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To address the challenges associated with fuel consumption in vehicles with low fuel efficiency, several 
factors must be recognized. Identifying the key factors of fuel efficiency prediction is crucial for making 
accurate decisions. Therefore, we propose a comprehensive framework that uses machine learning 
to predict fuel efficiency by integrating various vehicle information. The proposed method comprises 
a predictive model and analysis framework utilizing key vehicle attributes, such as fuel type, engine 
displacement, and vehicle grade, to enhance prediction accuracy. We conducted a comparative study 
using six machine-learning models. To evaluate the machine learning model, MSE (Mean Square Error), 
RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and R-squared (R2 Score) were used. We 
experimented with SHAP(Shapley Additive Explanations), LIME (Local Interpretable Model-agnostic 
Explanations), and odds ratio analysis to evaluate the impact of various factors on fuel efficiency. We 
confirmed that the proposed method can predict fuel efficiency. Extra Trees Regressor and Random 
Forest Regressor demonstrated high prediction accuracy, particularly excelling in capturing nonlinear 
relationships. We also underscore the importance of identifying markers to support decision-making, 
offering critical insights into the key factors impacting fuel efficiency predictions.
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The world’s primary energy supply has steadily increased along with global economic growth, supplying 
approximately 14.3 billion TOE (Ton of Oil Equivalent) as of 2018. Korea is the 8th largest energy-consuming 
country in the world. The government designs and manages efficiency management equipment to achieve 
economic growth and reduce energy consumption. Among these, a tire energy consumption efficiency rating 
system assigns energy consumption efficiency ratings to tires, enabling tire buyers to purchase tires with high 
efficiency, while establishing and managing minimum consumption efficiency standards to prevent the spread of 
low-efficiency tires. This system was first implemented in Korea in 2012. The tire’s energy consumption efficiency 
rating is graded from 1 to 5 by measuring the rolling resistance coefficient (RRC) according to the “Regulations 
on energy consumption efficiency measurement and rating standards and marking of automobile tires” and 
setting the rolling resistance coefficient (RRC) range. In the case of passenger car tires, high-efficiency tires 
accounted for only 2.8% of the total market at the beginning of the system’s implementation (2012), but their share 
expanded to 8.5% in 2020 due to continuous technological development by manufacturers and improvement in 
consumer awareness. However, low-efficiency tires still account for 47.3% of the total tire market, securing a 
market that is more than five times that of high-efficiency tires1. As highlighted in recent studies, the efficient use 
of fuel is not only vital for economic efficiency but also for environmental protection2,3. In particular, as energy 
conservation and greenhouse gas emission reduction have emerged as important tasks worldwide, accurate 
vehicle fuel efficiency predictions are essential for effective decision-making in environmental conservation and 
economic management. Fuel efficiency prediction provides individual benefits, such as reduced fuel costs for 
vehicle operators, and significant advantages for the environment and national economy.

An effective predictive model for fuel efficiency offers multiple benefits to stakeholders: consumers can save 
fuel costs, dependency on imported energy decreases, and governments and corporations can utilize this data 
to develop eco-friendly policies or high-efficiency vehicles. By reducing greenhouse gas emissions, such a model 
can also help mitigate climate change.

Although existing research often addresses factors like engine performance, aerodynamics, or driving habits 
in isolation, this study aims to integrate these diverse factors within a holistic framework, which is crucial for 
generating precise and actionable predictions. Through this comprehensive approach, we aim to reduce the 
prevalence of low-efficiency vehicles and achieve a greater positive environmental impact. If a comprehensive 
approach is not possible, the vehicle’s optimal fuel efficiency cannot be achieved, and inefficient fuel-efficient 
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vehicles will continue to be produced, leading to environmental issues and excessive fuel consumption. Therefore, 
it is necessary to comprehensively analyze various vehicle information to predict more precise and accurate 
fuel efficiency. Key variables include manufacturer/importer, engine displacement, vehicle model, fuel type, 
combined mode CO2 emissions, tire inches, rolling resistance coefficient (RRC), vehicle type, transmission type, 
vehicle grade, combined fuel efficiency, etc. Fuel efficiency is predicted by learning a regression model based on 
this comprehensive data, and we need a system that predicts more accurate fuel efficiency information to users.

In particular, by analyzing the impact of vehicle manufacturers and importer information on fuel efficiency, 
it should be possible to predict customized fuel efficiency that reflects the characteristics of each manufacturer. 
In addition, displacement and fuel type are major variables that directly affect fuel efficiency, and it is necessary 
to improve the accuracy of prediction models by carefully considering these variables.

In summary, our study seeks to develop an accurate and practical predictive model by integrating diverse 
vehicle information and providing valuable insights into fuel efficiency determinants, ultimately supporting 
users and policymakers in making informed and eco-friendly choices. Therefore, our primary contributions are 
summarized as follows.

•	 First, we propose a comprehensive framework that integrates public data with additional curated features, to 
support a holistic approach to fuel efficiency prediction.

•	 Second, we conduct statistical analyses to evaluate the relationships between various vehicle attributes and 
fuel efficiency, which enhances the reliability of the findings and provides actionable insights.

•	 Third, we propose a machine learning-based model for vehicle fuel economy prediction, identifying key fac-
tors to improve prediction accuracy.

•	 Fourth, SHAP and LIME are employed to interpret the model’s decision-making process, clarifying how key 
vehicle characteristics contribute to fuel efficiency predictions. This interpretative analysis provides transpar-
ency and supports robust decision-making.

•	 Fifth, we perform an odds ratio analysis to quantify the impact of specific vehicle characteristics on fuel effi-
ciency, identifying markers that significantly influence prediction outcomes.

The structure of this paper is as follows. Section “Related works” describes existing related research. Section “Our 
proposal” describes the proposed method. Section “Experiment methods” describes the experimental method 
for the project. Section “Experiment results” describes the experiment results. Section “Discussion” describes the 
discussion. Section “Conclusions” concludes the paper with conclusions and future research.

Related works
Shim et al.1 divided the process of predicting power demand on weekends, when the demand patterns are 
irregular, into variable selection, hyperparameters that optimize the parameters of the prediction model, and 
error calculation. To select variables that have a large influence on the prediction process and have a low linearity 
with other variables, the influence of the variables was measured using the SHAP (Shapley Additive Explanations) 
technique. The similarity between variables was measured using the Pearson Correlation Coefficient technique. 
Through this, variables to be used were selected and hyperparameter optimization was performed using grid 
search techniques and the XGBoost model4.

To analyze changes in automobile fuel efficiency according to tire energy consumption efficiency ratings, Noh 
et al.5 selected four tires for passenger cars and conducted the RRC-rolling resistance-automotive fuel efficiency 
test. The changes in the car fuel efficiency according to tire rolling resistance were confirmed. In addition, the 
effectiveness of using high-efficiency tires with low rolling resistance was verified, proving the importance of tire 
RRC value on changes in fuel efficiency. Tire rolling resistance coefficient (RRC) refers to the energy lost due to 
frictional heat generated as the tire rolls and can be calculated as the ratio of the vehicle’s running resistance and 
the load applied to the tire.

Lee et al.6 conducted research on powertrain operation and simulation for hybrid vehicle prediction, 
presenting the function and simulation analysis of powertrain components for predicting vehicle fuel efficiency 
and performing fuel efficiency prediction simulation by configuring an IONIQ HYBRID vehicle based on 
ADVISOR (Advanced Vehicle Simulator). First, we analyzed the characteristics of the main elements that 
make up the powertrain. The engine’s fuel efficiency characteristic curve and the motor’s efficiency map were 
presented to reproduce the driving characteristics necessary for predicting fuel efficiency. Next, we explained 
how to implement a hybrid powertrain using the ADVISOR simulator. The operation of powertrain components 
to achieve target speed and torque was reproduced using a backward calculation method. Finally, an ADVISOR 
model was built reflecting the actual specifications of the IONIQ hybrid vehicle, and a fuel efficiency prediction 
simulation was performed using a standard driving cycle. The fuel efficiency prediction accuracy was reviewed 
by comparing simulation results and official fuel efficiency data. Through this, a powertrain modeling and 
simulation methodology for predicting the fuel efficiency of hybrid vehicles was proposed, and an application 
case for IONIQ hybrid vehicles was presented.

