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Abstract

Current deep learning models underperform when using loss functions characterized by single
properties. Therefore, optimizing these models with a combination of multiple attributes
is essential to enhance performance. We propose a novel hybrid nonlinear loss function
technique incorporating heterogeneous nonlinear properties to achieve optimal performance.
We evaluated the proposed method using six analytical techniques: contour map visualization,
loss error frequency analysis, scatter plot visualization, loss function visualization, gradient
descent analysis, and covariate Analysis with convex and linear coefficients. Our experiments
on semantic segmentation tasks using the Pascal visual object classes and automatic target
recognition datasets demonstrated superior optimization performance compared to existing
loss functions.
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1. Introduction

A loss function is employed to mitigate overfitting during optimization and training. Various
types of loss functions exist, including the L1 loss function [1], L2 loss function [1], nonlinear
exponential loss function, and exponential moving average loss function.

The exponential moving average is a type of loss function designed to capture the dynamic
properties of a model by optimizing dynamic information. Notably, nonlinear properties can
vary dynamically. However, the nonlinear exponential loss function ensures stable training of
the model by continuously reflecting these nonlinear fixed properties.

Existing loss functions have been investigated to structure single properties and enhance
model performance effectively. However, training models with single properties do not
achieve optimal performance compared to their optimum state. Although models trained with
single properties consistently reach a particular value , their performance remains suboptimal.
Moreover, optimizing models with single properties is unlikely to achieve the best performance,
as the reliability of such performance is limited.

Existing loss functions have been examined to structure single properties and enhance
model performance effectively. However, training deep learning models with single properties
do not achieve optimal performance compared to their ideal state. Models trained with single
properties tend to accumulated consistent values, reaching certain thresholds. Moreover, such

317 |

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


http://doi.org/10.5391/IJFIS.2024.24.4.317

models are unlikely to achieve peak performance, as their relia-
bility remains limited. To optimize large and complex models,
combinatorial optimization methods are necessary. Given that
deep learning models are large and complex nonlinear models
systems, combinatorial optimization can yield higher perfor-
mance than traditional single optimization techniques. There-
fore, combining various properties is essential to achieve the
optimal state of the deep learning model. The contributions of
our study are as follows.

• We propose a novel hybrid loss function technique that
achieves optimal model performance by incorporating
heterogeneous nonlinear properties.

• We evaluate the effectiveness of the proposed method
using three analytical techniques: contour map visual-
ization, loss error frequency analysis, and scatter plot
visualization of the loss error map.

• We conduct a relational analysis to evaluate the impact of
the proposed technique on the loss function. We examine
the relationships between the loss function and existing
loss functions using the activation function.

• We employ various methods to influence changes in co-
variates of the loss function on model optimization. Ad-
ditionally, we analyze the relationship between these
covariates using convex and linear coefficients.

• We utilized gradient descent analysis to demonstrate that
unique combinations of loss and activation functions en-
hance the learning performance of deep learning models.

• Using 3D surface plots and heatmap visualizations of
the formulas, we visually demonstrated that different
combinations of loss and activation functions improve the
stability and responsiveness of the deep learning model
during optimization.

• We initialized seed values for five classes to examine the
impact of loss function properties on model training.

• We confirmed the importance of reflecting significant
properties when considering heterogeneous nonlinear
properties.

2. Related Works

2.1 Loss Function

Loss functions have evolved to address various learning prob-
lems, Liu et al. [2] developed an algorithm to propose a new loss

function by exploring variations within existing loss functions
using a search space comprising 21 mathematical operators,
three constant inputs, and three variable inputs. The algorithm
efficiently identified optimal combinations of loss functions,
and experiments conducted on the common object in context
(COCO), VOC2017, and Berkeley deep drive (BDD) datasets
demonstrated that these new combinations outperformed exist-
ing ones.

Wen et al. [3] introduced a novel loss function designed
to mitigate performance degradation due to insufficient sam-
ple diversity without relying on sampling procedures. This
approach incorporates adjustable parameters to widen the loss
range, diminish the impact of easily classified samples, and
replace traditional sampling functions. Derived from the cross-
entropy loss, the proposed formula integrates the adjustable
parameters β and c with the SoftMax function for multi-class
image classification. Experimental results indicated optimal
performance at β = 4 and c = 5, highlighting improved classi-
fication capabilities and reduced training complexity compared
to traditional loss functions.

Xie et al. [4] addressed the challenge of accurate image
segmentation of surface defects in convolution neural network
(CNN)-based models by proposing a balanced loss function.
This study identified loss imbalance as a critical issue affecting
segmentation accuracy, including label imbalance, easy-to-hard
example imbalance, and boundary imbalance. The proposed bal-
anced loss function introduced dynamic class weights, truncated
cross-entropy loss, and strategies to suppress label confusion,
significantly enhancing segmentation accuracy across various
benchmarks and CNN segmentation models. Experimental find-
ings consistently showed performance improvements ranging
from 5% to 30% over commonly used loss functions.

