features to understand the overall image
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FIGURE 1. Overview of the proposed image quality evaluator. The
reference and distorted images are fed into the model to extract local
distortion features. The model estimates the long-range relationship
between every local information and predicts the degree of image quality.

with ignoring the contextual relation of them that are outside
of the receptive field [25], [26]. After that, the extracted
local features have to be aggregated into the global fea-
tures with capturing their long-range dependencies. However,
it is difficult for local information to be interacted with
and merged by using only the convolutional layers which
have a small field of view to capture global quality, thus
previous IQA approaches were explicitly pool information
by taking an average [4], [27]. Whereas, ViT is designed to
exhaustively encode long-range dependencies between local
regional information over an image through multi-head self-
attention (MHSA) [16]. In CQT, MHSAs are employed to
empower the model with the ability to long-range interact
between local quality perceptions, and convolutional layers
are also embedded in between to extract regional distortion
features affecting the degree of perceived quality, as depicted
in Fig. 1.

The proposed CQT leverages a convolutional projection
into the Transformer block to maximize the advantage of uti-
lizing both CNN and Transformer which maintains local dis-
tortion perception and long-range interaction between them.
Moreover, our model consists of the image encoders, CQT
blocks, and a prediction head utilizing perceptual poolings,
which is designed stage-wise manner to efficiently build
multi-scale feature maps regarding addressing coarse and
fine-grained distortions. The main contribution of this work
is three-fold: (1) We newly introduce CQT, a novel learning-
based FR-IQA model composed of the hybrid structure which
takes advantage of both CNNs and Transformers. (2) We
demonstrate by visualization that the proposed model is pos-
sible to extract local distortion features effectively and to
understand their long-range interactions over spatial regions
similar to HVS characteristics. (3) We present comprehensive
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ablations studies of the model architecture and verify the
superiority of CQT outperforming previous works on LIVE
[28], CSIQ [29], TID2013 [30], TID2008 [31] IQA datasets.

Il. RELATED WORK

In order to clarify the status and limitations of the IQA field,
we state the previous works in three categories—conventional
metrics reflecting HVS, CNN-based data-driven approaches,
and Transformer-based learning methods.

A. FUNDAMENTAL APPROACHES FOR HVS-BASED IQA
The conventional metrics on IQA focused on imitating HVS
as a closed-form weight function and applying it to esti-
mate the pixel-wise error between reference and distorted
images. SSIM [2] is a de-facto standard index in image
processing fields which reflects that HVS is sensitive to
structural information. Tsai and Liu [6] demonstrated that the
non-uniform resolving power of the retina (i.e., foveation)
weighting guides determining the overall quality of an image.
FSIM [7] showed that HVS understands an image via local
perception, which is highly correlated with phase congruency.
Zhang et al. [8] proposed the VSI index which computes local
distortion quality based on visual saliency and pools them.
Laparra et al. [32] assumed that image quality is dominated
by local luminance error according to the early visual path-
way (area V1), and applied Laplacian pyramid decomposition
into preprocessing. Xue et al. [33] estimated the local quality
of each small patch in the distorted image based on gradient
magnitude similarity and pooled the values to derive the final
score.

Several HVS-based IQA methods have been proposed,
but there is no clear definition of structural distortion in
a perceptual meaning, and most methods were limited to
their assumed functional forms regarding the interaction
between local distortions. Despite such limitations, previ-
ous HVS-related IQA studies share a common two-step
framework—local distortion extraction at first and then com-
puting the global quality. This fundamental strategy inspired
us to design CQT model which implicitly integrates both
learning local distortion features and understanding their
dependency to determine the holistic quality score in a per-
ceptual manner.

B. CNN-BASED IQA METHODS

In the past decade, CNN-based IQA models were actively
studied. The first CNN-based method was used for NR-
IQA. Kang er al. [27] employed a patch-wise approach
where divided and locally normalized patches were fed into
a shallow CNN to craft features and the pooled value was
supervised by MOS. Liang et al. [10] proposed a dual-
path FR-IQA model using locally normalized patches. They
employed weight-sharing CNNs for non-aligned reference
and distorted image pairs, and the concatenated learned vec-
tors were regressed onto subjective scores. Bosse et al. [34]
subdivided images into patches and estimated local patch-
wise qualities. And then to estimate image-wise quality by
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aggregating them, similar to DeepQA [35], the visual weight
for each patch was learned during the model training.

