
International Journal of Internet, Broadcasting and Communication Vol.17 No.2 223-231 (2025)
http://dx.doi.org/10.7236/IJIBC.2025.17.2.223

Copyright© 2025 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of
the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Implementation Details of EPUB Reader using GraphRAG

Jiyoon Ok, Juyeon Soung, Chaewon Park, Kitae Hwang*

Student, Department of Computer Engineering, Hansung University, Korea

* Professor, Department of Computer Engineering, Hansung University, Korea

2271522@hansung.ac.kr, tjdwndus1325@gmail.com, caley4@hansung.ac.kr,

calafk@hansung.ac.kr*

Abstract
The GraphRag technique has recently been studied meaningfully as a technique for securing high

performance in search and inference without hallucination for domain-specific knowledge. GraphRAG builds

a graph of the document's core concepts and the relationships between them, resulting in a connected

knowledge network. To validate the practicality of GraphRAG, we implemented an EPUB reader using

GraphRAG in our previous research and evaluated its retrieval performance, achieving 90% accuracy in both

factual retrieval tasks and complex inferential queries, demonstrating superior performance. In this paper, we

describe details of the implementation of the EPUB reader capable of retrieval and inference using the

GraphRAG technique. Specifically, we detail the processes of building a graph database from EPUB files,

conducting retrieval, and visualizing the constructed graphs. Furthermore, we explain how the EPUB reader

was designed to run on resource-constrained devices such as the Raspberry Pi 5 single-board computer. We

expected that this system serves as a representative implementation example for applications leveraging

GraphRAG technology.

Keywords: GraphRAG, Knowledge Graph, LLM, Epub Reader

1. Introduction

Recently, large language models (LLMs) have revolutionized retrieval methods by generating context-aware
responses to natural language queries. However, LLMs often suffer from hallucination problems, generating
inaccurate responses to queries about new information or domain-specific knowledge that are not included in
their training data [1]. To address these limitations, Retrieval-Augmented Generation (RAG) techniques have
been introduced in recent works [2]. RAG leverages an LLM to embed documents into a vector database, and
also segments user queries through the LLM to find similar information based on vector similarity. However,
RAG relies on word-level similarity to answer queries, which limits its ability to analyze relationships between
concepts within documents.

IJIBC 25-2-24

Manuscript Received: March. 31, 2025 / Revised: April. 14, 2025 / Accepted: April. 27, 2025
Corresponding Author: calafk@hansung.ac.kr
* Professor, Department of Computer Engineering, Hansung University, Korea

224 International Journal of Internet, Broadcasting and Communication Vol.17 No.2 223-231 (2025)

To address these limitations of RAG, Microsoft proposed the Graph-based Retrieval-Augmented Generation
(GraphRAG) technique [3]. GraphRAG constructs graph structures representing concepts and their
interrelationships within documents, thereby building an interconnected knowledge network. Microsoft
demonstrated through experiments that GraphRAG achieves superior performance compared to naive RAG in
retrieval and inference tasks, providing more comprehensive answers. Recently, some research has explored
the application of GraphRAG in specific domains. For instance, Wu et al. [4] proposed MedGraphRAG, a
framework based on GraphRAG in the medical domain, and demonstrated improved accuracy in answering
queries related to disease diagnosis and treatment. However, their study primarily focused on performance
evaluations using benchmark datasets and did not provide details on actual system implementations. Xu et al.
[5] applied GraphRAG to Q&A systems in the e-commerce customer service domain and demonstrated
improved performance in certain cases, although they provided limited details about the implementation. To
date, research on GraphRAG has primarily focused on demonstrating conceptual feasibility and evaluating
performance using benchmark datasets, with limited examples of practical application implementations.

To validate the practicality of GraphRAG, our research team implemented an EPUB reader using
GraphRAG in a preliminary study and evaluated its retrieval performance, achieving 90% accuracy in both
factual retrieval tasks and complex inferential queries, demonstrating superior performance [6]. This paper
provides details on the implementation of the EPUB reader developed in the previous study, serving as a
meaningful contribution to the GraphRAG research field where practical application implementation examples
remain limited. The EPUB reader developed by our team not only enables retrieval and inference based on
GraphRAG but also includes voice-based question-answering functionality tailored specifically for digital
book learning environments. Additionally, we implemented a video conferencing feature to support
collaborative learning. Furthermore, the EPUB reader has been implemented to run not only in desktop
environments but also on embedded systems. Specifically, we established an environment with two 7-inch
touch displays attached to a Raspberry Pi 5 single-board computer, enabling touch input functionality in
addition to all features available in desktop environments.

