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In recent years, due to the development of technologies for unmanned aerial vehicles (UAVs), also known as drones, UAVs have
developed rapidly. Because of UAVs’ high mobility and computational capability, UAVs have a wide range of applications in
Industrial Internet of Things (IIoT), such as infrastructure inspection, rescue, exploration, and surveillance. To accomplish
such missions, it is more proper and efficient to utilize multiple UAVs in a swarm, rather than a single UAV. However, it is
difficult for an operator to understand and control numerous UAVs in different situations, so UAVs require the significant
level of autonomy. Artificial intelligence (AI) has become the most promising combination with UAVs to ensure the high
autonomy of UAVs by establishing swarm intelligence (SI). However, existing learning methods for building SI require
continuous information sharing among UAVs, which incurs repeated data exchanges. Thus, such techniques are not suitable
for constructing SI in the UAV swarm, in which communication resources are not readily available on unstable UAV
networks. To overcome this limitation, in this paper, we propose the federated reinforcement learning- (FRL-) based UAV
swarm system for aerial remote sensing. The proposed system applies reinforcement learning (RL) to UAV clusters to establish
the SI in the UAV system. Furthermore, by combining federated learning (FL) with RL, the proposed system constructs the
more reliable and robust SI for UAV systems. We conducted diverse evaluations, and the results show that the proposed
system outperforms the existing centralized RL-based system and is more suited for UAV swarms from a variety of perspectives.

1. Introduction

These days, the performance of the hardware and software
needed for computing and artificial intelligence (AI) has
become remarkably advanced, so AI is being used in a wide
variety of fields including Industrial Internet of Things
(IIoT). In particular, the development of deep learning has
allowed computers to perform various complex operations
previously performed only by humans. Unsupervised learn-
ing is used in many areas by developing from supervised
learning with tagging data, and reinforcement learning
(RL), in which machines learn by themselves, has already
surpassed people in many areas. Since the development of
deep Q network (DQN) by Google DeepMind [1], RL has
been applied to Atari Games in 2015 [2], Go in 2016 [3],
and StarCraft II in 2019 [4], and many studies have drawn
attention to solving various problems in IIoT.

Unmanned aerial vehicles (UAVs), also known as
drones, are useful in that they can be put into difficult
environments for people to perform the given missions.
Thus, they are used in various applications in IIoT, such as
infrastructure inspection, traffic patrol, rescue, exploration,
environmental monitoring, remote sensing, and surveillance
[5]. To accomplish such missions, UAVs are controlled by
radio from a remote controller or are self-judged by a system
that has already been designed by an operator. However, it is
difficult for the operator to clearly understand the situation
in which UAVs exist over long distances and to control the
UAVs’ behaviors elaborately. In addition, it is impossible
to come up with all the countermeasures for various unpre-
dictable situations. Moreover, in recent years, a number of
UAVs, rather than a single UAV, are simultaneously utilized
in a cluster to perform more diverse missions of IIoT more
efficiently, but it is hard to control all of these UAVs in a
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centralized manner. Thus, UAVs require the significant level
of autonomy and should have the ability to perform tasks in
unexpected situations without human intervention.

To ensure the sufficiently high autonomy of UAV, a
number of studies were conducted to enable UAV clusters
to perform common missions more efficiently and intelli-
gently by utilizing AI algorithms. However, despite a lot of
interest in AI, the collaboration with swarm intelligence
(SI) in IIoT has not been considered deeply. It is because that
it is not easy to satisfy the concept of SI systems in which
each object has to decide on an action based on local and
partial information obtained from its own environment.

RL is performed by an agent repeating an action based
on a state in a given environment and maximizing a reward.
Therefore, even for learning with the same goal of a certain
application, the results of the learning can be substantially
different as the environment changes. In addition, the action
is chosen stochastically, so different results can be produced
each time even in the same environment. Thus, even if the
same learning is performed, it can result in biased results
depending on the agent, which increases difficulty in estab-
lishing swarm intelligence in IIoT. To overcome this, many
studies on multiagent RL have been proposed, and the stud-
ies simultaneously utilize multiple agents to perform RL.
However, such methods require sharing information of
agents, which incurs continuous data exchanges. Thus, it is
not easy for them to be applied to the environments such
as UAV systems in IIoT, in which communication resources
are not readily available on unstable UAV networks.

Federated learning (FL) is a new approach to training
machine learning (ML) models that decentralizes the train-
ing process, and it was first introduced in the paper pub-
lished by Google [6]. In FL, each agent receives an initial
common global model, which is not trained, from a server,
and each agent performs independent learning. After that,
the server collects the trained local models, creates a global
model, and returns it back to the agents. These operations
are repeated to achieve a fully trained global model. By using
FL, each agent has an advantage in terms of communication
resources in that it does not need to repeatedly share the
data required for learning. Fusing FL with RL allows multi-
ple agents to compose the global and unbiased model based
on many agents’ diverse actions in different environments
without exchanging data for learning. Thus, due to these
advantages, federated reinforcement learning (FRL) is suited
for UAV swarms in IIoT, but only few studies have yet been
applied to UAV systems.

