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Abstract: This paper proposes an optimized shared memory access technique to enhance
parallel processing performance and reduce memory accesses for the ARIA block cipher
in GPU environments. To overcome the limited size of GPU shared memory, we merged
ARIA’s four separate S-box tables into a single unified 32-bit table, effectively reducing the
total memory usage from 4 KB to 1 KB. This allowed the consolidated table to be replicated
32 times within the limited shared memory, efficiently resolving the memory-bank conflict
issues frequently encountered during parallel execution. Additionally, we utilized CUDA’s
built-in function __byte_perm()to efficiently reconstruct the desired outputs from the re-
duced unified table, without imposing additional computational overhead. In exhaustive
key-search scenarios, we implemented an on-the-fly key-expansion method, significantly
reducing the memory usage per thread and enhancing parallel processing efficiency. In
the RTX 3060 environment, profiling was performed to accurately analyze shared memory
efficiency and the performance degradation caused by bank conflicts, yielding detailed pro-
filing results. The results of experiments conducted on the RTX 3060 Mobile and RTX 4080
GPUs demonstrated significant performance improvements over conventional methods.
Notably, the RTX 4080 GPU achieved a maximum throughput of 1532.42 Gbps in ARIA-
CTR mode, clearly validating the effectiveness and practical applicability of the proposed
optimization techniques. On the RTX 3060, the performance of 128-bit ARIA-CTR was
improved by 2.34x compared to previous state-of-the-art implementations. Furthermore,
for exhaustive key searches on the 128-bit ARIA block cipher, a throughput of 1365.84 Gbps
was achieved on the RTX 4080 GPU.

Keywords: ARIA; block cipher; parallel; GPU; counter mode; exhaustive key search;
shared memory; bank conflict; CUDA; GPGPU; CUDA optimization; memory-bank conflict
resolution; parallel cryptography

1. Introduction

As data volumes increase and network speeds accelerate, modern computing demands
fast and secure data encryption. The ARIA block cipher, a 128-bit block cipher developed by
Korean cryptographers in 2003, has become a national standard (KS) [1] and an international
standard (IETF RFC 5794) [2,3]. ARIA supports 128-, 192-, and 256-bit keys with 12,
14, or 16 rounds, respectively, similar in interface to that of AES (Advanced Encryption
Standard) [4]. It has been widely adopted in Korea for government and public services and
is included in security protocols (e.g., TLS/SSL) as a supported cipher. Given its growing
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use in practice, optimizing ARIA implementation for high throughput is an important
research topic.

Graphics Processing Units (GPUs) offer a potent platform for accelerating crypto-
graphic algorithms due to their massive parallelism and memory bandwidth. Unlike CPUs,
which feature a few complex cores, GPUs consist of thousands of simpler cores that can ex-
ecute thousands of threads concurrently in a Single-Instruction, Multi-Thread fashion. This
makes GPUs well suited for data-parallel tasks like block cipher encryption, where many
blocks can be processed independently. In particular, the counter (CTR) mode of operation
is embarrassingly parallel: each block encryption uses a unique counter value and can
be computed independently of others [5]. CTR mode is widely used in industry because
of this parallelizability and because decryption simply reuses the encryption procedure
(XORing the same keystream), avoiding the need for a separate decryption implementation.
By exploiting GPU parallelism, an entire stream of CTR mode encryption can be performed
simultaneously, significantly increasing throughput.

Another motivation for GPU-based ARIA optimization is to facilitate exhaustive key
searches (brute-force attacks) in cryptanalysis scenarios. In theory, any block cipher with
a k-bit key can be broken by trying 2F possible keys [6]. For example, given a known
plaintext—ciphertext pair, an attacker could encrypt the plaintext under every possible key
until the matching ciphertext is found. Although a full 128-bit key search is computationally
infeasible (requiring astronomically many trials), lower-bit security levels or portions of
the key space can be explored using brute force. GPUs are attractive for this task because
they can test many keys in parallel, offering orders-of-magnitude speedups over a single
CPU core. In practice, the throughput of a brute-force search is bounded by how fast each
trial encryption can be performed. Optimizing ARIA on GPUs, therefore, not only benefits
legitimate encryption speeds but also allows security researchers to assess the cipher’s
resistance against brute-force attacks by reaching higher key-testing rates. Prior work on
AES-128 demonstrated that a single NVIDIA RTX GPU can test on the order of 10° keys per
second when fully optimized, illustrating both the power and limits of GPU-accelerated
key searches (even at that speed, billions of GPUs and many years would be needed
to exhaust 128-bit keys). This research targets similar optimizations for ARIA. Recent
studies have begun to explore ARIA software optimizations on modern architectures.
Eum et al. (2022) presented parallel implementations of ARIA on both ARMv8 CPUs and
an NVIDIA GPU [7]. They reported that using ARM NEON vector instructions to process
4 or 16 blocks in parallel significantly improved ARIA encryption throughput, and on
GPUs, they found that efficient usage of memory hierarchies is critical. In particular,
loading ARIA S-box tables into fast on-chip shared memory (scratchpad memory) yielded a
1.08x-1.43x speedup over global memory access. They also experimented with an extended
S-box (T-table) approach to merge substitution and diffusion operations, but noted that
its benefit was limited by memory-bank conflicts in shared memory. An earlier study by
Xiao et al. proposed merging the ARIA round function into lookup tables and carefully
arranging data in different GPU memory spaces, achieving up to an 18x—45x speedup over
a CPU implementation [8]. These works demonstrated the potential of GPU acceleration
for ARIA, but they primarily focused on general encryption throughput (equivalent to
ECB mode) with a fixed key. CTR mode encryption and exhaustive key searches pose
different challenges—for example, CTR mode adds overhead for handling counters, and
a brute-force search cannot amortize the key schedule across many blocks since the key
changes every encryption. To date, there has been no dedicated study (to the best of our
knowledge) on optimizing ARIA in CTR mode or on GPU-accelerated key searches.

