
Citation: Kim, M.; Joo, S.

Time-Constrained Adversarial

Defense in IoT Edge Devices through

Kernel Tensor Decomposition and

Multi-DNN Scheduling. Sensors 2022,

22, 5896. https://doi.org/10.3390/

s22155896

Academic Editors: Hwangnam Kim,

Woonghee Lee, Seungho Yoo and

Eun-Chan Park

Received: 13 July 2022

Accepted: 5 August 2022

Published: 7 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Time-Constrained Adversarial Defense in IoT Edge Devices
through Kernel Tensor Decomposition and Multi-DNN Scheduling
Myungsun Kim 1,* and Sanghyun Joo 2

1 Department of Applied Artificial Intelligence, Hansung University, Seoul 02876, Korea
2 Department of IT Convergence Engineering, Hansung University, Seoul 02876, Korea
* Correspondence: kmsjames@hansung.ac.kr; Tel.: +82-2-760-4045

Abstract: The development of deep learning technology has resulted in great contributions in many
artificial intelligence services, but adversarial attack techniques on deep learning models are also
becoming more diverse and sophisticated. IoT edge devices take cloud-independent on-device
DNN (deep neural network) processing technology to exhibit a fast response time. However, if the
computational complexity of the denoizer for adversarial noises is high, or if a single embedded GPU
is shared by multiple DNN models, adversarial defense at the on-device level is bound to represent
a long latency. To solve this problem, eDenoizer is proposed in this paper. First, it applies Tucker
decomposition to reduce the computational amount required for convolutional kernel tensors in the
denoizer. Second, eDenoizer effectively orchestrates both the denoizer and the model defended by
the denoizer simultaneously. In addition, the priority of the CPU side can be projected onto the GPU
which is completely priority-agnostic, so that the delay can be minimized when the denoizer and
the defense target model are assigned a high priority. As a result of confirming through extensive
experiments, the reduction of classification accuracy was very marginal, up to 1.78%, and the inference
speed accompanied by adversarial defense was improved up to 51.72%.

Keywords: IoT edge device; embedded GPU; approximate computing; tucker decomposition; GPU
scheduling framework; adversarial defense

1. Introduction

Artificial intelligence (AI) services triggered by deep learning technologies are making
our daily lives more convenient. AI applications based on deep learning models have been
on the surface in various critical fields, e.g., in medical image analysis [1], construction [2],
self-driving cars [3], and metaverse-based education [4]. Deep learning technology has
its good sides, but it is susceptible to adversarial attacks. Adding a very small amount of
perturbation that cannot be identified with the human eyes to the original image becomes
an adversarial example, which can make a fool of the deep learning model [5–7]. Thus, lack
of robust and properly implemented defense mechanisms leaves deep learning applications
vulnerable to adversarial attacks. Furthermore, in security-sensitive applications such as
autonomous driving and invasive surgery, this malicious attack can lead to dreadful conse-
quences. An example of an adversarial attack to an autonomous vehicle is shown in Figure 1.
An attacker can intercept transmission from the camera and disturb the image by adding
adversarial noises (perturbation) before being delivered to the DNN-based object detection
system. Alternatively, by manipulating road signs, devices that perform DNNs, although
completely understandable to humans, can be confused and completely misclassified.

To defend against such attacks, a method of eliminating malicious noise before the
target inference starts is naturally required. In general, just as deep learning models require
very high model-complexity to maintain high recognition accuracy, a denoizer also requires
a high degree of computational complexity to maintain high restoration accuracy through
denoizing [8]. In this environment, the target inference time is the sum of the denoizing

Sensors 2022, 22, 5896. https://doi.org/10.3390/s22155896 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155896
https://doi.org/10.3390/s22155896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4254-4009
https://orcid.org/0000-0002-8733-9415
https://doi.org/10.3390/s22155896
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155896?type=check_update&version=2

Sensors 2022, 22, 5896 2 of 22

time and the pure inference time, and therefore the time required to perform denoizing
should be minimized.

Figure 1. Example of an adversarial attack to an autonomous vehicle.

In an effort to tackle network latency and security issues, IoT edge devices usually
perform operations which are required for deep learning models on their own in a cloud
server-independent form. An IoT edge platform such as the Jetson AGX Xavier platform [9]
usually consists of an integrated (embedded) GPU and several CPUs, and due to its
excellent parallel processing capability in MAC (multiply–accumulate) operations, most
DNN (deep neural network) operations are performed on the GPU. Presently, several deep
learning models are being performed simultaneously to meet improved AI service quality
and various needs. These conditions, however, can make the GPU a performance bottleneck.

When a denoizer is required to defend against malicious attacks and multiple deep
learning models are performed together, a critically important denoizer should be treated as
a top priority. However, since the GPU is an inherently non-preemptive device and executes
DNN kernels with a FIFO order, it is difficult to guarantee the preferential execution of
DNN operations necessary for the denoizer.

To tackle those issues mentioned above, in this study, we propose eDenoizer. It is an
embedded denoizer especially designed for embedded systems such as IoT edge devices.
First, our study adopts [8] as a baseline denoizer. Then, an approximate technique is
applied to reduce the model-complexity of the baseline denoizer. This overcomes the
limited computational capability of the embedded environment. Second, we propose a GPU
scheduling framework that reflects the priority specified by the CPU-side OS (operating
system) so that the critical task such as the denoizer can be preferentially handled by
the GPU. Third, we propose a mechanism that can maximize the parallel processing
capability of the integrated GPU in an environment where several deep learning models are
performed together. Through this, the denoizer and the target inference using the output of
the denoizer can be accelerated simultaneously.

The rest of this paper is structured as follows. Section 2 provides the technical back-
ground of this study to help in understanding eDenoizer. Section 3 states formally our
problem to solve. Section 4 details the solution architecture and then technically treats the
proposed solution. Section 5 reports on the experiments to evaluate eDenoizer. Finally, the
conclusions are given in Section 6.

2. Background
2.1. Adversarial Attack and Defense

Adversarial examples [10] can be inputs, including image data, maliciously crafted
to lead to a wrong classification result. They usually have quite a small difference from
the original data, and the difference is made up of some amounts of perturbation. Given
an input data x, a deep learning model is defined as D : x → y, and J(x, y) specifies
the loss function applied for the training step of model D. Here we denote x∗ as the

Sensors 2022, 22, 5896 3 of 22

adversarial example developed from the clean image x [8]. Using adversarially manipulated
x∗, a certain datapoint x can be forced to be classified into a wrong class instead of y, and
we call this an adversarial attack.

An attack algorithm called the Fast Gradient Sign Method (FGSM) was proposed, and
an adversarial example x∗ is obtained from Equation (1) [8,11].

x∗ = x + ε · sign(5x J(x, y)) (1)

where ε denotes the degree of adversarial perturbation added on. To derive a higher
misclassification rate, an iterative FGSM was proposed by [12] which repeats FGSM several
times. In [8], this iterative FGSM is referred to as IFGSM, and if FGSM is repeated by n
steps, it is expressed as IFGSMn.

Depending on how well the adversary knows the target model, attacks can be clas-
sified into two categories: white-box attacks and black-box ones. The former is an attack
when the attacker knows all the information in the target deep learning model, e.g., the
neural network architecture, parameters, and gradients of the model. Thus, the adversarial
example generator contains the target model itself. Instead, as for a black-box attack, the
attacker has no knowledge of the target deep learning model. Attacks are accomplished
only relying on the in/out pattern of the target model and examples are generated on
other deep learning models. Therefore, black-box attacks are more difficult than white-box
attacks [8,13,14].

2.2. Denoiser

To firmly defend against such adversarial attacks, HGD (high-level representation
guided denoizer) [8], a denoizing network architecture in the circumstances under image
classification using the ImageNet dataset [15] has been proposed. The crux of HGD is
DUNET, which is a combination of denoizing autoencoder (DAE) [16] and U-net [17].
The key functional block that performs denoizing inside HGD is DUNET. To fool a deep
learning model, attackers add adversarial noises to clean images. In this respect, the basic
idea of HGD is to denoize maliciously crafted examples before they are forwarded to
the target inference engine (i.e., defense target model). HGD can effectively remove error
amplification effect which means even a small amount of residual perturbations can be
augmented in the top layers [8]. So HGD can work like that, the loss function of HGD takes
L1 norm of the difference between the outputs of the last layers of the target deep learning
model generated from both clean and adversarial examples [8]. Moreover, HGD is highly
defensive against both white-box and black-box attacks and is applicable to various deep
learning models.