Motivated by the fact described above, in this paper, we
propose the FRL-based UAV swarm system for aerial
remote sensing. To show the application of our proposed
system, we take a gas detection as an application example
and propose the FRL-based gas sensing system using UAV
swarm. However, since the proposed system is not designed
to be specialized in specific applications, the system can be
applied to any IIoT applications using UAVs.

To summarize the contributions of this paper:

(i) We propose the FRL-based UAV system that out-
performs the existing centralized RL-based system

(ii) We establish the swarm intelligence in UAV system
by applying RL to UAV clusters

(iii) By combining FL with RL, we construct the more
reliable and suitable swarm intelligence for UAV
systems

(iv) We conducted diverse performance evaluations
considering various factors to analyze the proposed
system from a variety of perspectives

The remainder of this paper is organized as follows. In
Section 2, we introduce related work and describe our
research’s novelties and advantages against the related work.
We describe preliminary knowledge related to our research
in Section 3. After that, in Section 4, we explain our pro-
posed system and give detailed explanations about the learn-
ing algorithm and implementation. In Section 5, we describe
the experiments and performance evaluation results. Finally,
Section 6 concludes this paper with explaining remarks and
future directions.

2. Related Work

In this section, we firstly introduce several researches which
tried to apply RL or FL to UAV systems. Then, we describe
some studies focusing on utilizing FRL for various systems
in IIoT. After that, we explain our research’s novelties and
advantages in comparison with the relevant studies.

Several studies have been conducted that present a vari-
ety of techniques using RL to perform path planning tasks or
address some of the subtasks. Pham et al. proposed a deep
reinforcement learning (DRL) algorithm which enables
UAVs to learn their paths autonomously and to pass
through changing environments without collisions [7]. Lin
et al. proposed a combination of DRL and long short-term
memory (LSTM) [8] network that allows UAVs to interact
with their surroundings directly and continuously [9]. Lili-
crap et al. proposed an improved deep deterministic policy
gradient (DDPG) [10] algorithm for object avoidance and
target tracking [11]. The proposed algorithm uses reward
functions and penalty actions to achieve smoother trajecto-
ries. Koch et al. investigated the performance and accuracy
of the inner control loop providing attitude control when
using autonomous flight control systems trained with vari-
ous RL algorithms [12].

Using traditional DL-enabled approaches, data needs to
be transmitted and stored at a central server. This can be a
significant problem because it generates massive network
communication overhead to send raw data to centralized
entities, which can lead to network usage and energy ineffi-
ciency of UAVs. The transferred data can also include per-
sonal data such as location and identity of UAVs that can
directly affect privacy issues. As a solution, FL was intro-
duced for privacy and low communication overhead. Con-
sidering the advantages of FL, FL is much better suited for
many UAV-enabled wireless applications in IIoT than the
existing DL methods [13], so some researches tried to apply
FL to UAV systems in IIoT. Chhikara et al. proposed an FL
algorithm within a drone swarm that collects air quality data

2 Wireless Communications and Mobile Computing

 6302, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2022/4327380 by H

ansung U
niversity, W

iley O
nline L

ibrary on [13/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



using built-in sensors [14]. Using the proposed scheme, a
UAV swarm composes the SI to find the area with the high-
est air quality index value effectively. Awada et al. introduced
an FL-based orchestration framework for a federated aerial
edge computing system [15]. The authors proposed a feder-
ated multioutput linear regression model to estimate multi-
task resource requirements and execution time to find the
optimal drone deployment.

FRL, the combination of FL and RL, is a relatively
recently proposed technique, and a few researches tried to
apply FRL to applications of IIoT. Lim et al. proposed an
FRL architecture to allow multiple RL agents to learn optimal
control policy on their own IoT devices of the same type but
with slightly different dynamics [16]. Abdel-Aziz et al. pro-
posed a RL-based cooperative perception framework and
introduced an FRL approach to speed up the training process
across vehicles [17]. Xu et al. proposed a multiagent FL-based
incentive mechanism to capture the stationarity approxima-
tion and learn the allocation policies efficiently [18]. Xue
et al. proposed an FRL framework which extracts the knowl-
edge from electronic medical records across all edge nodes to
help clinicians make proper treatment decisions [19].

