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This letter introduces an innovative approach for minimizing energy
consumption in multi-unmanned aerial vehicles (multi-UAV) networks
using deep reinforcement learning, with a focus on optimizing the age
of information (AoI) in disaster environments. A hierarchical UAV de-
ployment strategy that facilitates cooperative trajectory planning, en-
suring timely data collection and transmission while minimizing en-
ergy consumption is proposed. By formulating the inter-UAV network
path planning problem as a Markov decision process, a deep Q-network
(DQN) strategy is applied to enable real-time decision making that ac-
counts for dynamic environmental changes, obstacles, and UAV bat-
tery constraints. The extensive simulation results, conducted in both ru-
ral and urban scenarios, demonstrate the effectiveness of employing a
memory access approach within the DQN framework, significantly re-
ducing energy consumption up to 33.25% in rural settings and 74.20%
in urban environments compared to non-memory approaches. By inte-
grating AoI considerations with energy-efficient UAV control, this work
offers a robust solution for maintaining fresh data in critical applica-
tions, such as disaster response, where ground-based communication
infrastructures are compromised. The use of replay memory approach,
particularly the online history approach, proves crucial in adapting to
changing conditions and optimizing UAV operations for both data fresh-
ness and energy consumption.

Introduction: In recent years, the use of unmanned aerial vehicles
(UAVs) has expanded extensively across civilian, commercial, and mil-
itary domains [1–4]. Particularly in environments where ground-based
stations are unreliable, UAVs can act as aerial base stations to provide
communications during disasters [5–9]. Recent studies have focused on
energy optimization and age of information (AoI) improvement in UAV
networks, proposing various algorithms and approaches [10, 11]. In a
dynamically changing disaster environment that requires real-time sta-
tus updates, it is crucial to maintain the freshness of the collected data
for immediate response and action. (AoI is a critical metric that mea-
sures the freshness of data, defined as the time elapsed since the most
recent data packet was generated until it is received by the end user [12].
AoI considers the overall temporal aspect of data from its generation
to its delivery. In contrast, delay refers to the total time a data packet
takes to travel from the source to the destination, including processing,
transmission, and propagation delays.

In reference [13], traditional dynamic programming (DP) algorithms
and ant colonies (AC) are used to minimize AoI in UAV systems. In ref-
erence [14], an explicit formulation for the average AoI in Hamiltonian
and non-Hamiltonian cycles using a graph-theoretical approach is pre-
sented, providing a mechanism to improve AoI on a given flight path by
creating new cycles around specific IoT devices. However, as the number
of constraints increases, optimizing the trajectory design of UAVs while
minimizing AoI becomes more complex and leads to an NP-hard prob-
lem. To address these challenges, deep reinforcement learning(DRL) has
been proposed as an effective approach.

In reference [15], a deep Q-network (DQN) is applied to optimize
UAV scouting in an edge computing environment, considering energy
efficiency and AoI. Specifically, reference [16] explores path design to
minimize AoI through cooperative sensing and transmission in the cel-
lular Internet of UAVs, introducing a scheduling method and proposing
a composite action actor-critic (CA2C) algorithm based on DRL.

DRL algorithms leverage experience replay memory to store expe-
riences gained over episodes, enabling the agent to take actions that
maximize future rewards. Here, we explore whether the properties of

Fig. 1 Overview of system model

experience replay memory can ensure AoI while reducing the energy
consumption of UAVs in disaster environments. The main contributions
of this thesis are summarized as follows:

• First, we propose a hierarchical UAV deployment structure based on
their respective roles for cooperative trajectory planning in disaster
environments.

• Second, we propose a scheduling method to ensure AoI while min-
imizing energy consumption. To this end, we define the inter-UAV
network path planning problem as a Markov decision process (MDP)
and apply DQN to support real-time decision making.

• Finally, we conduct extensive experimental analysis to evaluate the
performance of the proposed approach. Using the average AoI per-
formance metric values, we conduct a simulation analysis to find the
appropriate parameters for the learning model. The results suggest that
the UAV AoI and energy consumption can be optimized.

System model: Here, we address disaster scenarios occurring in ru-
ral and urban areas of size N × N m2. As illustrated in Figure 1, our
model incorporates a hierarchical UAV structure consisting of UAV-base
station (BS) linked to operational ground base stations and UAV-user
equipment (UE) deployed to collect data over dispersed target points. In
this hierarchical structure, the UAV-base station (BS) acts as the cen-
tral node responsible for the primary calculations and decision-making
processes. It coordinates the data collection activities of the UAV-UEs
and processes the incoming data to ensure optimal performance and
energy efficiency. This central node manages the replay memory, stor-
ing the history of all UAVs and utilizing it to dynamically adjust UAV
paths based on real-time environmental feedback, thereby overcoming
the memory limitations of individual UAVs.The locations where data
is generated, positioned at sk ∈ R