Figure 2 pictorially shows the detail of the denoizing sequence in HGD. The numbers
inside each rectangle stand for the sizes of feature maps and images, i.e., width × height,
and the number outside the rectangle denotes the number of channels. C means a series
of layers, which consists of a 3 × 3 convolution, a BN (batch normalization) layer and
a ReLU (rectified linear unit). Cr is defined as r consecutive C, and Conv k × k means
a k× k convolutional layer. The final output of DUNET is the denoized image which has
the same resolution with the input image. To obtain the denoized image, DUNET first
makes the negative noise and then add this to the input image [8]. The circled sections
drawn in dashed lines in the figure represent the first ones of two or three consecutive
convolutional layers. As can be seen indirectly from the figure, the number of their output
channels is 256, 256, 128 and 64, respectively, indicating a relatively large computational
scale. These fours dashed circles represent the portion that accounts for about 40.37% of the
total operation. Therefore, in order to realize HGD in resource-limited embedded systems,
it is necessary to be able to efficiently reduce the computation volume of the corresponding
part while minimizing the accuracy loss.

Sensors 2022, 22, 5896 4 of 22

Figure 2. Denoizing sequence of DUNET in HGD [8].

2.3. Tucker Decomposition on Convolution Kernel Tensors

Tucker decomposition has provided an effective mean to reduce the computational
volume of deep learning models by restructuring the convolutional hidden layers which
occupy the majority of the computation [18]. In a deep learning model, a convolutional
layer usually adopts a 4-way kernel tensor of size kw × kh × ci × co where kw/kh is the
kernel width/height and ci/co means the number of input/output channel. By applying
Tucker decomposition, we can obtain a core tensor g size of R1 × R2 × R3 × R4 and four
factor matrixes (A1∼A4) sizes of kw× R1, kh× R2, ci× R3 and co × R4, respectively, ref. [19].
Here, R1∼R4 mean the rank induced from each way of the kernel.

When we apply Tucker decomposition on convolution kernel tensors, we do not have
to apply it to every way of the kernel tensor. For instance, kw and kh are usually the same
and the spatial dimension of them are typically small by 3 or 5. Thus, we only takes into
account the ways of ci and co. Subsequently, the decomposition result is that the size of
the core tensor g is kw × kh × R3 × R4, and two factor matrixes sizes of ci × R3 and co × R4.
As a result, a 4-way kw × kh × ci × co sized kernel tensor is decomposed into three 4-way
tensors such that 1× 1× ci× R3, kw× kh× R3× R4 and 1× 1× co× R4, and Figure 3 details
the decomposition result.

Figure 3. Tucker decomposition on a convolution kernel tensor [19].

In terms of complexity analysis according to the number of parameters, originally
kw × kh × ci × co parameters are required. With Tucker decomposition, the number of
parameters of the kernel tensor is reduced by ci × R3 + kw × kh × R3 × R4 + co × R4 where
generally ci is sufficiently larger than R3 and also co is much larger than R4.

Sensors 2022, 22, 5896 5 of 22

3. Problem Formulation
3.1. Problem Description

To guarantee a correct classification result, typically denoizing procedure is performed
prior to the inference step. So the execution time of DUNET in HGD is critical in terms
of the system-wide inference performance. As Figure 2 shows, in DUNET, several large
convolutional layers are stacked, which means that DUNET itself is computationally
expensive. To quantitatively identify this, we measured the time DUNET took for processing
a single input image as well as the times of three other DNN models. The three DNN models
were Inception-V3 [20], ResNet-152 [21] and VGG-16 [22], and they can be the defense target
models. We ran DUNET and the three defense target models on Jetson AGX Xavier [9] and
Jetson TX2 [23] platforms, which are representative COTS (commercial Off-the-shelf) IoT
edge platforms. Table 1 describes the result.

Table 1. Execution time taken for each of the DNN models when processing a single input image.

Inception-V3 ResNet-152 VGG-16 DUNET

Jetson AGX Xavier 86.3 ms 157.7 ms 50.4 ms 160.7 ms

Jetson TX2 103.9 ms 198.6 ms 76.8 ms 246.4 ms

Once an adversarial example is entered, denoizing is performed first via DUNET,
and then the output of DUNET is entered into the defense target model. Thus, the overall
inference time for one input image should add up to the time it takes to process one image
in DUNET and the time it takes in the defense target model. If one input image is inferred
via Inception-V3 on the Jetson AGX Xavier platform, approximately twice as much time
should be spent on DUNET first. The output of the DUNET is then input to Inception-V3,
which performs pure inference. As a result, the total inference time is about 247 ms. In Jetson
TX2, it can be seen that DUNET consumes more than twice as much time as Inception-V3,
resulting in an overall inference time of about 350.3 ms.

The second problem is found in terms of the use of the deep learning computing unit
inside IoT edge devices. The Jetson AGX Xavier platform [9] is an representative IoT edge
device installed in unmanned vehicles distinctly designed for deep learning applications,
being equipped with 8 ARM cores and an embedded GPU core. Due to the support such as
runtime and libraries [24,25], application-level programmers can easily entrust accelerated
processing of deep learning applications to the embedded GPU in the Jetson AGX Xavier
platform. That GPU basically supports hardware-level multi-threading, as other discrete
GPUs used in server computing systems. It also supports the CUDA stream technology [26],
enabling simultaneous processing of deep learning kernels commissioned by multiple
processes within the limits permitted by registers and streaming multiprocessors (SMs).

Despite this excellent parallel processing capability, when multiple deep learning
kernel-launch happens simultaneously, performance bottleneck on the single embedded
GPU is inevitable [27]. Furthermore, the GPU by nature is non-preemptive, thus, even if
a high priority is given to DUNET performing denoizing, DUNET execution is delayed
if another model arrives first at the execution engine (EE) queue of the GPU. Generally,
deep learning models created from frameworks such as PyTorch [28] and TensorFlow [29]
are executed in a way of batch processing method [30], i.e., the execution unit is an entire
model. In this case, head-of-line blocking problem inevitably happens [31].

3.2. Problem Statement

To avoid attacks by maliciously crafted examples, DUNET renders every incoming
image undergo two serialized steps: denoizing and inference with the denoized image,
and Figure 4 shows the frame sequence of incoming images where Dei and Ii mean the
denoizing and the inference steps of the ith image. The upper time line depicts when
DUNET does not experience any delay while the bottom one represents a more realistic
execution environment, when other co-runners are concurrently executed.

Sensors 2022, 22, 5896 6 of 22

Figure 4. Illustration of the denoizing phase of DUNET and the inference phase of the defense target
model for continuous image inputs.

In the figure, ∆D
i means the amount of delay for the ith denoizing step, and ∆I

i is for
the ith inference time of the defense target model, respectively. The cause of these delays are
mostly that DUNET and target deep learning models are not delivered preferentially to the
GPU EE queue. Meanwhile, ∆A

i , represents the ith amount of time that can be reduced when
using lightweight approximated DUNET which has the shrunk computational complexity
compared to the original DUNET. By adding the times taken for the denoizing and inference
steps of the defense target model, we can represent the total time for ith target inference
as Dei − ∆A

i + ∆D
i + Ii + ∆I

i . We define the average target inference time of a DNN model
with F incoming frames of images as follows.

In favg(F) =

{
∑F

i=1(Dei − ∆A
i + ∆D

i + Ii + ∆I
i)

F

}
(2)

Obviously, our problem to solve is minimizing In favg(F).
One more noticeable fact is that Dei and Ii−1 are not data dependent. That is, these

two steps can be overlapped. In addition, if ∆A
i in Figure 4 is large enough by applying the

approximation method, but within the range that the accuracy drop is marginal, each Dei
of DUNET can be hidden by Ii−1. Consequently, the total execution time of DUNET can be
only in time of ∑ Ii.

4. eDenoizer

This section gives an explanation of the proposed approach, called eDenoizer. We
first overview the overall operational sequence of it and then elaborate on the technical details.

4.1. Solution Overview

Figure 5 details the operational workflow of eDenoizer. A rough look at the proposed
approach shows that it consists of the offline procedure and the run-time one. In offline,
DUNET is approximated through Tucker decomposition. Next, after performing training
through the post hoc fine-tuning step, the accuracy loss is minimized and DUNETD is
obtained. In run-time mode, multiple deep learning models and DUNET are executed
over a scheduling framework, which consists largely of a set of DNN model threads, a job
queue, and a kernel launcher. DNN model threads are composed of deep learning models,
each of which is implemented as a thread and is a target scheduled to the CPUs over the
underlying OS (operating system). Each model thread can asynchronously request its own
DNN operation to the job queue. The kernel launcher extracts the requested operation from
the job queue through the worker threads that exist inside it and enqueues it to the EE
queue of the GPU.