This paper has novelty and advantages compared to the
related studies. As explained before, a few researches utilized
FRL for applications of IIoT, but among them, there are few
studies that tried to apply FRL to UAV systems. However, in
this paper, we propose the FRL-based UAV system for aerial
remote sensing. We establish the SI in UAV system by
applying RL to UAV clusters. Furthermore, by combining
FL with RL, we constructed the more reliable and suitable
SI for UAV systems.

3. Preliminary

This section describes preliminary knowledge related to our
research. We first explain DRL, and then give a description
of FL and FRL.

3.1. Deep Reinforcement Learning. RL is a mathematical
framework for experience-driven autonomous learning
[20], and the main base of RL is learning through interaction
with environments [21]. In RL, the agent observes state, st , in
the environment at time t. The state is statistics containing
the information, such as sensor values and the agent’s posi-
tion, and it is necessary for the agent to select the action. In a
given state, the policy returns an action, and the agent takes
the selected action. After that, the state transitions to the
new state, st+1, and the agent gets the reward, rt , from the
environment as feedback. The best order of action is deter-
mined by the rewards provided by the environment, and the
optimal policy is one that maximizes the reward expected in
the environment. Thus, using RL algorithms, the agent tries
to learn a policy that maximizes expected returns.

DRL was introduced to accelerate the development of RL
[22], and DRL uses neural networks to deliver innovative
ways to obtain more optimal policy [1]. DL allows RL to deal
with intractable decision-making problems in high-
dimensional states and environments [2]. There are a variety
of DRL algorithms, such as DQN, DDPG, proximal policy

optimization (PPO) [23], trust region policy optimization
(TRPO) [24], soft actor-critical (SAC) [25], and asynchro-
nous advantage actor-critic (A3C) [26].

3.2. Federated Learning. Without data, model learning can-
not be performed. Data often exists in the form of data
islands, and the direct solution is to process the data in a
centralized manner, requiring training data to be concen-
trated on the same server. FL shifts the focus of research
on ML with data islands. In comparison to centralized learn-
ing methods, FL belonging to distributed learning methods
allows individual devices in different locations to collaborate
with others to learn ML models. The concept of FL was
introduced by Google in 2016 and first applied to Google
keyboards for joint learning on multiple Android phones
[27]. Given that FL can be applied to all edge devices in
IoT, there is the potential to revolutionize various IIoT areas,
such as healthcare, transportation, and finance [28].

FL offers new research directions on AI in IIoT, and FL
provides a new way of learning to build a personalized
model without exchanging raw data. With the advancement
of computing technologies, the computing resources of IoT
devices have become more powerful. Training for AI is also
gradually moving from central servers to edge devices. FL
provides a privacy mechanism that can effectively use the
computing resources of the device to train the model, pre-
venting the leakage of personal information during data
transmission. In various areas, numbers of wireless devices
exist and there are a large amounts of valuable data, so FL
can take full advantage of them. FL is the collection of train-
ing information from distributed devices to learn the model,
and it includes the following basic steps [29, 30]. Firstly, the
server sends the initial model to all of the devices, and then,
each device trains its own local model using local data. After
that, the devices send local model parameters back to the
server, and the model parameters are aggregated into the
global model. The aggregated global model is delivered to
the devices again, and the above procedures are repeated.

3.3. Federated Reinforcement Learning. The combination of
RL and FL was first studied in [31]. Unlike traditional FL,
the authors proposed a new FL framework based on RL [2,
20, 32], i.e., FRL. In the study, the authors demonstrated that
the FRL approach can take full advantage of the joint obser-
vations in the environment and perform better than simple
DQNs with partial observations in the same environment.
FRL was also applied to autonomous driving, and all partic-
ipant agents perform steering control actions with knowl-
edge learned by others, even when acting in very different
environments [33]. In robot system control, FRL was used
to fuse robot agent models and communicate experience
effectively using prior knowledge and quickly adapting to
new environments [34]. However, there are few studies that
applied FRL to UAV systems.

4. System Design and Implementation

In this section, we explain the details of our proposed system
and implementation. We first explain the concept of the
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proposed system. Then, we give descriptions of our FRL sys-
tem, the RL algorithm used in the system, and the environ-
ment constructed for learning. After that, we describe the
system implementation.

4.1. System Concept. We propose the FRL-based UAV
swarm system for aerial remote sensing. As we mentioned
before, to show the application of our proposed system, we
take gas sensing as an application example, and Figure 1
shows the proposed system’s application concept. Initially,
a UAV swarm consisting of multiple UAVs is arranged in
an area where a gas source is expected to exist. In this situa-
tion, the mission of the UAV swarm is to find the origin of
the gas source, marked as red smoke in the figure, with
avoiding collisions not only between UAVs but also with
other obstacles, such as tall trees. The UAVs continually
move without any predetermined guidance or programmed
function. At the same time, they repeatedly perform local
learning based on their own actions and data collected from
gas sensors and ranging sensors, such as LiDAR or radar.
After that, the UAVs share only their locally trained models
with each other periodically. During the mission, the UAVs

repeat such moving, learning, and occasional sharing to
build SI.