However, such local patch-based learning approaches had
a weakness in estimating a global score since the aggregating
over the obtained local information was performed without
any prior relation to human perception. To handle this issue,
more recent studies explored the semantic feature-level IQA
methods. Gao et al. [11] studied how mid-level representa-
tions of pre-trained VGGNet can be used to determine image
quality. The local similarity between the extracted feature
maps from reference and distorted images was calculated,
and the global picture-quality scores were pooled. LPIPS [12]
showed that the calibrated ¢, distance between reference
and distorted images on the feature space learned by a deep
network represents perceptual similarity measure, i.e, image
quality. PieAPP [36] utilized a pairwise learning framework
for IQA which learns the preference of one distorted image
over the other based on an estimated perceptual error from
the extracted features. DISTS [14] considered both structural
and textural similarities. This metric was explicitly designed
to tolerate texture resampling where the score is measured in
a SSIM-like way between feature embeddings mapped by the
pre-trained CNN.

C. TRANSFORMER-BASED IQA METHODS

Transformer network is being applied in a wide vision field,
hereby various Transformer-based IQA techniques have been
also proposed. You and Korhonen’s work [20] was the first
attempt to utilize Transformer for NR-IQA. The extracted
features were linearly projected and an extra learnable
embedding of the Transformer encoder was regressed onto
MOS. To imitate human behavior, Zhu et al. [37] attached
a saliency detector, and the estimated region of interest on
feature level was served to MHSA as a query for NR-IQA.
Ke et al. [38] introduced a multi-scale embedding approach
including hash-based 2D spatial embedding and a scale
embedding strategy to handle various resolutions and aspect
ratios for the generalized NR-IQA. Cheon et al. [19] expand
Transformer-based long-range understanding to FR-IQA.
The semantic feature difference was extracted by using a
pre-trained CNN classifier backbone and was passed to
Transformer to predict the final score. Jiang et al. [21] cal-
culated the non-linear residuals between distorted and refer-
ence features captured from the CNN backbone, and which
were fed into Transformer layers for quality evaluation.
Chubarau and Clark [22] employed the probabilistic sam-
pler to extract multi-scale patches implying representative
quality difference, and then the MHSA modules encoded
long-range dependencies between those embedded patches.
Keshari et al. [23] adopted the bagging ensemble method to
cope with multi-scale issues in IQA. The Transformer-based
models were trained on different image scales, and the
inferred quality scores were averaged. However, the previous
studies have been limited to naive approaches to applying
Transformer to the IQA field as the regressor ignoring the
specialized characteristics to determine perceptual quality.
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FIGURE 2. The proposed CQT model architecture for FR-IQA.
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IIl. PROPOSED CQT MODEL FOR FR-IQA

The proposed IQA model has a hybrid structure that
aims for taking advantage of Transformers to extract
long-range dependency, and that of CNNs to capture a
quality representation of the local regions. The proposed
model architecture is depicted in Fig. 2 which consists of
three substructures—image encoding CNNs, CQT blocks,
and a score predictive MLP (multi-layer perceptron) head.
Both distorted and reference images are encoded into the
lower-dimensional representations by the shared CNNs, and
the subtracted features of them are fed into the CQT to
reason an overall quality degradation. Here, the CQT block
employs the MHSA module and several convolution layers
which is for an effective understanding of the quality differ-
ence between the distorted and reference images in terms of
both holistic and local perception. After capturing short- and
long-range dependencies over the multi-scale quality feature
difference through multi-stage CQT blocks, those are pooled
as the final features where a perceptual pooling function is
designed to reflect the human visual characteristics. Finally,
the MLP head predicts the degree of quality as an objective
score by using them.

A. IMAGE ENCODER

In order to reduce the dimension, both distorted and ref-
erence images are encoded by CNNs sharing the parame-
ters. In previous approaches, an image is generally split into
the non-overlapped patches for the construction of a token
sequence when a Transformer-based model is utilized [16],
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[39], [40], [41], [42], [43]. Such a patch-based way has a
problem that it is difficult to achieve extracting local percep-
tual features. To cope with this, recent approaches adopted
early convolution for information abstraction [44], [45], [46],
[47], [48]. The encoded spatial information is treated as
a token sequence on the feature level, and it is passed to
the Transformer for understanding its long-term relationship,
thus the CNN plays the role of the kind of learnable image
downsampler.