2.2 Hybrid Loss Function

Dickson et al. [5] evaluated and compared various loss func-
tions for training artificial neural networks (ANNs). This study
analyzed a hybrid loss function that combines entropy and
squared error, using the squared error for initial bootstrap net-
work training and entropy loss for subsequent refinement. The
results indicate that this approach leverages the initial optimal
state achieved by the squared error while the entropy loss pro-
vides further enhancements. This strategy offers a novel method
for improving the training efficiency of ANNs, contributing to
advancements in neural network-based models.

Yu and Wu [6] introduced a hybrid loss function, SSIM+L1
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integrating the structural similarity index measure (SSIM) and
L1 norms. Their study incorporated an attention mechanism
that effectively leverages global information during network
training. When applied to a CNN for reconstructing missing
traces, experiments on synthetic and field data demonstrated
that the SSIM+L1 loss function, combined with the attention
mechanism, significantly improved interpolation results com-
pared to networks lacking attention.

In medical imaging, researchers have tailored hybrid loss
functions for encoder-decoder convolutional neural networks
to address underutilization and image information loss [7].
This study proposed a low-dose computed tomography (LDCT)
image-denoising network that employs residual multiscale fea-
ture extraction and a hybrid loss function comprising mean
square error (MSE), SSIM, and perceptual losses. Experimental
results demonstrated that this approach enhanced image quality
and improved computational efficiency compared to state-of-
the-art techniques, offering promising advancements in medical
imaging applications.

Deep-learning techniques have been employed to enhance
LDCT image quality using a hybrid loss function that inte-
grates adversarial, perceptual, sharpness, and structural similar-
ity losses [8]. Experimental results demonstrated that the SS-
WGAN with the hybrid loss function outperformed traditional
denoising methods in preserving image details and structure,
which are crucial for accurate medical diagnosis.

3. Proposed Method

Figure 1 visualizes the proposed method. Figure 1(a) illustrates
hybrid loss function case 1, and Figure 1(b) depicts hybrid loss
function case 2. The proposed method is detailed as follows.

Hybrid loss function: We propose a hybrid loss function
to capture heterogeneous properties. The concept of this hy-
brid loss function is illustrated below. We define a hybrid loss
function that reflects the heterogeneous properties.

We test this function using two cases: a combination of
nonlinear chrematistic and linear properties and a combination
of nonlinear fixed and nonlinear dynamic properties.

We optimize deep learning models using the loss function
of single properties, which limits our scope. We identified the
cause of this limitation and aim to address it through heteroge-
neous properties. Although this might not be the optimal point
for a deep learning model, expanding the range by reflecting
various properties is necessary to find the optimal point. To
verify this, we propose a novel hybrid loss function that incor-
porates these properties. We intend to validate the rationale for
incorporating heterogeneous properties using three analyses.

Figure 2 visualizes the employed loss function methods us-
ing the formula x2 + 4× x+ y2 − 6× y. This represents the
hyperplane form of deep learning models. Figure 2(a) shows
the experiment with no loss function. Figure 2(b) depicts the
L1 and L2 loss functions. Figure 2(c) illustrates the nonlinear
exponential loss function. Figure 2(d) combines the nonlinear
exponential loss function with the L1 and L2 loss functions.
Figure 2(e) presents the exponential moving average loss func-
tion. Figure 2(f) shows both the exponential moving average
loss function and the nonlinear loss function.

Based on these results, the hyperplane space defined by the
loss function may assume a narrow valley shape. This shape
allows the deep learning model to converge rapidly and reach
the optimal point.

Comparison of linear and nonlinear properties in deep
learning model optimization within loss functions: Accord-

Figure 1. Proposed method: (a) hybrid loss function case 1 and (b) hybrid loss function case 2.
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Figure 2. Visualization of used loss function: (a) no loss function,
(b) L1 and L2 loss functions, (c) nonlinear exponential loss function,
(d) nonlinear exponential loss function and L1/L2 loss functions, (e)
exponential moving average loss function, and (f) exponential moving
average loss function and nonlinear loss function.

ing to [9], the comparison between linear and nonlinear prop-
erties shows that nonlinear properties generally enhance deep
learning model performance. This enhancement is due to the
nonlinear properties being less sensitive and having fewer di-
vergence points.

Nonlinear dynamic properties: Traditional neural networks
are recognized as nonlinear systems, and numerous studies,
such as [10], have explored methods to optimize their nonlin-
earity. The dynamic programming methods discussed in [11]
were employed to manage deep learning model optimization
effectively. Incorporating nonlinear dynamic properties is con-
cluded to be an efficient approach for optimizing models within
nonlinear systems.

Reflecting nonlinear dynamic properties within such systems
proves to be an efficient approach for deep learning model
optimization.

4. Experiment Method

Pseudo code: The pseudo-code for applying the proposed
hybrid loss function to two cases is presented below. Algorithms
1 and 2 demonstrate the application of the proposed method for
training deep learning models.

Hybrid loss function experiment setting: Figure 3 illus-
trates the experimental method configuration. The experiment
comprised five stages. Step 0 involved the impact analysis
of seed values. Step 1 used the seed values to generate ini-
tial model values. The second stage involved employing fully

convolution network (FCN) and U-Net. Step 3 analyzed the
relationship between the loss and the loss function. Step 4
evaluated the prediction results of the deep learning model.

