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ABSTRACT Jump rope exercise requires a fast tempo and breathing, which often leads to the problem
of users forgetting their jump count during the workout. To address this issue, we propose a jump rope
exercise assistance program that recognizes the user’s jump rope motions and analyzes the impact of joint
coordinates on these motions. The proposed solution extracts frame-by-frame joint coordinate data from
jump rope performance videos. It then utilizes artificial intelligence models to recognize jump rope motions
andmeasure the jump count throughmotion recognition.We employed fivemachine learningmodels and two
deep learning models to validate the jump rope motion recognition and count measurement. We analyzed the
joint coordinates significantly influencing each jump rope motion using SHAP. Furthermore, we used Odds
Ratios to analyze the jump rope motion occurrence probability based on joint coordinate values. Through
these methods, we confirmed that the proposed solution effectively performs jump rope motion recognition
and joint coordinate impact analysis for jump rope motions.

INDEX TERMS Exercise assistance program, artificial intelligence, jump rope recognition, jump rope factor
analysis, jump rope odd ratio.

I. INTRODUCTION
Jump rope has been scientifically proven to provide exercise
benefits comparable to aerobics. It is a sport that enhances
motor skills such as strength, speed, agility, coordination,
timing, and rhythmic sense while promoting overall physical
health [1]. Moreover, it is a versatile sport that can be
conducted regardless of location, number of participants,
or gender, making it suitable for leisure activities, individual
or group exercises, and recreational or entertainment pur-
poses. Jump rope is easily accessible to anyone because it is
easy to obtain equipment and does not require special attire
or facilities. Additionally, since jump rope does not involve
sudden movements or collisions with other players, the risk
of serious injury is extremely low, a significant advantage of
this exercise form [2].
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While jump rope is a sport that involves the repetitive
action of turning a rope and jumping, it is one of the high
intensity aerobic exercises that aid in weight loss [1]. For
this reason, many individuals have been contacted with jump
rope from childhood, and it is not uncommon to find adults
performing jump rope for aesthetic purposes.

Because jump rope requires fast tempo and breathing, it is
often not easy to accurately count the number of jumps while
focusing on fast movements. Furthermore, as one engages
in jump rope for extended periods, the motion becomes
automated, making it increasingly difficult to consciously
count the number of jumps. Also, as one engages in jump
rope for extended periods, the motion becomes automated,
making it increasingly difficult to consciously keep track
of the count. For this reason, individuals often experience
difficulty in maintaining an accurate tally of their jumps.
When individuals are unable to accurately count the number
of jumps during jump rope, the following issues may arise.
Firstly, there is a reduction in exercise effectiveness. Without
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precise knowledge of the appropriate number of jumps
for oneself, it becomes challenging to properly adjust the
intensity and duration of the exercise. Secondly, there is an
increased risk of injury. Failure to accurately determine the
suitable number of jumps can lead to excessive exercise,
potentially elevating the risk of injury. Thirdly, there is a
decrease in motivation due to difficulties in maintaining
accurate records. The inability to precisely record one’s
jump count may result in diminished motivation for exercise.
To address these issues, this study proposes a program that
utilizes video analysis methods to extract frame-by-frame
joint coordinate data from jump rope performance videos
and measures the jump count. Video analysis is cost-effective
and applicable in various exercise environments without the
need for equipment like smartwatches. It allows for precise
measurement and analysis of jump rope movements, helping
users effectively understand their exercise patterns. Previous
studies have proposed various approaches for recognizing
athletic movements; however, many of these approaches do
not provide real-time feedback or have limitations in applica-
bility across diverse environments. These limitations include
a lack of real-time feedback and restricted applicability in
various settings. In consideration of these challenges, this
study focuses on recognizing each jump rope movement
through video analysis and analyzing the impact of joint
coordinates on these movements. The contributions of this
paper are as follows:

• We propose an assistive program for jump rope exercises
that recognizes the user’s jump rope movements and
analyzes the impact of joint coordinates on these
movements.

• To recognize jump rope movements and measure the
number of jumps, we conducted validation using five
machine learning models and two deep learning models.

• We enhanced the accuracy of jump count measurements
by applying amoving average technique to reduce noise,
resulting in smoother and more reliable predictions.

• We analyzed the joint coordinates that influence
each jump rope movement using SHAP. Additionally,
we used Odds Ratio analysis to determine which joint
coordinate values increase the probability of executing
jump rope movements.

• We confirmed that the proposed solution effectively
performs the recognition of jump movements and
the analysis of joint coordinate influences on these
movements.

The remainder of this paper is structured as follows.
Section II explains the background theory used for measuring
the number of jump repetitions. Section III describes previous
research similar to our proposed jump rope assistive solution
for jump rope exercises. Section IV describes our proposed
method, including information on the dataset and models
and analysis techniques used. Section V describes the
experimental methodology, including evaluation metrics and
model training. Section VI and VII describe the experimental
results and discussion, respectively. Finally, Section VIII

concludes the paper by summarizing our findings and
contributions.