2. Implementation of Graph EPUB Reader

2.1 System Architecture

The proposed system is designed based on a client-server model and consists of a web-browser client and
two servers, as shown in Figure 1. Server computer A hosts both the EPUB Viewer Server and the WebRTC
Signaling Server. The EPUB Viewer Server handles browser connections, renders e-book content to the user’s
screen, and serves web pages equipped with UI functionality. The WebRTC Signaling Server facilitates real-
time video conferencing among users connected via web browsers. Server computer B hosts the EPUB
Management Server, which receives natural-language queries from users, analyzes the queries, and provides
responses related to the corresponding e-book. Users view EPUB files and utilize question-Answering and
video conferencing functionalities by their web browsers

Implementation Details of EPUB Reader using GraphRAG 225

Figure 1. System Architecture of Graph EPUB Reader

The EPUB Viewer Server is built on Node.js, using Express.js as the web server framework. The web server
application which handles client requests and responds by delivering web pages is implemented as a React-
based application. This application bundles React modules that run in the user’s web browser and serves them
to the client. The React module comprises six distinct modules. The EPUB Viewer module retrieves EPUB
files and renders the EPUB content in the web browser. The Video Conferencing module establishes a
connection with the WebRTC Signaling Server to facilitate real-time video conferencing. The Parquet
Generation module directs the EPUB Management Server to transform EPUB-formatted e-books into Parquet-
formatted knowledge graphs. The Knowledge Graph Visualization module visualizes knowledge graphs in the
browser. The Question-Answering module forwards user-generated natural language queries to the EPUB
Management Server and presents the received responses in the browser.

The WebRTC Signaling Server is implemented based on the Flask framework and uses the Socket.IO library.
It exchanges peer-to-peer connection data for real-time video conferencing, manages session control, and
relays signaling messages between users. Two web browser clients perform real-time video conferencing
through this server.

The EPUB Management Server which is also based on the Flask framework uses Microsoft’s GraphRAG
library and OpenAI’s GPT-3.5-turbo and text-embedding-3-small models to conduct entity and relationship
extraction, embedding generation, knowledge graph construction, and vector storage in LanceDB.
Additionally, it provides retrieval and inference results utilizing GraphRAG in response to natural language
queries from users.

2.2 Generation of Knowledge Graphs from EPUB Files

The implemented system uses Microsoft's GraphRAG library to transform textual EPUB files into structured
knowledge graphs. Table 1 shows the six-stage operation of Microsoft’s library using the fairy tale “Peter Pan”
as an example.

Table 1. Generation of Knowledge Graph

Step Example

Text Extraction and Chunking "Chapter 1: Journey to Neverland. Once upon a time, Peter Pan
lived in Neverland..." (1,200 characters)

226 International Journal of Internet, Broadcasting and Communication Vol.17 No.2 223-231 (2025)

Entity and Relationship Extraction Entity: “Peter Pan”, “Neverland”, Relationship: “resides in”
Embedding Generation and Storage Entity: “Peter Pan” → Embedding vector: [0.021, …, -0.031]

Metadata: {“entity”: “Peter Pan”, “type”: “person”, “source_text”:
“Chapter 1...”}

Graph Construction and Clustering Entities are represented as nodes and relationships as edges to
form a single unified graph, which is subsequently divided into
multiple communities.

Community Analysis “Peter Pan, Tinker Bell, and Wendy are companions sharing
adventures in Neverland.”

Storage and Utilization Parquet file

Upon uploading an EPUB file, the EPUB Management Server extracts only textual content. To enhance the
contextual accuracy in retrieval and inference tasks, the extracted text is segmented into chunks of 1,200
characters each, with an overlap of 100 characters between consecutive chunks, as recommended by Microsoft.
This overlap ensures sentence continuity across chunk boundaries.