Kim et al. proposed a data correction technique using Generative Adversarial Network (GAN)7 to predict the 
fuel efficiency of fuel cell vehicles. We attempted to predict fuel efficiency based on vehicle driving history and 
detect factors that cause low fuel efficiency. We confirmed an issue where deviations occurred in fuel efficiency 
data even under the same driving conditions. To solve this problem, a GAN7-based data correction technique 
was proposed. Based on driving data of actual fuel cell vehicles, linear regression8, GBM (Gradient Boosting 
Machines)9, XGBoost10, and SVM (Support Vector Machines)11 were applied to compare and analyze fuel 
efficiency prediction performance. The data correction technique using GAN7 showed superior fuel efficiency 
prediction performance compared to other models. Through this, it was confirmed that deviations in actual 
measurement data could be effectively resolved12.
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Rho et al. presented a causal relationship between driving distance and fuel efficiency. To determine whether 
the cumulative mileage negatively affects fuel economy, the mileage was determined using the results of the 
fuel efficiency test of eight test vehicles over four years and the statistical analysis. Fuel efficiency was measured 
by analyzing the causal relationship between mileage and fuel consumption. The test vehicle was selected 
considering key specifications and sales volume. A normality test was conducted to determine whether the fuel 
efficiency data of the four groups had a normal distribution according to the independent variable, accumulated 
mileage. Additional analysis was performed using a paired t-test. In conclusion, it is difficult to say that the 
accumulated mileage of a vehicle affects fuel efficiency. It was confirmed that increasing the mileage of a vehicle 
in a new car condition does not worsen fuel efficiency and has a positive effect on improving fuel efficiency13.

Kim et al. researched improving fuel efficiency and reducing exhaust gases in automobiles. It was said that 
improving the fuel efficiency of automobiles includes increasing the engine efficiency, using lightweight materials, 
improving the aerodynamic design, and introducing hybrid and electric vehicle technology. This paper explains 
the principles and application methods of each technology and verifies their effectiveness through experiments 
and data analysis. The use of lightweight materials is effective in reducing fuel consumption by reducing vehicle 
weight, and the use and application of advanced materials are explained14.

Kwon et al. compared the emission and fuel efficiency performance of a 2.0-liter LPG hybrid engine and a 
vehicle. The researchers compared the gasoline system and LPG conversion system using the 2.0-liter Nu engine 
of the 2021 K5 hybrid vehicle. When LPG fuel was used by installing a hybrid engine in the dynamometer, 
the highest output and maximum torque were measured at an equivalent level of less than 1% compared to 
conventional gasoline fuel. In actual tests, fuel efficiency was measured through FTP (Federal Test Procedure) 
-75 and HWFET driving modes, and the fuel efficiency of LPG hybrid vehicles was 22.7% lower than that 
of gasoline vehicles. However, considering the average selling price of fuel, LPG fuel is 41.2% cheaper than 
gasoline, so consumers could achieve a cost savings of about 18.5% when injecting fuel for the same amount. In 
conclusion, it was found that although LPG hybrid technology is lower than gasoline in terms of fuel efficiency, 
it has economic advantages and through this, consumers can enjoy cost savings15.

Kim et al. analyzed the impact of oil pump power loss on the fuel efficiency of mild hybrid vehicles. For this 
purpose, the study was conducted by modeling a virtual mild hybrid vehicle and assuming hydraulic lines. The 
oil pump loss was analyzed for fuel consumption reduction in a vehicle model with only the timeless ISG (Idle 
Stop&Go) function and a vehicle model using a mechanical oil pump and an electric oil pump. As a result of 
the simulation, compared to the model that did not consider the oil pump loss, the model that considered the 
mechanical oil pump loss improved fuel efficiency by about 7%, and the model that additionally considered the 
electric oil pump also showed a similar improvement in fuel efficiency. It was confirmed that the power loss of 
the oil pump has a significant impact on fuel efficiency and that the power loss of the mechanical oil pump,in 
particular, accounts for a large portion16.

Jo et al. studied a method to predict the fuel efficiency of large vehicles using RDE (Real Driving Emissions) 
data. By predicting fuel efficiency through simulation, researchers have presented a method to reduce costs 
and obtain highly reproducible results under various driving conditions. In particular, to comply with RDE 
regulations, we proposed a method to collect actual road driving data using equipment such as PEMS (Portable 
Emissions Measurement System) and accurately calculate the fuel efficiency of large trucks based on this. CRUISE 
software was used to simulate the fuel efficiency of large trucks, and the fuel efficiency map was calibrated to 
reflect actual road data17.

Katreddi et al. conducted a study focused on predicting fuel consumption in medium-duty vehicles by 
leveraging Artificial Neural Networks (ANN)18. Their model used a minimal set of input variables, including 
engine load, engine speed, and vehicle speed, which were collected during real-life driving conditions. This 
approach allows the model to capture realistic fuel consumption patterns without relying on extensive or complex 
datasets. This study compared the performance of ANN18 with other regression models, such as linear regression 
and random forest, demonstrating that ANN18 achieved superior predictive accuracy, with significantly lower 
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) values. The authors concluded that ANN18’s 
ability to model non-linear relationships made it particularly suitable for fuel consumption prediction in 
dynamic driving environments. This study emphasizes the potential of ANN18 in handling complex relationships 
in-vehicle data, reinforcing the effectiveness of machine learning methods for practical applications in fuel 
economy studies19.

In their comprehensive review, Katreddi et al. explore the application of artificial intelligence in enhancing 
fuel consumption prediction, emissions estimation, and predictive maintenance within the heavy-duty trucking 
industry. They highlight that AI (Artificial Intelligence) techniques, such as machine learning and deep learning, 
offer promising advancements in addressing fuel efficiency, emissions reduction, and fleet management, which 
are critical areas for sustainability and cost reduction. This paper emphasizes the importance of analyzing various 
parameters, such as engine load and speed, to develop accurate predictive models for fuel consumption, as well 
as exploring methods for maintenance forecasting and route optimization for fuel savings. The authors also 
identify gaps in existing AI applications, notably the need for improved data availability and the incorporation 
of diverse environmental and operational factors to enhance prediction accuracy. These findings underscore the 
value of integrating AI to meet the trucking sector’s evolving environmental and economic demands20.

Thejovathi et al. conducted a study to compare the performance of XGBoost10 and Gradient Boosting21 models 
in FMCG (Fast-Moving Consumer Goods) demand forecasting. The study used two powerful ensemble learning 
techniques to improve the accuracy of demand forecasting and applied feature extraction techniques to improve 
the prediction performance of the models. The predictions were made using two ensemble learning algorithms 
and feature extraction techniques such as PCA (Principal Component Analysis)22 and RFE (Recursive Feature 
Elimination)23were applied to extract important information from the data. The results showed that both models 
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showed high accuracy and reliability, but the Gradient Boost model performed particularly well in maximizing 
the prediction error, recording a better RMSE value24.

