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ABSTRACT 3D phase contrast microscopy is one of the most common imaging modalities for the
observation of long-term multicellular processes of living cells without phototoxicity and photobleaching,
because the morphological features of cancer cells can be used as an indicator of metastasizing behavior.
However, image features such as non-uniform illumination and phase contrast interference rings pose certain
difficulties in analyzing these images.We propose a cancer cell classificationmethodology based onmorpho-
logical features of 3D phase contrast microscopy and deep neural network with scaled principal component
analysis. We initially apply non-uniform illumination correction based on the histogram information of
images to correct unstable brightness problems in images and an image intensity-based global thresholding
method to compensate for row-contrast artifacts via single-cell detection. We also extracted cross-sections
to observe the morphological features using principal component analysis because of the nonsymmetric
diffusion pattern of the interference that appeared around each cell. Then, the cell morphologies from an
intensity gradient, considering local peaks as bright ring regions, were analyzed. The peak was calculated
from the intensity profile from the center point of the cell area, which was the center of the extracted section,
to the outer background. Based on the peak information, we extracted representative ten morphological
features, applied a min-max scaler to convert the initial features, and used a deep neural network to
classify active and inactive cancer cells. The proposed method achieved an area under the receiver operating
characteristic curve value of 0.944 and an equal error rate of 0.091. We confirmed that the accuracy of
classification using DNN with the proposed method was closer to the results of manual classification by
experts, enabling a more precise analysis of cell morphology. This approach improves the accuracy of
image-based cellular phenotypic profiling for assessing drug responses in patients.

INDEX TERMS Deep neural network, cancer cell classification, morphological feature extraction,
supervised image classification, phase contrast microscopy, principal component analysis.

I. INTRODUCTION
Cancer cells are notorious for their ability to spread to dif-
ferent parts of the body through blood vessels, making tumor
treatment challenging [1]. Researchers are actively studying
this phenomenon and consider cell shape classification as an
effective means of verification [2]. Understanding the shape
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and morphology of cancer cells is particularly important
because their metastasis and migration behaviors are closely
tied to these characteristics [2]. Therefore, the ability to ana-
lyze and classify cell shapes is recognized as a crucial skill in
studying their behavioral patterns.

When conducting research on morphological classifica-
tion of cells in microscopic images, there are typically three
main processes involved: cell segmentation, shape feature
extraction, and classifier construction. Cell segmentation,
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which aims to divide the cells for sorting, often utilizes two
commonly employed methods: the watershed method and the
level-set method [3], [4]. Shape feature extraction methods
can be categorized into two types. The first type is based
on simple image information, such as Haralick and Zernike
moments [5], [6]. The second type combines information
from various feature levels. A notable example of the latter
is the SLF sets method, which incorporates morphologi-
cal properties, edge properties, and texture properties [7].
For classifier construction, machine learning techniques like
neural networks and Support Vector Machines (SVMs) are
predominantly used [8], [9]. These methods enable the cre-
ation of classifiers capable of effectively discerning and
categorizing different cell shapes.

A cell’s phenotype can be influenced by various factors,
including epigenetic, genetic, geological, and environmen-
tal factors, as well as regulatory rights [10]. Recent studies
emphasize the importance of quantitatively analyzing cellular
phenotypes using wide-ranging optical imaging techniques.
In this regard, the use of transmitted light microscopy allows
for the observation of cell morphology without the need
for staining, enabling the study of cell changes [11], [12].
However, when observing living cells through 3D reconstruc-
tion, a large amount of image data is generated. Manually
analyzing such extensive datasets is time-consuming and
prone to bias, leading to potentially skewed results [13], [14].
To address this challenge, there is a need for computer-based
methods that can accurately recognize and measure indi-
vidual cell morphological features [15]. In the development
of these computational methods, it is crucial to consider
common issues encountered in deconvolved images, such
as halo artifacts, non-uniform lighting, low cell contrast,
and background noise. By addressing these challenges, these
methods can be effectively applied in experimental situations
involving cells [16].
Previous studies on phase contrast microscopy images