II. BACKGROUND THEORY
Openpose is a technique within the field of Human Pose
Estimation that accurately predicts a person’s body, face, and
finger joints using only a single camera. This technology is
designating key points for joints and critical body parts from
an image of a person and estimating the positions of body
parts, facial features, and finger joints by identifying these
key points in the human image [3]. Before openpose, a Top-
Down approach was employed, which first detects humans
and then repeatedly identifies the joint key points of the
detected humans. Openpose employs a Bottom-Up approach
that operates without the need for repetitive processing.
The Bottom-Up approach first estimates all joint key points
present in the body and then groups these key points into
specific poses or the pose of a single person. It is easy to apply
in real time because it does not go through the process of
detecting people first. Recently, the One-Shot method, which
is an evolution of the Bottom-Up method, was proposed.
The One-Shot method is a method of predicting the distance
between each joint from the center based on the position of
the center. It has the advantage of being a very fast inference
speed because it does not require a grouping process that
requires optimization [4].
CNN models provided by Openpose include Body25,

COCO, and MPII. Body25 has 25 output joints, COCO has
18 output joints, and MPII has 15 output joints. There is a
difference in the number of joints extracted between each
model.

III. RELATED WORK
Various methods are used to measure the number of jumps
performed. There are two methods: measuring method
the number of jumps performed using a smartwatch and
measuring method the number of jumps performed using a
count jump rope.

Most smartwatches use accelerometer and gyroscope
sensors to measure the number of jumps performed [5],
[6], [7]. The accelerometer measures the acceleration of the
device to which the sensor is attached, and the gyroscope
sensor measures the rotation speed of the device to which the
sensor is attached. During the jump rope activity, when the
arms go down, the acceleration increases significantly under
the influence of gravity, and when the arms go up again, the
acceleration decreases due to gravity. The number of jumps
performed is measured by analyzing the acceleration change
pattern of the device measured using an accelerometer.
Gyroscope sensors detect angular velocity, that is, rotational
speed and direction of rotation. Each time the arm rotates
during a jump rope activity, the number of times the arm
rotates is calculated based on the rotation speed and direction
of rotation to measure the number of jumps performed. Count
jump rope measures the number of jumps performed by
embedding a gear-like sensing device in the handle and then
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increasing the counter on the handle by 1 by turning the gear
as the rope rotates.

Kim et al. [8] proposed a motion similarity measurement
program through skeleton image binarization. To calculate
the overlap range, they extracted the skeleton images frame
by frame from the input user’s exercise image and reference
image, and then converted them to a binary image. Afterward,
operation processing is performed on the reference image
converted to a binary image and the user’s exercise image,
and the accuracy of the exercise posture is calculated based
on the overlapping range of the reference image and the user’s
exercise image and provided to the user, allowing the user to
exercise in the correct posture.

Kim et al. [9] proposed a program that uses the Unet model
and open poses to find areas that require exercise posture
correction and provide them to the user. They used the user’s
exercise video as input to the Openpose model to extract key
points and then used them as input to the exercise posture
analysis model using the U-Net deep learning architecture.
Afterward, the angles between key points such as upper
body position, elbow angle, arm position, and posture
completeness are calculated and compared with the reference
image to find areas requiring posture correction and provide
the information to the user. The conclusion was drawn that
the user’s exercise posture can be recognized and corrected
using only the Unet model and openpose.

Choi et al. [10] proposed a deep learning-based algorithm
that collects user exercise data through the IMU sensor
built into the hearing device and uses it to predict exercise
type and number of repetitions. To improve the prediction
performance of the proposed algorithm, data augmentation
techniques such as noise injection, timewarping, and split and
merge were applied to the collected sensor time series data.
The experiment compared performance in three scenarios:
without augmentation techniques, with each augmentation
technique applied individually, and with all augmentation
techniques experimental results applied together. The con-
firmed that the highest performance was achieved when all
three augmentation techniques were applied to the sensor
time series data.

Lee et al. [11] proposed an algorithm that evaluates the
exercise movement state and detects incorrect movement
using only Openpose. They extracted a total of 50 coordinates
using the Body25 model, which extracts 25 joint keypoints.
The experiment was conducted in amanner that compared the
joint angle information obtained from these coordinates with
the predetermined coordinate ranges in real-time. The exper-
imental results concluded that most exercise states could
be accurately assessed, and incorrect exercise movements
detected, using only the x and y coordinates obtained from
video detection.

Previous studies have proposed various approaches for rec-
ognizing athletic movements, but they have some limitations.
Kim et al. evaluated the accuracy of exercise posture through
skeleton image binarization; however, this method does not
allow for real-time analysis and does not provide immediate

feedback to the user. In the study by Choi et al., an IMU
sensor was used to predict exercise type and repetition counts.
Still, the necessity of sensor equipment incurs additional costs
and limits applicability in various exercise environments.
Lee et al. utilized OpenPose to assess exercise status, yet
this also does not provide real-time feedback and faces
challenges in detecting incorrect movements. Thus, existing
research presents challenges in delivering real-time feedback,
incurs additional costs, and is limited in applicability across
different exercise settings. These issues highlight the need for
alternative approaches that can effectively recognize athletic
movements while addressing these limitations.