In the proposed model, the input images are encoded
through the dual path. Here, two encoders are employed
including the quality encoder E, and the semantic encoder Ej.
First of all, the role of both encoders is the same in that
they reduce the dimension and generate a token sequence,
however, their fundamental purposes are distinct.

1) QUALITY ENCODER E4

The quality encoder E; is designed to extract the represen-
tative distortion features, and which encodes the pristine and
distorted images (I "1 e RhXWX3) to feature maps f; and

fqd having the reduced spatial size.
fq =Eq(I":64),
fi = £, (1%:6,) (M

where 6, indicates the parameters of E,. Here, E is a train-
able network and its architectural design is inspired by the
encoder of VQGAN [49] which effectively reduces the spatial
dimension of input images, from 256 x 256 to 32 x 32.
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FIGURE 3. The detailed layer structure of the proposed model. (a) the quality encoder Eq. (b) CQT block.

The detailed architecture of Ej; is depicted in Fig. 3 (a).
At first, an image channel is expanded to n, = 64 by
convolution, and the final extracted feature maps f; and fqd

have the shape R%X%de, where the embedding dimension
dp, is set to 128. After encoding both reference and distorted
images by the weight-sharing CNNs, the degraded quality
feature is obtained by subtracting two features, i.e., fq’ — fqd .
This encoding path is mainly to capture the degree of local
quality degradation, thus E, is trained to resolve distortion
sensitively.

2) SEMANTIC ENCODER E;

It is well known that an unnaturally corrupted semantic region
in an image attracts the attention of a human [50], and which
implies that the semantic distance is also important infor-
mation to determine the image quality. Human judgment of
similarity depends on high-order image structure, thus sev-
eral previous works utilized the semantic features to predict
image quality and to reflect perceptual characteristics on
image restoration tasks (e.g., perceptual loss) [12], [19], [51],
[52]. Thus, we employed the pre-trained Inception-ResNet-
V2 [53] on ImageNet dataset as the semantic encoder Ej.
Differ from E,, the parameters ; of E; are frozen and not
updated during the model training, and which extracts the
semantic feature maps f’ and f¢ from both reference and
distorted images.

[ =Es(I":65),
14 = E; (I"; 95> , )

The total six feature maps are obtained by the interme-
diate layers in E; (i.e., mixed_5b, block35_2, block35_4,
block35_6, block35_8, block35_10 layers) where the same
setting as used in the model proposed by Cheon et al. [19].
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The feature maps are concatenated, and whose representa-
tion along the channel dimension is compressed by applying
1 x 1 convolution. As a result, the semantic feature maps f,”
and f¢ have the same shape REX§%dn a5 the quality feature
maps fq’ and fqd. Similar to the quality encoding path, the
final output of the semantic path is the difference between the
features encoded from reference and distorted images, i.e.,
fsr _fvd'

Note that in our structure, the trainable quality encoder
E, plays the dominant role in capture the quality degra-
dation, and the semantic encoder E; complements it while
the pre-trained network in previous works has been gener-
ally utilized as the main backbone to extract the features
[12], [19].

B. CQT BLOCK

Several studies incorporating convolutions into the vision
Transformer models are emerging [45], [54], [55], and there
are infinite possibilities enabling the combination of CNN
and Transformer regarding model architecture. The proposed
CQT is also a type of hybrid structure applying convolu-
tion to Transformer whose main purpose is understanding
long-range interaction between locally degraded quality by
self-attention to estimate global quality. As shown in Fig. 2,
the encoded feature differences f; — fqd and 7 — f4 are
concatenated as

fa =17 =10 =11 3)

where f; € R > § X2 fa is spatially flatten for being token
sequence having N = % x % length, and then an additional
learnable embedding p; € RY*24n is added to this as usually
used in the Transformer based models for maintaining the
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positional information as

fo = [fao + Pdo-far + Py - Say + Pay] - )

and then CQT identify the relationship between quality infor-
mation of each token contained in fj.