The computational output from the GPU is the result of the requested operation of
a DNN model, including DUNET, which is mainly feature map data (mostly an intermediate
result). This value is stored in the system memory, fed back to the set of DNN model threads,
and then input to the corresponding model. At this time, if the result value is a denoize
image, which is the final output of DUNET, it is not given as a DUNET input again,
but as an input to the DNN model (e.g., Inception-V3 [20] in Figure 5) that performs
target inference.

Sensors 2022, 22, 5896 7 of 22

Figure 5. Operational workflow of eDenoizer.

As mentioned earlier in Section 3, if DUNET does not finish its denoizing step for the
(i)th image, the (i)th target inference step cannot occur. In addition, the (i + 1)th DUNET
processing step and the (i)th target inference step have no data dependency. Thus, as shown
in Figure 5, both can be handled asynchronously and simultaneously in the scheduling
framework. It is noteworthy that, and as described above, since the processing of DUNET
was shortened with Tucker decomposition, the total target inference time is only bounded
by the target inference time (i.e., (i + 1)th DUNET step is hidden by (i)th target inference).

4.2. Scaling Down the Computational Scale of DUNET

As detailed in Figure 4, the first hurdle we want to overcome is to maximize ∆A
i .

To do so, we shrink the computational complexity of the original DUNET by applying
an approximate computing method using Tucker decomposition, and Figure 6 describes the
result of it. Since the four circles drawn with dashed lines in Figure 2 take over more than
40% out of the total amount of computations, those 3 × 3 convolutional layers need to be
changed to have a structurally small computational quantity. Each of the four convolutional
layers in Figure 2 is changed into two 1 × 1 convolutional layers and one smaller 3 × 3
convolutional layer, and the four black boxes with ‘TD’ in white letters in Figure 6 imply
those Tucker-decomposed convolution kernel tensors.

Figure 6. Approximate DUNET via Tucker decomposition.

To take advantage of dimension reduction, the two 1 × 1 convolutional layers (the
two factor matrixes in Figure 3) are given to the both sides of the 3 × 3 convolutional layer
(the core tensor), which is the same as the bottleneck building block in ResNet-152 [21]. The

Sensors 2022, 22, 5896 8 of 22

numbers above each black box represents the number of the output channel in each first
1 × 1 Tucker-decomposed convolution kernel tensor, and the numbers below represents
the number of the output channel of the 3 × 3 core tensor which is immediately adjacent
to the first 1 × 1 kernel tensor. The total computation volume is reduced by changing the
number of large output channels pointed out in Figure 2 to c1 and c2.

For instance, the left first circle drawn with dashed line in Figure 2 has one 3 × 3 kernel
tensor with 256 output channels. As shown in Figure 3, it is decomposed into three small
convolution tensors, and the number of the output channel of each tensor is 152, 131, and
256, respectively. To explain this more clearly and quantitatively, we analyze the reduced
computation amount, and that part is shown again in Figure 7. The computational cost of
one convolutional layer is obtained by the formula shown in the figure. It can be seen that the
convolutional layer, which originally had an arithmetic amount of kh× kw× ci× co×wo× ho
= 3 × 3 × 512 × 256 × 38 × 38 = 1,703,411,712, is reduced to 1 × 1 × 512 × 152 × 38 × 38 +
3 × 3 × 152 × 131 × 38 × 38 + 1 × 1 × 131 × 256 × 38 × 38 = 419,580,192. This represents
a decrease of about 75.4% considering only the corresponding convolutional layer. When
the same is applied to the remaining three convolutional layers, the overall system-wide
computational reduction is confirmed to be about 25.41%, and DUNETD in Figure 5 denotes
the final output of approximate DUNET.

Figure 7. Tucker decomposition result of the first of the convolutional layers requiring computational
reduction inside DUNET.

4.3. Scheduling Framework for Multiple Deep Learning Models

As described in Figure 4, our second objective is to keep ∆D
i and ∆I

i minimized while
DUNET, the defense target model performing inference using the result of DUNET and
various other deep learning models, are performed simultaneously with each other.

Once the system is started, the deep learning models to be performed are loaded from
the system memory to the GPU memory. Please note that IoT edge devices use embedded
GPUs. Furthermore, they do not have a separate dedicated memory and shares the system
memory referenced by the CPU. Therefore, when deep learning models are loaded into
GPU memory, data copy does not occur, and instead only memory location information
(i.e., pointer) is delivered from the memory set on the CPU side [27].

4.3.1. Scheduling Unit

To discuss the scheduling unit of DNN model threads, if an entire model is pushed
through to the job queue, a head-of-line blocking problem arises, which leads to a schedul-
ing latency for high priority deep learning models, whereas, if too small a unit is scheduled,
it can trigger OS interventions too frequently, causing overhead. Thus, the scheduling
unit of a single DNN model thread to be delivered to the job queue is a critical factor
for system-wide performance. For example, convolutions and activation functions differ
greatly in their computational scale. There is a big difference in terms of system-wide
performance between two convolutions as one scheduling unit and each of the convolution
and activation functions as a distinct scheduling unit. Moreover, the structure of each deep
learning model and the computational scale required for each DNN operation are different.

Sensors 2022, 22, 5896 9 of 22

Therefore, it is undesirable to apply the scheduling unit by applying a uniform rule to all
deep learning models.

Therefore, in this study, the optimal scheduling unit for each deep learning model
including DUNET is first determined offline. A job in Figure 5 means this scheduling unit.
For example, in some models, one convolution can be a job, and in others, convolution, BN
(batch normalization), and an activation function such as ReLU (rectified linear unit) can
be combined to form a job.

4.3.2. Scheduling Algorithm

Algorithm 1 shows the details of the scheduling framework through a clear-cut and
unambiguous pseudo-code. Each of the individual DNN model thread in Figure 5 is
largely implemented in two functional blocks, and construct_layers() and execute_dn()
in Algorithm 1 describe their behavior. First, considering the different features of each deep
learning model, layersid[l] is filled with Ll

id by referring to the configuration information on
each model defined offline where l means the layer index and id does the DNN identifi-
cation number (lines 2∼4). Ll

id may consist of several DNN operations, and for example,
a 3 × 3 convolution, a BN layer and ReLU can comprise Ll

id.

Algorithm 1 Multi-DNN Scheduling Framework

1: function construct_layers(DNNid)
2: for l ← 0 to lastid do . lastid: last layer index of DNNid
3: layersid[l]← Ll

id . Ll
id: lth layer of DNNid defined offline

4: end for
5: return layersid
6: end function

7: function execute_dnn(layersid, DNNid)
8: prev_output← input image
9: for l ← 0 to lastid do

10: jobl
id.layers← layersid[l]

11: jobl
id.data← prev_output

12: enqueue(jobl
id)

13: wait_signal(sig)
14: prev_output← output
15: end for
16: end function

17: function execute_job(f)
18: A:
19: while (job queue is empty) do
20: do nothing
21: end while
22: job f ront ← dequeue()
23: output← execute_kernel(job f ront)
24: send_signal(sig)
25: goto A:
26: end function

Once the layer-structuring procedure mentioned above that enable a deep learning
model to run in the form of a thread is completed, the model begins to run. After receiving
the input image as an input, it is combined with layersid[l] and then a job is formed (here,
l = 0 since the job corresponds to the first layer). Then, the job is transmitted to the job queue
and waits for a signal from the kernel launcher (lines 10∼13). When a signal indicating that
the launched job is completed by the GPU is received, the data output from the GPU is
transmitted again as the input of the next job to be performed (lines 11, here l = 1). This
procedure repeats until the last job with Ll

id completes.

Sensors 2022, 22, 5896 10 of 22

The main behavior of the kernel launcher can be seen in the function execute_job()
of Algorithm 1. As can be seen from Figure 5, the kernel launcher takes out the requested
job by accessing the job queue in an asynchronous manner by several worker threads
(lines 19∼22). The extracted job is executed through execute_kernel() (line 23). At this
time, the worker thread converts the requested job into a GPU kernel, and it is transmitted
to the EE queue through one of the CUDA streams shown in Figure 5.

4.3.3. Scheduling Framework Analysis

In terms of the theoretical measure of Algorithm 1, construct_layers() is not used
while eDenoizer is running and is an offline process, so it is excluded from the analysis.
The function execute_job() takes O(1) since it pulls out a job after looking at only the front
element of the job queue. When the number of layers of the DNN model to be performed
is n = lastid, execute_dnn() has a time complexity of O(n). Since any of the n layers
cannot be omitted during the DNN model execution, the minimum time complexity that
execute_dnn() may take is bound to be O(n).