In previous studies, various approaches have been proposed for predicting vehicle fuel efficiency, but many 
have limitations. Shim et al.1 proposed a method for predicting power demand using machine learning, but it 
focused mainly on optimizing prediction models through variable selection and hyperparameter optimization, 
without providing a direct mechanism for improving the interpretability of fuel efficiency prediction. While the 
use of SHAP for variable influence is insightful, the method does not fully address the importance of specific 
vehicle characteristics such as tire efficiency or fuel type in real-world applications. In addition, Lee et al.6 
modeled hybrid vehicle performance to predict fuel efficiency, but their approach was confined to simulations 
and did not extend to real-world driving conditions or take into account diverse fuel types and tire specifications. 
This limitation reduces the practical relevance of their findings for everyday vehicle users and policy-makers 
aiming for generalized solutions. Furthermore, studies such as Kim et al.12 and Kwon et al.15 explored specific 
areas like fuel cell vehicle efficiency and LPG hybrid performance. However, these models either focus on single 
vehicle types or specific technological solutions, leaving gaps in understanding how various factors interact to 
affect fuel efficiency in a broader context. Existing studies have significantly advanced our understanding of fuel 
efficiency prediction but still present limitations. Many approaches either lack a comprehensive view of all the 
factors influencing fuel economy or focus too narrowly on one or two attributes. These limitations highlight the 
need for an approach that considers a broader spectrum of vehicle features and integrates machine-learning 
techniques for improved accuracy and decision-making. Our study addresses these gaps by combining diverse 
vehicle attributes in a predictive framework and employing advanced machine learning models, including SHAP 
and LIME, to identify key biomarkers for more accurate fuel efficiency predictions. By doing so, we offer a 
more holistic, data-driven solution that is applicable across a wide range of vehicles and driving conditions, 
contributing to more informed policy-making and better consumer choices.

Our proposal
As illustrated in Fig. 1, we propose a comprehensive methodology for predicting vehicle fuel efficiency, 
structured around four key components: data analysis, a customized dataset, a fuel efficiency prediction pipeline, 
and marker analysis for identifying critical factors in fuel efficiency prediction.

First, data analysis is conducted to explore relationships and trends within the dataset. This involves 
Correlation Coefficient Analysis (CCA) and correlation matrix generation, which help identify statistically 
significant associations between variables, providing insights into potential predictors of fuel efficiency.

Second, we constructed a customized dataset by integrating data downloaded from a public data portal with 
additional custom data, such as tire size and rolling resistance coefficient (RRC). During the data preparation 
stage, rows with missing values were removed to maintain data integrity. This dataset combines standardized 
public data with manually collected engineering variables, offering in-depth insights into vehicle efficiency.

The dataset we used is a combination of characteristics taken from the Korea Energy Agency’s fuel economy 
labeling system (version 2023-12-31)25 and our research. The KEA’s dataset contains the required vehicle 

Fig. 1.  Our Proposal.

 

Scientific Reports |        (2025) 15:14815 4| https://doi.org/10.1038/s41598-025-96999-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


characteristics such as model name, manufacturer/importer, vehicle type, model year, fuel type, transmission 
type, combined mode CO2, rating, displacement, and combined fuel economy, and the total number of data is 
3358. We also incorporated tire size and RRC, which we researched and calculated manually. The number of data 
in the public data portal was 3358, but the amount of data collected directly (RRC, tire size) was small, so a total 
of 953 data were completed in the integration process.

The dataset was divided into three: training set (60%, n = 571), validation set (20%, n = 191), and test set 
(20%, n = 191), as shown in Fig. 2. For categorical data, we used OneHotEncoder to perform data preprocessing 
and finally converted the transformed data into pandas DataFrame.

	
RRC = Frr

Fn
� (1)

Equation (1) was used to calculate the rolling resistance coefficient for each vehicle. F_rr is Rolling Resistance 
Force, which refers to the resistance generated by friction with the road as the tire rotates, and F_n is Normal 
Force, which refers to the load acting perpendicular to the tire. In general, the rolling resistance of a tire is 
determined by the tire structure, tire air pressure, friction coefficient of the road surface, and speed.

Third, the fuel efficiency prediction pipeline involves additional data preprocessing and model training. 
Categorical variables (such as manufacturer and vehicle type) are transformed into numerical features using 
one-hot encoding to prepare the data for model input. The model training stage applies six regression models-
Linear Regression8, Extra Trees Regressor26, Random Forest Regressor27, Gradient Boosting Regressor21, Hist 
Gradient Boosting Regressor28, and AdaBoost Regressor29-implemented with the Scikit-learn library. These 
models are evaluated based on metrics such as MSE, RMSE, MAE, and R2 to identify the model with optimal 
predictive performance for fuel efficiency.

Lastly, Marker analysis identifies key variables that significantly impact fuel efficiency. Using SHAP, LIME, 
and Odds Ratio analysis, we assess the statistical importance and predictive power of each feature. This analysis 
helps prioritize influential variables, which can serve as essential markers in predicting fuel efficiency.

This methodology is designed to improve both the accuracy and interpretability of vehicle fuel efficiency 
predictions. By leveraging a customized dataset and carefully selected predictive variables, our approach aims to 
enhance predictive performance and provide meaningful insights into vehicle efficiency optimization.

Table 1 is an explanation to help you understand each variable. RRC (Rolling Resistance Coefficient) is a 
coefficient that represents the rolling resistance that occurs when a tire comes in contact with the road surface 
and is an important indicator for evaluating the efficiency of a tire.

Experiment Methods

	
MSE = 1

n

n∑
i=1

(yi − ŷi)2� (2)

	

RMSE =
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n

n∑
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(yi − ŷi)2� (3)

Fig. 2.  Flow chart of dataset composition and split.
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Baseline characteristics of the discovery and validation cohorts are an important part of describing the basic 
characteristics of the dataset used in the study. This part helps you clearly understand the entire dataset and the 
composition of the training, validation, and testing sets. Through this, you can check the number and distribution 
of samples included in each dataset, and the average and standard deviation of key variables. Descriptions of 
these basic characteristics help to identify the components of the dataset, which enables analysis that takes 
into account the characteristics of the data during the model learning and evaluation process. For example, 
analyzing the distribution of various variables included in the dataset provides useful information to evaluate 
the representativeness of the data and verify the performance of the model. Therefore, it plays an important role 
in increasing the reliability of research and verifying the validity of the results.

Correlation coefficient analysis and CCA (Canonical Correlation Analysis) were used for data analysis. 
Correlation coefficient analysis is used to measure the relationship between two variables and quantify the 
degree of correlation between them. The correlation coefficient indicates the relationship between variables and 
can be calculated in a variety of ways. There are three correlation coefficient methods used this time: Pearson, 
Spearman, and Kendall. The Pearson correlation coefficient measures the linear relationship between continuous 
variables. It evaluates the linear correlation between two variables and has a value between − 1 and 1. The closer 
the value is to 1, the stronger the positive linear correlation, and the closer it is to − 1, the stronger the negative 
linear correlation. The Spearman rank correlation coefficient measures rank-based correlation between variables. 
Unlike the Pearson correlation coefficient, it can evaluate non-linear relationships between variables and analyze 
the relationship between the ranks of two variables. Kendall’s Tau correlation coefficient is a method of measuring 
rank correlation between two variables. It evaluates the consistency of ranking changes between variables and 
provides more stable results, especially in small samples. These correlation coefficient analysis methods can help 
you deeply understand the relationships between variables and evaluate patterns or relationships in data. CCA 
(Canonical Correlation Analysis) is a statistical method that finds a linear relationship between two different 
sets of variables. This method helps to understand and interpret patterns in data. r in the graph is the Pearman 
correlation coefficient, which is an indicator of the strength and direction of the linear relationship between two 
variables. The range is from − 1 to 1, and a larger absolute value indicates a stronger linear relationship between 
the two variables. p is the p-value, which is the probability that the observed data in a statistical test will be 
obtained under the null hypothesis. In general, the smaller the value, the stronger the evidence to reject the null 
hypothesis as it provides evidence that the observed data did not occur by chance.