IV. PROPOSED METHODOLOGY
We propose a jump rope motion assistance solution that
recognizes the user’s jump rope motion and analyzes the
effect of joint coordinates on the jump rope performance.

The overall system structure of the proposed program
is depicted in Fig. 1. The proposed jump rope exercise
assistance program first collects videos of two types of jump
rope movements (single jump and double jump) performed
by ten individual users. It then utilizes the MPII model of the
OpenPose library to extract joint coordinates frame by frame
from the collected videos. During this process, the extracted
joint coordinate data from each frame is saved in CSV format,
with the last column of each CSV file labeled as 0 when the
foot is on the ground and as 1 when the foot is in the air. Min-
Max scaling is applied to the extracted joint coordinate data,
and missing values are replaced with the average of the joint
coordinates from the previous and next frames to maintain
data continuity. Afterward, Pearson correlation analysis is
conducted to examine the correlation of each joint coordinate
with the jump rope movements.

To recognize jump rope movements and measure the
number of repetitions, we train and evaluate a total of
seven classification models: Random Forest, Extra Trees,
CatBoost, LightGBM, XGBoost, LSTM, and Transformer.
The performance of each model is assessed comprehensively
based on accuracy, precision, recall, F1 score, AUROC, and
average precision.

The number of jump rope repetitions is counted each time
the label value transitions from 0 to 1. The distribution of
label values typically exhibits a sequence where a series of
0s and 1s appear repeatedly. Consequently, even a single
noise introduced in the predicted values can significantly
alter the count of jump rope repetitions. To address this
issue, we propose applying the moving average technique
to the predicted values to reduce noise and enhance the
accuracy of the results. The process of applying the moving
average is visualized in Fig. 2. After applying a moving
average with a window size of 5 to the model’s predictions,
rounding is performed on each value to obtain integer values
of either 0 or 1. This process reduces the noise in the jump
count predictions of the model, where label values appear
consecutively as 0 or 1, thereby improving the accuracy of
the jump count prediction. The moving average is computed
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FIGURE 1. Our proposal.

using the following equation:

MA(y,M ) = round

(
1
M

M−1∑
i=0

yt−i

)
(1)

In equation (1), yt represents the prediction at time t ,
and M denotes the window size. By applying this method,
we can smooth the prediction results, allowing for a more
accurate estimation of the number of jump rope repetitions.
This equation computes the moving average by averaging the
most recent M predictions and replacing the corresponding
M values with the rounded average. This process reduces
fluctuations in the prediction values and provides a more
stable estimate.

Additionally, evaluation metrics such as ROC curves,
PR curves, confusion matrices, and visualizations of the
model’s prediction results are included to analyze the model’s
performance from multiple perspectives. Finally, we perform
an odds ratio analysis for each joint coordinate to compare
the probabilities of the foot being on the ground (0) and in
the air (1) during jump rope movements. Moreover, SHAP
analysis is conducted to interpret the prediction results of
the best-performing model and analyze the impact of joint
coordinates on jump rope performance.

V. EXPERIMENTAL METHODOLOGY
Wewas conducted under conditions that did not require ethics
approval. The study was conducted on human participants,
and all participants gave verbal consent after the purpose and
procedures of the study were fully explained. The data used

in the study was used for analysis by extracting only the joint
coordinates from the participants’ rope jumping exercises,
no personally identifiable information was collected, and the
videos used in the experiment were safely deleted to protect
personal information. Considering the differences in jump
periods and movements among the jump rope performers,
we recruited 10 performers and directly recorded the videos
to collect data for training. Each performer completed 3, 5,
7, 9, and 11 repetitions of both single and double types of
jumps, resulting in a total of 100 jump rope performance
videos. We extracted joint coordinate data for each frame
from the jump rope performance video using theMPII model.
We extracted joint coordinate data for each frame from a total
of 100 jump rope performance videos taken by 10 motion
performers, each of whichwas saved as a CSVfile. As a result
of the extraction, a CSV file was generated that stored a total
of 100 joint coordinate data, 10 per person performing the
jump rope motion. For each jump rope performance video,
an average of about 150 frames were extracted in proportion
to the number of jump performances. All joint coordinate data
values of parts where the jump rope was not performed, such
as before starting and after ending the jump rope, or parts
that could not be performed in the middle, were removed and
processed to make it suitable for use. Additionally, to use the
data as training input, the point when the foot touches the
ground was labeled as 0, while other sections were labeled
as 1, and the data was added in the last column of each CSV
file. The labeled CSV file image is depicted in Fig. 2.
Missing values that occurred during the extraction of

joint coordinate data for each frame were replaced with
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FIGURE 2. Labeling example for the jump rope dataset.

the average of the previous and next frames’ values for
the corresponding joint. Additionally, Min-Max Scaling was
applied to normalize the joint coordinate data between
0 and 1, ensuring that no feature dominated the training
process. The 100 joint coordinate data CSV files were
split 6:2:2 for training, validation, and testing. During this
process, shuffle was not applied to preserve the time-series
characteristics of the dataset. Finally, the divided CSV files
were merged for training.