4.2. Federated Reinforcement Learning System. In the pro-
posed system, the neural network of UAVs is trained using
FRL, and Figure 2 shows the overall learning procedures in
the system. To explain the FRL operations in our system,
we assumes n UAVs, U1, …, Un with their own data D1,
…, Dn. The proposed FRL scheme includes the following
main steps. First, a server (a ground control system) or a
header UAV in our system sends initial global models to
all UAVs, and each UAV trains their own local model using
local information including states, actions, and rewards. We
will describe the detailed explanation about the learning
algorithm in Section 4.3. The UAVs send the local model
parameters, W1, …, Wn, back to the server, and then, the
server aggregates the model parameters into the global
model as follows:

WG = 〠
n

n=1
Wi: ð1Þ

Figure 1: The application concept of the proposed system.
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Figure 2: The overall operations of FRL in the proposed system.
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The global model’s parameters, WG, are distributed back
to the UAVs and the above procedures are repeated until the
global model is sufficiently trained.

4.3. Reinforcement Learning Algorithm. This subsection
describes the RL algorithm used in our proposed system.
The PPO algorithm is based on the actor-critic concept
and utilizes two separate networks [23]. The actor network
determines the agent’s optimal behavior, whereas the critic
network evaluates policies and trains the actor using
rewards. The PPO algorithm was inspired by the TRPO
algorithm [24], and the PPO algorithm provides a more
direct approach to implementing and coordinating tasks
for learning. Compared to TRPO, PPO is also known to pro-
vide simpler and better performance in many applications in
IIoT [35]. The UAV system prefers algorithms requiring a
small amount of computation, so PPO is suitable for various
tasks performed by UAVs [5]. In fact, many studies used
PPO as the RL algorithm for UAV systems, and many
results have shown that PPO is superior to other algorithms
in various aspects [5]. For these reasons, we chose PPO as
the RL algorithm of our FRL system.

We describe the detailed explanation about the learning
algorithm for the proposed system with reference to [16,
23, 34]. In training, an agent observes a state, st , in the envi-
ronment at time step t. The actor model, πθ, with its model
parameters, θ, is used to determine an action, at , to be taken
in the given state, st . The agent takes the selected action, the
state transitions to the new state, st+1, and the agent gets the
reward, rt+1. For every time step, the agent stores the trajec-
tory segment, <st , ⋅ at , ⋅ rt+1, ⋅ st+1 > in the trajectory mem-
ory. The critic model, Vμ, with its model parameters, μ,
evaluates whether the action led the agent to a better state,
and the critic model’s feedback is used to optimize the actor
model. Whenever a determined number of steps proceed,
based on the PPO algorithm, the gradients for the optimiza-
tion of the actor and critic models are calculated using the

trajectory segments in the trajectory memory. The objective
function, LPG, in a general policy gradient RL is as follows:

LPG θð Þ = Êt log πθ at stjð ÞÂt

Â Ã
, ð2Þ

where Êt½⋯� means the empirical average over a finite
batch of samples and Ât is an estimator of the advantage
function at timestep t. Utilizing the generalized advantage

Input: sensing information, distance information
Output: state
1: state = zeros(nstate)

Calculating state values regarding sensing:
2: ssum ⟵ 0
3: for each sensing value, s, in sensing value set, S do.
4: ssum ⟵ ssum + s
5: end for.
6: saverage ⟵ ssum/nsensor:
7: smax⟵0
8: for i, s in enumerateðSÞ do
9: state½i�⟵ s − saverage
10: if smax < absðstate½i�) then smax ⟵ absðstate½i�)
11: end for
12: for i in range(nsensor) do
13: state½i�⟵ state½i�/smax

Calculating state values regarding distance:
15: o⟵NearestObj ðOÞ
16: dist⟵CalDist ðo)
17: if dist ≤ sizeuav then state½−4�⟵ −1
18: else state½−4�⟵ 1
19: o!⟵ CalVec (o)
20: state½−3�⟵ o!x

21: state½−2�⟵ o!y

22: state½−1�⟵ o!z
23: return state

Algorithm 1: Algorithm for getting the state.

Table 1: Variables used for getting the state.

Notation Description

state Set of state values

nstate Number of state values in state
S Set of sensing values

s Each sensing value in S

ssum Sum of sensing values in S

saverage Average of sensing values in S

smax The maximum of the absolute values of S

nsensor Number of sensors attached onto the UAV

O Set of nearby objects

o The nearest object

dist The distance to o

o! Normalized vector to o

0 50 100 150 200 250 300

Figure 3: An example of map used for the proposed FRL system.