We developed a fuel efficiency prediction model using machine learning, using ’manufacturer/importer’, 
’vehicle type’, ’type’, ’car type’, ’fuel type’, ’transmission type’, ’grade’, ’combined mode_CO2’, ’inch’, ’gas displacement’, 
’RRC’ as input variables (X) and the fuel efficiency of the vehicle as the target variable (Y). The data was divided 
into 60% training data, 20% validation data, and 20% test data. Six regression models from the Scikit-learn library 
(version 1.5.2) were used in our experiments: Extra Trees Regressor26, Random Forest Regressor27, Gradient 
Boosting Regressor21, Hist Gradient Boosting Regressor28, AdaBoost Regressor29 and Linear Regression8. These 
models were selected based on their unique strengths in regression tasks and their ability to capture complex 
relationships within the dataset, each offering specific advantages that align with our objective of achieving high 
predictive accuracy for fuel efficiency.

Extra Trees Regressor26 was chosen due to its ability to mitigate overfitting and enhance prediction accuracy 
by using randomized splitting at each node. This model is robust to noise and is well-suited for high-dimensional 
data, making it ideal for managing our dataset’s diverse features. Random Forest Regressor27 was selected for 
its stability and resistance to overfitting, achieved through ensemble learning with multiple decision trees. This 

Variable Description

manufacturer/importer Manufacturer or importer

vehicle type Type of vehicle (e.g., passenger car)

type Type of vehicle (e.g., standard type)

car type Type of car (e.g., internal combustion engine)

fuel type Type of fuel (e.g., LPG, gasoline)

transmission type Transmission type (e.g. automatic 8-speed)

combined mode CO2 CO2 emissions in combined mode (unit: g/km)

grade Fuel economy grade

inch Tire size (unit: inch)

gas disp Gas (engine) displacement (unit: cc)

RRC RRC value

Table 1.  Description of each variable.

 

Scientific Reports |        (2025) 15:14815 6| https://doi.org/10.1038/s41598-025-96999-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


model effectively captures non-linear relationships and interactions among features, making it reliable for fuel 
efficiency prediction. Gradient Boosting Regressor21 was included for its high predictive accuracy, attained 
through a sequential process that iteratively builds trees to correct errors made by previous ones. This model 
performs particularly well with structured data and complex feature interactions. We also selected Hist Gradient 
Boosting Regressor28, an extension of Gradient Boosting optimized for large datasets, due to its computational 
efficiency and ability to handle missing values directly. This model is effective with high-dimensional data, 
fitting well with datasets containing numerous engineered and categorical features, like ours. Lastly, AdaBoost 
Regressor29 was chosen for its simplicity and adaptability, focusing on harder-to-predict instances by adjusting 
the model’s emphasis over successive iterations, which is especially useful for improving performance on 
imbalanced or noisy data. Finally, we included Linear Regression8 to serve as a baseline model, providing a point 
of comparison with the more complex, tree-based ensemble methods. As a simpler model, Linear Regression 
enables us to evaluate the added benefits of using more sophisticated algorithms for fuel efficiency prediction, 
especially in capturing non-linear relationships and feature interactions that Linear Regression8 may overlook. 
This comparison allows us to assess the practical value of complex models and determine whether their increased 
computational complexity translates to substantial improvements in predictive accuracy.

By leveraging each model’s distinct strengths, we aimed to thoroughly evaluate fuel efficiency prediction 
across various machine learning approaches, selecting the model that ultimately provided the highest predictive 
accuracy.

A total of four evaluation indicators were used to measure the performance of the machine learning model: 
MSE, RMSE, MAE, and R2 Score. MSE is an indicator that represents the mean square error between the actual 
observed value and the value predicted by the model. RMSE is the square root of MAE and is an indicator of 
the average size of prediction error. MAE is the average absolute error between the actual observed value and 
the value predicted by the model, which is the actual observed value, and yi is the value predicted by the model. 
The smaller the MSE, RMSE, and MAE, the more accurate the model’s predictions. R-squared (Coefficient of 
Determination) is an indicator of the explanatory power of a regression model and indicates the proportion of 
the total variation in the dependent variable that the model can explain. The maximum value is 1, and the closer 
it is to 1, the higher the accuracy of the model. Using all four of these to determine accuracy can provide a richer 
evaluation of the model’s predictive performance.

To ensure the generalizability of the machine learning models, we utilized k-fold cross-validation as an 
experimental approach. In k-fold cross-validation, the dataset is divided into k equal-sized folds, and the model 
is trained k times, each time using a different fold as the validation set while the remaining k−1 folds are used for 
training. This method helps to mitigate potential overfitting and ensures that the model’s performance is robust 
across different subsets of data. By averaging the results from each fold, we can obtain a more reliable measure 
of the model’s predictive accuracy and stability.

Additionally, subgroup analysis was conducted to assess differences in fuel efficiency between different 
vehicle manufacturers. Specifically, we compared Hyundai and Kia vehicles using statistical tests to determine if 
there are significant differences in fuel efficiency between the two manufacturers. This analysis aimed to provide 
insights into the variation in fuel efficiency by brand and to explore the potential influence of manufacturer-
specific factors.

We also experimented by removing features with high correlation coefficients to evaluate the impact of 
multicollinearity on the model’s performance. By selectively excluding highly correlated variables, we aimed to 
reduce redundancy in the feature set and improve the robustness of the model. This approach helps to ensure 
that each feature contributes unique information, thereby enhancing the interpretability and stability of the 
model.

Additional analysis was performed on the final model using sharp (Shapley Additive Explanations) and 
LIME (Local Interpretable Model-agnostic Explanations). Sharp is an effective tool used to interpret predictions 
of machine learning models. Sharp provides information about how much each feature contributed to the 
model’s prediction. This allows you to visually express the importance of each variable and understand the 
model’s prediction process. Additionally, LIME was used to interpret individual predictions by approximating 
the model’s behavior locally, enabling a more detailed, instance-specific explanation of the model’s outputs. 
Together, these methods provided comprehensive insights into both overall feature importance and specific 
prediction interpretations, enhancing the transparency of the model.

Univariate analysis is a technique used in data analysis to understand the distribution and characteristics 
of a single variable. It mainly analyzes the distribution, median, mean, and variance of variables to understand 
the basic properties of the data. Univariate analysis identifies the characteristics of variables through several 
statistical indicators. Univariate analysis evaluates the characteristics of variables through several statistical 
indicators. What we used here are Odds Ratio (OR), CI 95%, and p-value. The odds ratio is an indicator that 
represents the ratio between the probability of occurrence of two events. If the OR is greater than 1, it indicates 
that the characteristic increases the probability of an event occurring, and if it is less than 1, it indicates that the 
characteristic decreases the probability of the event occurring. A value of 1 means that there is no difference 
between the characteristic and the occurrence of the event. CI (Confidence Interval) is a way to express the 
accuracy of an estimate. It is an interval that represents the probability that a statistic estimated from given 
data will become the actual value. A confidence interval is an interval that is expected to contain a parameter 
(characteristic of a population) under a certain confidence level.