In a system that operates only one deep learning model, our proposed framework
is inefficient. The reason for this is the overhead that occurs in acquiring locks for the
job queue and the EE queue. Conversely, the solution proposed in this study is effective
in an environment in which several deep learning models, including denoizers, operate
together, as shown in Figure 5. As can be seen from Figure 5, synchronization issues
arise in two places. It occurs when multiple deep learning models request a job queue
access and when worker threads access the EE queue through CUDA streams. These
synchronization issues are problems that serialize DNN operations, which can degrade
system-wide performance. In practice, however, multiple deep learning models are faster
in requesting computations for consecutive input image than processing the requested
deep learning operations on a single embedded GPU, so there are always several jobs
in the two queues without generating any queue underflow. Therefore, synchronization
primitives accessing the two queues do not affect the overall performance of the system.

4.3.4. Priority-Based DNN Operations and Maximum Parallelism

The proposed framework allows deep learning models to be executed in the GPU
according to the priority set by users through the CPU-side OS. To this end, the job queue is
a priority queue that allows jobs thrown by DNN model threads to be arranged according
to the priority of each model. Therefore, the job drawn by one of the worker threads always
has the highest priority among the requested jobs. The GPU is basically non-preemptive.
However, advanced architecture of NVIDIA provides preemption capability through the
stream technology (only two levels: high and low) [32]. Thus, any low-stream-priority DNN
operation may be preempted by a high-stream-priority DNN kernel. Moreover, each worker
thread can use one of the CUDA streams separately and contemporaneously, depending
on SM availability, concurrent execution of multiple jobs is possible, improving system
throughput. Resultantly, ∆D

i and ∆I
i shown in Figure 4 can be effectively kept short.

5. Experiments

This section gives an explanation of experiments we have conducted to evaluate the
proposed approach eDenoizer. First, we describe in detail how we implemented eDenoizer
and discuss the experimental setup. We then report on various experiment results with
relevant analysis.

5.1. Implementation

As for implementation, the GPU scheduling framework used in this study is an ex-
tension of what we used in our previous work [33]. Deep learning models in DNN model
threads are generated from the PyTorch framework [28]. Since GIL (global interpreter
lock) [34], which enables only one thread to handle the Python interpreter, makes it diffi-
cult to run models with pure Python in parallel, we implemented our framework using

Sensors 2022, 22, 5896 11 of 22

the libtorch library used in [33] to take advantage of C++. By doing so, our scheduling
framework can run DNN model threads and worker threads in Figure 5 in a multithread-
ing environment.

To the software framework used in [33], we added a routine to perform Tucker de-
formation offline, as shown in Figure 5. As for the layer configuration of DNN model
threads, we reorganized the layer configuration inside each model thread from a uniform
configuration to a different layer configuration for each model to be optimized for the
execution of each model. In addition, as shown in Algorithm 1, we use a signal-based
communication scheme between the worker threads and DNN model threads to make the
execution of DNN operations more interactive than [33].

5.2. Experimental Setup

To demonstrate the efficacy of our proposed eDenoizer, we take the Jetson AGX Xavier
platform as the target IoT edge device, and the detailed hardware and software specifica-
tions of the target device is described in Table 2. HGD provides three training methods.
Among them, this study takes logits guided denoizer (LGD) [8]. All our experiments are
performed on images from the ImageNet dataset as [8], and the same datasets applied to [8]
are used for testing, training and adversarial image generation. Throughout experiments in
this study, Inception-V3 is the target model of which adversarial attacks attempt to make
a fool, and is also the target model that DUNET should defend.

Table 2. Specification of the Jetson AGX Xavier platform [9,27].

Classification Description

HW

CPU 8-core ARM v8.2 Carmel 64-bit CPU, 8 MB L2, 4 MB L3 cache
GPU 512-core Volta GPU with Tensor cores

Memory 32 GB 256-Bit LPDDR4x, 137 GB/s
Storage 32 GB eMMC 5.1

SW

Kernel Ver. Linux 4.9.140
SW Package JetPack 4.2
CUDA Ver. CUDA v10.0.166
Denoiser DUNET in HGD [8]

For providing adversarial examples, we first select 30,000 samples (normal images)
from the training set of ImageNet, then we distort the normal images by adding perturba-
tions. In doing so, we use a group of attacking methods represented in Table 3. As shown
in Table 3, we use three DNN models for attacked models, where attacked models mean
the models being used for creating adversarial examples. As in [8], the three attacked deep
learning models are Inception-V3, InceptionResnet V2 [35] and ResNet50 V2 [36], and the
combination of these three models are used for ensemble adversarial training [37]. As in [8],
to simplify notations, the three attacked models are represented as IncV3, IncResV2 and
Res, respectively. In every training step, ε (perturbation level) is uniformly selected from
1∼16. The total number of training data is 240,000 including normal images. After selecting
another 10,000 samples (normal images) from the training set of ImageNet, we applied the
same methods used in generating training data, then the size of validation dataset is 80,000.

For constructing test dataset, as in [8], we apply two kinds of attacks as shown in
Table 4: white-box attacks and block-box attacks. The two attack types are segmented by
FGSM and IFGSM, respectively, to obtain different kinds of adversarial samples. In this
study, if FGSM is repeated by n steps, it is expressed as IFGSMn as in [8].

After selecting 10,000 normal images from the ImageNet validation set, we distort
them using attack methods written in Table 4. For white-box attacks, Inception-V3 is applied
to generate adversarial images for test dataset, and also Inception-V3 is the target model
to defend using DUNET. To contrast, for black-box attacks, Inception-V4 [35] is used for
generating adversarial images, while the target model to defend is Inception-V3.

Sensors 2022, 22, 5896 12 of 22

Table 3. Adversarial images for training and validation [8].

Attack Method Attacked Model

Training Set
and Validation Set

FGSM IncV3
FGSM IncResV2
FGSM Res
FGSM IncV3/IncResV2/Res

IFGSM2 IncV3/IncResV2/Res
IFGSM4 IncV3/IncResV2/Res
IFGSM8 IncV3/IncResV2/Res

Table 4. Adversarial images for testing [8].

Attack Method Attacked Model

White-box-test-set FGSM IncV3
IFGSM4 IncV3/IncResV2/Res

Black-box-test-set FGSM Inception-V4
IFGSM4 Inception-V4

5.3. Classification Accuracy on Adversarial Examples

In this subsection, we verify the effectiveness of Tucker decomposition. First, we ana-
lyze how the applied approximate computing method affects the classification accuracy of
DUNET, i.e., to determine how the performance of the denoizing itself has changed. Second,
we compare the transferability performance of the original DUNET and the approximate
DUNET. Here, transferability means to check classification accuracy by launching adver-
sarial attacks on a deep learning model that are not used when creating training dataset. In
both classification accuracy and transferability tests, ε (perturbation level) is set to 4.

5.3.1. Classification Accuracy of Approximate DUNET on Adversarial Examples

In this experiment, we check the effect of applying three Tucker-decomposed tensors
which replace the four convolutional kernel tensors of the original DUNET. Adversarial
attack images are produced using White-box-test-set and Black-box-test-set shown in
Table 4. For the case of adversarial images of White-box-test-set, those images are generated
using Inception-V3, and the target DNN model for inference is also Inception-V3. In
contrast, for the Black-box-test-set case, adversarial images are created using Inception-V4
instead of Inception-V3, and the target DNN model that performs inference under attack
is Inception-V3.

Table 5 shows the classification accuracy result on adversarial images from the white-
box test set and the black-box test set as well as the result with clean images. In the table,
the original DUNET means the unmodified DUNET and the approximate DUNET denotes
the case of applying Tucker decomposition. Each data point in the table is the average value
of two attack methods in Table 4: FGSM (IncV3) and IFGSM4 (IncV3/IncResV2/Res). In
White-box-test-set case, Tucker decomposition affects the classification accuracy by less
than 1.78%, and for Black-box-test-set case, 0.41% performance decline is observed. These
results clearly show that the denoizing performance rarely decreases even though the
computational complexity of DUNET is reduced by Tucker decomposition. Furthermore,
in the test result with clean images, there is almost no performance degradation (less
than 0.15%).

Table 5. Comparing the classification accuracy.

Result in [8] Org. DUNET Approx. DUNET

Clean-image-test-set 76.2% 76.53% 76.38%

White-box-test-set 75.2% 72.37% 70.59%

Black-box-test-set 75.1% 74.86% 74.45%

Sensors 2022, 22, 5896 13 of 22

Please note that the results in [8] in the table might be considered to be the same as the
original DUNET, but they are different. The reason for this difference is that the original
images of the ImageNet dataset used to create adversarial images for training and testing
are randomly selected. Thus, the training and test datasets used in this study and those
in [8] are bound to be different. Even if the training sequence of the original DUNET is
the same as [8], the result of [8] and that of the original DUNET are different because the
training dataset used is different and even the test dataset is different. In this experiment,
we compare the result from approximate DUNET with the one from the original DUNET
measured in our experimental environment.