Our CQT block is mainly inspired by the work of
Guo et al [48], and which consists of local quality percep-
tion unit (LQPU), MHSA module, and an inverted residual
feed-forward network (InvResFFN). The overall architecture
of CQT block is presented in Fig. 3 (b). It is well known
that convolution and MHSA compensate for drawbacks of
each other, and the convolutional layer in an early stage
is better at processing local patterns [54]. In this context,
the LQPU attempts to understand the quality relation and
the structural information contained in a local spatial region
(i.e., unflattened token sequence). The LQPU deploys the
depth-wise convolution and retains the feature dimension.
The output feature of the LQPU is normalized and fed into the
MHSA after linear projections to query g, key k;, and value
k; at I block. The MHSA aims for long-range interaction
between the locally perceived quality degradation whose the
number of multi-head #nj, is set to 4. The shortcut from LQPU
is inserted to promote gradient propagation, and the output
of the MHSA is inputted to InvResFFN where the expanding
ratio is set to 4. The calculation of the CQT block is formu-
lated as:

x0 = fo,

x; = LN (LQPU (x;-1))

q =k =v=x,

x| = MHSA (q1, ki, vi) + LOPU (x;-1),

x; = InvResFFN (LN (x') 4+ x]') . ©)

Note that we adopt the hierarchical (i.e., multi-stage)
Transformers structure which deals with the convolutional
features in the token embeddings with attention projec-
tion since it is shown that such a multi-scale setting leads
the improved performance over several image reasoning
tasks [40], [45]. As depicted in Fig. 2, The proposed model
consists of a total of two stages, and each stage has two CQT
blocks, respectively. The output feature of the first stage is
projected to token embeddings fi € R16 %16 <4dn which is
formed by 3 x 3 convolution. fi is spatially reduced in half
compared to fy which is fed into the second stage and the
output token embeddings f> € R %3 X84n can be obtained,
and then both fi and f> is used to estimate the final degree of
perceptual image quality.

C. MLP PREDICTION HEAD

Through the MLP prediction head at the end of the model,
final objective image quality score is estimated based on the
extracted feature embeddings f1 and f>. Our MLP prediction
head consists of two linear layers with having 124, latent
variables. Here, fi and f, are indirectly fed into the MLP
prediction head, we employed two types of pooling strate-
gies including the global average pooling and p-percentile
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pooling. Itis well-known that taking an average represents the
global image quality in holistic manner [27], [56]. In addition,
the most severe distortion of visual content has a dominant
effect on the overall perceived quality [57], thus we capture
such spatially localized severe distortions by averaging the
upper p* percentiles from the feature value distribution in
order to reflect human’s visual characteristics [24]:

Ny
_ L5
() = 5 ;:f, (6)
1
() =<7 > )
U jsprt

where i and j are spatial (i.e., token) and channel (i.e.,
embedding dimension) indices of the input feature f, and nP*+
represents the upper p'” percentiles in the histogram of feature
values f”. N; and N indicate the total number of feature
values and the number of p-percentile local qualities (i.e.,
NP =N, - p/100), respectively, and we set p = 5.

As presented in Fig. 2, the feature embeddings at different
stages fi and f, are separately pooled and concatenated to
keep the multi-scale characteristics of image distortion. Thus,
four pooled feature vectors p,, (fi) € R*n, pp (f1) € R4dm,
Pm () € R¥m and pp(f2) € R84m can be obtained, and which
are concatenated together to form the final feature f, € R24dm,
The MLP head predicts the final image quality score § from f),.

IV. EXPERIMENTS

A. DATASETS

In order to verify the predictive power of the proposed
method, five public IQA databases were utilized in our
experiments.

o« KADID-10k [58]: contains 81 reference images and
10,125 distorted images using 25 fine-grained distortion
types including blurs, color distortions, compression,
noise, brightness changes, sharpening, contrast change,
and the other spatial distortions. A total of 30.4k subjec-
tive ratings were collected by crowdsourcing.

o CSIQ [29]: contains 30 references with 866 distorted
images using six types having five levels of distortions
(i.e., JPEG, JPEG2000, contrast decrements, Gaussian
noise, and Gaussian blur) where whose 5k subjective
scores are from the lab environment.

o LIVE [28]: contains 29 pristine images and whose
779 distorted versions by applying five synthetic distor-
tion types (i.e., JPEG, JPEG2000, white noise, Gaussian
blur, and fast fading). To construct MOS, a total of 25k
ratings are collected under the lab environment.

o TID2013 [30]: contains 25 pristine images and whose
3k distorted versions using 25 distortion types where
each having five levels of degradations, and the MOSs
were constructed by 524k subjective ratings under the
lab environment.

o TID2008 [31]: contains 25 references and their 1700 dis-
torted images using 17 types of distortions having
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FIGURE 4. Scatter plots of MOS against the predicted quality score of the CQT on three benchmark datasets, (a) LIVE, (b) CSIQ, (c) TID2013, and

(d) TID2008.

four levels. The subjective test was performed by
838 observers in the lab environment.