A narrower confidence interval indicates a higher accuracy of the estimate, and the range of the confidence 
interval may vary depending on the volatility of the data and the sample size. Each of these serves as an important 
tool in understanding and interpreting patterns in data. Odds ratio, CI, and p-value obtained through univariate 
analysis are useful for drawing conclusions and assigning statistical significance based on data.
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Experiment results
Table 2 presents the baseline characteristics of the discovery and validation cohorts used in the training, 
validation, and test datasets. The total number of data points is 953, divided into 571 for the training data, 
191 for the validation data, and 191 for the test data. The dataset includes a variety of vehicle attributes, which 
are essential for the prediction of fuel efficiency. The “Vehicle type” attribute is divided into “car” and “van” 
categories. For the training data, 556 vehicles are classified as cars (97.4%), and 14 vehicles as vans (2.6%). In 
the validation and test datasets, the proportions remain similar, with 183 cars (95.8%) and 7 vans (3.7%) in the 
validation data, and 183 cars (95.8%) and 7 vans (3.7%) in the test data. The “Manufacturer/importer” attribute 
includes several brands. For the training data, 198 vehicles are from Kia (34.7%), 345 from Hyundai (60.4%), and 
a few from other manufacturers. In the validation data, 77 vehicles are from Kia (40.3%) and 109 from Hyundai 
(57.1%), while in the test data, 86 vehicles are from Kia (45.0%) and 108 from Hyundai (56.5%). The “Fuel type” 
attribute includes LPG, diesel, and gasoline. Most of the vehicles in all datasets use gasoline, with a few using LPG 
and diesel. The fuel type distribution is consistent across the datasets, with a slight variation in the number of 
diesel vehicles. The “Transmission type” attribute includes automatic and manual transmissions. The majority of 
vehicles across all datasets are equipped with automatic transmissions, with automatic types 4, 5, 6, and 8 being 
the most common, while a smaller proportion of vehicles have manual transmissions. The “Grade” variable is 
used to categorize vehicles based on their overall performance and fuel efficiency. The “light type” and “normal 
type” grades are the most common, with other grades showing fewer vehicles. Additionally, vehicle attributes 
such as engine displacement, combined CO2 emissions, tire inch size, and rolling resistance coefficient (RRC) 
were recorded for each vehicle. These variables are crucial as they directly impact fuel efficiency predictions. For 
example, the combined CO2 emissions for the training data are 161.5 g/km (28.5 standard deviation), which 

Variable Train data Validation data Test data

Total, n = 953 n = 571 n = 191 n = 191

Vehicle type, car 556 (97.400) 183 (95.800) 183 (95.800)

Vehicle type, van 14 (2.600) 7 (3.700) 7 (3.700)

manufacturer/importer, Cage Mobility 11 (1.900) 3 (1.600) 1 (0.500)

manufacturer/importer, Kia 198 (34.700) 77 (40.300) 79 (41.400)

manufacturer/importer, PSA Automobiles 3 (0.500) 0 (0) 0 (0)

manufacturer/importer, Renault Korea Automobile
Co., Ltd. 12 (2.100) 1 (0.500) 2 (1.000)

manufacturer/importer, Ford 1 (0.200) 0 (0) 0 (0)

manufacturer/importer, Hyundai 345 (60.400) 109 (57.100) 108 (56.500)

type, Multi-purpose type 295 (51.700) 92 (48.200) 86 (45.000)

type, Normal type 216 (37.800) 77 (40.300) 77 (40.300)

type, Passenger/cargo type 0 (0) 0 (0) 1 (0.500)

type, etc type 59 (10.300) 21 (11.000) 26 (13.600)

car type, internal combustion engine 570 (99.800) 190 (99.500) 190 (99.500)

fuel type, LPG 32 (5.600) 11 (5.800) 15 (7.900)

fuel type, diesel 229 (40.100) 70 (36.600) 78 (40.800)

fuel type, gasoline 309 (54.100) 109 (57.100) 97 (50.800)

transmission type, automatic 4 15 (2.600) 4 (2.100) 5 (2.600)

transmission type, automatic 5 4 (0.700) 1 (0.500) 3 (1.600)

transmission type, automatic 6 45 (7.900) 14 (7.300) 20 (10.500)

transmission type, automatic 7 58 (10.200) 21 (11.000) 16 (8.400)

transmission type, automatic 8 422 (73.900) 146 (76.400) 139 (72.800)

transmission type, manual 6 2 (0.400) 0 (0) 0 (0)

transmission type, stepless shifting 24 (4.200) 4 (2.100) 7 (3.700)

grade, light type 19 (3.300) 5 (2.600) 8 (4.200)

grade, level 1 6 (1.100) 5 (2.600) 2 (1.000)

grade, level 2 68 (11.900) 29 (15.200) 22 (11.500)

grade, level 3 115 (27.100) 46 (24.100) 51 (26.700)

grade, level 4 180 (31.500) 52 (27.200) 54 (28.300)

grade, level 5 142 (24.900) 53 (27.700) 53 (27.700)

combined mode CO2 161.500 (28.500) 161.800 (31.400) 162.300 (29.300)

inch 18.500 (1.500) 18.400 (1.400) 18.300 (1.500)

gas disp 2367.500 (712.100) 2422.900 (785.800) 2404 (732.500)

RRC 0.200 (0.100) 0.200 (0.100) 0.200 (0.100)

combined fuel efficiency 11.200 (2.100) 11.200 (2.400) 11.300 (2.300)

Table 2.  Descriptive statistics of dataset.
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provides insight into the average environmental impact of the vehicles in the dataset. Finally, the “Combined 
fuel efficiency” variable, which measures the vehicle’s fuel efficiency in terms of the fuel consumption rate, is also 
included in the dataset. The average combined fuel efficiency for the training data is 12.00 (2.00), and the values 
for the validation and test datasets are similar, with slight variations in the standard deviations.

Table 3 and Fig. 3 together illustrate the correlation analysis between combined fuel efficiency and various 
predictor variables, using Pearson, Spearman, Kendall correlation coefficients, and Canonical Correlation 
Analysis (CCA). Both analyses reveal that “combined mode CO2” and “grade” have consistently strong 
correlations with combined fuel efficiency across all coefficients (e.g., r = 0.88 and r = 0.89 in CCA, respectively, 
both with p = 0.000). This high degree of correlation suggests that these variables are critical in predicting 
fuel efficiency, as they have a substantial impact on outcomes. However, their strong correlation also raises 
concerns about potential multicollinearity, which could affect model stability if not carefully managed. In 
contrast, variables such as “transmission type” and “vehicle type” show weaker correlations with fuel efficiency, 
with r-values of 0.19 and 0.09, respectively, indicating that these factors may have limited predictive value and a 
smaller impact on fuel efficiency variation. The results of this combined analysis guide the selection of features 
in our predictive model: highly correlated variables like “combined mode CO2” and “grade” are prioritized for 
their predictive power, while lower-priority variables with weaker correlations can be deprioritized or excluded, 
thereby reducing model complexity and addressing multicollinearity risks.

We conducted a comparative study on the fuel efficiency of vehicles from Hyundai and Kia using statistical 
tests as summarized in Table 4. The t-test revealed a significant p-value of 0.00000605, indicating a substantial 
difference in the average fuel efficiency between the two manufacturers. This result suggests that consumers 
who prioritize fuel economy might find Hyundai vehicles to be a more advantageous choice compared to Kia, 
highlighting the importance of fuel efficiency as a key decision factor when selecting a vehicle. On the other hand, 
the Chi-squared test yielded a p-value of 0.572, indicating no significant difference in the distribution of vehicle 
types between Hyundai and Kia. This finding implies that both manufacturers have a similar range of vehicle 
types, such as SUVs and sedans, suggesting comparable competitiveness. Therefore, consumers searching for 
specific vehicle types may find suitable options available from both manufacturers, which could influence their 
purchasing decisions and marketing strategies. These insights provide valuable information for understanding 
consumer behavior and the competitive landscape between manufacturers. Automakers can leverage this data 
to enhance vehicle performance or refine their marketing messages, thereby appealing more effectively to their 
target audience. Overall, this analysis serves as a foundation for future research on fuel efficiency and vehicle 
type preferences, contributing to more informed decision-making by consumers and manufacturers alike.

Tables 5 and 6 present the evaluation results of six machine learning regression models, including both 
tree-based models (Extra Trees Regressor26, Random Forest Regressor27, Gradient Boosting Regressor21, Hist 
Gradient Boosting Regressor28, and AdaBoost Regressor29) and a linear model (Linear Regression8).