5.3.2. Transferability of Approximate DUNET to a Different DNN Model

The crux of DUNET is producing negative noises, which are anti-adversarial pertur-
bations added on the adversarial images [8]. In this respect, it is possible to transfer the
capability of DUNET to other models. The original DUNET is trained using Inception-V3
as a guide model, and Table 5 is the result when the target model to defend is Inception-V3.
Evaluating transferability means that the target model to defend is not Inception-V3 while
DUNET is the original DUNET guided by Inception-V3 in training. For transferability
check, ResNet-152 [21] is used as the target model for DUNET to defend, and Table 6 shows
the result.

Table 6. Transferability to different model (ResNet-152).

Result in [8] Orginal DUNET Approximate DUNET

Clean-image-test-set 77.4% 73.7% 73.5%

White-box-test-set 75.8% 71.35% 70.86%

Black-box-test-set 76.1% 72.07% 71.58%

Just as in the result in Table 5, for the case of transferability check, convolution kernel
tensors with Tucker decomposition make negligible differences; both white-box and black-
box cases were less than 0.49%. In the test result with clean images, almost no performance
drop is measured (less than 0.2%).

5.4. Execution Performance Evaluation

In this subsection, we evaluate the execution performance of eDenoizer qualitatively
and quantitatively. The experiment was conducted in two main execution environments.
The first environment is when only the target model (Inception-V3) to be defended and
DUNET to defend this target model are executed. The second environment is the case
in which several other DNN models, including the aforementioned two models, are per-
formed together. Basically, we compare the case of applying our solution (eDenoizer)
with the case of running DNN models generated by the PyTorch framework without our
solution (PyTorch).

The proposed eDenoizer consists of two solution parts: 1 applying approximate
convolutional kernel tensors to reduce the computation of DUNET and 2 a priority-based
GPU scheduling framework capable of parallel processing multiple DNN models. Thus,
both experimental environments described in the preceding paragraph are subdivided
into two aspects. (1) We measure the overall execution performance of eDenoizer, which
includes both solution parts. (2) Two solution parts are then measured separately. In other
words, we identify how each part of the solution is independently reflected in the overall
execution performance. In each experiment, more than 100 images were continuously
inputted to each DNN model including DUNET and the execution time of inference per
image was averaged. The bars shown in each graph are the result of adding the denoizing
time of DUNET and the inference time of the target model to be defended.

Sensors 2022, 22, 5896 14 of 22

5.4.1. Running Only the Defense Target Model and DUNET

Figure 8 demonstrates the results when only DUNET and the target model Inception-
V3 are running together. Figure 8 compares the average target inference time In favg(F)
which incorporates both the denoizing time of DUNET and the pure inference time of the
defense target model, defined in Equation (2), under different conditions (a), (b), and (c).
As shown in Figure 8a, when we apply both the approximate computing and the proposed
scheduling framework together, the average inference time of the target model is reduced
by 51.72%. Figure 8b is the case to only check the efficiency of the scheduling framework of
eDenoizer separately, and the degree of reduction in the execution time reached up to 41.3%.
Figure 8c displays only the effect of Tucker decomposition itself, and Tucker decomposition
for kernel tensors accounts for about 17% of the total savings.

(a) (b) (c)
Figure 8. Execution time evaluation when only the target model to defend (Inception-V3) and DUNET
are running: (a) comparing the overall performance depending on whether eDenoizer is applied or
not, (b) identifying the impact of the proposed scheduling framework only and (c) identifying the
effect of Tucker decomposition only.

5.4.2. Running Multiple DNN Models Together

In addition to the DNN model used in the previous Section 5.4.1, several other DNN
models were executed on the target device together to represent experimental scenarios
closer to the actual situation. As for co-runners, we added ResNet-152 ×1 [21], RegNet
×1 [38], ResNext ×1 [39] and WideResNet ×1 [40]. We gave high priority to DUNET and
Inception-V3 defended by DUNET, and low priority to the remaining four additional
models. Through the experiment, we check whether the priority given through the CPU-
side OS is reflected in the execution progress over the GPU. Figure 9 shows In favg(F) under
different conditions (a), (b), (c), and (d), as the cases in Figure 8.

When we apply both the solution parts, as shown in Figure 9a, the average inference
time of the defense target model is reduced by 48.36% compared to before applying
eDenoizer. This clearly shows that eDenoizer suppresses performance interference from the
less significant DNN models running together if DUNET and the defense target model have
high priorities. This performance improvement of DUNET and the defense target model
compared to before applying eDenoizer is primarily due to the effect that the priorities
set on the host side were efficiently reflected on the GPU execution order and the job-
based parallel processing capability of the proposed scheduling framework introduced
into eDnoiser.

To check the effectiveness of the scheduling framework itself separately under the en-
vironment of multi-DNN running, we removed the Tucker decomposition from eDenoizer,
and then compared the result with when we did not apply our solution. Figure 9b shows
the result of it, and the obtained reduction is 40.55%. Next, we verify the Tucker decom-
position effect in a multi-DNN execution environment. Using the scheduling framework
of eDenoizer, we compare before and after Tucker decomposition is applied. In Figure 9c,
we can see that there is a decrease in the execution time of about 13.13%. As the final
experiment in this subsection, we compare the performance difference between a job queue
as a FIFO queue and a priority queue. In this experimental step, the priorities provided by
the CUDA stream are made the same, and only the results are measured when the property

Sensors 2022, 22, 5896 15 of 22

of the job queue is changed. Figure 9d shows the result, and applying the priority queue
represents a performance advantage of about 6%.

(a) (b) (c) (d)
Figure 9. Performance interference evaluation when four DNN models in addition to the models
used in Figure 8 are running together. We gave H priority to DUNET and the defense target model,
while other co-runners have L priority: (a) comparing the overall performance depending on whether
eDenoizer is applied or not, (b) identifying the impact of the proposed scheduling framework only,
(c) identifying the effect of Tucker decomposition only and (d) performance comparison depending
on the property of the job queue.

5.4.3. Applying Tucker Decomposition to the Defense Target Model

In the previous experiments, Tucker decomposition is applied only to DUNET and its
computational scale is reduced. In contrast, this experiment analyzes the effect of applying
Tucker decomposition to the defense target model in the same way. To do this, Inception-V3,
ResNet-152, VGG-16 [22], and RegNet were first selected as defense target models, and
after applying Tucker decomposition offline, each of the models is combined with DUNET
to measure the inference execution time for each case. In this experiment, we basically use
the scheduling framework of eDenoizer and measured the difference between using and
not using Tucker decomposition for the defense target model.

Figure 10 shows the results, and ‘Approximate’ denotes the result of applying Tucker
decomposition to the defense target models and ‘Original’ is for the case not applied. In
the case of Inception-V3 and ResNet-152, the performance deteriorates when Tucker de-
composition is applied. The inception module comprising Inception-V3 and the bottleneck
building block comprising ResNet-152 are built up with 1 × 1 and 3 × 3 kernel tensors
for dimension reduction. This is the same form as the core tensor and the factor matrixes
shown in Figure 3. The 3 × 3 convolution kernel tensors in the inception module and the
bottleneck building block already have a small enough number of output channels. Thus,
applying Tucker decomposition to these 3 × 3 kernel tensors rather increases the overall
computational scale as only factor matrixes (1 × 1 kernel tensors) are newly created and
added. As a result, the inference time is delayed as shown in Figure 10. In contrast, when
using VGG-16 and RegNet, which have relatively different structures, as the defense target
models, there is a performance improvement of up to 21.6%.

The following experiments examine the performance when several DNN models
with different priorities are executed over one shared embedded GPU. The DNN models
executed together and the priority assignment method are subject to the same conditions as
in Section 5.4.2. Taking hints from the result of Figure 10, Tucker decomposition is applied
only when VGG-16 and RegNet are used as the defense target model, and not for Inception-
V3 and ResNet-152. Figure 11 shows the overall experimental results. As can be seen from
the figure, when VGG-16 is the defense target model, eDenoizer is able to reduce the
time required for adversarial defense and inference by 59.86%. In conclusion, under more
real-world conditions where several DNN models run together, the proposed eDenoizer
effectively guarantees performance isolation in terms of inference time accompanied by
adversarial defense.

Sensors 2022, 22, 5896 16 of 22

Figure 10. Execution time profiles when Tucker decomposition is applied to both the defense target
model and DUNET.

Figure 11. Performance interference evaluation: Tucker decomposition is selectively applied to the
defense target models under the same experimental setup as Figure 9.

5.5. Memory Footprint Reduction

Experiments so far examined the inference accuracy drop and the improved execution
speed through the proposed eDenoizer. In this subsection, we take a look at the utility in
terms of the system metric as the last quantitative verification.