This experiment was applied to U-Net [12] and FCN [13] for
semantic segmentation. We conducted experiments on the pro-
posed method using Keras in an Ubuntu environment, recording
the average value over five iterations. Experiments with FCN
and U-Net were conducted using visual object classes (VOC)
and automatic target recognition (ATR) datasets for the image
segmentation task, employing cross-entropy loss. Results were
evaluated using dice similarity coefficient (DSC), F1-score, In-
tersection over Union (IOU), loss, precision, and recall. The
DSC measures the similarity of two images to evaluate the accu-
racy of the segmented image. The F1-score, the harmonic mean
of precision and recall, evaluates binary classification model
performance. IOU measures the overlap between predicted and
actual segmented regions, evaluating segmentation accuracy.
Loss indicates the difference between the prediction and actual
value of the deep learning model. Precision shows the percent-
age of correctly predicted positive classes, while recall indicates
the percentage of true-positive classes correctly identified by
the deep learning model. We analyzed the experiment results
using five seed values: 1, 250, 500, 777, and 999. The hybrid
loss function, where A and B denote the covariates, is presented
below.

Relation analysis: We employed five functions to analyze
the relationship between the loss and the loss function, specifi-
cally square root (Sqrt), rectified linear unit (ReLU) function,
exponential linear unit (eLU), Bi-ReLU, and Bi-eLU. Identi-
fying the significant effects of the loss function on the loss
during deep learning model optimization is crucial. The exper-

Algorithm 1. Hybrid loss function case 1.
while Epoch ̸= 0 do
Loss← Crossentropy loss function

+Nonlinear exponential lossfunction
+L1 lossfunction+ L2 lossfunction

Optimizationmodel using Loss error
end while

Algorithm 2. Hybrid loss function case 2.
while Epoch ̸= 0 do
Loss← Crossentropy loss function

+Exponentialmoving average
+Nonlinear exponential lossfunction

Optimizationmodel using Loss error
end while
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Figure 3. Visualization of experiment method configuration.

iment was conducted using these five functions: sqrt, ReLU,
eLU, Bi-ReLU, and Bi-eLU. These functions were applied to
four loss-function methods: exponential moving average with
a linear coefficient, exponential moving average with a convex
coefficient, hybrid v2 with a linear coefficient, and hybrid v2
with a convex coefficient. Our objective is to confirm the ef-
fectiveness of deep learning models in reflecting meaningful
information through an analysis of the relationship between
loss and existing loss functions.

Seed analysis: We assessed the loss function performance us-
ing five seed values. This evaluation is critical because, during
hyperparameter optimization, the initial settings significantly
influence the optimization outcome of deep learning models.
The experiment was conducted with five seed values: 1, 250,
500, 777, and 999. Our findings confirmed that the quality
expressed in the deep learning model is affected by the seed
value.

Impact analysis method of the proposed method: We an-
alyzed the relationship between the loss functions. Reflecting
meaningful information in the loss function is essential for opti-
mizing the deep learning model, as it promotes rapid converges
along the shortest path. Additionally, this approach prevents
deviations in the wrong direction.

To analyze the relationship between the covariates of the loss
function, two analyses were performed: convex and linear co-
efficients. Deep learning models typically exhibit hyperplanes
with convex properties. During optimization, the learning and
learned position oscillate. This analysis determines whether
the loss function should possess convex properties or whether
the deep learning model should incorporate linear properties to
enhance optimization.

Another analysis was conducted using five seed values with
a loss function. As the deep learning model was trained, the
initial distribution varied according to the seed value. Finally,
we aimed to confirm the stability of the training by analyzing

the loss function based on the initial state of the model.

To understand the influence of the hyperplane on the deep
learning model, we employed a contour map. This approach
visualizes the impact on the hyperplane shape on the deep
learning model. If the model is acquired stably, it indicates that
a broad area is achieved without complex contour patterns.

Additionally, a frequency visualization analysis using loss
errors was performed. Frequency analysis is challenging when
the results for real and fake images are highly similar. There-
fore, similar data were selected by analyzing the frequency of
occurrence. The loss error can be used to analyze the state of
the deep learning model by indicating a specific pattern of error
convergence or emission. Both frequency and spread analyses
were conducted.

Moreover, we conducted a spread analysis using the loss error.
If the loss is concentrated at a single value, the expressed points
cluster and appear more robustly compressed. This confirms
that the deep learning model exhibits consistent errors, with
similar errors recurring.