5Wireless Communications and Mobile Computing
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estimator (GAE) [36], Ât can be calculated as follows:

Ât = δVt + γλð ÞδVt+1+⋯+ γλð ÞT−t+1δVT−1, ð3Þ

where γ is the discount factor ðγ ∈ ½0, 1�Þ, λ is the GAE
parameter ðλ ∈ ½0, 1�Þ, T is the size of mini-batch samples,
and δVt = rt + γVμðst+1Þ −VμðstÞ. The objective function,

LV , is as follows:

LV μð Þ = Êt V̂
target
μ stð Þ −Vμ stð Þ

��� ���h i
, ð4Þ

where V̂
target
μ is the target value of time-difference error

(TD-error), and V̂
target
μ ðstÞ = rt+1 + γVμðst+1Þ. Using a sto-

chastic gradient descent (SGD) algorithm (i.e., Adam opti-
mization [37]), the parameters of Vμ are updated as follows:

μ = μ − ημ∇L
V μð Þ, ð5Þ

where ημ is the learning rate for the critic model
optimization.

Input: action, sensing information, distance information
Output: reward
1: reward⟵ 0
Detecting a collision with any other objects:

2: o⟵NearestObj (O)
3: if o ≠ t then
4: distobj ⟵ CalDist (o) then
5: if distobj ≤ sizeuav then
6: reward⟵ −2
7: return reward
8: end if
9: end if
When the agent reaches the target:

10: if o == t then
11: distt ⟵ CalDist (t)
12: if distt ≤ thsucc then
13: if action == ‘staying’ then
14: reward⟵ 1
15: return reward
16: end if
17: end if
18: end if
Calculating the reward in the other cases:

19: t
!
x ⟵ sright − sleft

20: t
!
y ⟵ sfront − sback

21: t
!
z ⟵ sup − sdown

22: t
!
⟵ vt/kvtk

23: a!⟵NorVecðaction)
24: reward⟵ InnerProdðd!, a!) absðrewardÞ < valclip
25: if reward ≥ 0 then
26: if reward⟵ valclip
27: else reward⟵ −valclip
28: end if
29: return reward

Algorithm 2: Algorithm for determining the reward value.

Table 2: Variables used for determining the reward.

Notation Description

O Set of nearby objects

o Nearest object

t Target object

distobj Distance to o

sizeuav Radius size of UAV

distt Distance to the target

thsucc Threshold of distance to the target where the
agent is deemed to arrive at the target

t
!

Normalized vector to target

a! Normalized vector of action

valclip Clip value for determining reward

Table 3: Hyperparameters and values used for learning.

Hyperparameter Value

Actor network dimension 16∗256∗256∗256∗5
Critic network dimension 16∗256∗256∗256∗5
Minibatch size 5

Number of epochs 4

Learning rate 0.0003

Horizon value 20

Generalized advantage estimator 0.95

Discount factor gamma 0.99

Clipping parameter 0.2

Value function coefficient 0.5

Optimizer algorithm Adam

LR

F

B

D

U

Figure 4: The sensors’ position and possible movement actions of
UAV in the proposed FRL.

6 Wireless Communications and Mobile Computing
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In the actor model of TRPO, the importance sampling is
used to obtain the expectation of samples gathered from the
old policy, πθold

, under the new policy, πθ. The TRPO

algorithm maximizes the surrogate objective function, LCPI,
presented in

LCPI θð Þ = Êt
πθ at stjð Þ
πθold

at stjð Þ Ât = Êt Rt θð ÞÂt

Â Ã" #
ð6Þ

where CPI refers to conservative policy iteration [38]
and RtðθÞ denotes the probability ratio. The TRPO algo-
rithm optimizes LCPI subject to the constraint on the amount
of the policy update as follows:

Êt KL πθold
⋅ stjð Þ, πθ ⋅ stjð ÞÂ ÃÂ Ã

≤ δ, ð7Þ

where KL refers to the Kullback-Leibler divergence [39].
As we explained before, the PPO algorithm was inspired by
the TRPO algorithm, and the objective function of PPO,
LCLIP, is as follows:

LCLIP θð Þ = Êt min Rt θð Þ, clip Rt θð Þ, 1 − ε, 1 + εð Þð ÞÂt

Â Ã
, ð8Þ

where ε is the clipping parameter. The parameters of πθ

are updated by the SGD algorithm with the gradient, ∇LCLIP,
as follows:

θ = θ − ηθ∇L
CLIP θð Þ, ð9Þ

where ηθ is the learning rate for the actor model
optimization.

Using the above algorithm, each agent in our system per-
forms RL repeatedly, and the agents send the updated model
parameters to the server periodically as we explained in Sec-
tion 4.2.