Contributions. The main contributions of this paper are as follows:



Electronics 2025, 14, 2021 30f 18

1. Weimplement an optimized CTR mode for the ARIA algorithm. Previous research [7]
could not employ a table-copying technique to avoid bank conflicts due to the large
size of the S-box table. In this work, we reduce the size of the S-box table from 4 KB
to 1 KB so that it can be replicated in shared memory as many times as the num-
ber of banks, effectively preventing bank conflicts and maximizing shared memory
efficiency. To provide an accurate comparison of performance improvements, we
also conduct a detailed profiling analysis based on the storage location of the S-box
table. Specifically, we evaluate and compare performance when the table is stored in
global memory, shared memory, and shared memory with our proposed bank conflict
minimization technique.

2. We extensively utilize CUDA'’s built-in function __byte_perm(). Encryption processes
often require state transformations such as permutations, which we efficiently imple-
ment using __byte_perm() instructions. Furthermore, we reconstruct the outputs of
the reduced S-box table using __byte_perm(), achieving the same results as the original
S-box with minimal additional overhead.

3. Exhaustive key searches (ES) in block cipher modes like CTR are suitable for parallel
implementations due to their independent block computations. However, performing
key expansion for each thread individually creates a memory burden for storing round
keys. To address this, we implement an on-the-fly approach that computes round keys
as needed. This method significantly reduces memory usage and minimizes memory
accesses, resulting in performance improvements. To the best of our knowledge, this
work presents the first optimization and performance analysis of ARIA ES operation.

4. Experiments on the RTX 3060 Mobile and RTX 4080 GPUs show notable performance gains.
The RTX 4080 reaches 1532.42 Gbps in ARIA-CTR mode and 1365.84 Gbps in exhaustive
search, while the RTX 3060 achieves a 2.34x speedup over prior implementations.

2. Background
2.1. Overview of the ARIA Block Cipher

ARIA is a 128-bit block cipher designed in 2003 by a team of South Korean cryp-
tographers. It was selected as a national standard cipher algorithm (KS X 1213) in 2004
and later described in RFC 5794 for wider adoption. Algorithmically, ARIA is a sub-
stitution—permutation network (SPN) similar in structure to AES. It supports three key
lengths—128, 192, or 256 bits—and the number of rounds varies accordingly (12, 14, or
16 rounds). This design allows ARIA to scale its security level while maintaining a 128-bit
block size and overall structure.

Each round of ARIA consists of a sequence of transformations: a key addition, a
substitution layer, and a diffusion layer. In the key addition step, a 128-bit round key
(derived from the master key via the key schedule) is XORed with the data block. Next,
the substitution layer applies byte-wise S-box transformations to introduce non-linearity.
ARIA is unique in using four different 8 x 8-bit S-boxes (named s1, s2, x1, and x2) rather
than a single S-box. These S-boxes are applied in an alternating pattern: in odd-numbered
rounds, the substitution layer (denoted as SL1) applies S-boxes 51,52, x1, and x2 to bytes
0,1,2, and 3, respectively, and repeats this pattern for each group of four bytes. In even-
numbered rounds, a different permutation (denoted as SL2) is used: bytes 0, 1,2, and 3 are
transformed by x1, x2, s1, and s2, respectively. In essence, the cipher cycles through two
S-box patterns, effectively utilizing all four S-box tables. One of these S-boxes is the Rijndael
(AES) S-box, while the others are independent inverses or related transformations. This
multi-S-box design increases cryptographic strength but also means that an implementation
must handle four lookup tables instead of one, which has implications for optimization.
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After the substitution layer, ARIA performs a linear diffusion layer (called Function A
in the specification). This layer takes the 16-byte state and mixes the bits across bytes to
achieve high diffusion (i.e., each output bit depends on many input bits). The diffusion
layer can be seen as a matrix multiplication over a finite field, somewhat analogous to the
AES MixColumns step, although the ARIA matrix is different. In practice, the diffusion
involves a series of XORs and bit rotations on the state. Because ARIA substitution outputs
are 8-bit values, the diffusion layer operates on these bytes (and their bits) to spread local
changes across the 128-bit block. The specifics of the linear transformation are designed so
that after a few rounds, each output byte is an affine function of all input bytes, improving
security through the avalanche effect. The detailed structure of the ARIA algorithm is
illustrated in Figure 1.

The key schedule of ARIA is also non-trivial. To generate the round keys from the
master key, ARIA uses a 256-bit intermediate and processes it with a three-round Feistel
network. The master key K (128, 192, or 256 bits) is split into two 128-bit values K; and Kg,
with Kr padded with zeros if needed. These are then alternately processed with two round
functions (denoted as FO for “odd” and FE for “even” rounds) and fixed 128-bit constants
derived from the fractional part of 7t. The FO and FE functions are structurally similar to
the main cipher round: each includes an S-box layer (SL1 or SL2) and a diffusion layer
A. As aresult, the ARIA key schedule uses the same S-box operations as the encryption
rounds, applied multiple times. This design produces an expanded set of round keys: one
for each round, plus a whitening key for the final XOR. While the key schedule adds to the
computational cost, especially for larger key sizes that entail more rounds of processing, it
has the advantage of being an involution for certain key lengths, making the encryption
and decryption key schedules identical and providing security against related-key attacks
by introducing non-linearity in key expansion.