Combination L1 and L2 lossfunction

with convex coefficient

:= A ∗ L1 + (1−A) ∗ L2, (1)

Combination L1 and L2 lossfunction

with linear coefficient

:= A ∗ L1 +B ∗ L2, (2)

Nonlinear exponential lossfunction

with linear coefficient (static)

:= A ∗ L1e(1−A)∗L2, (3)

Exponential moving average lossfunction

with linear coefficient (dynamic)

:=

Step1 := A ∗ L1− (1−A) ∗ L1−B ∗ L2,
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Step2 := A ∗ Step1 +B ∗ L2, (4)

Exponential moving average lossfunction

with convex coefficient (dynamic)

:=

Step1 := A ∗ L1− (1−A) ∗ L1−B ∗ L2,

Step2 := A ∗ Step1 + ((1−A) ∗ L2), (5)

Hybrid v2 lossfunction

with convex coefficient

(static and dynamic)

:=

Step1 := A ∗ L1− (1−A) ∗ L1−B ∗ L2,

Step2 :=
√
A ∗ Step1 + ((1−A) ∗ L2)

+A ∗ L1e(1−A)∗L2, (6)

Hybrid v2 lossfunction

with linear coefficient

(static and dynamic)

:=

Step1 := A ∗ L1−B ∗ L1−B ∗ L2,

Step2 := A ∗ Step1 + (B ∗ L2)

+A ∗ L1eB∗L2, (7)

Hybrid v2 lossfunction

with linear coefficient adopted ReLU

(relation analysis using linear filtering)

:=

Step1 := A ∗ L1−B ∗ L1−B ∗ L2,

Step2 := ReLU(A ∗ Step1 + (B ∗ L2))

+A ∗ L1eB∗L2, (8)

Hybrid v2 lossfunction

with linear coefficient adopted Bi− eLU

(relation analysis using bipolar filtering)

:=

Step1 := A ∗ L1−B ∗ L1−B ∗ L2,

Step2 := eLU(A ∗ Step1 + (B ∗ L2)

− eLU(A ∗ Step1 + (B ∗ L2))

+A ∗ L1eB∗L2. (9)

The equation used in the experiment is as follows:

Eq. (1) denotes the convex combination of the L1 and L2 loss
functions, while Eq. (2) denotes their linear combination. These

formulations elucidate the convex and linear impacts on the
interplay between the L1 and L2 loss functions as demonstrated
in Eqs. (1) and (2).

Eq. (3) denotes the nonlinear exponential loss function,
which validates the static effect of this function.

Eq. (4) describes an exponential moving average with a
linear coefficient, whereas Eq. (5) involves a convex coefficient.
Both are nonlinear exponential loss functions, elucidating the
dynamic effects of convex and linear relationships on these
functions.

Eq. (6) outlines an exponential moving average and nonlinear
exponential loss function with a convex coefficient, and Eq. (7)
outlines the same but with a linear coefficient.

Eqs. (6) and (7), respectively, confirm the exponential mov-
ing average and nonlinear exponential loss functions, demon-
strating the static and dynamic effects of convex and linear
relationships.

Eq. (8) denotes the exponential moving average combined
with a nonlinear exponential loss function featuring a linear
coefficient employing ReLU. Eq. (9) denotes an exponential
moving average with a linear coefficient hybrid employing Bi-
eLU. Eqs. (8) and (9) signify exponential moving averages.
The experimental results are summarized as follows:

The combination of an exponential moving average with the
L1 and L2 loss functions is termed a hybrid loss function.

The combination of an exponential moving average with a
nonlinear exponential loss function is termed a hybrid v2 loss
function.

Table 1 presents a summary of the index utilized in the ex-
periment. The experiment involved 27 distinct loss function
equations. The rationale for the experiment design is as follows:
we investigate the impact of two terms on the optimization of
the deep learning model by analyzing the coefficients of the
loss functions. This analysis employs both linear and convex
coefficients for model optimization. Additionally, we examine
the trade-off relationship between these two terms and its effect
on the performance of the deep learning model.

The conventional method involves a straightforward linear
combination of the L1 and L2 loss functions. In contrast, the
nonlinear exponential loss function is designed to capture non-
linear properties rather than the characteristics of linear com-
binations in the learning process of the deep learning model.
Certain attributes are consistently reflected within the deep
learning model. The exponential moving average loss function
dynamically integrates information, including historical data,
in the loss function.
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Table 1. The index definition of hybrid loss function

Name Index A

None Experiment 1

Combination L1 and L2 loss function with convex coefficient Experiment 2

Combination L1 and L2 loss function with linear coefficient Experiment 3

Nonlinear exponential loss function with convex coefficient Experiment 4

Nonlinear exponential loss function with linear coefficient Experiment 5

Exponential hybrid loss function with convex coefficient Experiment 6

Exponential hybrid loss function with linear coefficient Experiment 7

Exponential moving average loss function with convex coefficient adopted no filter Experiment 8

Exponential moving average loss function with convex coefficient adopted ReLU Experiment 9

Exponential moving average loss function with convex coefficient adopted eLU Experiment 10

Exponential moving average loss function with convex coefficient adopted Bi-ReLU Experiment 11

Exponential moving average loss function with convex coefficient adopted Bi-eLU Experiment 12

Exponential moving average loss function with linear coefficient adopted no filter Experiment 13

Exponential moving average loss function with linear coefficient adopted ReLU Experiment 14

Exponential moving average loss function with linear coefficient adopted eLU Experiment 15

Exponential moving average loss function with linear coefficient adopted Bi-ReLU Experiment 16