Table 5 shows the performance when using the full set of features and the performance when two highly 
correlated features, ’class’ and ’multimodal CO2’, were removed from the set to address multicollinearity. This 
adjustment was intended to assess the robustness of each model in dealing with potential collinearity issues. 
The results indicate that Extra Trees Regressor26 and Random Forest Regressor27 consistently outperform other 
models in terms of MSE, RMSE, and MAE values, with R2 scores closest to 1, both in validation and test sets. 
These models consistently show high performance even when multicollinearity is reduced, showing that they can 
reliably handle complex interrelationships in the data. On the other hand, the linear model showed significantly 
lower performance and was not stable.

Additionally, the K-Fold cross-validation metrics in Table 6 reinforce the reliability of Extra Trees Regressor26 
and Random Forest Regressor27, showing stable and high accuracy across multiple data folds. This consistency 
underscores the robustness of these models, making them preferable choices for fuel efficiency prediction in this 
dataset.

Table 7 presents a comparative analysis of the performance metrics of the Extra Trees Regressor26 and 
Random Forest Regressor27 for Hyundai and Kia vehicles. In the validation data analysis, the Extra Trees 
Regressor26 achieves a minimum MSE of 0.007 for Hyundai, indicating excellent predictive performance, with a 
high R2 value of 0.998. This suggests that the model effectively predicts fuel efficiency for Hyundai vehicles. In 
contrast, the Random Forest Regressor27 has slightly higher MSE values for both manufacturers, indicating lower 
accuracy. Examining the test data, the Extra Trees Regressor26 records an MSE of 0.011 for Hyundai and 0.218 

Variable name Pearson correlation coefficient Spearman correlation coefficient Kendall correlaion coefficient

manufacturer/importer 0.160 0.150 0.120

vehicle type 0.090 0.080 0.070

type 0.150 0.180 0.140

fuel type 0.220 0.330 0.270

transmission type 0.190 0.230 0.180

combined mode_CO2 0.880 0.890 0.760

grade 0.890 0.950 0.850

inch 0.420 0.430 0.330

gas_disp 0.730 0.730 0.550

Table 3.  Correlation analysis of between cohort variables.
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for Kia. The Random Forest Regressor27 shows MSE values of 0.017 for Hyundai and 0.315 for Kia. The R2 values 
are 0.960 for Hyundai and 0.980 for Kia, emphasizing the models’ efficiency. This analysis reveals that the Extra 
Trees Regressor26 consistently outperforms the Random Forest Regressor27 for Hyundai vehicles, suggesting it 
better captures the feature interactions specific to this manufacturer. However, the higher prediction errors for 
Kia indicate potential areas for optimization in the predictive model or vehicle design.

Analysis type Statistic P-value

T-test − 4.551 6.048

Chi-squared test 3.840 0.572

Table 4.  Statistical analysis results for Hyundai and Kia vehicles.

 

Fig. 3.  Analysis of correlation between two variables using CCA. (a) combined mode_CO2 and combined fuel 
efficiency analysis, (b) grade and combined fuel efficiency analysis, (c) transmission type and combined fuel 
efficiency analysis, and (d) vehicle type and combined fuel efficiency analysis.
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In addition to the performance metrics presented in Tables 5 and 6, Figs. 4 and 5 offer a comprehensive visual 
analysis of model performance by comparing the actual versus predicted values and examining the residual 
distributions for each machine learning model used for fuel efficiency prediction, using all available features.

Figure 4 illustrates the Actual vs Predicted values, which provide insight into each model’s accuracy in 
replicating real-world fuel efficiency data. In this figure, data points that closely align with the red diagonal line 
indicate high prediction accuracy. The Extra Trees Regressor26 and Random Forest Regressor27 models show 
data points tightly clustered along the diagonal line, suggesting their effectiveness in capturing complex patterns 
across the dataset. AdaBoost29, on the other hand, shows a wider spread, suggesting it may be less accurate due 
to its sensitivity to noisy data and potential issues with overfitting. Figure 5 shows the residual distributions 
for each model, which help in understanding the bias and variance in predictions. Ideally, residuals should 
be symmetrically distributed around zero with minimal variance, indicating unbiased and reliable predictions. 
Both Extra Trees Regressor26 and Random Forest Regressor27 have residuals that are tightly centered around 
zero, confirming their accuracy and low bias as seen in Fig. 4. The Hist Gradient Boosting28 and Gradient 
Boosting21 models also show centralized residuals, but with slightly wider distributions, indicating a modest 
increase in variance. AdaBoost29 and Linear Regression8 exhibit wider and more dispersed residuals, with Linear 

Model

Hyundai Kia

MSE RMSE MAE R2 MSE RMSE MAE R2

Validation data

Extra Trees Regressor26 0.007 0.085 0.040 0.998 0.050 0.225 0.085 0.990

Random Forest Regressor27 0.003 0.055 0.034 0.999 0.061 0.248 0.104 0.987

Test data

Extra Trees Regressor26 0.011 0.108 0.061 0.997 0.218 0.467 0.189 0.960

Random Forest Regressor27 0.017 0.131 0.064 0.996 0.099 0.315 0.165 0.980

Table 7.  Comparative performance analysis of machine learning models for Hyundai and Kia vehicles, 
assessing prediction accuracy across validation and test datasets.

 

Model MAE RMSE MSE R2

Linear Regression8 0.039 0.211 0.044 0.990

Extra Trees Regressor26 0.054 0.091 0.011 0.997

Random Forest Regressor27 0.074 0.103 0.013 0.997

Gradient Boosting Regressor21 0.074 0.104 0.011 0.997

Hist Gradient Boosting Regressor28 0.083 0.133 0.018 0.996

AdaBoost Regressor29 0.431 0.504 0.255 0.947

Table 6.  K-fold cross-validation performance metrics comparing machine learning model performance.

 

Machine learning prediction model

All features Reduced multicollinearity

MSE RMSE MAE R2 MSE RMSE MAE R2

Validation data

Linear Regression8 0.050 0.224 0.164 0.990 0.674 0.821 0.674 0.856

Extra Trees Regressor26 0.006 0.078 0.042 0.998 0.381 0.617 0.406 0.931

Random Forest Regressor27 0.013 0.114 0.066 0.997 0.351 0.592 0.399 0.936

Gradient Boosting Regressor21 0.017 0.117 0.087 0.997 0.408 0.639 0.483 0.926

Hist Gradient Boosting Regressor28 0.060 0.245 0.137 0.989 0.401 0.633 0.444 0.927

AdaBoost Regressor29 0.255 0.505 0.433 0.953 0.701 0.837 0.677 0.873

Test data

Linear Regression8 0.043 0.208 0.145 0.991 0.780 0.883 0.719 0.829

Extra Trees Regressor26 0.008 0.089 0.043 0.998 0.212 0.461 0.318 0.960

Random Forest Regressor27 0.013 0.115 0.063 0.997 0.167 0.409 0.308 0.968

Gradient Boosting Regressor21 0.016 0.130 0.084 0.996 0.257 0.507 0.408 0.951

Hist Gradient Boosting Regressor28 0.077 0.279 0.151 0.985 0.200 0.447 0.328 0.962

AdaBoost Regressor29 0.243 0.493 0.410 0.954 0.703 0.838 0.703 0.868

Table 5.  Performance comparison analysis between machine learning models for validation and test datasets, 
including an evaluation of reduced multicollinearity effects.
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Regression8 showing more variability due to its simplicity in capturing complex relationships within the dataset. 
These visualizations reinforce that tree-based ensemble models, such as Extra Trees26 and Random Forest27, 
are particularly effective for this dataset when all features are included. The close alignment of predictions with 
actual values and minimal residuals highlights the ability of these models to handle complex relationships. This 
suggests that ensemble models are well-suited for capturing the nuances of fuel efficiency prediction without the 
need for feature reduction in this case.