We calculated the Pearson correlation coefficient to ana-
lyze the relationships between joint coordinates during jump
rope execution. This analysis allowed us to quantitatively
assess the impact of the movement of specific joints on
other joints. The Pearson correlation coefficient is suitable
for measuring the linear relationship between two variables
and is particularly useful for the joint coordinates of
jump rope movements, which typically represent continuous
values. We focused on calculating the correlation coefficients
for each pair of joint coordinates to identify significant
linear relationships among continuous variables. The Pearson
correlation coefficient takes values between −1 and 1, where
values close to −1 indicate a negative correlation, values
close to 1 indicate a positive correlation, and values close
to 0 indicate little to no correlation [12]. Additionally, this
analysis was performed separately for single and double
jump rope data within the training dataset, providing valuable
insights for a clearer understanding of how the movement of
specific joints affects the movements of other joints.

To analyze joint coordinate data extracted from jump rope
performance videos, we employ five tree-based machine
learning models including Random Forest, Extremely Ran-
domized Trees (Extra Trees), Categorical Boosting (Cat
Boost), Light Gradient Boosting Machine (Light GBM), and
Extreme Gradient Boosting (XG Boost), as well as two
deep learning models, Long Short-Term Memory (LSTM)
and Transformer. Tree-based models are well-suited for
handling structured data and perform excellently even with
high-dimensional datasets. In particular, tree-based ensemble
methods effectively capture nonlinear relationships and
interactions between variables [16], [17]. Conversely, LSTM

and Transformer models excel at capturing sequences and
long-term dependencies, demonstrating high performance
with time-series data or data with temporal structures [18],
[19]. For these reasons, we have determined that these
models are appropriate for analyzing joint coordinate data
extracted from jump rope performance videos and use them
for predicting key metrics related to jump rope execution.

Random Forest is a method that improves prediction
performance by aggregating multiple decision trees. Each
tree is generated using a set of variables through bootstrap
sampling and feature bagging. The final prediction result is
obtained by averaging or voting on the predictions of all
trees. This approach is effective in preventing overfitting and
enhancing the generalization performance of the model [13].
Extra Trees is an ensemble method similar to Random

Forest but includes more randomness in the model training
process. While Random Forest finds the optimal split at each
node, Extra Trees uses randomly chosen split criteria to build
the trees. This may slightly increase the model’s bias but
reduces variance, which helps in preventing overfitting [14].
Cat Boost is a gradient boosting library developed by Yan-

dex that effectively handles categorical data. The algorithm
adopted an Ordered Boosting technique to prevent overfit-
ting and enhance the model’s generalization performance.
Additionally, CatBoost provides optimized implementations
for efficient training and prediction, demonstrating excel-
lent performance even on large datasets and complex
problems [15].

Light GBM is a Gradient Boosting technique developed
by Microsoft, designed to work efficiently on large-scale
data and in high-dimensional spaces. Unlike GBM and
XG Boost, which use a level-wise approach, Light GBM
employs a leaf-wise approach, splitting the leaf node with
the maximum loss to create deep and asymmetric trees.
It also significantly accelerates the training rate by using
techniques like Gradient-based One-Side Sampling(GOSS)
and Exclusive Feature Bundling (EFB) [16].
XG Boost enhances the efficiency and performance of

Gradient Boosting by refining the algorithm and optimizing
system design. It improves training speed and the model’s
generalization performance through regularization, parallel
processing, and pruning with a specified maximum depth.
However, it has limitations, such as high memory usage and
lower performance on imbalanced data [17].

The LSTM model is a type of recurrent neural network
(RNN) designed to address the long-term dependency
problem that occurs when dealing with sequence data. RNNs
use information from previous time steps to make predictions
for the next time steps. However, in long sequences, the
information from earlier time steps tends to diminish over
time, leading to the vanishing gradient problem, which
makes learning difficult. The LSTM model overcomes this
issue by introducing a structure with a cell state and gates,
allowing it to selectively retain or forget information. This
enables LSTM to effectively learn from long sequences while
preserving important information. As a result, LSTM is
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widely used in various fields such as time series forecasting,
natural language processing, and speech recognition [18].

The Transformer model is an artificial neural network
designed to handle sequential data, but unlike traditional
RNNs or LSTM models, it does not require sequential
processing and can handle data in parallel. This greatly
improves training speed, making it particularly advanta-
geous for working with long sequences. The core of
the Transformer model is the self-attention mechanism,
which simultaneously considers the relationships between
all elements in a sequence to better understand the context.
Due to these features, the Transformer model is widely used
in various fields such as time series forecasting, natural
language processing, and machine translation [19]. For
the five machine learning models, we tuned the optimal
hyperparameters using grid search. During the training of
the LSTM model, two LSTM layers and two dropout
layers were used, and a dense layer was applied as the
output layer. For the binary classification task, the Sigmoid
function was chosen as the activation function for the
output layer. We used the Adam optimizer and employed
binary cross-entropy as the loss function. The learning rate
was set to 0.001, and the number of epochs was set to
100. The Transformer model consists of two transformer
blocks, with the Sigmoid function also used as the activation
function for the output layer. Dropout rates of 0.25 and
0.4 were applied to the multi-head attention and MLP layers,
respectively. The optimizer used was Adam, and the loss
function selected was binary cross-entropy. The learning rate
was set to 0.001, with a batch size of 32 and 100 epochs for
training.