have predominantly utilized methods tailored to two-
dimensional environments [17], [18], [19]. However, these
images present challenges for segmenting individual cells
using traditional intensity-based methods, primarily due to
non-uniform illumination and halo artifacts. Additionally,
common 3D segmentation approaches encounter issues
such as light scattering and low contrast, leading to time-
consuming and less accurate results. Consequently, an effec-
tive cell analysis approach based on image intensity requires
a method to identify a focal region where cell morphology is
well-defined [15], [20], [21], [22], [23].
In this paper, we propose an effective method for classify-

ing U87 cells using 3D phase contrast microscopy, focusing
on their resemblance to glioblastoma multiforme, the most
common and lethal brain tumor. Despite being of the same
cell type, U87 cells exhibit variations in shape, size, and
orientation, posing challenges for accurate classification. The
objective of this research is to develop a classifier within
a U87 cell sorting framework that can accurately distin-
guish between active (atypical) and inactive (spherical) cells.

To address the difficulties associated with U87 cell classifica-
tion, we propose a deep neural network-based binary classi-
fier model. This model utilizes morphological characteristics
as input information, enabling us to capture cell-specific
morphological features that are independent of cell shape,
size, and orientation. We evaluate the performance of the pro-
posed classifier by assessing the cancer cell’s active/inactive
classification accuracy on the cells present in the microscopy
images. Through this approach, we aim to improve our
understanding of U87 cell behavior and characteristics,
ultimately contributing to better insights into glioblastoma
multiforme.

The remainder of the paper is organized as follows: In
Section II, we introduce the proposedmethods, which encom-
pass addressing nonuniform illumination, employing a global
segmentation technique, and utilizing a scaled deep neural
network (DNN)-based supervised classification method for
distinguishing cancer cells into active and inactive categories.
The experimental results are presented in Section III. Finally,
we provide a comprehensive discussion and draw conclusions
based on our findings in Sections IV.

II. RELATED WORK
A. CORRECTING NON-UNIFORM ILLIMINATION
Phase contrast microscopy is widely used to observe live
cells. However, it is difficult to analyze the image because the
overall brightness and contrast of the image are not constant
owing to differences in light absorption and physical proper-
ties of the biological gel [20], [21], [22].

FIGURE 1. Non-uniform illumination correction results (a) Original image
(1280 × 1024), (b) Histogram equalization results (1280 × 1024).

Several methods exist for correcting the nonuniform dis-
tribution of brightness values in an image according to the
lighting location, such as entropy minimization, homomor-
phic filtering-based methods, and nonuniform illuminance
estimation parameters [1]. In this study, we used a mod-
ified framework histogram smoothing (MF-HS) algorithm
that is robust to over-enhancing problems and can preserve
image boundary information, considering the characteristics
of phase contrast microscopy [24].

Figure 1 shows the results of applying the MF-HS
algorithm. This algorithm solves the problem of nonuniform
brightness distribution in the image and improves the problem
of low contrast.
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B. INDIVIDUAL CELL DETECTION USING HALO PATTERN
A histogram-based global threshold was applied to images
corrected for nonuniform illumination to separate the back-
ground from the image and detect only the cell regions.
We chose the minimum threshold method in a manner similar
to the intermodal method. It is iteratively smoothed until only
two local maxima remain in the image [25].
A rendering method is required to visualize individual

cell detection results in 3D image data. Because rendering
is computationally time-consuming, it is generally possible
to reduce the computational burden by considering only
the region of interest (ROI) of the original image. In this
case, only a part of the original image information can be
visualized [26]. To compensate for this problem, a high-
capacity 3D microscopic image is rendered using a GPU
and implemented using texture-based volume rendering and
CUDA-accelerated ray casting [26], [27]. Figure 2 shows the
results of GPU-based visualization of the detected cells.

FIGURE 2. 3D visualization of detected cells.

One of the major features of phase contrast microscopy
images is the appearance of halo artifacts around the cells.
In 3D phase contrast microscopy images, halo patterns appear
around cells as bright disks in the XY plane, providing infor-
mation about out-of-focus phase contrast interference rings
as they move away from the cell area when viewed along the
z-axis [10] (Figure 3).