128-bit Plaintext
(1) Substitution layer Type 1
RK1 e
P Rl e 128-bit State
o I
Substltutlon] layer type 1 b b b b b s i s
— ] T [s s [x %] s [ s [ x%a] s s [x %] s ] s, [x [
Diffusion layer | T 1 T
® RK2 e 128-bit State
Substitution layer type 2
T (2) Substitution layer Type 2
Diffusion layer | T 128-bit State
T I
R |X||X2|S, SZ|X1|X2|SI|SZ|XI|X2|S, 52|X1|X2|SI|SZ|
Substitution layer type 2 CIT T T T T T T T T T T T T T 7
() RK 13 128-bit State
128-bit Ciphertext

Figure 1. Overall operation process of the ARIA algorithm (128-bit key).

In summary, the ARIA encryption process involves repeated application of four S-box
lookups per byte and a linear mixing of bytes, with a complex key schedule that itself
invokes S-boxes. These characteristics mean that a straightforward implementation will be
heavy in table lookups and XOR /rotate operations. Efficient implementation must handle
multiple S-box tables and potentially significant memory access for both data and round
keys. In contexts like CTR mode or parallel processing, one can take advantage of the fact
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that the same key (and hence round keys) is reused for many block encryptions, amortizing
the key-expansion cost. However, in a brute-force scenario (trying many keys), the key
schedule cost becomes a critical factor. Our optimizations consider these aspects, aiming to
reduce the cost of S-box lookups and key schedule computations.

2.2. Graphics Processing Units and CUDA Basics

GPU architectures are fundamentally designed to achieve high throughput on par-
allel workloads. Modern GPUs consist of numerous Streaming Multiprocessors (SMs),
each capable of running thousands of threads in parallel. GPU threads are extremely
lightweight and organized into groups called warps, typically comprising 32 threads [9].
This Single-Instruction, Multi-Thread (SIMT) execution model executes the same instruction
simultaneously across a warp, each thread handling different data.

NVIDIA’s CUDA is a popular platform for general-purpose GPU computing. In
CUDA, threads are grouped into blocks, and multiple blocks form a grid that executes
on the device. A critical aspect of GPU performance is its ability to hide memory latency
through rapid context switching between warps: while one warp waits for a memory
operation to complete, another warp can execute immediately [10,11].

Memory hierarchy is an essential consideration in CUDA programming, as perfor-
mance significantly depends on the type of memory used for storing data (such as S-box
tables or round keys). NVIDIA GPUs offer several primary memory spaces: global mem-
ory, shared memory, constant memory, and registers. The overall memory structure is
illustrated in Figure 2.

GPU
Block 0 Block n
Shared Memory
A A
Register Register
I A I v
Thread 0 ce Thread n
AAA t A A t
Local Local
Memory Memory
A A
A 4 A 4 A
« > Global Memory
CPU |« > Constant Memory
< > Texture Memory

Figure 2. CUDA GPU memory architecture.

Global memory provides a large storage capacity but resides in VRAM and has the
highest latency. Accessing global memory through the memory bus can take hundreds of
clock cycles. Efficient use of global memory requires coalesced accesses, where consecutive
threads within a warp access consecutive memory addresses, allowing hardware to combine
these into fewer transactions, thus improving performance.

Shared memory, in contrast, is smaller (typically 48 KB per SM) on-chip memory
offering significantly lower latency, comparable to an L1 cache. Threads within the same
block share this memory, allowing faster access than global memory. However, shared
memory is partitioned into multiple banks, and simultaneous access by multiple threads in
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a warp to the same bank results in bank conflicts, serializing the accesses. Hence, careful
data layout in shared memory is necessary to avoid conflicts [9,12,13].

Constant memory is a read-only cache optimized for broadcast. Although small
(around 64 KB) and residing physically in global memory, constant memory provides fast
cached access if all threads within a warp read the same address simultaneously. It is
particularly suitable for fixed data such as encryption round keys. For instance, in ARIA-
CTR implementations, round keys totaling a few hundred bytes can be efficiently stored
in constant memory, ensuring minimal access latency across all threads [14]. However,
constant memory becomes less beneficial in scenarios like exhaustive key searches, where
each thread tests different keys.

Finally, registers offer the fastest access speed for thread-local variable storage. CUDA
attempts to keep frequently used variables, such as intermediate encryption state bytes, in
registers. If the number of registers required exceeds availability, data spills into local memory,
physically located in global memory, causing performance degradation. Therefore, minimizing
register usage per thread to avoid spilling is crucial for performance optimization.

2.3. CTR Mode Encryption and Exhaustive Key Searches

Block cipher algorithms use a ‘block cipher mode of operation” when encrypting data,
and one such mode is CTR (counter) mode [15]. CTR mode enables a block cipher to
function similarly to a stream cipher. In this mode, a continuously increasing number
(counter) is encrypted block by block to generate a keystream, which is then combined with
the plaintext to produce ciphertext. Each block employs a distinct counter value, ensuring
that even repeated plaintext blocks result in different ciphertext blocks, thus preventing
repetitive data patterns from being exposed. Additionally, by setting an appropriate initial
counter value (nonce), CTR mode prevents ciphertexts from overlapping, even if the same
key is used across different encryption sessions. The detailed structure of CTR mode is
illustrated in Figure 3.

A significant advantage of CTR mode is the ease of parallel processing due to the lack
of dependency between blocks. Since the encryption results of previous blocks are not used
to encrypt subsequent blocks, each block can be encrypted independently. This makes it
highly efficient in high-speed parallel computing environments, such as multi-core CPUs
or GPUs.

| Nonce | Counter | | Nonce | Counter+1 | ’ Nonce | Counter+n |
Key—'l Encrypt Encrypt Encrypt

Plaintext

Cipher

Figure 3. CTR mode among the block cipher operation modes.