These datasets are de-facto standards for FR-IQA, and we
determined to use KADID-10k as a training dataset in this
study since its scale is larger compared to the others, and
ratings were collected from crowdsourcing.

B. IMPLEMENTATION DETAILS

Each reference and distorted image pair was randomly
cropped as 256 x 256 size, horizontally and vertically
flipped, and rotated in the training step. The MOS value of
the original image was employed as a supervisor for each
cropped patch [19], [23]. All of the images were normalized
with 0.5 mean and 0.5 standard deviation for each channel.
32 channels of the feature maps were grouped for group
normalization in the quality encoder. Since we utilized a two-
stage hierarchy, a total of four CQT blocks were used, and the
number of heads in MHSA was equally set to 4 (n;, = 4) for
all blocks. The embedding dimension was set to 128 (d,, =
128), thus the dimension of the final feature f, was 3072
(24d,,), and the latent space dimension was 2048 (12d,,) in
MLP prediction head with 0.1 dropout rate. ADAM optimizer
was used with a batch size 8, and a learning rate scheduler
with cosine decay was applied with an initial learning rate of
0.0001. A mean absolute error was employed as a training
loss function targeting MOS values. Because the fixed-size
image has to be fed into our model, for testing, each image
was subdivided 256 x 256 size overlapping patches, and
the predicted scores were averaged. Our implementation was
based on the PyTorch framework, and it took about six hours
to train the model to achieve the desired performance (about
30 epochs) with a single NVIDIA RTX3090 GPU.

C. PERFORMANCE MEASURES

Since each dataset has a different subjective score range
and distribution, the following well-known statistical mea-
surements were used to benchmark the performance of
previous IQA methods: Pearson linear correlation coef-
ficient (PLCC) [61], Spearman rank correlation coeffi-
cient (SRCC) [62], and Kendall rank correlation coefficient
(KRCC) [63]. In the experiment, each correlation coeffi-
cient is an average of values obtained over 30 training and
testing iterations. The prediction of the proposed model is
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compared with several previous IQA methods. Here, all the
Transformer-based models trained onto KADID-10k dataset.
The results are tabulated in Table 1. As shown in the result, the
proposed CQT delivers competitive performance in compar-
ison to both conventional closed-form metrics and learning-
based methods. In particular, the CQT outperforms the other
learning-based methods across four databases. Overall, out-
standing performances over each database are achieved with
the Transformer-based models. The result demonstrates that
the improved understandability of long-range dependency
over spatial domain delivered by Transformer layers is effec-
tive to determine the level of visual quality. Whereas, the
better performances over each database are achieved by the
conventional metrics, for example, VIF [60] and FSIM,. [7]
for LIVE, GMSD [33] for CSIQ, and VSI [8] for TID2013
and TID2008 datasets. It is noteworthy that such well-known
datasets have been re-used over several years throughout
the design processes, and these FR-IQA methods might be
intentionally over-adapted to certain subjective opinions and
degradation patterns [14]. Otherwise, the proposed method
shows consistent and outstanding performance for all datasets
proving that the CQT is a good generalized IQA model.
Figs. 4 (a)-(b) depict the correlation results for the image
quality predicted by the CQT and the ground-truth MOS
as scatter plots. As shown in these results, it is obvious
that the predicted image quality scores are closely regressed
onto the ground-truth, i.e., the proposed model is highly
correlated with the subjective opinions over the different
databases.