Within each chunk, meaningful entities are identified and classified, and relationships among entities are
extracted using OpenAI’s GPT-3.5-turbo model. At this stage, configuring custom prompts is crucial. To
enhance the accuracy of entity and relationship extraction, the prompts should clearly specify appropriate entity
types. In this study, for the sample EPUB file "Peter Pan," we specified four entity types—organization, person,
geographic location (geo), and event—and restricted each extraction operation to a single entity type. Extracted
entities are represented as words, while relationships are expressed in one or more sentences.

The extracted entities and relationships are embedded into vectors comprising 1,536-dimensional floating-
point numbers using OpenAI’s text-embedding-3-small model. These embedded vectors are stored in
LanceDB. All extracted entities and relationships are integrated into a single graph using the NetworkX library
[7]. In this graph, entities are represented as nodes, relationships as edges, and each edge records a weight that
indicates the strength of the relationship. This process is carried out using an LLM. To facilitate efficient and
accurate graph construction, the Leiden algorithm was applied to group entities with strong mutual relevance
into communities within the graph. The number of entities constituting each community can be determined
based on the current graph size and specified by the administrator. In this study, the Leiden algorithm was
configured to construct communities containing up to 10 entities. Each community is assigned a unique
identifier, and this identifier is recorded as metadata within each node (entity).

Subsequently, community analysis is performed to extract and summarize the core semantic themes of each
community. For instance, a community containing "Peter Pan" and "Tinker Bell" may be summarized as
"companions sharing adventures in Neverland.". Finally, the generated knowledge graph—including entity
information, relationship data, community summaries, and text chunks—is stored as individual Parquet files
[8], each corresponding to distinct content. Concurrently, a GraphML file is generated and stored to facilitate
knowledge graph visualization within the application.

2.3 Knowledge Graph Visualization

As shown in Figure 2, Knowledge graph visualization is the process of rendering a knowledge graph within
the browser interface. Figure 2(a) and Figure 2(b) shows descriptions about Peter Pan and Hook respectively
when the user moves the mouse over each entity. The proposed system enables users to interactively explore

Implementation Details of EPUB Reader using GraphRAG 227

entities and their relationships by navigating the visualized knowledge graph using a mouse. The visualization
procedure involves loading the stored GraphML file, transforming it into JSON format, and subsequently
rendering it on the web page utilizing the D3.js library.

Figure 2 (a). Peter Pan in Knowledge Graph Figure 2 (b). Hook in Knowledge Graph

Table 2 shows examples of GraphML and corresponding JSON representations. In the graph, entities are
represented as nodes and relationships as edges, both expressed within JSON arrays labeled "nodes" and
"edges," respectively.

Table 2. Comparison of GraphML and JSON representations for the Hook node and the
Hook-Wendy relationship edge

GraphML JSON
<node id="HOOK">
 <data key="d0">PERSON</data>
 <data key="d1">Captain Hook is a pirate
captain, known for his cunning and
vengefulness, particularly as the...</data>
 <data key="d2">503485ae5e8...</data>
 <data key="d3">2</data>
 <data key="d4">0</data>
 <data key="d5">8</data>
 <data key="d6">2</data>
</node>

{

"id": "HOOK",
 "type": "PERSON",
 "description": "Captain Hook is a pirate captain, known
for his cunning and vengefulness, particularly as the…",
 "source_id": "503485ae5e8674ea5073c507a269f571...",
 "community": "2",
 "level": 0,
 "degree": 8,
 "human_readable_id": 2,
},

<edge source="HOOK" target="WENDY">
 <data key="d8">9.0</data>
 <data key="d9">Hook plans to make Wendy

{
 "source": "HOOK", "target": "WENDY",
 "weight": 9.0,

228 International Journal of Internet, Broadcasting and Communication Vol.17 No.2 223-231 (2025)

the mother of the pirates by kidnapping
her</data>
 <data key="d10">f6a9c779a27d...</data>
 <data key="d11">9851d49183d...</data>
 <data key="d12">4</data>
 <data key="d13">0</data>
</edge>

 "description": "Hook plans to make Wendy the mother of
the pirates by kidnapping her",
 "source_id": "f6a9c779a27d841a3473e845379db1e5",
 "id": "9851d49183d74c97a2c85377b8280663",
 "human_readable_id": 4,
 "level": 0,
},

Specifically, our system uses the D3.js library, which uses SVG to visualize knowledge graphs within web
pages. Node and edge data are extracted from JSON files and passed to D3.js, which renders nodes as circles
and edges as connecting lines. The relative importance of each entity is also provided to dynamically scale the
size of the node circles. To ensure a clear layout, D3.js applies a force-directed graph algorithm that distributes
nodes evenly and reduces edge overlap. Node colors are distinguished by entity type—such as person, location,
organization, and event—enabling users to intuitively identify each entity’s category. These types are
predefined in the prompts used during entity extraction from EPUB files. Furthermore, D3.js supports
interactive features such as zooming, panning, node dragging, and tooltip display, allowing users to easily
explore and understand complex relationships within the document.