The fuel efficiency prediction system was implemented based on the Extra Trees Regressor model26, which 
showed the highest performance. Figure 6 is an example of a fuel efficiency prediction system. As shown in Fig. 
6a, by entering vehicle information such as manufacturer/importer, car type, fuel type, and transmission type, 
the fuel efficiency of the vehicle was predicted. In the example, the fuel efficiency was predicted to be 9.4.

Table 8 presents the results of the univariate analysis, showing the odds ratios and p-values for each variable 
related to vehicle fuel efficiency. The odds ratio quantifies the strength of the relationship between a given factor 
and fuel efficiency. Variables with a high odds ratio indicate a stronger impact on fuel efficiency, while those 

Fig. 4.  Actual vs Predicted values for fuel efficiency prediction models. (a) Extra Trees Regressor26, (b) 
Random Forest Regressor27, (c) Gradient Boosting Regressor21, (d) Hist Gradient Boosting Regressor28, (e) 
AdaBoost Regressor29 and (f) Linear Regression8.
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with a low odds ratio suggest less influence. For instance, fuel type has an odds ratio of 1.333, indicating a 
positive influence on fuel efficiency, where certain fuel types like diesel or LPG are associated with better fuel 
economy compared to gasoline. This underscores the relevance of considering fuel type when evaluating vehicle 
efficiency, as it significantly alters the model’s predictive accuracy. On the other hand, vehicle type has an odds 
ratio of 0.797, implying that specific vehicle types (such as vans) are less efficient than others, possibly due to 
factors like weight and design, which may increase fuel consumption. Transmission type also plays a significant 
role, with an odds ratio of 1.325, suggesting that automatic transmissions generally correlate with better fuel 
efficiency than manual ones. This relationship might be attributed to the optimization of fuel consumption in 
automatic transmission systems, which are designed to adjust shifting patterns for better fuel use. The significant 
effect of combined mode CO2 (with an odds ratio of 0.951) confirms that vehicles with lower emissions tend to 
have higher fuel efficiency. This result highlights the critical importance of reducing CO2 emissions to improve 
the overall fuel efficiency of vehicles and reduce their environmental impact. The p-values in Table 8 provide 
further confirmation of these findings, with fuel type, transmission type, combined mode CO2, and grade all 
showing highly significant relationships with fuel efficiency (p < 0.05). This statistical significance implies that 

Fig. 5.  Residual plots for fuel efficiency prediction models. (a) Extra Trees26, (b) Random Forest27, (c) 
Gradient Boosting21, (d) Hist Gradient Boosting28, (e) AdaBoost29 and (f) Linear Regression8.
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these variables must be prioritized when developing predictive models for vehicle fuel efficiency, as they directly 
contribute to improving the accuracy of the predictions.

Based on the model performance comparison in Table 5, Extra Trees Regressor26 and Random Forest 
Regressor27 were selected as the final models due to their superior predictive accuracy and stability across 
all features and reduced multicollinearity subsets. We employed SHAP analysis to identify and prioritize key 
markers in vehicle fuel efficiency prediction to enhance interpretability further and validate the importance of 
specific features.

Figures 7 and 8 present sharp (Shapley Additive Explanations) values, which offer a deeper understanding of 
how individual features affect fuel efficiency predictions. The sharp values provide an intuitive way to interpret 
the contributions of each feature in the model’s decision-making process. These visualizations demonstrate 
that certain features consistently exert a high influence on the predicted fuel efficiency across both the Extra 
Trees Regressor26 and Random Forest Regressor27 models. Notably, combined mode CO2 emerges as the 
most important variable in both models, underscoring its critical role in predicting fuel efficiency. This result 
reflects the well-established inverse relationship between CO2 emissions and fuel efficiency, where lower CO2 
emissions are typically associated with higher fuel economy. The strong influence of combined mode CO2 
suggests that optimizing CO2 emissions can significantly enhance vehicle fuel efficiency, making it a key marker 
for improving overall fuel performance. As such, this variable becomes a crucial factor for policymakers and 
manufacturers aiming to reduce the environmental footprint of vehicles while optimizing their fuel economy. 
Further analysis reveals that vehicle grade and fuel type are also critical factors in predicting fuel efficiency. 
Vehicles with higher grades, particularly grade 4 and grade 5, consistently show better fuel performance. This 
can be attributed to the superior materials and engineering standards associated with higher-grade vehicles, 
which likely enhance their efficiency and performance. In contrast, lower-grade vehicles often suffer from poorer 
fuel efficiency due to less efficient design and construction. Fuel type, particularly diesel and LPG, demonstrates 
a strong correlation with better fuel efficiency, aligning with real-world knowledge that these fuels generally 
offer higher energy efficiency compared to gasoline. This reinforces the importance of considering fuel type as a 
key determinant in fuel efficiency prediction models, as it significantly impacts the overall energy consumption 
of a vehicle. The sharp dependence plots in Fig. 9 provide a deeper dive into the relationships between these 
critical features and their effect on fuel efficiency. For example, the plot for grade level clearly shows a positive 
correlation between higher grade levels (e.g., grade 5) and increased fuel efficiency. This supports the conclusion 
that higher-grade vehicles are engineered for better fuel performance, likely due to superior components such 

Variable Odds ratio (95% confidence interval) p-value

manufacturer/importer 0.968 (− 0.055 to −  0.008)) 0.007

vehicle type 0.797 (− 0.486 to 0.034) 0.088

type 0.941 (− 0.111 to − 0.008)) 0.023

car type 1.000 (− 0.000 to − 0.000)) <.001

fuel type 1.333 (0.206–0.369) <.001

transmission type 1.325 (0.228-0.335) <.001

combined mode_CO2 0.951 (− 0.053 to − 0.045)) <.001

Grade 0.353 (− 1.108 to − 0.9696)) <.001

inch 1.112 (0.037-0.148) <.001

gas_disp 1.000 (− 0.000 to 0.000) 0.131

RRC 0.000 (− 10.896 to − 8.410)) <.001

Table 8.  Univariate analysis using odds ratio.

 

Fig. 6.  Example of fuel efficiency prediction system. (a) User input, (b) Fuel efficiency prediction value output.
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as lightweight materials and advanced aerodynamics, which contribute to their fuel efficiency. Similarly, the 
dependence plot for combined mode CO2 confirms that vehicles emitting higher levels of CO2 tend to exhibit 
lower fuel efficiency. This reinforces the need for manufacturers to focus on reducing CO2 emissions to optimize 
fuel economy. The plot for fuel type shows a clear distinction in the relationship between different fuel types 
(gasoline, diesel, and LPG) and combined mode CO2. Diesel vehicles, in particular, show lower CO2 emissions, 
suggesting that diesel engines are more efficient in terms of fuel consumption, thereby improving fuel economy. 
The LIME analysis presented in Fig. 10 further validates these insights by providing detailed, instance-level 
explanations of the model’s predictions. In the visualizations for Hyundai (a) and Kia (b), LIME explains how 
individual vehicle features, such as fuel type and grade level, contribute to the final predictions of fuel efficiency. 
For instance, grade level 5 and diesel fuel types are shown to have a significantly higher positive contribution to 
the predicted fuel efficiency, while lower-grade levels or gasoline fuel types reduce efficiency predictions. These 

Fig. 8.  Visualizing the order of important factors in a machine learning model using SHAP force plots. (a) 
Extra Trees Regressor26, (b) Random Forest Regressor27.

 

Fig. 7.  Visualizing the order of important factors in a machine learning model using sharp summary plots. (a) 
Extra Trees Regressor26, (b) Random Forest Regressor27.
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granular explanations not only confirm the influence of key features but also provide transparency into how 
the model processes different types of vehicles from specific manufacturers. By understanding how the model 
reaches its predictions, these findings highlight the importance of incorporating specific vehicle characteristics, 
such as combined mode CO2, vehicle grade, and fuel type, into predictive models. Optimizing these key factors 

Fig. 9.  Sharp dependence plots for Selected features. (a) grade_level 5 (Extra Trees Regressor)26, (b) grade_
level 4 (Extra Trees Regressor)26, (c) combined_mode_CO2 (Extra Trees Regressor)26, (d) combined_mode_
CO2 (Random Forest Regressor)27, (e) grade_level 5 (Random Forest Regressor)27 and (f) grade_level 4 
(Random Forest Regressor)27.
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can lead to more accurate predictions of vehicle fuel efficiency, and they should be prioritized in future vehicle 
designs to promote greater fuel economy.