Each cell in a 3D phase contrast microscopy image has
a different optimal focus plane depending on the direction
of movement. Consequently, the accuracy of analysis results
using general 2D surfaces is limited. To estimate the direction
of each cell and extract a well-focused diffusion surface, the
first principal axis vector is calculated using the distribution
of pixels existing in the initial area of each cell and the
first principal axis, which is the cross-section intersecting the
center of each cell and extracting a meaningful cross-section
through the center of mass of the passing region. To this end,
principal component analysis (PCA) [28] was used to clearly
represent the halo pattern around each cell (Figure 4) [21],
[29], [30].

Passing through the center of mass of the detected individ-
ual cell area and considering the halo pattern information in
the cross-section perpendicular to the first principal axis [20],
only the cell area was extracted through the active contour
method with the center point as the seed point. The remaining
area was designated as the background area as shown in
Figure 5. In this manner, the cell area was segmented using

FIGURE 3. Cell appearance correlation. (a) XY plane, (b) XZ plane.

FIGURE 4. Comparison of cells according to each plane.

FIGURE 5. Cell appearance correlation. (a) XY plane, (b) XZ plane.

intensity-based information, considering the characteristics
of the image. In the next section, we used the segmented
region information to extract the features.

III. PROPOSED METHOD
Figure 6 shows an overall flowchart of the proposed clas-
sification method. In this study, we propose a method for
classifying cells according to their morphological charac-
teristics after dividing them into individual cells based on
the characteristics of 3D phase contrast microscopy images.
The proposed method consists of three modules such as
image processing, model training and model testing. In the
image processingmodule, living U87 glioblastoma cells were
collected and dispersed in a 3D cell matrix in a Matrigel
environment. Using a phase contrast microscope, the cells
were imaged at 10× magnification with a z-step distance
of 5µm. We applied image restoration technique based on
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FIGURE 6. The overview of the proposed methodology.

non-uniform illumination correction, visualized the enhanced
images using 3D cell region detection and applied image
segmentation using pixel distribution based extracting the
cross-section. Ten morphological features from each binary
cell image are extracted and a deep neural network method
with a scaled PCA for accurate classification is applied in
model training and testing modules. First, the preprocessed
U87 dataset for ten input feature variables from 224 cell
image samples was used to train (66%) and test (34%) the
models. Thirty percent of the training samples was used to
validate the training process. Second, the morphological fea-
ture variables were converted to principal components (PCs)
based on scalers, such as min-max, standard, quantile, and no
scaler, using PCA. Third, we trained the deep neural network
(DNN) model using the preprocessed variables and evaluated
its predictive performance with annotations labeled by a cell
classification expert. To evaluate the accuracy of the test
results, the data for the test models were completely separated
from the training data used for testing.

A. MORPHOLOGICAL FEATURE EXTRACTION
The characteristics of the segmented cell area were extracted
to determine the degree of activation of the U87 cells. The
extracted features are as follows: First, we extracted
the x- and y-coordinates of the centroids, which represented
the centroid position information on 3D Matrigel. The area
of the cell regionwas extracted from the actual number of pix-
els in the region. In addition, to obtain a result that excluded
weak noise, the area of the polygon acquired through the
convex hull was calculated. The perimeter distance around
the boundary of the region was extracted to obtain additional

size information. In addition, various morphological features
were extracted to classify the spherical shapes by considering
the influence of halo artifact interference around the extracted
area. First, we calculated the circularity for the roundness
extraction of the cell area. Then, the ellipse that has the same
second moment as the region computes the eccentricity, and
the ratio of the pixels in the convex hull that are also in the
region computes the solidity. It also computes the diameter of
a circle with the same area as the region (Equiv Diameter) and
the length of the major and minor axes of the ellipse that has
the same normalized second central moments as the region.
Among the extracted features, Figure 7 shows the selected
significant features in 2D plots.

As shown in Figure 7 (a) and (b), among the ten feature
variables, the discrimination of the Major and Minor Axis
Lengths, Circularity, and Perimeter variables was relatively
good. The remaining feature variables, including those in
Figure 7(c) and (d), were relatively low compared to the four
main variables.