Performance evaluation was conducted by visualizing
Accuracy, Precision, Recall, F1 Score, AUROC, and Average
Precision. The equations for each performance evaluation
metric are as follows.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(2)

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

F1 Score = 2 ×
Precision × Recall
Precision + Recall

(5)

AUROC =

∫ 1

0
TPR(x) d(FPR(x)) (6)

AP =

∑
n

(Rn − Rn−1)Pn (7)

In the above Equation (2)-(7), TP is True Positive, meaning
that the model correctly classifies data that is positive as pos-
itive. TN is True Negative, meaning that the model correctly
classified data that is actually negative as negative. FP is False
Positive, meaning that the model incorrectly classified data
that is actually negative as positive. FN is False Negative,
meaning that the model incorrectly classifies data that is
actually positive as negative. Equation (2) represents the

proportion of correctly predicted instances across the entire
dataset. Accuracy is an overall performance metric for the
model, but it has the limitation of not providing an accurate
evaluation when there is an imbalance in class distributions.
Equation (3) represents the proportion of what the model
predicts as True that is actually True. High precision means
that most of the data predicted by themodel as True is actually
True. Equation (4) represents the ratio of data predicted as
True by the model among data that is actually True. A higher
recall means that the model is better at identifying data
that is actually true. Equation (5) represents the F1 Score,
which is calculated as the harmonic mean of Precision and
Recall. It serves as a comprehensive performance metric
that balances both Precision and Recall. The F1 Score is
particularly useful for evaluating model performance on
imbalanced datasets. In Equation (6), TPR (True Positive
Rate) is equivalent to Recall. FPR (False Positive Rate)
indicates the proportion of actual negative cases that are
incorrectly classified as positive by the model. The ROC
Curve illustrates the relationship between TPR and FPR.
The AUROC represents the area under the ROC Curve and
reflects the overall performance of themodel. In Equation (7),
Pnrepresents the Precision at the n-th threshold, and Rn
represents the Recall at the n-th threshold. Average Precision
indicates the area under the Precision-Recall curve and is
calculated using Precision and Recall values at multiple
thresholds. A higher AP value indicates that the model
performs well in predicting the positive class across various
thresholds.

The number of jumps performed is measured by counting
each time the label value changes from 0 to 1. However,
if noise occurs in the model’s predicted values, a large
error occurs in the process of measuring the number of
jumps performed. To solve this problem, the number of
jump repetitions performed by applying the moving average
method was predicted. Moving average is a technique used
to reduce the volatility of time series data and identify
trends more clearly. Moving average works by calculating the
average in a specific section of data and reducing noise in the
predicted value.

The odds ratio analysis is a statistical method that
compares the incidence rates between two groups to evaluate
the likelihood of a specific event occurring [20]. To evaluate
the impact of joint coordinates on foot position during jump
rope performance, we conducted an odds ratio analysis
using a logistic regression model. We constructed a dataset
by labeling the foot position based on joint coordinate
data, where the label was set to 0 when the foot was on
the ground and 1 when it was in the air. This approach
allowed us to compare the incidence rates between the two
states and assess the likelihood of the foot being in the
air or on the ground. In the logistic regression model, the
dependent variable was the foot position (0 or 1), while
the independent variables were the joint coordinate data.
After constructing the model, we extracted the odds ratios
based on the regression coefficients, enabling us to analyze
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TABLE 1. Summary of mean values and standard deviations by label in the jump rope dataset.

the impact of each joint coordinate on foot position. The
statistical significance of the results was evaluated using
p-values. This evaluation provides valuable insights into how
joint coordinates influence foot positioning during jump rope
movements, which may improve the accuracy and efficiency
of the exercise.

We conducted SHapley Additive exPlanations (SHAP)
analysis to interpret the predictions of our best-performing
model and to determine how much each joint coordinate
contributed to these predictions. SHAP values quantify the
impact of each feature, providing insights into which joint
coordinates are most influential in determining jump rope
execution performance. The summary plot displays the
SHAP values for the 15 features that contribute the most
to the model’s predictions, with the absolute value of the
SHAP value indicating feature importance. The color of
the dots in the plot reflects the magnitude of the feature
values, aiding in the understanding of each feature’s impact.
Additionally, the force plot visualizes SHAP values for
specific data points, illustrating how each feature influences
themodel’s predictions. In this plot, positive SHAP values are
represented in red on the left, while negative values are shown
in blue on the right, with the color intensity correlating to the
magnitude of the feature values. This comprehensive analysis
enhances our understanding of the factors affecting jump rope
performance [21].