Tucker decomposition reduces computation. That is, the execution time is accelerated
by reducing the burden of the GPU performing the DNN operations. In addition, Tucker
decomposition reduces the number of parameters of DNN models. In this experiment, we
measure memory footprint reduction. It is worth noting that GPUs used in IoT edge devices
such as Jetson AGX Xavier and Jetson TX2 do not have a separate dedicated memory and
share DRAM, a system memory, with CPUs. Therefore, memory saving is very significant
in IoT edge devices.

Table 7 shows the memory reduction result where Approximate means the result of
the models with Tucker decomposition and Original is for the unmodified DNN models.
First of all, in the case of DUNET, there is an effect of reducing memory usage by about 18%
when applying Tucker decomposition. Among the defense target models, Inception-V3
showed the largest decrease of 43%. However, as shown in Figure 10, in Inception-V3 and
ResNet-152 cases, applying Tucker decomposition increases the execution time slightly.
Therefore, considering the reduction in execution time and memory footprint at the same
time, it can be said that it has 9% effect on VGG-16 and 27.2% effect on RegNet.

Table 7. Memory footprint reduction by Tucker decomposition.

Inception-V3 ResNet-152 VGG-16 RegNet DUNET

Original 105 MB 231 MB 528 MB 555 MB 43 MB

Approximate 59 MB 144 MB 481 MB 404 MB 35 MB

6. Related Work

Our work proposes a solution that can handle adversarial defenses inside IoT edge
devices with minimal latency. Research works related to this can be organized into two areas:
the field of structural modification of deep learning models for resource constraint devices
and the improvement of the computational efficiency to expedite the inference phase of
deep learning models.

Sensors 2022, 22, 5896 17 of 22

6.1. Lightweight Deep Learning Model over the Structural Change

Studies in this category discussed model compression techniques maintaining the
minimized accuracy compromise. The main idea is cutting out unimportant layers, filters,
and channels constituting DNN models. By doing so, the simplified model allows for less
power consumption and reduced computational amounts compared to the original model.
Then, the compressed DNN models are trained with the datasets used in the training steps
of the original models (fine-tuning) to compensate for structural deterioration.

MobileNets [41] introduced depth-wise separable convolution, which allows each
input channel to have a filter assigned to it. The existing 3 × 3 convolution was changed
to one 3 × 3 depth-wise convolution and one 1 × 1 point-wise convolution. Through this,
the amount of computation and the number of parameters were reduced. To trade-off
between the latency performance and the accuracy result, [41] also provides two global
hyper-parameters.

For lightweight face recognition, [42] applied knowledge distillation. This technique
enhances the interpretation ability of the network. To relieve the generalization gap be-
tween teacher and student models, [42] proposes recursive knowledge distillation. To
secure architectural flexibility, the authors of [42] used knowledge distillation instead of
quantization or pruning.

DeepMon [43] focuses on on-device continuous vision applications without network
delay and privacy concerns. DeepMon tried to achieve the energy efficiency and the
minimum delay in the inference step on the target device, Galaxy S7. In particular, DeepMon
suggested an optimization technique that can effectively offload the convolution operation,
generally called upon as performance bottleneck, to the mobile GPU.

Deep Compression [44] proposed a deep learning model compression technique by
reducing the required number of bits represented in weight matrixes. [44] basically consists
of three steps: (1) Pruning the model by removing the useless connection while maintaining
only the connection that contains a lot of information. (2) Putting weights with similar
values in the same bin so that they have the same weight, and weight sharing is possible by
saving only the index of the bin. (3) Huffman coding expresses the most frequent weight
value in a small bit.

EIE [45], which further developed the result of [44], proposed an hardware architecture
especially designed for the pruned deep learning model. Weight matrixes are converted to
have 4∼25% sparsity, and weight values are limited to several types of values. By k-means
clustering, relatively close weight values are expressed as one value as in [44]. Basically,
EIE consists of a CCU (central control unit) and multiple PEs (processing elements). EIE cal-
culates only non-zero activation values and enables parallel operations via PEs, providing
both the energy efficiency and the inference speed-up at the same time.

Ref. [46] proposed a linear integer quantization technique. Ref. [46] performs the
inference step only using integer arithmetic instead of floating-point operations since
the integer arithmetic needs a smaller number of bits. Ref. [46] addressed that the prior
quantization techniques lacks in terms of on-device consideration, i.e., prior research
works only assumed corresponding accelerators. Ref. [46] provides a quantized inference
framework for integer-arithmetic-only cores embedded in mobile devices. Ref. [46] also
provides quantization-aware training through fake quantization technique.

Ref. [47] explored the relationship between the quantization technique and adversarial
attacks. Ref. [47] proposed and used ANS (adversarial noise sensitivity) to identify the
optimal bit-width per each layer required to defense adversarial attacks. If a layer has high
ANS value, it is quantized to have smaller bit-width and in the opposite case, low ANS
valued layers are maintained at larger bit-width.

Our proposed approach maintains the same approach in terms of keeping the com-
putational scale of the deep learning model small, but different in terms of using tensor-
decomposition scheme. Further, our approach differs from the aforementioned approaches
in that we propose a methodology that can efficiently control the computation unit of the
deep learning model at the middleware level.

Sensors 2022, 22, 5896 18 of 22

6.2. Enhancing the Computational Efficiency
6.2.1. Hardware Acceleration

Research works in this class tried to offer particular computing units that can per-
form inference tasks much more rapidly than general purpose cores such as CPUs and
GPUs. The NVIDIA Deep Learning Accelerator (NVDLA) project provides an open archi-
tecture to satisfy the computational demands of hardware accelerated inference [48]. Since
the architecture of NVDLA is based on a modular design, NVDLA can give developers
flexibility and easy integration methodology. NVDLA supports five basic hardware com-
ponents which are independently configurable: convolution core, single data processor,
planar data processor, channel data processor, and dedicated memory and data reshape
engines. Convolution core is for highly optimized execution of convolutional layers, sin-
gle/planar/channel data processor is for activation/pooling/normalization function, and
dedicated memory and data reshape engine is for tensor reshape and memory-to-memory
data transfer. This component-level acceleration technique allows IoT edge designers to
achieve high-performance execution of deep learning models.

To provide acceleration especially in matrix operation, NVIDIA also supports Tensor
cores. Tensor core is a GPU core that performs 4 × 4 matrix operations. While CUDA core
performs one fp32 on one GPU clock, Tensor core performs a matrix multiplex-accumulate
operation that multiplies two 4 × 4 fp16 matrixes and adds the result to the 4 × 4 fp32
matrix on one single GPU clock [49].

Processors that accelerate neural network-specific operations are usually referred to as
NPUs (neural processing units), and DianNao series is a typical example. DianNao [50]
is the first architecture that deals with the deep learning accelerator, and is composed
of NFU (neural functional unit), buffer, and CP (control processor). NFU, operating in
16 bit fixed point, takes over convolution, pooling, and classification layers. Buffer is for
input/output neurons and synaptic weight values. CP is a CPU-like component and is
responsible for the overall control. DaDianNao [51] is extended DianNao to use eDRAM
(embedded DRAM). By using eDRAM, latency is reduced and high bandwidth can be
provided. In ShiDianNao [52], through a network specialized for data transfer, adjacent
PEs (processing elements) may exchange data with each other.

Eyeriss [53] is a CNN accelerator, which considers in-depth minimizing the energy
cost incurred by data movement while maintaining high performance. Eyeriss proposed
a dataflow-driven processing mechanism called RS (row stationary). Using RS dataflow
technology, Eyeriss can reduce the number of DRAM access as much as possible and allows
data reuse and partial sum accumulation through memory hierarchy.

To support the especially required computation in defending against adversarial
attacks, DNNGuard [54], structured with RISC-V [55] and NVDLA, is proposed. DNN-
Guard, basically a hardware accelerator, can execute simultaneously the original target
deep learning models and the adversarial detection network such as NIC [56]. DNNGuard
incorporated the CPU core and deep learning accelerator hardware into one single chip.
Thus, latency-optimized data transfer can be guaranteed. DNNGuard also proposed an ex-
tended instruction set to configure dynamically the PEs (processing elements) and the
internal memory, and to enable efficient data interaction between the currently running
deep learning model and the adversarial detection network. DNNGuard [54] has the same
side as our approach in terms of acceleration of adversarial defense, but our approach does
not involve additional hardware.

6.2.2. Software Techniques for Efficient Use of Existing Computing Units

DeepSense [57] is a OpenCL-based framework efficiently designed for CNN oper-
ations on a mobile GPU. To cope with various types of representation of deep learning
models, a model converter translates the models into a predefined format. Then, a model
loader loads the converted models into the CPU and GPU memory. A inference scheduler
controls the multiple submitted DNN kernels, and an executor takes care of the execution

Sensors 2022, 22, 5896 19 of 22

pipeline over the CPU and the GPU. DeepMon [43] extended DeepSense by providing
more optimization techniques and comprehensive evaluation.