3. Search

The implemented system utilizes two search modes provided by Microsoft’s GraphRAG library: Local
Search and Global Search. Local search is a method of providing contextual information to LLM by targeting
specific entities and their surrounding relationships that are directly related to the query. In contrast, Global
search extracts and analyzes a comprehensive context targeting the entire dataset rather than being limited to
a specific entity.

The search process begins when a user enters a natural language query through the web browser. The Flask
server in the EPUB Management Server receives the query and launches a separate process to handle it. The
query is then converted into a 1,536-dimensional vector using OpenAI’s text-embedding-3-small model. This
vector is compared with entity, text unit, and community vectors stored in the LanceDB to identify the most
relevant items. These selected items are assembled into a single context, combined with a predefined prompt,
and passed to the LLM to generate a response. The generated answer is then refined using regular expressions
and delivered back to the user’s web browser.

4. Speech Recognition and Video conferencing

Figure 3(a) shows that the implemented system incorporates speech recognition capabilities, enabling users
to submit natural-language queries without text input. When a user makes a voice query, the user's voice is
recorded using the MediaRecorder API, and the recorded audio data is converted into text format using
OpenAI's Whisper-1 model. The transcribed text is provided as input to the existing question-answering
pipeline.

Figure 3(b) shows that the video conferencing functionality has been implemented using WebRTC
technology to support real-time discussions and collaborative learning among users. Peer-to-peer (P2P)
connections between users are established with the help of Google’s STUN server, ensuring reliable
connectivity even in Network Address Translation (NAT) environments. Connection state management is

Implementation Details of EPUB Reader using GraphRAG 229

handled via a signaling server built with the Flask framework, where each user is identified by a unique ID
and grouped into virtual “rooms.” Furthermore, the system employs the Socket.IO library to ensure stable real-
time communication among users.

Figure 2(a). Speech Recognition

Figure 3(b). Video Conferencing

5. Implementation of EPUB Reader using Raspberry Pi 5

5.1 Hardware Configuration

This section presents the implementation of an EPUB reader using the Raspberry Pi 5 single-board computer
[9][10]. As shown in Figure 4, an 8GB Raspberry Pi 5 running the Linux operating system was connected to
two 7-inch HD resolution touch displays. The two displays were connected to the Raspberry Pi 5’s Micro
HDMI ports for video output. We tried connecting two touch displays to each of the Raspberry Pi 5’s two USB
ports for both touch input and power supply. However, Raspberry Pi 5 is a single-board computer with power
limitations that prevent it from powering two external displays. To address this power supply constraint, as
shown in Figure 4, a separate USB hub was employed to provide power to both displays. This USB hub was
connected to a USB port on the Raspberry Pi 5, thereby resolving the aforementioned power limitation.

Figure 4. EPUB Reader Hardware

230 International Journal of Internet, Broadcasting and Communication Vol.17 No.2 223-231 (2025)

5.2 Display Operation and EPUB Reader Implementation

We implemented the Raspberry Pi OS to recognize two touch displays as one continuous screen, display
them in full screen, and process input from each touch display independently. However, the default Linux
display server, Wayland, computes touch input coordinates based on the combined resolution of the two
displays, which leads to inaccurate input mapping in multi-display configurations. So, we resolved this issue
by changing the Raspberry Pi5's configuration from Wayland to Xorg. The Xorg display server can map input
devices to specific screens individually, so input from each touch display is handled accurately. Also Wayland
cannot recognize two touch displays as one continuous screen, so it cannot implement full screen display, but
Xorg recognizes both displays as one continuous screen, while processing each display input independently.