VI. EXPERIMENTAL RESULTS
We conducted a descriptive statistical analysis to evaluate
whether there are statistically significant differences among
the variables across classes, calculating p-values to assess
the differences between groups. This process allowed us
to confirm the mean, standard deviation, and statistical
significance of the differences for each variable between the
two groups. We determined that a variable had a statistically
significant difference between the groups if the p-value was
less than 0.05. As a result, all variables, except for the
X coordinates of the left hip and the left elbow in the Double
type, showed statistically significant differences between the
two groups. The results are shown in Table 1, where the
n indicates the number of frames corresponding to each class.

The results of the Pearson correlation analysis between
joint coordinate data are presented in Table 2. The top 10
combinations with the highest positive correlations for both
Single and Double types were visualized. The analysis
revealed a strong positive correlation, with Pearson corre-
lation coefficients close to 1, among the Y coordinates of
the head, neck, chest, shoulders, wrists, hips, and elbows.
The p-value indicates the probability that the correlation
coefficient was observed by chance, and all the p-values for
the correlation coefficients presented in the table were less
than 0.001, confirming that the correlations are statistically
significant and not due to random chance.
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TABLE 2. Comparing pearson’s correlation coefficients for single and double types.

TABLE 3. Comparing the performance of classification models.

FIGURE 3. Precision-Recall curves for single and double types across seven models, (a) Single type, (b) Double type.

We used five tree-based machine learning models and two
deep learning models to classify the foot’s position using
joint coordinate data. The performance measurement results
for the test data are presented in Table 3. We conducted
separate training for both Single type and Double type,
using Accuracy, Precision, Recall, F1 score, AUROC, and

AP as evaluation metrics. The comprehensive evaluation of
the performance metrics showed that the Transformer model
exhibited the best performance across all five evaluation
metrics for Single type, making it the most suitable model for
Single type measurement. For Double type, the LightGBM
model demonstrated the best performance in three evaluation
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FIGURE 4. Receiver operating characteristic curves for single and double types across seven models, (a) Single type, (b) Double type.

FIGURE 5. Confusion matrices for the best performing models, (a) Transformer for Single Type and (b) Light GBM for Double Type.

metrics, confirming it as the most suitable model for Double
type measurement. In addition to these two models, overall
performance was also satisfactory.

Figure 3 visualizes the Precision-Recall Curves for the
seven models trained on the training data, showing the
relationship between precision and recall for each model.
Figure 4 displays the Receiver Operating Characteristic
Curves for the same models, illustrating the relationship
between the True Positive Rate and the False Positive Rate
for each model.

Figure 5 visualizes the confusion matrices for the test
data, showing the results of the Transformer model, which
demonstrated the best performance for the Single type, and

the Light GBM model, which showed the best performance
for the Double type. The confusion matrix is an important
metric for evaluating the classification performance of
each model, representing the accurate classification results,
including true positives, false positives, true negatives, and
false negatives. The confusion matrices for the remaining
models are visualized in Supplementary Material Fig. 1.

To assess the change in performance resulting from the
application of the moving average, we visualized the model’s
prediction results before and after applying the technique.
As shown in Fig. 6, the model initially predicted the number
of jumps to be 13, whereas after applying themoving average,
the prediction was accurately adjusted to 7.
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FIGURE 6. Comparison before and after applying moving average, (a) Before applying moving average and (b) After applying moving average.

TABLE 4. Significant odds ratios and 95% confidence intervals from logistic regression analysis for ten variables.

FIGURE 7. Visualization of predicted and actual values using transformer and LightGBM Models, (a) Transformer for Single Type, (b) LightGBM for
Double Type.

To verify whether the jump rope count measurement
was accurately performed, we visualized the predictions of
each model using the Transformer, which showed the best
performance for the Single type, and LightGBM, which
demonstrated the best performance for the Double type.

This was done for Performer B, who performed the Single
type 11 times, and Performer C, who performed the Double
type 11 times, as shown in Fig. 7. Upon examining the
figure, we can see that both the Single type and Double
type predictions exhibited slight temporal errors in the
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FIGURE 8. Summary plots for the transformer model for single type and the light GBM model for double type, (a) Transformer for Single Type, (b) Light
GBM for Double Type.

FIGURE 9. Force plots for the transformer model for single type and the light GBM model for double type, (a) Transformer for Single Type, (b) Light GBM
for Double Type.

jump rope actions; however, the predicted count of 11 was
accurate. Some of the prediction results for each performer
using the seven models are visualized in Supplementary
Material Fig. 2.

The results of the odds ratio analysis, as shown in Table 4,
indicated that the single type, the X and Y coordinates of the
left wrist, and the X coordinate of the left ankle increased
the probability of the foot being airborne. Conversely, the
X coordinate of the left shoulder and the X coordinate
of the right elbow were found to increase the probability
of the foot being on the ground, indicating that the foot’s
position may vary depending on the relative positions of
the joints. In the case of the Double type, the coordinates
of the neck and the X coordinate of the right shoulder
increased the probability of the foot being airborne, while the
Y coordinates of the right elbow and right shoulder increased

the probability of the foot being on the ground. All p-values
were below 0.002, confirming the statistical significance
of the relationships and emphasizing that the odds ratios
were not due to chance [20]. These findings highlight the
importance of considering specific joint coordinates in the
development of models for predicting foot position in future
research.