2 for 1 ≤ k ≤ K, are expected to ini-
tiate data production at t1 ≤ 0. Upon data generation at the kth target
point, the UAV-BS identifies the genesis location of data. Positioned at
qb = (xb, yb, hb) ∈ R

3 for b = 1, 2, . . . , B, each UAV-BS operates at the
maximum altitude hmax and acts as a relay node covering area Rb. Sub-
sequent to data generation, the UAV-BS designates the nearest UAV-UE
to the target point. During any given time slot t, only a single UAV-UE
is allowed to navigate to the target point sk location. To determine the
UAV-UE positioned at the minimum distance to the target point, we cal-
culate the Euclidean distance as follows:

d3D(t ) =
√

(xi(t ) − xk (t ))2 + (yi(t ) − yk (t ))2 + (hi(t ) − hk (t ))2 (1)

We assume the channel model between the ith UAV-UE and the UAV-
BS encompasses both large-scale and small-scale fading. Based on a 3D
map simulated in reference [15], it precisely discerns the presence of
a line-of-sight (LoS) or non-line-of-sight (NLoS) connection. To mini-
mize path loss, the UAV-UE must fly below altitude hi < hmax. If the dis-
tance from the UAV-UE’s location sk does not exceed the safety distance
δ, the UAV-UE can directly transmit the collected data to the UAV-BS.
This safety distance δ, as defined in Equation (2), indicates that the data
uploading location falls within the UAV-BS’s coverage area. Otherwise,
the UAV-UE must re-navigate within a safe distance to the area covered
by the UAV-BS Rb.

min
1≤b≤B

{‖sk − qb‖} ≤ δ for 1 ≤ k ≤ K (2)
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Fig. 2 Scheduling cycle

Problem formulation: We introduce AoI energy aware scheduling to ef-
ficiently coordinate UAVs under contextual constraints, namely trajec-
tory design, AoI, and energy consumption constraints. As depicted in
Figure 2, it consists of five stages. The duration of each cycle is repre-
sented by τ (t ).

1) Information exchange cycle: Each cycle begins with the exchange
of information between UAV-BS and UAV-UE. The information ex-
changed includes the current position of the ith UAV-UE at time
slot t, denoted as q(i,t ) = (xi, yi, hi), and the energy consumption
during the previous cycle, represented as Ecmp

i,τ (t−1). The energy con-
sumption used for flying the UAV-UE is denoted by pmove(t ) =√

(�x + �y + �h). Here, �x, �y, and �h represent the distance
travelled by the UAV in the x-, y-, and h-axis (altitude) directions,
respectively. The variable oi(t ) ∈ {0, 1} indicates whether there is a
collision with obstacles. The energy consumption for hovering and
uploading is represented by Ph(t ) and P̂(b,i)(t ), respectively. The AoI,
calculated as �AoIτ

i
τ , is included. The total duration of five cycles is

denoted by �τ (t ), and Ui(t − 1) represents the last upload time. This
information forms the basis for the next cycle decisions.

Ecmp = 1

I

I∑
i=1

(
P̂move(t ) · oi(t ) · τe(t )

+ P̂h(t ) · τh + P̂(b,i)(t ) · τtx(t )
)

(3)

�AoIi = t − Uj (t − 1) (4)

In other words, Equation (3) represents the energy consumption Ecmp

of the ith UAV at a specific time t. It includes the total energy con-
sumption of the ith UAV, which consists of the energy consumed for
travelling, hovering, and data transmission.

2) Decision cycle: The decision cycle begins when the UAV-BS identi-
fies the location of the requested target point, sk (t ), and, considering
the current position and state of each UAV-UE, selects the UAV-
UE that is closest to the requested target point. The selected UAV-

UE must adhere to the energy constraint equation εi(t ) = ecmp
i (t )

emax
i (t ) ,

where the current energy �ecmp
i (t ) and the maximum energy capac-

ity emax
i (t ) must meet the condition. If the selected UAV-UE does not

satisfy the condition, the UAV-BS must reselect a new UAV-UE that
is the closest within its area Rb.

εi(t ) =
{

1, if �ei
cmp(t ) ≤ ei

max

0, otherwise
(5)

3) Empty cycle: An empty cycle represents the state in which the UAV-
UE is en route to the target point sk (t ) but has not yet arrived. Dur-
ing this phase, the UAV-BS continuously monitors the UAV-UE and
considers the estimated flight time τ̃e. If necessary, the path of the
UAV-UE can be adjusted to minimize energy consumption and en-
sure the AoI.