On the other hand, exhaustive key search (also known as brute-force) attacks involve
systematically testing all possible key values to discover the encryption key used in a
cryptographic system. Attackers try to decrypt ciphertext or encrypt plaintext with each
key candidate until they find the correct key by matching the result. Although theoreti-
cally guaranteed to succeed, this method becomes practically infeasible as the key length
increases. For example, a 3-bit key has only 23 = 8 possible combinations, making it trivial
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to test them all quickly. However, modern secure cryptographic algorithms such as ARIA,
which uses 128-bit keys, yield 21?8 (approximately 3.4 x 10%®) possible keys, rendering
exhaustive searches practically impossible with current computing technology. Therefore,
well-designed cryptographic algorithms utilize sufficiently long keys to minimize the
success probability of exhaustive key-search attacks to negligible levels.

Nevertheless, advancements in computing power and parallelization techniques have
significantly increased the speed of exhaustive key searches within certain practical bound-
aries. GPUs, in particular, are capable of performing thousands of operations simul-
taneously, substantially accelerating the key-search process by evaluating multiple key
candidates concurrently. If a single CPU core can test a certain number of keys per sec-
ond, a GPU with thousands of cores can theoretically test thousands of times more keys
simultaneously. Due to this capability, GPU-based parallel processing, such as CUDA envi-
ronments, is extensively utilized in situations requiring large-scale key searches, including
cryptanalysis and password-cracking tasks, taking advantage of the exceptional parallel
computing capabilities of GPUs.

2.4. Related Works

In [16], the ARIA and AES algorithms were implemented on a Nvidia GeForce
8800GTS GPU, and their parallel processing performance was compared. During the
implementation, the GPU shared memory and registers were utilized efficiently, and perfor-
mance was evaluated by dividing the data processed per thread into 8-bit and 32-bit units.

In the 8-bit implementation, each block consisted of 16 threads, with each thread
designed to compute one byte of ciphertext by using intermediate states and round keys
stored in shared memory. In contrast, the 32-bit implementation was structured so that
each thread independently encrypted 32-bit units of data, allowing a comparative analysis
of these two approaches.

The experimental results indicated that the 32-bit implementation achieved a through-
put of 4.8 Gbps, significantly outperforming the 8-bit implementation, which reached only
214 Mbps. Additionally, when the same 32-bit implementation method was applied to
the AES algorithm for performance comparison, ARIA demonstrated a higher throughput
than AES.

Eum et al. [7] analyzed the optimal performance conditions for parallel implemen-
tations using an RTX 3060 GPU with the Nsight Compute profiler. They demonstrated a
performance improvement of approximately 1.08 to 1.43 times for the substitution (S-box)
operation when using shared memory. However, they pointed out that, due to the size
characteristics of the ARIA algorithm’s S-box, table expansion techniques aimed at avoiding
GPU bank conflicts become inefficient when replicating tables according to bank size is
not feasible.

In [6], although the authors did not focus on ARIA specifically, they optimized the
AES algorithm for GPU implementations. They proposed reconstructing the AES T-table
structure to be suitable for shared memory usage and suggested replicating the tables
multiple times to distribute memory accesses, effectively addressing the issue of bank
conflicts. These optimization techniques can also be effectively applied to GPU-based
parallel implementations of the ARIA cipher.

3. Optimization Strategy of ARIA on GPU
3.1. Shared Memory Ultilization Through Optimized S-box Table

The AES encryption algorithm fundamentally relies on a substitution operation known
as the Substitution box, or S-box, to achieve non-linearity in encryption. An S-box specifically
transforms an 8-bit input value into a predefined, pre-computed 8-bit output value. While this
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substitution step is effective, frequent computational repetitions of this operation can introduce
inefficiencies. To address and optimize computational efficiency, AES implements an advanced
method called T-table optimization. The T-table optimization method integrates the substitution
operation with additional subsequent computations—such as Shiftrows and Mixcolumns—into
a singular, unified pre-computed operation. Consequently, the original, relatively small 256-byte
S-box is expanded significantly into a more substantial 4 KB T-table, enhancing processing speed
by trading off increased memory usage [6,17].

Similarly, the ARIA encryption algorithm, which shares operational parallels with AES,
also fundamentally utilizes substitution operations based on S-boxes to achieve security
and complexity in encryption. Unlike AES, however, ARIA employs not just one, but four
distinct and separate S-boxes to perform substitution. Due to this characteristic, ARIA
can adopt a strategy analogous to AES’s T-table optimization, wherein these substitution
operations are expanded into pre-computed tables to achieve more efficient execution.
Each of ARIA’s four individual S-boxes expands from an initial size of 256 bytes to an
expanded pre-computed table size of 1 KB. Consequently, considering ARIA’s usage of
four distinct S-boxes, the cumulative memory required for these expanded tables totals
approximately 4 KB.

Given that substitution operations inherently involve frequent and repeated accesses
to pre-computed tables, optimizing the efficiency of these memory accesses becomes
critically important. Memory access operations, especially on GPU architectures, inherently
have greater latency than simple register-to-register computations. Hence, strategies to
minimize memory latency are of paramount importance in high-performance encryption
implementations. A commonly employed strategy involves storing the S-box tables in GPU
shared memory. However, a notable challenge when leveraging GPU shared memory is the
occurrence of memory-bank conflicts. Bank conflicts become particularly problematic when
threads within the GPU execute irregular or random memory access patterns—a typical
scenario encountered during S-box lookups. Because substitution inputs for encryption
processes are intrinsically random and unpredictable, multiple threads frequently attempt
concurrent access to identical memory banks within shared memory. Such concurrent
accesses lead to severe bank conflicts, substantially degrading the overall computational
performance of the GPU.