4.4. Environment. The agents continually interact with the
environment while performing learning, so it is important
to construct an appropriate environment for proper learn-
ing. We constructed the environment for agents to perform
learning well to accomplish the mission described in Section
4.1. This subsection provides a detailed description of the
environment, especially about map, state, action, and
reward.

4.4.1. Map. Figure 3 shows an example of map which is used
for FRL of the proposed system. In the map, green circle
lines mean contour lines. In other words, an area marked
as darker green means a higher area. Red and blue dots rep-
resent UAVs and obstacles, respectively. The red star in the
middle means the gas source that the UAVs should find. We
set the map to change every a certain period so that the
UAVs can experience various environments. At each
change, both the position of the obstacles and the height of
the terrain change. The UAVs are initially placed evenly
between UAVs outside a certain range from the gas source
since it is efficient and reasonable to spread them as much
as possible. The obstacle is assumed to be a very tall object,
such as a transmission tower, so that the UAVs cannot avoid
the obstacle by flying higher but should move horizontally to
avoid the obstacle. Considering collisions not only with
obstacles but also between UAVs, if a UAV gets closer to
another object than a certain distance, it is considered as a
collision.
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Figure 5: The average of the score values as the episode goes by.
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Figure 6: Final position of UAVs as the episode goes by.
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4.4.2. State. In order for an agent to take an appropriate
action, the state should consist of appropriate values.
Algorithm 1 shows the pseudocode for getting the state,
and Table 1 lists the variables used in Algorithm 1. The
state is composed of two value sets, one set regarding
sensing values and the other set containing distance infor-
mation, so the algorithm for obtaining state is also com-
posed of two parts.

Lines 2 to 14 in Algorithm 1 are relevant to calculating
state values regarding sensing. The UAV has multiple sen-
sors, gas sensors in our application example scenario, and
blue dots in Figure 4 present the position of sensors attached
onto the UAV. Each sensor continuously collects sensor
data. In real-world environments, there is always noise in
sensor values obtained from real sensors. Therefore, in order
to consider noise in a real environment, we added different
Gaussian noise to sensor values. We will give the detailed
explanations about the noise values and the performance
evaluation considering the sensor noise in Section 5.3. Using
the sensor data, the agent finds the sum of the collected
values and calculates the average of them. After that, the
agent subtracts the mean value from each sensor value,
and in this process, the agent finds and memorizes the max-
imum absolute value of the result values. The agent performs
normalization using this maximum value, and the agent
takes these final results as values of the state’s first set.

Lines 15 to 22 in Algorithm 1 are relevant to the state’s
second value set, state values regarding distance information.
First, the agent finds the nearest object, a UAV or an obsta-
cle, from the agent, and then calculates the distance to the
object. If the distance is smaller than the size of the UAV,
there is a collision, so -1 is stored in the state, and if not, 1
is stored. After that, the agent calculates the normalized vec-
tor directed towards the nearest object, and the values of x, y,
and z axes of the vector are stored in the state.

4.4.3. Action. Figure 4 shows the movement actions that the
UAV can choose. UAVs in real world can move in more
diverse directions, but in order to reduce the complexity of
learning, we assumed that UAVs can perform only 27
actions, moving in 26 directions and staying. Red and blue
dots in the figure indicate the 26 directions, and blue dots
also show the position of sensors attached onto the UAV
as explained before.

4.4.4. Reward. An appropriate reward should be given for an
agent to perform well in learning. Algorithm 2 shows the
detailed process of determining the reward value, and
Table 2 lists the variables used in Algorithm 2.

The UAV should not collide with other UAVs or obsta-
cles while moving. Lines 2 to 9 in Algorithm 2 are relevant to
detecting a collision with any other objects. First, the agent
finds the nearest object among nearby objects. If the nearest
object is not the target, the agent calculates the distance to
the object. If the distance is less than the radius of UAV, in
other words, if a collision occurs, the reward is set to -2 to
train the agent not to do such action causing the collision
in the future.

If the agent arrives at the target, it is reasonable for the
agent to be located there without moving, and lines 10 to
18 in Algorithm 2 are relevant to this case. Firstly, the
agent calculates the distance to the target. When the dis-
tance is shorter than the determined distance for judging
whether the agent arrives at the target, if the agent takes
the action of staying there, the agent gains 1 as
compensation.