Exponential moving average loss function with linear coefficient adopted Bi-eLU Experiment 17

Exponential hybrid v2 loss function with convex coefficient adopted no filter Experiment 18

Exponential hybrid v2 loss function with convex coefficient adopted ReLU Experiment 19

Exponential hybrid v2 loss function with convex coefficient adopted eLU Experiment 20

Exponential hybrid v2 loss function with convex coefficient adopted Bi-ReLU Experiment 21

Exponential hybrid v2 loss function with convex coefficient adopted Bi-eLU Experiment 22

Exponential hybrid v2 loss function with linear coefficient adopted no filter Experiment 23

Exponential hybrid v2 loss function with linear coefficient adopted ReLU Experiment 24

Exponential hybrid v2 loss function with linear coefficient adopted eLU Experiment 25

Exponential hybrid v2 loss function with linear coefficient adopted Bi-ReLU Experiment 26

Exponential hybrid v2 loss function with linear coefficient adopted Bi-eLU Experiment 27

By introducing a loss function that embodies fixed properties
alongside one that captures dynamic properties, we developed
and evaluated a heterogeneous loss function encompassing both
characteristics.

These two methods validated the impact of heterogeneous
feature loss functions on deep-learning model optimization and
performance.

We investigated the impact of two heterogeneous feature loss
functions on deep learning model loss. This analysis aimed to
enhance model learning by selectively filtering significant prop-
erties, as not all properties are effectively learned by the model.

The ReLU function, combined with linear filtering, was applied
to eliminate values below zero and linearly reflect values above
zero. This approach leverages the vanishing property of the
ReLU function to improve model performance.

Additionally, node filtering is applied to reflect only sparse in-
formation, optimizing the learning process of the deep learning
model by emphasizing meaningful information and eliminating
redundancy.
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Figure 4. Visualization of the analysis of the proposed method using contour maps of 6 different loss functions with balanced and unbalanced
input data: (a) existing experimental equation, (b) L1 and L2 loss function addition formulas, (c) nonlinear exponential loss function, (d)
nonlinear exponential loss function and linear combination L1 & L2 loss functions, (e) exponential moving average loss function, and (f)
exponential moving average loss function and nonlinear exponential loss function.

5. Experiment Result

Figure 4 presents the contour lines analysis, where the gener-
ated values are evaluated using the formula sin10(x)+cos(10+

y× x)× cos(x). For unbalanced values, x generated 40 values
ranging from 0 to 5, and y was analyzed with 40 values from 0
to 5, as shown in the top six of Figure 4. For balanced values, x
generated 40 values from -5 to 5, and y was analyzed with 40
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Figure 5. Visualization of the impact of 6 different loss functions on the frequency distribution of generated values with unbalanced and
balanced input data: (a) existing experimental equation, (b) L1 and L2 loss function addition formulas, (c) nonlinear exponential loss function,
(d) nonlinear exponential loss function and linear combination L1 & L2 loss functions, (e) exponential moving average loss function, and (f)
exponential moving average loss function and nonlinear exponential loss function

values from 0 to 5, as depicted in the bottom six of Figure 4.
Figure 4 illustrates the frequency of value occurrence as con-

tour lines for various experimental conditions: (a) the existing
experimental equation; (b) the experimental formula with L1
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Figure 6. Visualization of scatter plots using LogisticGroupLasso model to analyze the model and sparsity values of 6 different loss functions:
(a) existing experimental equation, (b) L1 and L2 loss function addition formulas, (c) nonlinear exponential loss function, (d) nonlinear
exponential loss function and linear combination L1 & L2 loss functions, (e) exponential moving average loss function, and (f) exponential
moving average loss function and nonlinear exponential loss function.

and L2 loss function addition; (c) the experimental formula with
the nonlinear exponential loss function; (d) the experimental
formula with the nonlinear exponential and linear combination
L1 and L2 loss functions; (e) the experimental formula with the
exponential moving average loss function, and (f) the experi-
mental formula with both the exponential moving average and
nonlinear exponential loss functions.

Figure 4 demonstrates that when the loss function is applied,
numerous zero values are generated compared to previous in-
stances. In Figure 4(b), non-zero values cluster in the upper
left and lower right, indicating a phenomenon that maximizes
the zero margin as non-zero values spread to the peripheries.
Additionally, Figure 4(c), 4(d), and 4(f) display contour lines
that may present local minima within the hyperplane space of
the neural network model. When zero values occurs frequently,
expanding the range of these local minima(indicated by the
contour line) or identifying an optimizable range increases the
information the deep learning model can learn, leading to im-
proved optimization. As shown in the results, this process
progresses to the branch.

Figure 4 presents an analysis of balanced and unbalanced
data generation. For balanced data, values near zero are more

clustered than the contour lines, suggesting multiple local min-
ima within the hyperplane of a neural network. Additionally,
when both positive and negative values are generated, the con-
tour lines appears as straight lines indicating that extreme values
form a more defined boundary compared to a soft boundary.