To effectively address and alleviate these bank conflicts, we adopt the sophisticated
method proposed by Tezcan C. [6], which involves replicating the lookup tables multiple
times within the shared memory. By replicating the tables, each individual thread is
afforded independent, conflict-free access to separate table instances. GPUs inherently
execute threads in groups known as warps, each warp comprising 32 threads. Therefore,
replicating lookup tables exactly 32 times ensures that each thread within a warp accesses
a separate memory bank independently, ideally eliminating bank conflicts altogether.
However, this replication strategy has practical limitations, primarily due to the restricted
capacity of GPU shared memory. To overcome this constraint, Tezcan C. [6] introduced a
practical solution, which involves downsizing the original 4 KB table to a smaller, more
manageable 1 KB table, replicated 32 times. This downsizing strategy successfully fits
within GPU shared memory limits, totaling only 32 KB, thus satisfying performance and
memory constraints simultaneously.

In the context of ARIA, the expanded S-box tables occupy a total of 4 KB, making
direct replication similar to AES initially impractical within a typical GPU’s shared memory
capacity. Therefore, this research proposes an optimization method similar to the approach
described above by merging the four expanded ARIA S-box tables into a unified 32-bit
optimized S-box table, significantly reducing the table size from 4 KB to 1 KB. By adopting
this unified table strategy, it becomes practically feasible to replicate the optimized ARIA
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table exactly 32 times within the available shared memory of the GPU. This approach
occupies a total of just 32 KB, efficiently conforming to standard GPU memory limitations
while effectively mitigating bank conflicts. The detailed implementation process and
structure of this optimized, unified ARIA S-box table are shown in Figure 4 and Algorithm 1.

uint8_t S,[256] uint8_t S,[256] uint8_t X,[256] uint8_t X,[256]
s | s | s,[0] | s | x,00 | x| X000 [ %01 |
S,[254] | S,[255] S,[254] | S,[255] X,[254] | X,[255] X,[254] | X,[255]

sio] | s,[01 [ X000 [ Xaq01
X:I,SH[O]

812551 [ s,0255 [ X,12551 [ X255
X;1_8,1[255]

uint32_t X,,_S,[256]

Figure 4. Generation process of the proposed uint32_t Xp1_S51[256] table.

Algorithm 1 x21_s21 Table construction
Input: S1[256], S5[256], X1[256], X[256] (uint8_t)
Output: Xp1_551[256] (uint32_t)
1: fori < 0to 255 do
2. tmp + (S1]i] & 0X000000FF)
32 tmp < tmp | (Sy[i] < 8)
4@ tmp <+ tmp | (X4]i] <€ 16)
5. tmp < tmp | (Xo]i] < 24)
6
7

: X21_521 [1] < tmp
- end for

3.2. Efficient Output Reconstruction Using the __byte_perm() Function

The proposed method provides significant memory efficiency, but directly using the
integrated table causes an issue, as it outputs a single 8-bit result instead of the originally
intended full 32-bit output. Thus, using the reduced table without additional processing
leads to a mismatch between the intended and actual output forms. An additional post-
processing step is required to resolve this discrepancy, and minimizing the overhead
incurred during this step is important. The CUDA environment offers efficient support
for byte-level operations and rearrangements through the _ byte_perm() function. This
function is capable of generating new 32-bit values by selectively rearranging bytes from
two separate 32-bit inputs. It is particularly well suited for operations such as endian
conversion, data packing, and unpacking, where data restructuring is required.

In this research, we leveraged the characteristics of the __byte_perm() function to
accurately reconstruct the original expanded 32-bit output from the single 8-bit result
obtained from the reduced table. Specifically, the single 8-bit output value extracted from
the table was precisely expanded into the desired 32-bit format using the __byte_perm()
function. This approach enables the rapid and efficient retrieval of the desired output values
while minimizing computational overhead, without the need for complex arithmetic or
logical operations. The detailed implementation process and data transfer paths employed
in this step are illustrated in Figure 5.
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__byte_perm(x,y,s) Operation

x [ dd [ e [ bbb [ aa | v 4 [ 3 [ 2] 1|
0 1 2 3 4 5 6 7
XY [T bb cc dd 11 2 33 44
s | 3 | s 1] 4]
result I dd | 33 aa | 11 I

Figure 5. Operation process of the __byte_perm() function.

3.3. Overall Structure of the Proposed Optimization Technique

Figure 6 illustrates how each of the 32 threads within a warp is assigned a specific
memory bank based on its thread index and accesses the x21_s21 table through this bank to
perform substitution operations. The process of replicating the table into each bank can
be observed in Algorithm 2. Specifically, if the thread index within each block (threadldx.x,
indicating the thread identifier within a CUDA block) is smaller than the table size (less
than 256), the corresponding value from the global memory table (tG[threadldx.x]) is copied
32 times into shared memory. The subsequent use of these replicated tables is further
detailed in Algorithm 3.

Warp Shared Memory

X, S _
Thread 0 Bank 0 Telel)l_ei(z) 1 | 1KB
Thread 1 Bank 1 X1 851 | 1kB —
Table_1
32KB
Thread 30 Bank 30 X518 | 1kB —
Table 30
X, S _
Thread 31 Bank 31 T az 1)11?73211 1KB

Figure 6. Thirty-two threads in a warp accessing tables replicated across memory banks.

Algorithm 2 Shared memory table initialization

1: for threadldx.x = 0 to TABLE_SIZE — 1 in parallel do
2: for bankIndex = 0 to SHARED_MEM_BANK_SIZE — 1 do

3 tS[threadIdx.x][bankIndex] <— tG[threadIdx.x]
4: end for
5: end for

The subsequent use of these replicated tables is further detailed in Algorithm 3. The
function performs substitution operations using the x21_s21 table stored in shared memory.
For instance, in the case of pt [0], the 32-bit value is split into bytes, and each byte is used
as an index in the tS table. The substitution values are then accessed through banks
determined by the wTindex. For example, if the thread index is 3, then wTindex is also 3,
and bank 3 is used. As a result, each thread accesses a different bank, enabling conflict-free
parallel substitution.
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The substituted values are then reassembled using the __ byte_perm() function, pro-
ducing the same result as would be obtained from a conventional substitution using the
extended S-box. This process is illustrated in Figure 7.