In the other cases, the agent calculates the reward, and
lines 19 to 28 in Algorithm 2 are relevant to these cases.
The principle of determining the reward is that the better
the agent moves in the direction of the target, the larger
the reward the agent receives. The shorter the distance
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Figure 7: The learning performance comparison between centralized RL- and FRL-based systems.
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between the sensor and the target is, the larger or smaller the
sensing value is, depending on the characteristics of sensors.
In the case of gas sensor, the shorter the distance, the larger
the sensing value [40]. Therefore, a larger sensing value
means that the sensor is closer to the target. The agent
obtains a normalized vector, on x, y, and z axes, directed
toward the target using values of sensors marked with blue
circles in Figure 4. After that, the agent calculates the nor-
malized vector for the action and obtains the inner product
of the two vectors. If the absolute value of the reward is
too small, learning may not be performed well, so the reward
is adjusted based on the clipping value.

4.5. Implementation. As explained in Section 4.3, we used
PPO as the RL algorithm, and we implemented the RL
model of the proposed system by using the PyTorch library
[41] with reference to [42]. Table 3 shows hyperparameters
used in the algorithm. By adding FL to the RL model, we
constructed the FRL model with reference to [43]. We
implemented the FRL system on Ubuntu 20.04 LTS using
a desktop with AMD Ryzen™ 7 5800X and 32GB RAM.
For faster learning, we trained the learning model by using
NVIDIA’s compute unified device architecture (CUDA) on
the NVIDIA GeForce RTX 3070 8GB GDDR6 PCI Express
4.0 graphic card. In addition, we constructed a map,
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Figure 8: The performance evaluation considering sensor noise.
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explained in Section 4.4.1, referring to the 2D Gaussian grid
map introduced in [44].

5. Performance Evaluation

In this section, we explain the various experiments and eval-
uation results. We first explain the performance evaluation
of the proposed FRL system and then show the result of per-
formance comparison between RL- and FRL-based systems.
After that, we describe diverse evaluations considering vari-
ous factors, such as sensor noise, participation ratio, packet
loss, and duplication sending.

5.1. Evaluation on Learning Performance. An episode is a
unit of learning, and each episode ends after a determined
number of steps proceed. To evaluate the learning perfor-
mance, we recorded the sum of the reward values gained
by the agent in the episode as the score of the episode, and
we investigated the sum of scores from the last 100 episodes.
We conducted the evaluation by varying the number of
agents, and the four lines with different colors in Figure 5
show the results. As shown in the figure, the average of the
score values increases as the episode goes by, which means
that the agent performed the mission well as the learning
was repeated. The average value continues to increase up
to about 3000 episodes and reaches the saturation point. In
terms of the number of agents, the result shows that the
more agents participate in learning, the better the learning
performance is. In other words, the average score increases
higher and the range of fluctuation is smaller in cases where
the more agents participate in learning. This is because the
more UAVs learn together, the more diverse experiences
are collected, which not only makes learning better but also
causes unbiased learning to be performed. However, it is not

easy for many UAVs to continuously send raw data to central-
ized entities, which can lead to massive communication over-
head and energy inefficiency of UAV systems. Thus, our FRL-
based system is suited for UAV swarms because FRL has an
advantage in terms of communication resources in that it does
not need to repeatedly share the raw data for learning.

As shown in Figure 5, the learning progresses rapidly in
the early stage. To analyze this in more detail, Figure 6
shows the final positions of UAVs every 20 episodes. In
the figure, after only 20 episodes, in other words, when the
sufficient learning was not performed, the UAVs could not
find the target. However, as the episode went by, the more
UAVs moved closer to the target, which means that the
learning was performed well.

5.2. Performance Comparison between RL- and FRL-Based
Systems. In existing RL approaches, it is common to collect
data and perform learning in a centralized manner. In
UAV systems, it is not easy to continuously send all raw data
to the central entity in real time, so the learning can be per-
formed by transferring data to the server after the flight of all
UAVs is over. We compared the results of learnings per-
formed using such centralized RL-based method and our
FRL-based method. As shown in Figure 7, the FRL-based
method performed learning better and reached the satura-
tion point faster than the centralized RL-based method.
The reason for this result is that the FRL-based method does
not require raw data transmission so that learnings can be
performed more frequently, resulting that agents can be
trained faster and more stably.

5.3. Learning Performance considering Noise. As explained in
Section 4.4.2, there is always noise in sensor values obtained
from real sensors. Therefore, to evaluate the performance
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Figure 9: The learning performance depending on the participation ratio.
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considering noise, we analyzed the learning performance by
adding a different Gaussian noise of N ðμ, σ2Þ to sensor
values. We performed FRL with 3 agents by using the zero
mean and different variance values from 0 to 0.6 with refer-
ence to the values obtained from real gas sensors [40]. As
shown in Figure 8(a), the higher the noise, the lower the
learning performance. However, even when there was noise,

a certain level of learning was sufficiently performed. Thus,
this result shows that the proposed FRL system can be uti-
lized in a real environment with noise.