The analysis using the frequency of occurrence is depicted
in Figure 5, where each loss function method was applied to
the cross-entropy loss. For unbalanced values, x generated 40
values from 0 to 5, and y was analyzed using 40 values from 0
to 5. For balanced values, x generated 40 values from -5 to 5,
and y was analyzed using 40 values from -5 to 5. The resulting
values are illustrated in Figure 5. The upper panel shows the
case using unbalanced data, with generated values between 0
and 1, dominated by nine specific values. In Figure 5(c), 5(d),
and 5(f), the frequency of occurrence largely clusters at zero.
In Figure 5(a) and 5(e), the generated values are symmetrically
distributed around 0.5 on the x-axis with opposite signs. The
bottom panel shows the case using balanced data, with four
values generated on the x-axis. In Figure 5(a), and 5(e), the
generated values are symmetrically distributed around the y-
axis. In Figure 5(c), 5(d), and 5(f), the values cluster at the
bottom right.
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Finally, the results from the experimental formula were val-
idated by analyzing specific outcomes. This confirmed that
the deep learning model continuously learned from a uniform
set of values. Therefore, past research should have focused on
optimizing generalization by incorporating a variety of values
rather than continuously relying on specific ones.

The analysis employing the LogisticGroupLasso model is
depicted in Figure 6, which presents the outcomes derived from
this model. The x-axis denotes noisy probabilities, while the
y-axis represents noise-free probabilities. The resultant distri-
bution exhibits a convex function shape. Moreover, the degree
of clustering varied across different loss function methods. No-
tably, disparate loss function methods produced non-clustered
values at varying frequencies, where such non-clustered values
could be identified as outliers during the training process of the
deep learning model. These outliers potentially lead to subopti-
mal learning pathways. Hence, meticulously designing the loss
function to mitigate the occurrence of sparse values is crucial.

wnew = wold − a

(
A
∂L1

∂w
+ (1−A)

∂L2

∂w

)
, (10)

wnew = wold − a

(
A
∂L1

∂w
+B

∂L2

∂w

)
, (11)

wnew = wold − a

(
AL1e(1−A)L2(1−A)

∂L2

∂w

)
, (12)

wnew = wold − a

(
A

(
A
∂L1

∂w
− (1−A)

∂L1

∂w
−B

∂L2

∂w

)
+B

∂L2

∂w

)
, (13)

wnew = wold − a

(
A

(
A
∂L1

∂w
− (1−A)

∂L1

∂w
−B

∂L2

∂w

)
+(1−A)

∂L2

∂w

)
, (14)

wnew = wold − a

(
A

2
√
A · Step1 + (1−A) · L2

(
A
∂L1

∂w

−(1−A)
∂L1

∂w
−B

∂L2

∂w

)
+

(1−A)

2
√
A · Step1 + (1−A) · L2

∂L2

∂w

)
, (15)

wnew = wold

− a

(
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(
A
∂L1

∂w
−B

∂L1
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∂L2
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)
,

(16)

wnew = wold

− a

(
A · ∂ReLU(A · Step1 +B · L2)

∂w
· ∂Step1

∂w

Figure 7. Visualization of 3D surface for 9 equations: (a) Eq. (1), (b)
Eq. (2), (c) Eq. (3), (d) Eq. (4), (e) Eq. (5), (f) Eq. (6), (g) Eq. (7), (h)
Eq. (8), and (i) Eq. (9).

+B · ∂L2
∂w
· ∂ReLU(A · Step1 +B · L2)

∂w

)
, (17)

wnew = wold − a

(
A · ∂eLU(A · Step1 +B · L2)

∂w
· ∂Step1

∂w

+B · ∂L2
∂w
· ∂eLU(A · Step1 +B · L2)

∂w

)
. (18)

Eqs. (10) to (18) analyze the gradient descent of the equations
in Eqs. (1) through (9). Utilizing the expression w ← w−a ∂L

∂w ,
we obtained wnew from wold. Each weight-update formula aimed
to enhance the learning performance of the deep learning model
through a specific combination of the loss and activation func-
tions. Our findings indicate that the interplay of linear and
nonlinear coefficients, static and dynamic factors, and ReLU
and Bi-eLU activation functions can further refine the optimiza-
tion process of the deep learning model.

Figures 7 and 8 illustrate the equations utilized in the experi-
ment through 3D surface plots and heat maps. In Figures 7(a)
and 8(a) depict a smooth transition between L1 and L2 losses,
signifying a well-behaved loss function that smoothly interpo-
lates between L1 and L2 losses based on the value of A. This
smooth transition is crucial for optimization, as it mitigates
abrupt changes in the loss landscape. Figures 7(b) and 8(b)
demonstrate a linear relationship and exhibits a weighted com-
bination of L1 and L2 losses, providing flexibility in adjusting
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Figure 8. Visualization of heatmap for 9 equations: (a) Eq. (1), (b)
Eq. (2), (c) Eq. (3), (d) Eq. (4), (e) Eq. (5), (f) Eq. (6), (g) Eq. (7), (h)
Eq. (8), and (i) Eq. (9).