B. CLASSIFICATION
Based on the binary images obtained after the threshold-
based process, we propose a deep neural network method
with a scaled PCA for accurate classification. In the proposed
methodology, we extracted 10 morphological features from
each binary cell image: area, centroid X, centroid Y, circu-
larity, eccentricity, equivalent diameter, perimeter, solidity,
major axis length, and minor axis length.We utilized a simple
feedforward neural network and backpropagation algorithm
to train the proposed model, optimizing diverse combina-
tions of hyperparameters, including the activation function,
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FIGURE 7. Diverse feature variables: class 0 is normal cell images (blue
triangle) and class 1 is cancer cell images (red rectangular).

regularization technique, number of hidden layers, and num-
ber of neurons in each layer. The best-performing network
architecture included four hidden layers, with the first three
containing 200 neurons and the last hidden layer containing
10 neurons. The last layer has two neurons and produces
regression outputs. To prevent overfitting and ensure stable
convergence, 2 batch normalization [31] and dropout [32]
techniques were applied to the first three hidden layers,
whereas the ReLU activation function [33] was used in all the
hidden layers and the output layer. They also used Adam opti-
mization [34] with a binary cross-entropy loss function and
a learning rate of 0.001 for the training process. A detailed
description of the DNN architecture is presented in Figure 8.
We systematically optimized the hyperparameters and uti-
lized various techniques to enhance the robustness of the
model and prevent overfitting.

C. HYPERPARAMETER TUNING
The training environment for DNNs involves several hyper-
parameters that must be optimized to achieve the best possible
performance. We fine-tuned the hyperparameters, such as
the depth of the DNN and number of nodes, to create an
optimal model that improves the prediction performance.

FIGURE 8. The architecture of the proposed DNN.

Because there are no general rules for tuning the hyperpa-
rameters, we used a trial-and-error approach to train models
with 2–8 layers and 10–250 nodes. We also employed two
techniques to address overfitting: dropout and batch normal-
ization. Dropout works by randomly weighting the outputs
of nodes to prevent the model from overemphasizing specific
nodes. Batch normalization ensures that the initial weights
are appropriate for the feed-forward data, which helps prevent
data loss. We used a range of dropout values (0.1 to 0.5) and
chose the optimal value of 0.4 based on testing results. Over-
all, our systematic approach to fine-tuning hyperparameters
and use of appropriate techniques led to the development of
an effective DNN model for specific tasks.

IV. RESULTS AND DISCUSSION
A. PERFORMANCE METRICS
Five common quality metrics were considered, including sen-
sitivity (Sn.), Specificity (Sp.), positive predictive value (PP.),
accuracy (Acc.), Equal Error Rate (EER) and area under the
ROC curve (AUC). AUC was used for the initial performance
evaluation for a better comparison based on only one perfor-
mance metric because, as indicated by Bradley [35], accuracy
cannot explain the measure for sparse (imbalanced) datasets.
AUC can also be used to evaluate the overall performance
using a single performance metric without requiring a thresh-
old for the probabilities calculated from the classification
algorithms.

Sn. = TP/(TP+ FN ) (1)

Sp. = TN/(TN + FP) (2)

PP. = TP/(TP+ FP) (3)

Acc. = (TP+ TN )/(TP+ FN + FP+ TN ) (4)

B. PERFORMCE COMPARISON
PCA with the scaler preprocessed all input data to gener-
ate new 10 variables to change the scales and variances.
The combinations of PCs of the four different PCAs (1st
and 2nd PCs) are shown in Figure 9: (a) PCAs with Min
Max scaler, (b) PCAs with Standard scaler, (c) PCAs with
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FIGURE 9. Diverse Feature scaling plots with the PCA: class 0 is normal
cell images (blue triangle) and class 1 is cancer cell images (red
rectangular).

Quantile scaler, and (d) PCAs without the scaler. As can be
seen in Figure 9(a), the active cancer cell data (red boxes)
are gathered on one side, making it possible to see that the
min/max method provides meaningful feature values com-
pared to other combinations. In addition, according to the test
results in Table 1, a DNN with a PCA min/max scaler shows
the best mixture.