Neurosurgeon [58] suggests a mechanism to partition the workload of deep learning
inference properly. At development stage, Neurosurgeon runs the target DNN model once per
each mobile device and cloud server to produce layer time execution prediction models for
different DNN layers. Then, at runtime stage, Neurosurgeon uses the prediction models
generated in the development stage to choose the best partition point. Finally, partitioned
execution of the target DNN model is performed using both the mobile device and the
cloud server.

Ref. [59] significantly improves the speed of calculation of acoustic parameters in
Zwicker’s psycho-acoustic nuisance model on IoT devices such as Raspberry Pi [60]. It is
very challenging to accurately calculate soundscape profiling in real time within a tradi-
tional WASN (wireless acoustic sensor networks) environment. The authors of [59] used
an end-to-end CNN-based solution to allow calculation of four PA (psycho-acoustic annoy-
ance) parameters 250 times faster than conventional algorithms.

S3DNN [61] proposed the two-stage system-level optimization technique. In the
first stage, called front-end, data of DNN workloads are fused by selectively fusing multiple
input video frames. At this stage, S3DNN checks whether the data fusion satisfies the real-
time constraint and guarantees the maximum throughput. During the next stage, actual
computation is carried out. Here, S3DNN tries to execute the fused video frames optimally
through supervised streaming and GPU kernel scheduling enabled by the CUDA stream
technology of NVIDIA.

To ameliorate the latency performance of on-device DNN-assisted applications,
µLayer [62] and ODMDEF [27] provide seamless DNN-computation across heterogeneous
cores which are operated in different ISA (instruction set architecture). The motivation
of these two studies is that the CPU core and the GPU core in the same embedded sys-
tem generally represent comparable computational throughput. µLayer is a runtime, and
make the CPU and the GPU execute the disjoint sets of the channels of a DNN layer.
Based on the fact that native hardware supports of both heterogeneous cores are different,
µLayer applied 8-bit integer to the CPU and 16-bit floating point to the GPU. µLayer also
concurrently executes parallelizable branches in a DNN layer (e.g., inception modules
of Inception-V3 [20]) by allocating them to both heterogeneous cores. ODMDEF [27] is
a CPU-GPU co-scheduling framework. Since DNN workloads are requested irregularly,
ODMDEF performs core type selection for an instant DNN workload in a way of dynamic
decision. This decision takes into account the degrees of current use of the CPU and the
GPU, and the expected execution times of the workload on both core types. ODMDEF
also minimizes the data-transfer overhead incurred in data-synchronization steps between
the two core types, and as S3DNN [61], exploits the CUDA stream technology for the
maximum parallelization effect inside the GPU.

When it comes to effectively using existing hardware to increase the DNN compu-
tational efficiency, the above listed studies in this category can be said to be similar to
our approach. However, our work is a hybrid form of work that modifies the computa-
tional structure of DNNs and applies priority-aware multi-DNN scheduling solutions.
Furthermore, it differs in that it is a study that can solve the problem in time-constrained
adversarial defense with a software-only solution.

7. Conclusions

Adversarial attacks can lead to catastrophic results, messing up the classification
behavior of IoT edge devices. In adversarial defense to prevent this, immediate denoizing
must be accompanied in the overall inference process because the inference phase of the
defense target model proceeds after removing adversarial noises. In an IoT edge device
environment, multiple DNN models share and use an embedded GPU, which handles
DNN kernels with a FIFO order and, furthermore, is a non-preemptive device, so time-
constrained adversarial defense is highly challenging.

Sensors 2022, 22, 5896 20 of 22

To solve this problem, this study proposed eDenoizer. It first efficiently cuts down
the computation by decomposing the convolutional kernel tensors of the denoizer by
25.41%. The scheduling framework of eDenoizer embraces a C++-based multi-threading
technique in which each DNN operation can be assigned to one of the most appropriate
CUDA streams, which is not possible in pure Python execution environment. In addition,
to minimize performance interference from low-priority DNN models performed together,
the priority specified by the user can be reflected not only on the CPU side but also on
the GPU computation order. Through these proposed techniques, the denoizer and the
defense target model are efficiently parallelized and also preferentially executed in the
GPU. After measuring and analyzing using various experimental methods, the reduction
of classification accuracy was negligible (less than 1.78%), and obtained speed-up in the
inference time was up to 51.72%.

In this study, the size of the scheduled job was manually determined offline after the
user identified the characteristics of each DNN. In future studies, we plan to add the feature
that each DNN characteristic is identified by the system itself and then automatically finds
the optimal scheduling unit.

Author Contributions: Conceptualization, M.K.; methodology, M.K.; software, M.K.; experiments
and validation, M.K. and S.J.; formal analysis, M.K.; investigation, M.K.; resources, M.K.; data
curation, S.J.; original draft preparation, M.K.; review and editing, M.K.; visualization, M.K. and S.J.;
supervision, M.K.; project administration, M.K.; funding acquisition, M.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2020R1G1A1012170).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found in this links: https://www.image-net.org/ (accessed on 15 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, A.; Sengupta, S.; Lakshminarayanan, V. Explainable Deep Learning Models in Medical Image Analysis. J. Imaging 2020,

6, 52. [CrossRef] [PubMed]
2. Rashid, K.M.; Louis, J. Times-series data augmentation and deep learning for construction equipment activity recognition. Adv.

Eng. Inform. 2019, 42, 100944. [CrossRef]
3. Bojarski, M.; Testa, D.D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; et al. End to End

Learning for Self-Driving Cars. arXiv 2016, arXiv:1604.07316.
4. Zhu, H. MetaAID: A Flexible Framework for Developing Metaverse Applications via AI Technology and Human Editing.

arXiv 2022, arXiv:2204.01614.
5. Su, J.; Vargas, D.V.; Sakurai, K. One Pixel Attack for Fooling Deep Neural Networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841.

[CrossRef]
6. Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium on

Security and Privacy (sp), San Jose, CA, USA, 22–26 May 2017; pp. 39–57.
7. Cheng, S.; Dong, Y.; Pang, T.; Su, H.; Zhu, J. Improving Black-box Adversarial Attacks with a Transfer-based Prior. Adv. Neural Inf.

Process. Syst. 2019, 32, 10932–10942.
8. Liao, F.; Liang, M.; Dong, Y.; Pang, T.; Hu, X.; Zhu, J. Defense Against Adversarial Attacks Using High-Level Representation

Guided Denoiser. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City,
UT, USA, 18–23 June 2018; pp. 1778–1787.

9. NVIDIA. Jetson AGX Xavier Developer Kit|NVIDIA Developer. Available online: https://developer.nvidia.com/embedded/
jetson-agx-xavier-developer-kit (accessed on 10 June 2022).

10. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199.

11. Goodfellow, I.; Shiens, C.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2014, arXiv:1412.6572.
12. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial Machine Learning at Scale. arXiv 2016, arXiv:1611.01236.

https://www.image-net.org/
http://doi.org/10.3390/jimaging6060052
http://www.ncbi.nlm.nih.gov/pubmed/34460598
http://dx.doi.org/10.1016/j.aei.2019.100944
http://dx.doi.org/10.1109/TEVC.2019.2890858
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

Sensors 2022, 22, 5896 21 of 22

13. Papernot, N.; McDaniel, P.; Goodfellow, I. Transferability in Machine Learning: From Phenomena to Black-Box Attacks using
Adversarial Samples. arXiv 2016, arXiv:1605.07277.

14. Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.B.; Swami, A. Practical Black-Box Attacks against Machine Learning.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab
Emirates, 2–6 April 2017; pp. 506–519.

15. Deng, J.; Dong, J.; Socher, R.; Li, L.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009
IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

16. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoizing autoencoders. In
Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

17. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

18. Tucker, L.R. Some mathematical notes on three-mode factor analysis. Psychometrika 1966, 31, 279–311. [CrossRef] [PubMed]
19. Kim, Y.D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; Shin, D. Compression of Deep Convolutional Neural Networks for Fast and Low

Power Mobile Applications. arXiv 2015, arXiv:1511.06530.
20. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826.