the influence of each component. Figures 7(c) and 8(c) reveal
exponential growth, indicating high sensitivity to changes in
L2, which can generate significant gradients beneficial for es-
caping flat regions in optimization, though it also poses a risk
of instability. Figures 7(d) and 8(d) display dynamic behavior
with a mix of linear terms, allowing for adaptive changes in
the loss function and enhancing optimization by focusing on
different components at various stages. Figures 7(e) and 8(e) re-
semble Figures 7(d) and 8(d) but with convex coefficients. The
application of convex coefficients aims to ensure stability and
smoother transitions in the loss landscape, which is essential for
consistent optimization. Figures 7(f)-7(i) and 8(f)-8(i) depict
the equations employed in hybrid loss functions. Figure 8(f)
illustrates a more complex landscape due to the hybrid nature
and exponential terms, capturing more intricate data patterns.
Figure 8(g) shows both linear combinations and exponential
growth, leveraging the strengths of both terms for balanced sta-
bility and responsiveness. Figure 8(h) and 8(i) pertain to ReLU
and Bi-eLU equations, respectively. Figure 8(h) exhibits nonlin-
earity and sparsity, aiding in handling nonlinearity and ensuring
sparsity in gradients, thus facilitating efficient optimization.
Figure 8(i) demonstrates the activation of Bi-eLU, revealing
complex nonlinear behavior that helps capture more intricate
data patterns, thereby providing a more nuanced optimization

landscape.

Qualitative analysis: Visualizing the effect of the nonlinear
exponential loss function weight for each loss function revealed
distinct decision boundary. The shape of these decision bound-
aries supports stable optimization in deep learning models. Our
findings indicate that a hybrid loss function, combining both
fixed and dynamic properties, can slightly alleviate optimization
challenges. However, when employing hybrid properties, the
model exhibited correlated properties that aided in optimization.
Conversely, performance of the model deteriorated when the
heterogeneous properties were ineffective in learning. Experi-
mental results confirm the importance of identifying an adaptive
loss function suitable for the deep learning model.

The experimental results of the first component, the hybrid
loss function, are as follows: The standard deviation is illus-
trated on a bar graph in Figure 9 to depict the dispersion degree
of each method. The loss exhibited the most stable error per-
formance when convex coefficients were utilized in hybrid v2,
reflecting both nonlinear static and nonlinear dynamic infor-
mation. Regarding deep learning model performance, hybrid
v1, which combines the exponential moving average with L1
and L2 loss functions, demonstrated the best performance. This
indicates that the deep learning model was trained stably and
achieved high performance by incorporating hybrid properties.
The reflection of nonlinear dynamic and static properties con-
firmed that the model could learn most stably and perform better
compared to existing loss function methods.

Consequently, the deep learning model achieved stable learn-
ing by incorporating nonlinear dynamic and static properties.
Our findings confirmed that reflecting nonlinear dynamics and
linear fixed properties led to superior performance compared to
existing loss function methods.

Table 2 presents the experimental performance of the pro-
posed method. The results in Table 2 indicate that the hybrid
loss function enhanced the segmentation performance of the
deep learning model by 0.1%. Regarding loss reduction, the
best experiment demonstrated an error decrease of 3% or more
compared to the previous one. The hybrid loss function v2
exhibited the lowest loss, attributed to the nonlinear fixed and
dynamic properties achieved through bi-directional nonlinear
filtering. This suggests that the nonlinear properties were ef-
fectively incorporated into the model learning process within a
consistent nonlinear environment.

Analysis of the relationship between loss and the loss func-
tion in Table 2 confirmed that the loss value is slightly higher
when simple addition is employed. This addition suggests that
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Figure 9. Visualization of comparison of the loss function methods: (a) loss values for different training epochs and (b) IOU values for
different training epochs.

the complexity of information increases through superposition,
resulting in a higher loss value. However, utilizing ReLU, eLU,
Bi-ReLU, and Bi-eLU to reflect the degree of the loss function
shows different effects. ReLU filtering reflects linear properties,
reducing the loss compared to conventional addition. Filtering
with eLU demonstrates that nonlinear properties are more stably
reflected than linear properties. Bi-activation was then applied
to learn by extracting essential properties through bipolar infor-
mation reflection. The Bi-ReLU linear filtering effect shows a
learning loss value similar to a single nonlinear filtering results.
Furthermore, it was confirmed that Bi-eLU presents a simple
linear effect when the nonlinear filtering effect is inadequate in
both directions but shows a lower error value when essential
properties are identified through nonlinear filtering.

Additionally, the performance of the loss function according
to the change in seed value was analyzed. The analysis indi-
cated that the performance of the loss function varied depending
on the initial seed occurrence, confirming the necessity for the
deep learning model to establish a stable initial state. Studying
a robust loss function that performs well even in this initial
state is essential. Hybrid test results showed better outcomes
when dynamically reflected properties were effectively mixed,
though not in all cases. To further develop the hybrid loss func-
tion, identifying an optimal combination of fixed and dynamic

properties is necessary. For Bi-eLU, the deletion of shared
information and nonlinear sparse information reflected in deep
learning model optimization was confirmed. The hybrid loss
function found a lower error and slightly improved performance
in the seed value experiment. Seed test results indicated that
performance varied significantly depending on the initial state
of the model, underscoring the need for robust loss function
studies in the initial model state.