Algorithm 3 Algorithmic description of device_SBL1_M_func

1: procedure DEVICE_SBL1_M_FUNC(pt, tS, wTindex)

2 fori <~ Oto 3 do

3 byte0 < (pt[i] > 24)

4 bytel < (pt[i] > 16)&0xFF

5: byte2 < (pt[i] > 8)&0xFF

6: byte3 < pt[i]&0xFF

7 pt[i] + _byte_perm(0,tS[byte0][wTindex], S1_EXT)®
8 __byte_perm(0, tS[bytel|[wTindex|, S2_EXT)&®
9: __byte_perm(0, tS[byte2|[wTindex]|, X1_EXT)®
10: __byte_perm(0, tS[byte3][wTindex], X2_EXT)
11: end for

12: end procedure

state Temp
' si0] | 01 [ X001 | Xa00]
state A uint32_t X,, S,,[256] X5,_S5,[0]
sif0] [ sa01 | X010 [ X009
Sy [ B2 | X0 | X5 Xs1_S5[0] __byte perm(0, Temp, 0x0444)
Ofj1f2|3
-------- Result
X, S,, [state A >> 24] Lo [swo[swo]so]

Expanded Sbox S,[0]

Figure 7. Substitution operation process using unified S-box and __byte_perm() function. The red box
indicates the appropriate index of the look-up table.

3.4. Memory Optimization for Exhaustive Key Searches

An exhaustive key search is an approach in cryptanalysis that attempts encryption
operations with all possible keys. For example, when using a 128-bit key, all 21?8 possible
keys must be searched exhaustively. In typical parallel implementations of CTR mode
encryption, all threads share the same encryption key, so the key-expansion operation is
performed only once, and the same round keys can be shared across all threads. However,
in an exhaustive key-search scenario, each thread must use a different key. Thus, each
thread independently performs the key-expansion operation, significantly increasing the
computational overhead. Furthermore, since each thread needs to store its complete set of
round keys, memory usage significantly increases.

To address this memory consumption issue, we applied an on-the-fly key-expansion
method. Typically, key expansion is performed in advance to generate and store all
required round keys, which are later referenced during the encryption process. In contrast,
the on-the-fly method generates only the required round key immediately during each
encryption round, applying it directly to the ongoing encryption operation. Consequently,
this approach minimizes the storage of precomputed round keys, significantly reducing
overall memory usage and enabling more efficient parallel execution in scenarios involving
a large number of keys.

For 128-bit block encryption involving 12 rounds, one additional round key is needed,
resulting in a total of 13 round keys (each 32 bits). In a conventional implementation, each
thread stores all round keys, requiring 13 x 4 = 52 bytes of memory per thread. This
implies that the total memory usage scales proportionally to the total number of threads
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utilized in kernel execution. In contrast, the on-the-fly method calculates and stores only one
round key (32 bits, 4 bytes) at a time per thread. This reduces the per-thread memory usage
to 4 bytes, significantly decreasing overall memory usage. As a result, more threads can
be allocated and executed simultaneously, thereby improving the efficiency of exhaustive
key-search operations.

4. Evaluation

In this section, we evaluate the GPU-based implementations of ARIA in both CTR
and exhaustive key-search modes. We describe the experimental setup, present the profil-
ing results and detailed performance measurements, and finally provide comprehensive
comparative analyses.

4.1. Performance Measurement Environment and Measurement Method

In this paper, we measured the performance of GPU-based parallel implementations
of two modes: exhaustive key-search (ES) mode and counter (CTR) mode encryption. Two
different GPU environments were used for performance evaluation. The first environment
was a notebook equipped with a Nvidia GeForce RTX 3060 Mobile GPU [18], characterized
by lower power consumption and relatively limited memory capacity (6 GB), offering high
portability and power efficiency. The second environment was a desktop setup with a
Nvidia GeForce RTX 4080 GPU [19], providing high computational performance through
higher power limits and abundant memory (16 GB).

To ensure accurate performance measurements, CUDA-based kernels running on the
GPUs were utilized. Both modes performed a total of 23° (approximately 34.36 billion)
operations, which were parallelized using CUDA kernels configured with 1024 blocks and
512 threads per block. This resulted in a total thread count of 524,288, with each thread
uniformly assigned 65,536 operations (key candidates or encryption blocks).

In CTR mode, the total execution time for encrypting 235 sequential blocks was mea-
sured. Each CUDA thread incrementally increased its counter value within its assigned
range, performing LEA encryption operations until all threads completed their tasks,
marking the kernel’s termination and capturing the total execution time.

In ES mode, a similar approach was taken to measure the time required for exhaus-
tively searching through 2% key candidates. Each thread was assigned a specific range
of keys to test via encryption operations. The execution time was measured immediately
before and after the kernel execution to evaluate overall performance.

The detailed configuration of the experimental environment is summarized in Table 1.

Table 1. GPU-based performance measurement configuration.

Parameter Value
CUDA Blocks 1024
Threads per Block 512
Total Thread Count 524,288
Key Range (2P°™eT) 2%
Key Range (decimal) 34,359,738,368
Key Range per Thread 65,536
Total Encryptions 34,359,738,368

The performance data obtained through these experiments quantitatively highlight
the performance differences between the RTX 3060 Mobile GPU and RTX 4080 Desktop
GPU, particularly under workloads associated with exhaustive key searches and CTR mode
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encryption. These results serve as critical metrics for selecting appropriate GPUs when
designing high-performance parallel encryption systems, taking into account workload
requirements and operational constraints.