To provide a consistent user experience within an embedded system environment, we utilized the Electron
framework. Electron which is a desktop application development framework based on Chromium and Node.js
provides the functionality to transform web-based React applications into standalone desktop applications.
Considering the limited hardware resources of the Raspberry Pi, the application was designed to use the entire
screen as a GUI without running a separate web browser. Also, by connecting to the existing server using the
HTTP protocol, the server-client communication structure of the desktop is maintained as is.

6. Conclusion

In this paper, we presented the detailed implementation of an EPUB reader using GraphRAG to verify the
practicality of GraphRAG. It provided in-depth descriptions of the processes involved in constructing a graph
database from EPUB files, performing search operations, and visualizing the knowledge graph. Furthermore,
it outlines the implementation of voice-based querying and a video conferencing feature that enables
collaborative e-book reading between users. In particular, we described how the EPUB reader was
implemented on an embedded system environment using a Raspberry Pi 5 single-board computer equipped
with two 7-inch touch displays. This implementation preserves all functionalities available in desktop
environments while additionally supporting touch input. Finally, we conclude that the system described in this
paper is expected to serve as a valuable reference for researchers aiming to develop systems with retrieval and
reasoning capabilities using GraphRAG technology.

Acknowledgement

This research was financially supported by the Hansung University

References

[1] G. Perković, A. Drobnjak, and I. Botički, “Hallucinations in LLMs: Understanding and Addressing Challenges,” in
Proc. 2024 47th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, pp. 2084–2088, 2024.
DOI: https://doi.org/10.1109/MIPRO60963.2024.10569238

[2] Patrick Lewis, et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,” arXiv preprint
arXiv:2005.11401, 2020.
DOI: https://doi.org/10.48550/arXiv.2005.11401

[3] D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody, et al., “From local to global: A graph RAG approach
to query-focused summarization,” arXiv preprint arXiv:2404.16130, 2024.

https://doi.org/10.1109/MIPRO60963.2024.10569238
https://doi.org/10.48550/arXiv.2005.11401

Implementation Details of EPUB Reader using GraphRAG 231

DOI: https://doi.org/10.48550/arXiv.2404.16130
[4] J. Wu, J. Zhu, Y. Qi, J. Chen, M. Xu, F. Menolascina, and V. Grau, “Medical Graph RAG: Towards safe medical

large language model via graph retrieval-augmented generation,” arXiv preprint arXiv:2408.04187, 2024.
DOI: https://doi.org/10.48550/arXiv.2408.04187

[5] Zhentao Xu, Mark Jerome Cruz, Matthew Guevara, Tie Wang, Manasi Deshpande, Xiaofeng Wang, Zheng Li,
"Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering,"
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 2905-2909, July 2024.
DOI: https://doi.org/10.1145/3626772.3661370

[6] C. Park, J. Ok, J. Han, J. Soung, and K. Hwang, “EPUB Reader with Advanced Search and Inference Functions
using GraphRAG,” The Journal of The Institute of Internet, Broadcasting and Communication (JIIBC), Vol. 24,
No. 6, pp. 29–35, 2024.
DOI: https://doi.org/10.7236/JIIBC.2024.24.6.29

[7] NetworkX. https://networkx.org/.
[8] Apache Parquet. https://parquet.apache.org/
[9] Kitae Hwang, et al., “Implementation of CoMirror System with Video Call and Messaging Function between

Smart Mirrors“, The Journal of The Institute of Internet, Broadcasting and Communication (JIIBC), Vol.22, No. 6,
pp.121-127, 2022.
DOI: https://doi.org/10.7236/JIIBC.2022.22.6.121

[10] K. Hwang et al., “Performance Evaluation of CoMirror System with Video Call and Messaging Function between
Smart Mirrors,” The Journal of The Institute of Internet, Broadcasting and Communication, vol. 23, no. 3, pp. 51–
57, 2023.
DOI: https://doi.org/10.7236/JIIBC.2023.23.3.51

https://doi.org/10.48550/arXiv.2404.16130
https://doi.org/10.48550/arXiv.2408.04187
https://doi.org/10.1145/3626772.3661370
https://doi.org/10.7236/JIIBC.2024.24.6.29
https://networkx.org/
https://parquet.apache.org/
https://doi.org/10.7236/JIIBC.2022.22.6.121
https://doi.org/10.7236/JIIBC.2023.23.3.51