4) Hovering cycle: The hovering cycle occurs when the UAV-UE
reaches the designated target point sk (t ) and stops for data collec-
tion. At this time, the remaining energy of the ith UAV-UE must
satisfy the energy constraint condition εi(t )

5) Upload cycle: After the UAV-UE completes the hovering cycle, it
starts the upload cycle. During this cycle, the UAV-UE can upload
the collected data to the UAV-BS. It must transmit the data to a UAV-
BS that covers the area Rb, which is within the transmission range
of the UAV-UE. After the transmission is complete, the UAV-UE
can record the time step Uj indicating the completion of all cycles.
Subsequently, the UAV-UE flies to an area Rb within its transmission
range for re-upload.

ζi(t ) =
{

τ (t + 1) = τd , if qi ∈ Rb and Uj

τ (t + 1) = τtx, otherwise
, (6)

where τd is the duration of the decision cycle. The UAV-UE selects
a UAV-BS that covers an area Rb within the transmission distance.

μi(t ) =
{

1, if
∑Uj

j=1 �τi(t ) ≤ �̂th
AoI

0, otherwise
(7)

To ensure the AoI for the ith UAV-UE, the scheduling total duration
τ (T ) must not exceed the threshold �̂th

AoI as stipulated in Equation (7).
If the total scheduling duration exceeds �̂th

AoI, the data will be discarded.
The variable j represents the time it takes for the UAV to perform the
selected task, and Uj denotes the total time until the task is completed,
which is used in the calculation of AoI.

To solve the problem, we apply the DQN [16], which is a combination
of deep neural networks and reinforcement learning algorithms. A DQN
can be defined as an MDP represented by a tuple < S, A, R, St+1 >. An
agent decides on an action a in a given state s. The agent receives a
reward R and builds a policy π that takes into account a discount factor γ

for the cumulative future reward. The proposed DQN approach consists
of:

1. A deep neural network to reduce the dimensionality of the state space
used to extract contextual features.

2. An experience replay memory to store the state transitions observed
by the UAV-BS agent and the UAV-UE agent.

3. A reinforcement learning framework to find the optimal trajectory
policy by solving constraints (9–11) to have a unique target area for
each UAV-UE [17]

State: The state can be represented as Si(t ) = [qi(t ), ecmp
i (t ), ci(t )],

which represents three key elements at time t. The position of the
UAV-UE, qi(t ) = (xi(t ), yi(t ), hi(t )), accurately tracks the spatial lo-
cation of the UAV and is used to plan the next movement. ecmp

i (t )
represents the current energy level of the UAV-UE, which can be
expressed as the remaining operational energy ecmp

i (t ) ∈ R. This di-
rectly impacts the sustainable operation and mission execution ca-
pability of the UAV [18]. Lastly, ci(t ) indicates the current cy-
cle in which the UAV-UE is located. The possible states include
{“Decision”, “Empty”, “Hovering”, “Transmission”}, and this informa-
tion is used to determine the next action of the UAV.

Action: Action is defined by Equation (8), which describes the mobility
of the UAV-UE in a given state. If it is hovering, it does not move.

Ai(t ) =
{

qi(t + 1) = (xi(t ) + �x, yi(t ) + �y, hi(t ) + �h), Moving

qi(t + 1) = (xi(t ), yi(t ), hi(t )), Hovering
(8)

Reward: When the learning agent, namely the UAV-UE, executes ac-
tion ai(t ), it transitions to a new state si(t + 1) and receives an immedi-
ate reward ri(t ) associated with the state transition si(t ), ai(t ), si(t + 1).
The reward can be defined as follows in Equation (9), where εi rep-
resents the energy constraint, and rcmp(t ) signifies the reward for sav-
ing energy. The energy reward ri

energy = �ei(t ) is defined by �ei(t ) =
ei(t ) − �ei(t − 1), which represents the energy consumed due to ac-
tion ai

t . μi(t ) indicates the AoI constraint, and rAoI(t ) = �Ui(t ) is ex-
pressed as �Ui(t ) = Ui(t ) − �Ui(t − 1). This provides a higher reward
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Table 1. Simulation hyperparameter values

Hyperparameter Value

The number of UAV-BS 2

The number of UAV-UE 1–10

Episode 1000

Learning rate (α) 0.0005

Discount factor (γ ) 0.99

Mini-batch size 32

Size of memory (M) 10,000

for the UAV-UE’s continuous upload of fresh data. Lastly, oi(t ) indicates
whether there is a collision with obstacles.

Ri(t ) = εi(t ) × rcmp(t ) + μi(t ) × rAoI(t ) + oi(t ) (9)

The learning agent, UAV-UE, aims to maximize future rewards over
T time slots as defined in Equation (10). γ = [0, 1] reflects the balance
between the importance of immediate and future rewards, allowing con-
vergence to the optimal policy πopt, which is a strategy that enables the
UAV-UE to choose the optimal behaviour given a set of conditions to
minimise energy consumption, maintain the freshness of information
(AoI), and avoid obstacles.