21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

22. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
23. NVIDIA. Hareness AI at the Edge with the Hetson TX2 Developer Kit|NVIDIA Developer. Available online: https://developer.

nvidia.com/embedded/jetson-tx2-developer-kit (accessed on 10 June 2022).
24. NVIDIA. CUDA Toolkit—Free Tools and Training|NVIDIA Developer. Available online: https://developer.nvidia.com/cuda-

toolkit (accessed on 10 June 2022).
25. NVIDIA. CUDA Deep Neural Network(cuDNN)|NVIDIA Developer. Available online: https://developer.nvidia.com/cudnn

(accessed on 10 June 2022).
26. Harris, M. GPU Pro Tip: CUDA 7 Streams Simplify Concurrency|NVIDIA Technical Blog. Available online: https://developer.

nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency (accessed on 10 June 2022).
27. Lim, C.; Kim, M. ODMDEF: On-Device Multi-DNN Execution Framework Utilizing Adaptive Layer-Allocation on General

Purpose Cores and Accelerators. IEEE Access 2021, 9, 85403–85417. [CrossRef]
28. PyTorch. Available online: https://pytorch.org (accessed on 10 June 2022).
29. TensorFlow. Available online: https://www.tensorflow.org (accessed on 10 June 2022).
30. Xiang, Y.; Kim, H. Pipelined Data-Parallel CPU/GPU Scheduling for Multi-DNN Real-Time Inference. In Proceedings of the 2019

IEEE Real-Time Systems Symposium (RTSS), Hong Kong SAR, China, 3 December 2019; pp. 392–405.
31. Karol, M.; Hluchyj, M.; Morgan, S. Input Versus Output Queueing on a Space-Division Packet Switch. IEEE Trans. Commun. 1987,

35, 1347–1356. [CrossRef]
32. NVIDIA. CUDA Streams: Best Practices and Common Pitfalls. Available online: https://on-demand.gputechconf.com/gtc/2014

/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf (accessed on 10 June 2022).
33. Kim, M. Guaranteeing That Multilevel Prioritized DNN Models on an Embedded GPU Have Inference Performance Proportional

to Respective Priorities. IEEE Embed. Syst. Lett. 2021, 14, 83–86. [CrossRef]
34. Ajitsaria, A. What Is the Python Global Interpreter Lock (GIL)? Available online: https://realpython.com/python-gil (accessed

on 10 June 2022).
35. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learn-

ing. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
36. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the Fourteenth European

Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 630–645.
37. Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh, D.; McDaniel, P. Ensemble Adversarial Training: Attacks and

Defenses. arXiv 2017, arXiv:1705.07204.
38. Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollar, P. Designing Network Design Spaces. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10428–10436.
39. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.
40. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2016, arXiv:1605.07146.
41. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
42. Yan, M.; Zhao, M.; Xu, Z.; Zhang, Q.; Wang, G.; Su, Z. VarGFaceNet: An Efficient Variable Group Convolutional Neural Network

for Lightweight Face Recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,
Seoul, Korea, 27–28 October 2019.

http://dx.doi.org/10.1007/BF02289464
http://www.ncbi.nlm.nih.gov/pubmed/5221127
https://developer.nvidia.com/embedded/jetson-tx2-developer-kit
https://developer.nvidia.com/embedded/jetson-tx2-developer-kit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency
http://dx.doi.org/10.1109/ACCESS.2021.3088861
https://pytorch.org
https://www.tensorflow.org
http://dx.doi.org/10.1109/TCOM.1987.1096719
https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
http://dx.doi.org/10.1109/LES.2021.3129769
https://realpython.com/python-gil

Sensors 2022, 22, 5896 22 of 22

43. Huynh, L.N.; Lee, Y.; Balan, R.K. DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications.
In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, Niagara Falls, NY,
USA, 19–23 June 2017; pp. 82–95.

44. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. arXiv 2015, arXiv:1510.00149.

45. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A. EIE: Efficient inference engine on compressed deep neural network.
ACM SIGARCH Comput. Archit. News 2016, 44, 243–254. [CrossRef]

46. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural
Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713.

47. Panda, P. QUANOS: Adversarial noise sensitivity driven hybrid quantization of neural networks. arXiv 2020, arXiv:2004.11233.
48. NVIDIA Deep Learning Accelerator. Available online: http://nvdla.org (accessed on 10 June 2022).
49. Tensor Cores|NVIDIA Developer. Available online: https://developer.nvidia.com/tensor-cores (accessed on 10 June 2022).
50. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. Diannao: A small-footprint high-throughput accelerator for

ubiquitous machine-learning. ACM SIGARCH Comput. Archit. News 2014, 42, 269–284. [CrossRef]
51. Chen, Y.; Luo, T.; Liu, S.; Zhang, S.; He, L.; Wang, J.; Li, L.; Chen, T.; Xu, Z.; Sun, N.; et al. DaDianNao: A Machine-Learning

Supercomputer. In Proceedings of the 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge,
UK, 13–17 December 2014; pp. 609–622.

52. Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Li, L.; Luo, T.; Feng, X.; Chen, Y.; Temam, O. ShiDianNao: Shifting vision processing
closer to the sensor. In Proceedings of the 42nd Annual International Symposium on Computer Architecture, Portland, OR, USA,
13–17 June 2015; pp. 92–104.

53. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE J.-Solid-State Circuits 2016, 52, 127–138. [CrossRef]

54. Wang, x.; Hou, R.; Zhao, B.; Yuan, F.; Zhang, J.; Meng, D.; Qian, X. DNNGuard: An Elastic Heterogeneous DNN Accelerator
Architecture against Adversarial Attacks. In Proceedings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems, Lausanne, Switzerland, 16–20 March 2020; pp. 19–34.

55. Waterman, A.; Lee, Y.; Patterson, D.A.; Asanovi, K. The Risc-V Instruction Set Manual. Volume 1: User-Level Isa, Version 2.0; SiFive
Inc. and Cs Division, EECS Department, University of California: Berkeley, CA, USA, 2017.

56. Ma, S.; Liu, Y.; Tao, G.; Lee, W.C.; Zhang, X. NIC: Detecting Adversarial Samples with Neural Network Invariant Check-
ing. In Proceedings of the 26th Network and Distributed System Security Symposium (NDSS 2019), San Diego, CA, USA,
24–27 February 2019

57. Huynh, L.N.; Balan, R.K.; Lee, Y. DeepSense: A GPU-based Deep Convolutional Neural Network Framework on Commodity
Mobile Devices. In Proceedings of the 2016 Workshop on Wearable Systems and Applications, Singapore, 30 June 2016; pp. 25–30.

58. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J. Neurosurgeon: Collaborative Intelligence between the Cloud
and Mobile Edge. ACM SIGARCH Comput. Archit. News 2017, 45, 615–629. [CrossRef]

59. Ballester, J.L.; Aparicio, A.P.; Castell, S.F.; Garcia, J.S.; Cobos, M. Enabling Real-Time Computation of Psycho-Acoustic Parameters
in Acoustic Sensors Using Convolutional Neural Networks. IEEE Sens. J. 2020, 20, 11429–11438. [CrossRef]

60. Raspberry Pi. Available online: https://www.raspberrypi.com/documentation (accessed on 10 June 2022).
61. Zhou, H.; Bateni, S.; Liu, C. S3DNN: Supervised Streaming and Scheduling for GPU-Accelerated Real-Time DNN Workloads. In

Proceedings of the 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Porto, Portugal, 11–13
April 2018; pp. 190–201.

62. Kim, Y.; Kim, J.; Chae, D.; Kim, D.; Kim, J. µLayer: Low Latency On-Device Inference Using Cooperative Single-Layer Acceleration
and Processor-Friendly Quantization. In Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germary, 25–28
March 2019; pp. 1–15.

http://dx.doi.org/10.1145/3007787.3001163
http://nvdla.org
https://developer.nvidia.com/tensor-cores
http://dx.doi.org/10.1145/2654822.2541967
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1145/3093337.3037698
http://dx.doi.org/10.1109/JSEN.2020.2995779
https://www.raspberrypi.com/documentation

	Introduction
	Background
	Adversarial Attack and Defense
	Denoiser
	Tucker Decomposition on Convolution Kernel Tensors

	Problem Formulation
	Problem Description
	Problem Statement

	eDenoizer
	Solution Overview
	Scaling Down the Computational Scale of DUNET
	Scheduling Framework for Multiple Deep Learning Models
	Scheduling Unit
	Scheduling Algorithm
	Scheduling Framework Analysis
	Priority-Based DNN Operations and Maximum Parallelism

	Experiments
	Implementation
	Experimental Setup
	Classification Accuracy on Adversarial Examples
	Classification Accuracy of Approximate DUNET on Adversarial Examples
	Transferability of Approximate DUNET to a Different DNN Model

	Execution Performance Evaluation
	Running Only the Defense Target Model and DUNET
	Running Multiple DNN Models Together
	Applying Tucker Decomposition to the Defense Target Model

	Memory Footprint Reduction

	Related Work
	Lightweight Deep Learning Model over the Structural Change
	Enhancing the Computational Efficiency
	Hardware Acceleration
	Software Techniques for Efficient Use of Existing Computing Units

	Conclusions
	References