To verify the performance of preprocessing related to PCA
and different scalers, we compared the results using one
performance metric: the AUC or EER values. Table 2 com-
pares the overall performance using either AUCs or EERs
from different combinations of PCAs and scalers. The best
AUC performances (0.944 and 0.935, marked in bold) were
obtained by the DNN with a PCA-min-max scaler or the
DNN with a PCA-standard scaler, followed by the SVC with
a PCA-min-max scaler. In terms of EERs, the best EER
performances were the DNN with a min-max or quantile
transform scalers, marked in bold in Table 1.
According to the AUC and EEG results, the min-max

scaled PCAwithmost classifiers showed relatively better per-
formance than other scalers in terms of AUC values. Table 2
summarizes the performance characteristics of the five clas-
sification algorithms with minimum-maximum scaled PCA
for classifying images as cancer cells for the given testing

data. The optimal threshold for classifying cancer cells was
0.5, based on all model parameters, resulting in an Acc of
89.61% for Sn. of 84.85%, Sp. of 93.18%, and PP. of 90.32%.
For comparison, we also report the performance of PCA
without a scaler. All thresholds of the compared classifiers
were adjusted to balance the sensitivity and specificity values.
The proposed scaled PCA/DNN method produces the best
results, followed by the SVC method. Based on the compar-
ative results, we conclude that the scaled PCA/DNN method
outperformed the other classifiers in terms of all performance
metrics.

C. SIGNIFICANCES OF THE PROPOSED METHOD
There are several significances in this study. First, comparing
to the traditional H&E staining performed in clinical pathol-
ogy for tumor grading, it is important to classify the live cells
because it will be possible to observe how activity varies
over time and how location changes using living cells later.
Second, it is expected that the analysis method presented in
this paper can be extended to other types of cancer cells.
Third, although actual patient-derived cell images could pro-
vide more information compared with a single replicate of

TABLE 1. Comparison of AUC and EER results.

TABLE 2. Comparison of the Proposed DNN models with Min-max Scaler
and other methods.
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cell culture, the proposed method including scaled PCA with
deep neural network shows robust result (AUC of 0.944) even
with a single replicate of cell culture.

The step distance refers to the intervals between focus
levels or positioning adjustments in a microscope and acts
as a significant role when creating 3D reconstructions or
analyzing fine structures in detail. The step distance used in
this study is 5µm with 10x magnification of 3D phase con-
trast microscopy. When capturing images at different depths,
especially in detailed studies covering layers or depths, the
step distance is significant. The step distance determines
how finely the microscope can focus on different depths of
the sample. The smaller step distance the more detailed and
higher resolution imaging. This allows the microscope to
capture more images at closer intervals, resulting in a clearer
and more continuous depiction of the structure of the sample.

V. CONCLUSION
In this study, we proposed a method for classifying the
morphology of active/inactive cancer cells based on scaled
PCA and DNN. Using the morphological features extracted
from microscopic images, a classification accuracy of 94%
was obtained, which is better than the previous SVM-based
classification results. Consequently, it was quantitatively con-
firmed that the accuracy of classification using DNN with
the proposed method was closer to the results of manual
classification by experts, enabling a more precise analysis
of cell morphology. To improve the accuracy of the mor-
phological classification of cancer cells, image processing
was performed by reflecting the 3D phase contrast micro-
scopic image characteristics, and cell feature information was
extracted. This procedure allowed for accurate analysis of
cell morphology. This approach improves the accuracy of
image-based cellular phenotypic profiling for assessing drug
responses in patients.

VI. LIMITATION AND FUTURE WORK
While this study has provided valuable insights into can-
cer cell classification based on morphological features of
3D phase contrast microscopy images, several limitations
should be considered, including the limited number of
cell-based testing and focusing only on static cell images.
To address these limitations and further explore this area,
future research could focus on incorporating more cell-based
testing to ensure statistical consistency in our future research.
Additionally, we will explore extracting more information
from phase contrast imaging to enhance our analysis. In terms
of live cells, we will analyze the spatial movement of active
and inactive cells using the images captured at 0 hours,
11 hours, and 25 hours from the dataset used in this study.
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