Table 9 demonstrates the impact of utilizing the top five markers-combined mode CO2, vehicle grade, fuel 
type, gas displacement, and transmission type-on the performance of fuel efficiency prediction models. When 
comparing the model performance using all features versus only the top five features, it is evident that these 
selected markers retain or even enhance the predictive accuracy. The models, Extra Trees Regressor26 and 
Random Forest Regressor27 exhibit marginal improvements in metrics such as Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), and R2 score when limited to these core variables.

Model

All features Top 5 features

MAE RMSE MSE R2 MAE RMSE MSE R2

Validation data

Extra Trees Regressor26 0.006 0.078 0.042 0.998 0.006 0.077 0.037 0.998

Random Forest Regressor27 0.013 0.114 0.066 0.997 0.008 0.093 0.054 0.998

Test data

Extra Trees Regressor26 0.008 0.089 0.043 0.998 0.002 0.052 0.028 0.999

Random Forest Regressor27 0.013 0.115 0.063 0.997 0.004 0.063 0.040 0.999

Table 9.  Comparison of model performance using All features vs. Top 5 features.

 

Fig. 10.  LIME explanations for selected instances. (a) Hyundai, (b) Kia.
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This enhancement underlines the significance of the proposed markers as essential predictors for fuel 
efficiency. By focusing on these five key variables, we achieve a streamlined model that not only simplifies data 
requirements but also upholds or improves predictive performance. This finding suggests that our proposed 
markers can serve as a reliable foundation for efficient fuel prediction, supporting the potential to reduce model 
complexity without compromising accuracy.

Discussion
We represent one of the first comprehensive efforts to predict vehicle fuel efficiency by integrating a diverse 
array of vehicle attributes. Our methodology is structured around three key components: the proposed decision-
making pipeline for fuel efficiency prediction, the development of a customized dataset, and the identification of 
crucial markers for assessing fuel efficiency.

Firstly, we established a decision-making system aimed at predicting vehicle fuel efficiency. This pipeline 
incorporates not only fundamental specifications such as engine displacement and vehicle type but also nuanced 
variables like the rolling resistance coefficient (RRC) and combined mode CO2 emissions. By employing 
machine learning techniques, particularly the Extra Trees Regressor26 and Random Forest Regressor27, our 
analysis successfully captures complex, nonlinear relationships among these variables. Previous studies often 
concentrated on isolated factors affecting fuel efficiency-such as engine performance or driving habits. However, 
our research emphasizes the significance of a multifaceted approach that considers various interrelated factors, 
thus enhancing the accuracy and reliability of fuel efficiency predictions.

Secondly, the dataset we constructed plays a crucial role in this research. We developed a customized 
dataset using data obtained from a public data portal, supplemented with additional custom data such as tire 
size and RRC. In the data preprocessing phase, we removed rows with missing values to ensure data integrity. 
This dataset combines standardized public data with manually collected engineering variables, allowing for a 
comprehensive analysis of vehicle efficiency. Integrating these features is vital for a deeper understanding of the 
factors influencing fuel economy.

Finally, our research highlights the importance of specific markers in predicting fuel efficiency. Through 
univariate analysis and SHAP feature importance insights, we identified critical variables such as vehicle grade, 
combined mode CO2, fuel type, gas displacement, and transmission type significantly influencing fuel economy. 
These findings align with a growing body of literature that underscores these factors’ critical roles in determining 
fuel efficiency. For instance, research has shown that combined mode CO2 levels directly impact fuel economy, 
with lower emissions correlating with improved efficiency30. Similarly, vehicle grade is associated with enhanced 
fuel performance, as higher-grade vehicles often utilize more advanced technologies that optimize fuel usage30. 
The choice of fuel type also significantly influences efficiency, with diesel vehicles consistently demonstrating 
better fuel economy compared to their gasoline counterparts, reflecting differences in energy content and 
combustion characteristics31.

The targeted elimination of multicollinear variables not only improved the model’s predictive accuracy but also 
provided clarity regarding the impact of each variable. This methodological approach is crucial for understanding 
the intricate relationships among various factors influencing fuel efficiency. The practical implications of our 
findings are significant for manufacturers aiming to optimize vehicle design and for policymakers seeking data-
driven standards that promote energy conservation. Furthermore, we recommend expanding future research to 
incorporate real-world driving conditions and explore dynamic models capable of real-time predictions. This 
will ensure the adaptability of our approach across diverse operational settings, ultimately contributing to more 
efficient and environmentally friendly vehicles.

Conclusions
We proposed a comprehensive framework for predicting vehicle fuel efficiency, centering on three critical 
components: the proposed decision-making pipeline, the development of a customized vehicle dataset, and the 
identification of key markers essential for fuel efficiency prediction.

First, we created a customized dataset by aggregating data from the Korea Energy Agency’s Fuel Efficiency 
Labeling System25 and supplementing it with unique variables, such as tire size and RRC. This tailored dataset 
not only reflects contemporary vehicle specifications but also addresses limitations in existing studies that often 
rely on outdated datasets.

Second, we established a decision-making system designed specifically for vehicle fuel efficiency prediction. 
This pipeline integrates both fundamental specifications, such as engine displacement and vehicle type, and 
nuanced variables, including the rolling resistance coefficient (RRC) and combined mode CO2 emissions. The 
incorporation of these diverse factors allows for a more robust prediction model, significantly enhancing the 
accuracy and reliability of fuel efficiency forecasts.

Lastly, our analysis identified critical markers impacting fuel efficiency through advanced techniques like 
SHAP, LIME and odds ratio analysis. These markers, which include combined mode CO2, vehicle grade, fuel 
type, gas displacement, and transmission type, offer valuable insights for manufacturers and policymakers 
seeking to enhance vehicle design and promote energy conservation.

Looking ahead, future research should focus on validating these findings in real-world settings, particularly 
through collaborations with vehicle manufacturers and industry stakeholders to implement these models in 
practical applications. Engaging with manufacturers will facilitate the collection of additional data and feedback 
that can enhance model accuracy and relevance. This collaborative approach can lead to the development of 
customized fuel efficiency solutions tailored to specific vehicle models and market segments, thereby maximizing 
the utility of the proposed framework.
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Furthermore, expanding the dataset to include diverse driving conditions, such as urban versus rural settings, 
highway driving, and varying weather conditions, will provide a more comprehensive understanding of fuel 
efficiency under real-world scenarios. By capturing a broader range of variables that affect vehicle performance, 
the predictive models can become more robust and reliable. This diversification will also allow for a nuanced 
analysis of how different factors interact in various driving contexts.

Additionally, exploring dynamic models capable of real-time predictions will significantly enhance the 
adaptability of our approach. By integrating telematics and in-vehicle data, future research can investigate how 
instant feedback on driving behavior and environmental conditions influences fuel efficiency. Implementing 
machine learning algorithms that can learn from ongoing vehicle operations could yield insights into improving 
driver habits and vehicle performance in real-time.

Data availability
The data supporting the findings of this study are available from the public data portal. ​h​t​t​p​s​:​​/​/​w​w​w​.​​d​a​t​a​.​g​​o​.​k​r​/​
d​​a​t​a​/​1​​5​0​8​3​0​2​​3​/​f​i​l​e​​D​a​t​a​.​d​​o​?​r​e​c​o​m​m​e​n​d​D​a​t​a​Y​n​=​Y.
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