As shown in the result above, the noise degrades the
learning performance. However, as the number of UAVs
increases, the more experience the UAVs have and share,
which mitigates the degradation caused by noise. As shown
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(b) The impact of packet loss depending on the number of UAVs participating in learning

Figure 10: The performance evaluation considering packet loss.
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in Figure 8(b), when there was little noise, the more UAVs
participated in learning together, the better the learning per-
formance. Similarly, even when there was severe noise, the
fluctuation was smaller when more UAVs participated in
learning although the overall learning performance was rel-
atively low. In summary, using the FRL-based system, the
more UAVs participate in building SI, the impact of noise
can be alleviated as well as the overall performance can be
improved.

5.4. Performance Evaluation considering Participation Ratio.
In real situations, all devices may not be always able to par-
ticipate in learning on all rounds due to diverse causes, such
as the situation of devices, communication, and network
problems. Therefore, in the actual FL, the ratio of devices
participating in learning is determined, some of the devices
are chosen every round according to the participation ratio,
and the selected devices participate in learning. Thus, we
evaluated the performance by changing the participation
ratio in the learning, and Figure 9 shows the result. Natu-
rally, the higher the participation ratio, the more stable and
better performance, but for this to occur, many devices
should participate in the learning of every round. As shown
in the figure, even when 0.67 was selected as the participa-
tion ratio, there is the little degradation in performance
compared to the case with the participation ratio of 1. Thus,
this result shows that it is possible to obtain not only efficient
learning but also acceptable performance by using the
proper participation ratio.

5.5. Performance Evaluation considering Packet Loss. In
UAV systems, due to the high mobility of UAV and contin-
uous changes in network topology, wireless data communi-
cations are frequently unstable, which can lead to packet

loss. When packet loss occurs or communication situation
is poor, some of trained local models cannot be transferred.
In consideration of this situation, we evaluated the perfor-
mance by changing the packet loss probability, and
Figure 10 shows the result. Figure 10(a) shows learning per-
formance in cases where there was no packet loss in a stable
communication situation and where a lot of packet losses
occurred due to poor network condition. In the case of
severe network condition, since the packet loss occurred fre-
quently, the trained models could not be transferred well, so
learning was performed unstably at the beginning of learn-
ing. However, as shown in Figure 10(b), the learning perfor-
mance can be improved if more agents participate in
learning even when the communication situation is unstable.
In conclusion, if FRL is utilized in a UAV system composed
of a number of UAVs, it is possible to perform learning even
in poor communication situations.

5.6. Performance Evaluation considering Duplication
Sending. These days, it is not difficult for UAVs to transmit
packets through multiple paths by leveraging multiple inter-
faces simultaneously. In our previous work [45], to improve
the reliability and stability of controlling UAVs, we pro-
posed a scheme that selectively duplicates only important
packets and then transfers the originals and copies of them
through different paths. Such technique and other similar
ones can increase the success rate of transmitting trained
models, which in turn improves learning performance.
Figure 11 shows the results of learning performance
depending on the use of the technique when the packet
transmission probability is 0.8 or 0.2. As shown in the
result, we can get better learning performance when using
the duplication sending technique. This means that the
reliable communication and network in UAV systems are
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Figure 11: The learning performance depending on the use of the duplication sending technique.
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critical for improving the FRL system’s learning perfor-
mance to build SI.

6. Conclusion

Nowadays, UAVs are widely used in various fields of IIoT
due to the many advantages of the UAVs. In order to carry
out today’s complicated and complex missions, it is more
appropriate and efficient to use multiple UAVs together, so
many people utilize UAVs in the form of swarm. However,
it is not easy to control multiple UAVs from a distance at
the same time. Thus, UAVs are required to have the high
autonomy, and AI is the most promising technique to pro-
vide the intelligence to UAVs. However, to secure SI using
existing techniques, raw data should be continuously
exchanged between UAVs, which is not suitable for UAV
systems operating on unstable networks. Motivated by the
fact described above, in this paper, we proposed the novel
FRL-based UAV swarm system for aerial remote sensing.
The proposed system utilizes RL to ensure the high auton-
omy of UAVs, and moreover, the system combines FL with
RL to construct the more reliable and robust SI for UAV
swarms. Through the performance evaluations, we showed
that the proposed system outperformed the existing central-
ized RL-based system. Furthermore, we conducted various
analyses considering the diverse factors, such as sensor
noise, participation ratio, packet loss, and duplication send-
ing, and the results proved that our proposed system is more
suited for UAV swarms from a variety of perspectives.

We have several directions as future work. We will
implement our FRL algorithm on UAV devices and apply
the proposed system to UAV systems in a real environment.
In order to do this, we will construct the more complex state
and devise the more sophisticated reward algorithm. In
addition, we plan to elaborate our system to include addi-
tional techniques, such as more efficient model exchange
and adaptive participation ratio, which results in the better
SI development.
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