In Figure 9, the bar graph visualizes the mean values from the
five-seed value experiments. The highest IOU test performance
and the lowest learning error rate were achieved by incorporat-
ing nonlinear static and dynamic properties. The application of
the activation function demonstrates a performance change as
significant features are integrated into the model. When eLU
and Bi-eLU, which reflect nonlinear properties, are applied,
heterogeneous nonlinear features exhibit low error rates and
maximum IOU performance in the deep learning model.

As shown in Table 2, similar performance metrics were ob-
served across the various experiments of the U-Net model. Met-
rics such as DSC, F1-score, and IOU were consistent across
experiments, indicating that the experimental conditions and
hyperparameter settings were comparable. However, there were
some variations in loss values between experiments. In the
initial experiments, loss values were above 1.0 but gradually de-
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Table 2. Experiment result of loss function using U-Net on ATR dataset with Seed 250

Loss function DSC F1-score IOU Loss Precision Recall

Experiment1 0.724 0.724 0.768 1.072 0.724 0.724

Experiment2 0.723 0.723 0.767 1.525 0.723 0.723

Experiment3 0.724 0.724 0.768 1.398 0.724 0.724

Experiment4 0.724 0.724 0.768 1.364 0.724 0.724

Experiment5 0.724 0.724 0.767 1.287 0.724 0.724

Experiment6 0.723 0.723 0.767 1.222 0.723 0.723

Experiment7 0.724 0.724 0.768 1.278 0.724 0.724

Experiment8 0.724 0.724 0.768 1.255 0.724 0.724

Experiment9 0.724 0.724 0.768 1.228 0.724 0.724

Experiment10 0.724 0.724 0.768 1.237 0.724 0.724

Experiment11 0.724 0.724 0.768 1.195 0.724 0.724

Experiment12 0.724 0.724 0.768 1.164 0.724 0.724

Experiment13 0.724 0.724 0.768 1.136 0.724 0.724

Experiment14 0.724 0.724 0.768 1.112 0.724 0.724

Experiment15 0.724 0.724 0.768 1.115 0.724 0.724

Experiment16 0.724 0.724 0.768 1.095 0.724 0.724

Experiment17 0.724 0.724 0.768 1.08 0.724 0.724

Experiment18 0.725 0.724 0.768 1.075 0.724 0.724

Experiment19 0.725 0.725 0.768 1.09 0.725 0.725

Experiment20 0.725 0.725 0.768 1.077 0.725 0.725

Experiment21 0.725 0.725 0.768 1.069 0.725 0.725

Experiment22 0.725 0.725 0.768 1.07 0.725 0.725

Experiment23 0.725 0.725 0.768 1.077 0.725 0.725

Experiment24 0.725 0.725 0.768 1.07 0.725 0.725

Experiment25 0.725 0.725 0.768 1.052 0.725 0.725

Experiment26 0.725 0.725 0.768 1.044 0.725 0.725

Experiment27 0.725 0.725 0.768 1.042 0.725 0.725

creased to below 1.0 in later experiments. This trend indicates
a reduction in loss as the deep learning model is trained. The
decrease in loss values was accompanied by improvements in
accuracy metrics such as DSC, F1-score, and IOU. Thus, as the
deep learning model training progressed, loss decreased and
segmentation performance improved, which can be attributed
to the progress of the model training.

The experimental results summarized the performance of
various loss function as follows: no existing loss function <

linear combination of L1 and L2 loss functions < exponen-
tial moving average to nonlinear exponential loss function <

heterogeneous nonlinear loss function. It was confirmed that

incorporating nonlinear properties into deep learning models
enhances learning and test performance.

6. Conclusion

We proposed a novel hybrid nonlinear loss function technique
to encapsulate the semantic fixed and dynamic properties of a
deep learning model during training. The effectiveness of the
proposed method was demonstrated using five methods of anal-
ysis. Further analysis examined the relationship between the
proposed loss function and existing loss functions, considering
the reflection of linear and nonlinear properties on the covari-
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ate coefficients of loss functions. Visualization and gradient
descent analysis of the applied loss function were conducted,
along with an assessment of the effect of seed value on hyper-
parameter optimization. Consequently, the results indicate that
the proposed technique facilitated reliable convergence and op-
timization of the deep learning model, fully reflecting static and
dynamic characteristics. Analysis of the relationship between
the proposed and existing loss functions that only meaningful
information must be filtered. Additionally, seed value analysis
confirmed a slight increase in deviation; however, the proposed
technique demonstrated greater robustness to changes due to
small standard deviations compared to existing methods.

In future studies, the energy functions of the loss function
will be defined to visualize their effects on model training. Ad-
ditionally, visualization methods should be employed to identify
optimal points by illustrating possible relationships within the
model. The learning direction should also be optimized to filter
and output only meaningful information, visualizing the com-
plexity between information derived from loss and optimization
areas.
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