The ARIA-CTR/ARIA-ES experimental results were measured based on encrypting
a total of 2% (34,359,738,368) blocks, corresponding to approximately 4.398 x 10'2 bits
(128bits x 2%), with performance expressed in Gbps (Gigabits per second).

4.2. Profiling Results Analysis

Table 2 summarizes the key performance metrics measured by Nsight Compute for
the ARIA-128 CTR mode implementation. Three different approaches were compared for
storing the S-Box: (1) in global memory, (2) in shared memory, and (3) in shared memory with
minimized bank conflicts. Since the focus is on relative performance rather than the absolute
execution time, the table excludes the kernel runtime and highlights GPU utilization metrics
such as memory throughput, compute throughput, and occupancy.

Table 2. Key Nsight Compute metrics for ARIA-128 CTR mode (S-Box placement), excluding
execution time.

Metric Global Memory S-Box Shared Memory S-Box Shared Mem. + Bank Conflict Removal
Memory Throughput (%) 90.69 96.76 95.71
Compute (SM) Throughput (%) 67.27 73.53 95.71

As shown in Table 2, using global memory for the S-Box (left column) resulted in a high
memory throughput (about 90.69%), indicating that the kernel was strongly memory-bound.
However, the achieved SM throughput remained lower (67.27%), suggesting that the global
memory transactions incurred significant stalls or uncoalesced accesses, ultimately limiting
overall performance.

Moving the S-Box to shared memory (middle column) led to higher memory through-
put and a modest increase in SM throughput. Yet, the profiling results show notable bank
conflicts (around 60% of wavefronts), resulting in additional stalls and preventing the
kernel from fully utilizing the SM resources.

Finally, replicating the S-Box across banks (right column) greatly reduced or nearly
eliminated shared memory-bank conflicts. This optimization increased the SM throughput
to 95.71%, and the achieved occupancy climbed to 96.60%.

In conclusion, while shared memory provides faster access than global memory, bank
conflicts can severely degrade performance. Properly distributing the S-Box across banks is
essential for removing these conflicts and maximizing GPU utilization.

4.3. ARIA-CTR Performance Evaluation

We further evaluated performance based on the execution time. Similar to the previous
analysis, we compared three configurations: (1) in global memory, (2) in shared memory, and
(3) in shared memory with minimized bank conflicts.

The execution time results aligned with our profiling analysis. Specifically, the configura-
tion using global memory exhibited the lowest throughput (Gbps). Merely transitioning from
global memory to shared memory resulted in a performance increase of approximately 15% to
19%, demonstrating that utilizing shared memory alone effectively enhances performance.

Furthermore, when comparing the shared memory and shared memory with minimized
bank conflicts configurations, we observed an additional performance improvement of
around 19% to 21%. This indicates the significant impact bank conflicts have on perfor-
mance when using shared memory.

Consequently, when comparing global memory with the optimized shared memory
configuration (with minimized bank conflicts), the overall performance improvement
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ranged from approximately 39% to 43%. The detailed measurement results are given in
Figure 8 and Table 3.

Table 3. ARIA-CTR performance on the RTX 3060 for different S-box placement methods.

Placement Key Size Time (s) Throughput (Gbps)
128-bit 18.27 240.73
Global Memory 192-bit 20.41 215.48
256-bit 22.98 191.39
128-bit 15.31 287.27
Shared Memory 192-bit 17.66 249.04
256-bit 19.98 220.12
128-bit 12.77 344.40
Shared Memory (No Bank Conflicts) ~ 192-bit 14.65 300.21
256-bit 16.43 267.68
‘344.4
N 30021 |
= — 267.68
& 240.78 249
S 21548 220.
= 00| o 191.99 i
H -
o0
3
2
= 100 i
0 T T T
128-bit 192-bit 256-bit
Key Size

’ 00 Global Memory [ 8Shared Memory Bl Shared Memory (No Bank Conflicts)

Figure 8. ARIA-CTR throughput on the RTX 3060 for different S-box placements.

4.4. ARIA-ES Performance Evaluation

We also evaluated performance based on the execution time for exhaustive key
searches (ES), obtaining results consistent with those observed in CTR mode. Transitioning
from global memory to shared memory yielded a performance improvement of approximately
11% to 13%. Additionally, by minimizing bank conflicts within shared memory, performance
further improved by about 7% to 13%. In total, we observed an overall performance im-
provement ranging from approximately 21% to 24%. The detailed measurement results are
presented in Figure 9 and Table 4.

Furthermore, since the ES implementation employs an on-the-fly key-expansion ap-
proach, only 4 bytes of memory are required per thread for round keys. The performance
measurements used a block size of 1024 and 512 threads, resulting in a total memory require-
ment of 2,097,152 bytes for round keys during the kernel execution. In contrast, if all round
keys were precomputed and stored for a 128-bit key length requiring storage for 13 rounds,
the necessary memory would increase significantly to 27,262,976 bytes. Hence, our on-the-fly
implementation theoretically reduces memory usage by approximately 92.31%.
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Table 4. ARIA-ES performance on the RTX 3060 for different S-box placement methods.
Placement Key Size Time (s) Throughput (Gbps)
128-bit 17.60 249.93
Global Memory 192-bit 19.21 228.99
256-bit 21.81 201.67
128-bit 15.79 278.47
Shared Memory 192-bit 16.91 260.14
256-bit 19.26 228.34
128-bit 13.96 315.04
Shared Memory (No Bank Conflicts) ~ 192-bit 15.79 278.53
256-bit 17.54 250.74
|
315.04
3001 278 278.53 i
m 249.98 260. 250.74
& ] 228.99 228.
S 201.47]
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=
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<
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Figure 9. ARIA-ES throughput on the RTX 3060 for different S-box placements.