In order to demonstrate the proposed model well under-
stands the representative quality factors in latent space to
infer the degree of image quality, the pooled feature vector
fp € R?4n prior to the MOS regression layer is visualized by
being embedded into a lower dimension. Fig. 5 shows a gen-
erated two-dimensional manifold of CSIQ datasets obtained
using t-SNE [64], where each point represents an image, and
the points are labeled in accordance with the distorted type.
Note that although none of the information associated with
distortion type has been provided when training the model,
the data points in the graphed manifold are clearly separated
according to their distortion type. This indicates that the CQT
is effectively trained to predict image quality with reasoning
degradation and extracting meaningful features.
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TABLE 1. PLCC, SRCC and KRCC comparison on the four databases including LIVE [28], CSIQ [29], TID2013 [30], and TID2008 [31]. The top three values are

highlighted as bold face.
Method LIVE [28] CSIQ [29] TID2013 [30] TID2008 [31]
etho PLCC__SRCC__KRCC PLCC__ SRCC__KRCC PLCC__SRCC__ KRCC PLCC__ SROCC__ KRCC
PSNR 0865 0873  0.680 0819 0810  0.601 0.677 0.687  0.496 0489 0525 0393
SSIM [2] 0937 0948  0.796 0852 0865  0.680 0777 0727  0.545 0.600  0.624 0452
MS-SSIM [59] 0940 0951  0.805 0.889 0906  0.730 0830 0786  0.605 0.789  0.853  0.655
Conventional ~ VSI [8] 0948 0952  0.806 0928 0942  0.786 0.900 0897 0718 0.864  0.895 0707
Metrics VIF [60] 0.960 0964  0.828 0913 0911  0.743 0771 0677 0518 0776 0749  0.586
FSIM [7] 0.961 0965  0.836 0919 0931  0.769 0877 0851  0.667 0862 0876  0.688
NLPD [32] 0932 0937  0.778 0923 0932  0.769 0.839  0.800  0.625 - - -
GMSD [33] 0957 0960  0.827 0945 0950  0.804 0.855  0.804  0.634 0830 0840 0651
DeeplQA [34] 0940 0947  0.791 0901 0909 0.732 0834 0831 0631 - - -
PieAPP [36] 0908 0919  0.750 0877 0892 0715 0859 0876  0.683 0477 0509 0367
LPIPS [12] 0934 0932  0.765 0.896  0.876  0.689 0749  0.670 0497 0711 0715 0522
Leaming-based ~ DISTS [14] 0954 0954 0811 0928 0929  0.767 0855  0.830  0.639 0830  0.808  0.619
Models IQT [19] 0938 0937  0.788 0.898  0.897  0.730 0.868  0.848  0.657 0.882 0875  0.690
MSFPT [23] 0950 0952  0.817 0.945 0938  0.780 0878 0866  0.675 0.904 0908 0732
VTAMIQ [22] 0.967  0.964  0.836 0.970  0.970  0.849 0.894  0.886  0.705 0861  0.863  0.684
CQT (ours) 0951 0958 0833 0962 0964 0.830 0.896__ 0.888 _ 0.706 0.887 _ 0.883 __ 0.693
i degraded holistic quality. Moreover, some of the attention
AWGN .
. e maps show that the proposed model also considers under-
sl @ JPEGRO00 standing the higher-level semantics to predict the degree of
@ FNOISE . . .
e BLR quality. (d)-(f) show locally distorted images by JPEG2000
j5 )@ CONTRAST “_.._ e compression, local block-wise distortion, and masked noise.
all - In such cases, the attention map groups are more clearly
0 ii' separated where some of them focus on the local distorted
‘3" regions and the others, and vice versa.
~10+4 ] £ Because the proposed model consists of a multi-stage hier-
g j’ archy, we observed that the attention maps at each stage
201 R F 4 differently resolve an image at scale. That is, multi-heads
Q't'-' ﬂ- in the second stage more globally attend the image regions.
—304 -l-. o . . . . .
In a way, it is obvious since the receptive field for LQPUs is
5 a8 oS0 58 o o =2 oo B wider than those of the first layer, and the spatial feature size

FIGURE 5. Visualization of two-dimensional manifold obtained by t-SNE.
The manifold is projected from the extracted features (i.e., fp in Fig. 1) of
CSIQ dataset through the CQT. Each point indicates an image, and the
points labeled according to the distorted type.

Fig. 6 depicts the examples of attention maps from the
proposed CQT model. The left is the reference and dis-
torted images pair in order. The images in the upper right
and lower right are the attention maps obtained through the
first and second stages, respectively. At each row, the four
obtained attention maps are visualized since there are four
multi-heads in each CQT block. Here, each attention map is
averaged over all attention weights of each head. As shown
in the figure, although there are some overlapped regions
that the attention maps focus on, each attention map looks
to play a different role from others for inference of quality.
For example, in (a)-(c) which are globally distorted images
by impulse noise, change of color saturation, and Gaussian
blur, respectively. Some of the attention maps have higher
weights on the monotonous regions where the artifacts are
perceived more easily by humans than those of the high-
frequency regions. Whereas, some attention maps concen-
trate on the textured regions which are not dealt with by the
others, and whose distortions may also affect the perceptually
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is smaller which means MHSA deals the fewer tokens and
each token interacts with the others in the longer range. Such
visualization proves that the proposed CQT works correctly
and whose each component plays its own role to predict
image quality.