We performed SHAP analysis on the Transformer model,
which showed the best performance for the Single type, and
the Light GBM model, which showed the best performance
for the Double type. The results are visualized in the
Summary plot in Fig. 8 and the Force Plot in Fig. 9,
respectively.

In Figure 8, the Summary plot reveals that, for the Single
type, the coordinates of the chest, right hip Y-coordinate,
left ankle Y-coordinate, right shoulder X-coordinate, and
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left wrist Y-coordinate significantly contribute to the
classification of foot position. For the Double type, the
left ankle Y-coordinate, chest, right ankle Y-coordinate,
right knee Y-coordinate, and left wrist Y-coordinate also
play important roles. In Figure 9, the Force plot illustrates
the contributions of joint coordinates when the foot is in
contact with the ground. In the Single type, the left hip Y-
coordinate, right ankle X-coordinate, chest, and left ankle
X-coordinate contribute to reducing the model’s prediction
value to 0. In contrast, for the Double type, the left wrist Y-
coordinate, right ankle Y-coordinate, right knee Y-coordinate,
and shoulder coordinates are confirmed to play critical roles
in lowering the model’s prediction value to 0. The summary
plots and force plots for the remaining models are visualized
in Supplementary Material Fig. 3 and 4, respectively.

VII. DISCUSSION
The MPII model was employed to extract joint coordinate
data from each frame of the jump rope performance video,
resulting in 27 joint coordinate data points obtained for
each frame. However, slight missing values were observed
in the wrist, shoulder, and elbow coordinates. Due to the
dynamic nature of jump rope movements, the positions of
these joints exhibited significant variation between frames.
This outcome suggests that the MPII model may struggle
to accurately detect these rapidly changing positions. Future
research should consider alternative models or methods to
improve sensitivity for these highly variable joints.

The Pearson correlation analysis revealed a strong positive
correlation between the Y coordinates of the head, neck,
chest, shoulders, wrists, hips, and elbows. Correlation
coefficients close to 1 indicate that the movements of these
joints are closely related, and this high positive correlation
suggests that the positional changes of these joints are
interrelated during the jump rope performance. All p-values
for the correlation coefficients were below 0.001, confirming
that the relationships observed are statistically significant and
not due to chance [12].
According to the experimental results, the Transformer

model recorded the highest performance in the classification
of Single type, which may be due to the structural advantages
of the Transformer in handling sequential data. For the
Double type, the LightGBM model demonstrated the best
performance across several evaluation metrics, suggesting
that the boosted tree-based model might be more suitable
for this type of data. The performance of each model was
measured using metrics such as Accuracy, Precision, Recall,
F1 score, AUROC, and AP, with both models showing high
results in F1 score. Since all models were optimized through
hyperparameter tuning, these results highlight the importance
of selecting the appropriate model based on the data type.
Future research could explore the possibility of improving
performance through data expansion or by incorporating
diverse algorithms.

We applied the moving average technique to the
model’s predictions to mitigate noise and improve accuracy.

By smoothing the predicted values, we observed a significant
enhancement in the model’s performance, particularly
regarding the counts of jump rope repetitions. The application
of the moving average not only reduced the fluctuations
caused by noise but also enabled a more reliable estimation of
the target values. This improvement underscores the impor-
tance of post-processing techniques in enhancing model
accuracy. Moreover, applying post-processing methods such
as the moving average technique to the counts of other
exercises with time series data, similar to jump rope, can yield
more reliable results.

The results of the odds ratio analysis indicated that for the
Single type, the X and Y coordinates of the left wrist and
the X coordinate of the left ankle increased the probability
of the foot being airborne. Conversely, the X coordinate of
the left shoulder and the X coordinate of the right elbow
were found to increase the probability of the foot being
on the ground, indicating that the foot’s position may vary
depending on the relative positions of the joints. In the case
of the Double type, the coordinates of the neck and the
X coordinate of the right shoulder increased the probability
of the foot being airborne, while the Y coordinates of the
right elbow and right shoulder increased the probability of
the foot being on the ground. All p-values were below 0.002,
confirming the statistical significance of the relationships and
emphasizing that the odds ratios were not due to chance [20].
These findings highlight the importance of considering
specific joint coordinates in the development of models for
predicting foot position in future research.