R̂(s, a, t ) =
T∑

t0=0

γ t0 × ri(t − t0) (10)

Therefore, we can update the Q-function to derive the optimal policy
πopt as follows (11).

Qt ′ (s, a) = Qt (s, a) + α

[
R + γ max

a′
q(s′, a′ ) − Qt (s, a)

]
(11)

Here, α is the learning rate that regulates the speed of the Q-function
update. Additionally, t ′ = t + 1, and a′ represents all actions considered
during the maximization process.

Simulation results: We propose a replay memory-based approach to find
the appropriate AoI �th

AoI within the proposed method, ensuring AoI
through the use of replay memory. Initially, replay memory represents
the (s, a, r, st+1) obtained by the agent interacting with the environment
during the learning process. We addressed the memory limitations of
UAVs by placing the replay memory in a central node, which manages
the history of all UAVs and uses it to plan the optimal route. It exists in
the following types:

• Replay history: Stores all past experiences and randomly selects them
for learning, contributing to the learning process.

• Online history: Stores real-time or the most recent experiences, con-
tributing to immediate learning.

• Prioritized history: Selects experiences for learning based on their
importance, contributing to the learning process by choosing specific
experiences.

We conducted experiments in two distinct scenarios to test UAVs in
various environments. The first was a rural environment with a large area
(1600 * 1600 m2) and four obstacles, with UAVs initially positioned at
(800, 800). The second was an urban environment with a smaller area
(800 * 800 m2) and eight obstacles, with UAVs initially positioned at
(400, 400) (see Table 1).

Figure 3 presents an analysis of the reward acquisition and the learn-
ing performance of the memory approach in reinforcement learning.
The findings demonstrate that the online history memory approach ex-
hibits consistent and stable learning performance, ultimately achieving
the most effective reduction in energy consumption and AoI.

We conducted experiments in a rural scenario characterized by few
obstacles and a relatively large area, and an urban scenario with many

Fig. 3 Reward per episode for different memory

Fig. 4 Age of information in (a) rural scenario and (b) urban scenario

Fig. 5 Energy consumption in (a) rural scenario and (b) urban scenario

obstacles and a relatively small area, in order to test UAVs in vari-
ous environments. Figure 4a,b represents the AoI results according to
each memory access approach, facilitating the search for the appropriate
�th

AoI. In the rural scenario of Figure 4a, the lowest average AoI was ob-
served to be 94.63 s when applying the priority history memory access
approach, which was 30.33 s shorter than the approach without mem-
ory usage. In the urban scenario of Figure 4b, the application of the
online history memory access approach resulted in the lowest average
AoI of 82.23 s, which was a reduction of 43.11 s compared to the non-
memory approach.

After setting the average AoI to �th
AoI in each scenario, we pro-

ceeded with energy consumption experiments. Figure 5a indicates that,
in the rural scenario with five UAVs deployed, the online history mem-
ory access approach shows the lowest energy consumption, which is
up to 33.25% lower compared to the non-memory approach. Similarly,
Figure 5b shows that in the urban scenario, also with five UAVs, the
online history approach results in the lowest energy consumption, show-
ing up to a 74.20% reduction compared to the non-memory approach.
These results suggest that the online history approach can adapt in real
time to relatively dynamic environments. On the other hand, both the
replay history memory access method and the non-memory approach
show comparatively higher energy consumption.

To examine the energy consumption of UAVs based on different
memory access approaches, we visualized the trajectories of two UAVs
as shown in Figures 6 and 7. Figure 6 illustrates that in the rural scenario
with the online history memory access approach applied, the UAVs fly
in divided areas, suggesting that they reach the target points and col-
lect data. In contrast, without the memory access approach, the UAVs
overlap in their flight paths and fail to reach the target points. Therefore,
the results indicate that the absence of a memory access approach leads
to increased energy consumption due to overlapping flight paths and a
failure to occupy distinct flying zones.
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Fig. 6 Comparison trajectory in rural scenario using different memory ac-
cess approaches. (a) Replay history. (b) Online history. (c) Prioritised his-
tory. (d) Non-memory

Fig. 7 Comparison trajectory in urban scenario using different memory ac-
cess approaches. (a) Replay history. (b) Online history. (c) Prioritised his-
tory. (d) Non-memory

Conclusion: Here, we proposed a hierarchical deployment structure
and an energy consumption minimization scheduling method centered
around the AoI for efficient UAV operations. The results of applying a
memory access approach-based DQN demonstrated significant reduc-
tions in energy consumption, up to 33.25% in rural scenarios and up to
74.20% in urban scenarios, while maintaining data freshness. However,
the applicability of our approach in real-world scenarios and its potential
challenges, such as computational overhead and integration with exist-
ing systems, require further investigation.
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