D. ABLATIONS

1) EFFECT OF ENCODERS

Two types of projectors are utilized in the proposed model
including the quality and semantic encoders as aforemen-
tioned in the previous Section III-A. In order to achieve the
best predictive performance, we conducted ablation exper-
iments to investigate the effect of the encoder. Four kinds
of scenarios are considered and whose performances are
tabulated in Table 2. The semantic encoder (i.e., pre-trained
Inception-ResNet-V2, encoder type B) for downsampling an
image showed better performance rather than employing the
8 x 8 patch tokenization approach as used in ViT (encoder
type A) [16]. When the frozen network was substituted by
the learnable encoder (i.e., the quality encoder, encoder type
C), the predictive power was slightly improved. As shown in
the results, employing both the quality and semantic encoders
had the best performance, thus encoder type D was chosen as
the final model.
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(d)

FIGURE 6. Visualized attention map examples (please zoom in to see details). Left side images show the reference and
distorted image pair. Distortion types are (a) impulse noise, (b) change of color saturation, (c) Gaussian blur, (d) JPEG2000
compression, (e) local block-wise distortion, and (f) masked noise. The images on the right side are attention maps obtained
from the stage 1 (upper) and 2 (lower), respectively.

102976 VOLUME 10, 2022



H. Oh et al.: CQT: IQA via Long-Range Interaction Between Local Perception

IEEE Access

FIGURE 6. (Continued.) Visualized attention map examples (please zoom in to see details). Left side images show the reference
and distorted image pair. Distortion types are (a) impulse noise, (b) change of color saturation, (c) Gaussian blur, (d) JPEG2000
compression, (e) local block-wise distortion, and (f) masked noise. The images on the right side are attention maps obtained from
the stage 1 (upper) and 2 (lower), respectively.

TABLE 2. Performance comparison on four standard IQA databases depending on the type of image encoder.

Encoder type LIVE CSIQ TID2013 TID2008

PLCC SRCC _KRCC PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC
A S x 8 patch tokenize 0892 0933 0.758 0917 0925 0.6 0.800 0792 0611 0797 0.787  0.600
B Semantic encoder only 0.894 0941 0.798 0952 0951 0.809 0.891 0.885 0.698 0.881 0.880 0.688
C  Quality encoder only 0925 0950  0.814 0953 0963  0.827 0.889  0.885  0.696 0882  0.881  0.690
p Quality encoder + semantic encoder 0951 0958  0.833 0962 0964  0.830 0.896  0.888  0.706 0.887 0.883  0.693

(proposed)

2) EFFECT OF MULTI-STAGES

We investigated whether the multi-scale feature extraction
can lead the improved predictive power on image quality
or not, and how many stages are optimal. Towards this, the
ablation studies were performed with varying the number
of stages. At first, a performance verification was started
from a single-stage setting, and then an additional stage was
stacked one by one. Here, we set the spatial resolution of
the feature map to be reduced in half at each moving on
to the next stage. The extracted feature embeddings from
the third stage were also pooled by (6) and (7), and which
were concatenated with f| and f> to be fed into the MLP
prediction head. As tabulated in Table 3, when the two stages
hierarchy was employed (case B), the model’s performance
was overall improved rather than the single-stage architecture
(case A). However, the predictive power decreased when the
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three stages were utilized (case C), demonstrating that it is
difficult to guarantee that more stages make the model have
better performance. Fig. 7 visualizes attention maps derived
by MHSA of stage 3 in case C. It can be analyzed that the spa-
tial size of the feature map (i.e., % X 1¢ tokens) belonging to
stage 3 is excessively small to extract additional information
from local regions. Consequently, stage 3 for understanding
an additional relationship between the uninformative local
perceptions is unnecessary as shown in Fig. 7, and this might
be the reason why case C showed the decreased performance.