The results of the SHAP analysis indicate that for the
Single type, the chest, the Y coordinate of the right hip,
the Y coordinate of the left ankle, the X coordinate of
the right shoulder, and the Y coordinate of the left wrist
significantly contribute to the classification of foot position.
For Double type, the Y coordinate of the left ankle, the
chest, the Y coordinate of the right ankle, the Y coordinate
of the right knee, and the Y coordinate of the left wrist
were also confirmed to play important roles in foot position
classification. The analysis of the force plot revealed that for
Single type, the Y coordinate of the left hip, the X coordinate
of the right ankle, the chest, and the X coordinate of the left
ankle contributed to lowering the model’s prediction value
to 0. In contrast, for Double type, the Y coordinate of the left
wrist, the Y coordinate of the right ankle, the Y coordinate
of the right knee, and the coordinates of the shoulders played
critical roles in reducing the model’s prediction value to 0.
These results emphasize that the relative position changes of
each joint coordinate have a significant impact on whether
the foot is in contact with the ground, suggesting that future
research should refine the analysis of the contributions of
these joint coordinates to develop models that accurately
predict foot position.

VIII. CONCLUSION
We proposed a video-based jump rope assistance pro-
gram that extracts joint coordinate data from jump rope
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performance videos and measures the number of jumps
by classifying foot positions. Additionally, we validated
this classification using seven different models and gained
insights into the influence of each joint coordinate on foot
position classification through Pearson correlation analysis,
odds ratio analysis, and SHAP analysis. This helped clarify
how the relative positional changes of specific joints con-
tribute to determining foot position.

We collected videos by directly filming 10 participants
performing Single type and Double type jump rope activities
for 3, 5, 7, 9, and 11 repetitions. Using the MPII model
provided by the OpenPose library, we extracted 26 joint
coordinates per frame from each jump rope video, resulting
in one CSV file for each video, yielding a total of 100 joint
coordinate datasets. To train the model, we labeled the last
column of each dataset with 0 when the foot was in contact
with the ground and 1 when the foot was airborne.

We conducted a Pearson correlation analysis to understand
the interrelationships among joint coordinates during the
jump rope performance and to analyze how the movement of
specific joints affects the positional changes of other joints.
The results indicated a strong positive correlation between the
Y coordinates of the joints, with all correlation coefficients
having p values below 0.001, confirm that these relationships
are statistically significant.

We validated the classification of foot position based on
joint coordinate data using five tree-based machine-learning
models and two deep-learning models. The machine-learning
models included Random Forest, Extra Trees, CatBoost,
LightGBM, and XGBoost, while the deep learning models
used were LSTM and Transformer. We employed evaluation
metrics such as Accuracy, Precision, Recall, F1 score, AUC,
and AP to assess each model’s performance. The training
for Single type and Double type was conducted separately.
The experimental results indicated that considering the six
evaluation metrics, the Transformer model demonstrated the
the best performance for the Single type, while the LightGBM
model achieved the highest performance for the Double type.

To enhance the accuracy of jump count predictions,
we applied a moving average technique to the predictions
to reduce noise and improve accuracy. By using the moving
average, the predictions for the number of jumps became
smoother and more reliable. This technique helped reduce
variability caused by noise and enabled a more consistent
estimation of the target values.

We conducted odds ratio analysis to examine the prob-
ability of foot position change. In the dataset, we labeled
instances where the foot is on the ground as 0 and instances
where the foot is in the air as 1, thus defining the occurrence
of the foot being airborne as the event of interest. The
odds ratio analysis revealed that for the Single type, the X
and Y coordinates of the left wrist and the X coordinate
of the left ankle increase the probability of the foot being
airborne, while the X coordinate of the left shoulder and the
X coordinate of the right elbow decreases this probability.
For the Double type, increases in the X coordinates of the

neck and right shoulder raise the probability of the foot being
airborne, whereas the Y coordinates of the right elbow and
right shoulder lower this probability. All p-values for these
odds ratios were found to be below 0.002, supporting their
statistical significance.

We conducted SHAP analysis to precisely assess the
contributions of each joint coordinate to foot position clas-
sification, followed by visualizing the results with summary
plots and force plots. The SHAP analysis revealed that for
the Single type, the Y coordinates of the chest, right hip,
left ankle, the X coordinate of the right shoulder, and the
Y coordinate of the left wrist contributed most significantly
to the top position classification. For the Double type, the
Y coordinates of the left ankle, right ankle, right knee, and the
Y coordinate of the left wrist was found to have the greatest
impact on the foot position classification.

In future research, it will be necessary to expand the
analysis to include a wider variety of movement types based
on the current study results, as well as to collect additional
jump rope performance data in different environments to
enhance the model’s generalization performance. Addition-
ally, integrating other biometric signals such as heart and
respiratory rates with joint coordinates could enable more
comprehensive movement analysis. This approach could be
applied not only to jump rope but also to other physical activi-
ties, contributing to the development of personalized exercise
feedback systems. Adopting AIOps and AI platforms will
improve the efficiency of data analysis and model operations
while utilizing AI Serve will create an environment that
provides real-time feedback to users. These integrated AI
systems will enhance the accuracy of performance analysis
and offer more effective personalized exercise solutions
through real-time data processing and responsiveness [22].
Finally, to further improve the performance of machine
learning and deep learning models, it is important to
apply additional tuning and model ensemble techniques that
consider more data and diverse features.
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