4.5. Overall Performance Comparison of ARIA-CTR/ES Modes

In this paper, we present the performance measurement results from existing ARIA
implementations [7], along with those obtained using a modern GPU. This approach
enables a clear comparison of performance improvements between prior research and our
current study and suggests that performance results from contemporary high-performance
GPUs can serve as valuable reference data for diverse application areas.

Previous studies also analyzed performance based on global and shared memory
usage; however, they did not sufficiently address bank conflict issues associated with
shared memory usage. In contrast, this study effectively resolves the bank conflict issue in
shared memory, achieving a performance improvement of approximately 134.81% com-
pared to previous implementations. These results clearly demonstrate that our proposed
implementation method is more efficient and effective than earlier methods. The detailed
performance comparison of ARIA-CTR is presented in Table 5.

Generally, a block cipher with a k-bit key can theoretically be broken by performing
up to 2F encryption operations. NIST recommends using key lengths of at least 112 bits
until 2030. The total key space of ARTA-128 is 2128

The calculation of the key-search speed is as follows:

Throughput (Gbps) x 10°

Bl =
ocks processed per second Block size (bits)

Blocks processed per year = Blocks processed per second x Seconds per year



Electronics 2025, 14, 2021

16 of 18

Total key space
Blocks processed per year

Required number of GPUs =

According to the experimental results (Table 6), the RTX 3060 achieved a throughput of
315.04 Gbps in ARIA-ES mode with a 128-bit key. Given that one ARIA block is 128 bits,
the RTX 3060 can process approximately 2.461 x 10° blocks per second, totaling around
7.762 x 10 blocks annually. Considering the ARTA-128 total key space of 3.403 x 103, approx-
imately 4.384 x 10*! RTX 3060 GPUs would be required to break ARIA-128 within one year.

Table 5. ARIA-CTR performance comparison (*: ours; G, global memory; 5. shared memory).

GPU Key Size Time (s) Throughput (Gbps)
128-bit G - 135.06
RTX 3060 [7] '

128-bit S - 146.67

128-bit 12.77 344.40

RTX 3060 * 192-bit 14.65 300.21
256-bit 16.43 267.68

128-bit 2.87 1532.42
RTX 4080 * 192-bit 3.28 1340.87
256-bit 3.70 1188.66

Table 6. ARIA-ES performance comparison (*: ours).

GPU Key Size Time (s) Throughput (Gbps)
128-bit 13.96 315.04
RTX 3060 * 192-bit 15.79 278.53
256-bit 17.54 250.74
128-bit 3.22 1365.84
RTX 4080 * 192-bit 3.67 1198.37
256-bit 4.05 1085.93

For ARIA-192 with a throughput of 278.53 Gbps, the RTX 3060 can process approxi-
mately 2.176 x 10° blocks per second and 6.862 x 10'® blocks annually, requiring approxi-
mately 9.147 x 1040 GPUs to exhaustively search the entire key space in one year.

In the case of ARIA-256 with a throughput of 250.74 Gbps, the GPU can process
approximately 1.959 x 10° blocks per second and 6.178 x 10! blocks annually, necessitating
approximately 1.874 x 10% GPUs to break ARIA-256 within one year.

Using the RTX 4080, performance significantly improves. For ARIA-128, with a
throughput of 1365.84 Gbps, the RTX 4080 can process about 1.067 x 10'° blocks per second
and 3.365 x 10'7 blocks annually, reducing the number of GPUs required to 1.011 x 10%!. For
ARIA-192 at 1198.37 Gbps, it can process approximately 9.362 x 10° blocks per second and
2.952 x 1017 annually, requiring 2.126 x 10%0 GPUs. Lastly, for ARIA-256 at 1085.93 Gbps,
the RTX 4080 processes around 8.484 x 10° blocks per second and 2.675 x 107 blocks
annually, reducing the required GPUs to 4.328 x 10%.

These comparisons clearly illustrate the substantial performance gains achievable with
newer-generation GPUs. Nevertheless, given the current pace of technological advance-
ments, using GPUs alone to perform exhaustive key searches on ARIA with key lengths
of 128 bits or greater will remain practically infeasible for several decades. Consequently,
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ARIA implementations are considered sufficiently secure against GPU-based exhaustive
key-search attacks in the foreseeable future.

5. Conclusions

In this paper, we proposed optimized implementations of ARIA-CTR and ARIA-ES
modes on GPUs. Since CTR and ES modes can be computed independently, leveraging
parallel computations on multi-core architectures such as GPUs effectively improved
performance. To optimize CTR mode, we actively utilized shared memory. Due to its size,
the original extended 4 KB S-box table in ARIA could not be replicated across all GPU shared
memory banks. Therefore, we proposed a method that compresses four separate 1 KB S-box
tables into a single 1 KB S-box. By employing the __byte_perm() function in this process, we
achieved the same output values as the original, without incurring significant overhead. For
ARIA-ES mode, we applied an on-the-fly technique, computing the round keys dynamically
as needed rather than precomputing them in advance. This approach significantly reduced
memory usage and minimized memory accesses. The experimental results confirmed
that minimizing memory access directly influenced performance. Furthermore, as the
key length increased, the performance gap between CTR and ES modes decreased. This
trend occurred because the memory access costs and round key usage increase in CTR
mode with longer keys, whereas ES mode maintains efficiency through minimal memory
access. These results validated the effectiveness of our proposed optimization method. In
conclusion, this study demonstrated that memory access frequency substantially impacts
GPU performance, highlighting the need for more in-depth research into memory access
optimization for GPU-based cryptographic algorithms. As future research directions, we
will consider extending our optimization methods to other block ciphers and evaluating
performance across various GPU architectures, such as AMD GPUs, to further generalize
our findings.
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