3) EFFECT OF QUALITY POOLING

The proposed model applied average and p-percentile pool-
ings ((6) and (7)) to feature embeddings fi and f> to abstract
higher-level information representing global image quality.
To investigate the performance variation in accordance with
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TABLE 3. Performance comparison on four standard IQA databases depending on the number of stages considering multi-stage hierarchy.

The number of stages LIVE CSIQ TID2013 TID2008
& PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC
A Single stage 0.923 0.932 0.783 0954  0.952 0.814 0.893 0.889 0.694 0.874 0.869 0.686
B 2 stages (proposed) 0.951 0.958 0.833 0962  0.964 0.830 0.896  0.888 0.706 0.887 0.883 0.693
C  3stages 0.934 0.940 0.807 0.939 0.945 0.796 0.890 0.882 0.682 0.863 0.860 0.677
FIGURE 7. An example shows redundant information causes degradation of performance. The left side image is a reference and
distorted image pair. Distortion type is spatially correlated noise. The images on the right side are the visualized attention maps of
stage 3 when three stages were employed. In this case, the MOS of the distorted image is 0.324, but the predicted quality score is
0.760.
TABLE 4. Performance comparison on four standard IQA databases depending on the pooling methods to abstract global quality from feature
embeddings.
Pooline methods LIVE CSIQ TID2013 TID2008
& N PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC
A~ Average pooling only 0.923 0.925 0.771 0942 0939 0.788 0.887 0.882 0.692 0.871 0.859 0.670
B p-percentile pooling only 0.944 0.935 0.816 0.955 0.961 0.824 0.894 0.881 0.698 0.886 0.878 0.679
C gvrz;f‘f;g;"’h"g * p-percentile pooling 0951 0958  0.833 0962 0964  0.830 0.896  0.890  0.706 0.887  0.883  0.693
D  C+ variance pooling 0.945 0.939 0.819 0.957 0.959 0.823 0.887 0.869 0.680 0.873 0.865 0.672

the different pooling schemes, four methods were tested
as tabulated in Table 4. We observed that the p-percentile
pooling (method B) led the improved performance rather
than the average pooling (method A) when only a sin-
gle pooling method was applied. Our proposed method
(method C) utilized both poolings together which make the
model achieve better performance. Here, a doubt that arises
here was whether more statistics can help increase predic-
tive power or not. Thus, we tested method D where an
additional pooling was added to method C which estimates
variance over the feature embeddings along with the spatial
domain as:
(L 2
mm—MZ : ®)

i=1

(fzf} — Pm (f))

where notations are the same as in (6) and (7). This aimed
for reflecting how much the distortion is spatially dis-
persed [65], however, as presented in Table 4, the perfor-
mance even deteriorated when an additional pooling method
was applied. This indicates that simply adding an aggregation
scheme is unimportant and the utilized poolings sufficiently
capture global information to predict the degree of image
quality.

V. CONCLUSION

A data-driven FR-IQA model CQT taking a hybrid architec-
ture consisting of CNN and Transformer has been proposed in
this study. Since capturing representations of local distortion
and estimating global image quality based on their long-range
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dependency is essential to reliable IQA, the proposed model
aimed for taking advantage of both CNN and Transformer
regarding quality perception. Towards achieving the gener-
alized predictive performance, we designed substructures of
CQT to reflect HVS and explored their optimal combina-
tion by observing the interaction between local perceptions
within each stage. The CQT demonstrated the improved and
generalized performance over three standard datasets in com-
parison with the several previous IQA schemes. Moreover,
we showed that the local feature extraction and the global
quality abstraction processes work appropriately with com-
plement each other by visualizing their interaction and by
analyzing the performance varies according to model abla-
tions. Nevertheless, the proposed method has limitations in
that it requires pristine reference to predict the degree of
visual quality. In addition, recent studies are focusing on the
subjective hallucinations led by generative image restoration
models, but we dealt with conventional artifacts. Hence, now
we are attempting to construct a general-purpose IQA model
without reference for more practical services since recent
NR-IQA models still lack performance compared to FR-IQA
level. If we design a powerful image restoration network
synthesizing a pristine image from the distorted one, it would
be possible for the similar approach proposed in this work to
be migrated to NR-IQA scenario. Beyond image quality, only
a few studies of an objective quality metric for the rendered
3D scene exist, thus we also intend to form a database for
quantifying 3D quality and analyzing the human’s visual
experiences when viewing 3D objects.
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