i:;l?é electronics

Article

HAETAE on ARMvS

Minjoo Sim 179, Minwoo Lee 2

check for
updates

Citation: Sim, M.; Lee, M.; Seo, H.
HAETAE on ARMvVS. Electronics 2024,
13,3863. https://doi.org/10.3390/
electronics13193863

Academic Editors: Lixin Wang,
Jianhua Yang, Radhouane Chouchane

and Lingiang Ge

Received: 12 August 2024
Revised: 13 September 2024
Accepted: 24 September 2024
Published: 29 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Hwajeong Seo %*

Department of Information Computer Engineering, Hansung University, Seoul 02876, Republic of Korea;
minjoos9797@hansung.ac.kr

Department of Convergence Security, Hansung University, Seoul 02876, Republic of Korea;
1771397@hansung.ac.kr

* Correspondence: hwajeong@hansung.ac.kr; Tel.: +82-760-8033

Abstract: In this work, we present the highly optimized implementation of the HAETAE algorithm,
submitted to the second round of the Korean Post-Quantum Cryptography (KpqC) competition
and to the first round of NIST’s additional post-quantum standardization for digital signatures
on 64-bit ARMv8 embedded processors. To the best of our knowledge, this is the first optimized
implementation of the HAETAE algorithm on 64-bit ARMv8 embedded processors. We apply
various optimization techniques to enhance the multiplication operations in the HAETAE algorithm.
We utilize parallel operation techniques involving vector registers and NEON (Advanced SIMD
technology used in ARM processors) instructions of ARMv8 embedded processors. In particular,
we achieved the best performance of the HAETAE algorithm on ARMv8 embedded processors by
applying all the state-of-the-art NTT (Number Theoretic Transform) implementation techniques.
Performance improvements of up to 3.07x, 3.63x, and 9.15x were confirmed for NTT, Inverse-NTT,
and pointwise Montgomery operations (Montgomery multiplication used in modular arithmetic),
respectively, by applying the state-of-the-art implementation techniques, including the proposed
techniques. As a result, we achieved a maximum performance improvement of up to 1.16x for
the key generation algorithm, up to 1.14x for the signature algorithm, and up to 1.25x for the
verification algorithm.

Keywords: HAETAE; 64-bit ARMvS processors; post-quantum cryptography; software implementation;
parallel implementation; KpqC competition

1. Introduction

The advent of quantum computers is propelling significant technological advance-
ments but simultaneously threatens the security of modern cryptographic systems. Quan-
tum computers, as theorized by Richard Feynman, leverage the principles of quantum
mechanics to operate [1]. These machines can execute quantum algorithms such as Shor’s
and Grover’s algorithms. Shor’s algorithm [2] enables efficient factorization of large num-
bers, while Grover’s algorithm [3] accelerates search processes. These algorithms have
the potential to compromise the mathematical structures that underpin contemporary
cryptographic systems. For instance, public key encryption schemes relying on prime fac-
torization could become vulnerable in the quantum era. The pace of quantum computing
advancements is rapid; for example, IBM unveiled the Osprey quantum computer with
433 qubits in 2022, followed by the Condor with 1121 qubits in 2023 [4]. Some studies sug-
gest that breaking RSA-2048, one of the most widely used public key encryption algorithms,
might require around 372 qubits under ideal conditions [5].

At the same time, the proliferation of Internet of Things (IoT) devices has introduced
new cybersecurity challenges [6]. As IoT devices become more prevalent in industrial
and consumer applications, they are increasingly responsible for processing sensitive
information and managing critical systems. Given their widespread integration into daily
life and essential infrastructure, securing these devices against evolving threats is becoming

Electronics 2024, 13, 3863. https://doi.org/10.3390/ electronics13193863

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13193863
https://doi.org/10.3390/electronics13193863
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5242-214X
https://orcid.org/0000-0002-2356-3055
https://orcid.org/0000-0003-0069-9061
https://doi.org/10.3390/electronics13193863
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13193863?type=check_update&version=1

Electronics 2024, 13, 3863

2 of 14

paramount. The rapid growth of IoT devices highlights the need for robust cryptographic
solutions that can protect against future attacks.

Quantum computing poses a significant risk to the cryptographic algorithms that
protect IoT devices, including smart home systems, wearable health monitors, and in-
dustrial sensors [7-11]. Many of these devices rely on legacy cryptographic techniques
implemented on processors like the ARM Cortex-M series, RISC-V processors, and ARM
Cortex-A series, which may be rendered insecure by quantum advances. The challenge
is exacerbated by the resource limitations of IoT devices, which often have constrained
processing power and memory. Ensuring secure and efficient encryption in the quantum
era requires the development and deployment of post-quantum cryptographic algorithms
that are both resistant to quantum attacks and compatible with the operational constraints
of IoT environments.

In response to these emerging challenges, the National Institute of Standards and
Technology (NIST) initiated the Post-Quantum Cryptography (PQC) Standardization Com-
petition [12]. Similarly, since February 2022, the Korean Post-Quantum Cryptography
(KpqC) Competition has been taking place to develop a distinct post-quantum cryptogra-
phy algorithm [13]. Research efforts focusing on optimizing NIST PQC standardization
and its candidate algorithms on various embedded processors, such as 8-bit AVR, 32-bit
Cortex-M4, and 64-bit ARMvS, are ongoing [14-22]. Similar optimization efforts should be
pursued for the candidate algorithms in the KpqC Competition.

HAETAE [23] is a digital signature algorithm that advanced to the second round
of the KpqC competition and was also selected for the first round of NIST’s additional
post-quantum standardization. This paper presents a high-performance implementation
of HAETAE on 64-bit ARMvS processors, utilizing advanced optimization techniques to
achieve exceptional performance.

The remainder of this paper is structured as follows. Section 2 describes the KpqC
Competition, the HAETAE algorithm, the HAETAE algorithm on Cortex-M4, the target
64-bit ARMVS processor, and related works. Section 3 describes the proposed method.
Section 4 shows a performance comparison. Finally, Section 5 describes the conclusion of
this paper and future work.

1.1. Contribution
1.1.1. Applying State-of-the-Art NTT Implementation Techniques

We introduce a data reordering and pre-computation technique specifically for the
HAETAE algorithm on ARMv8 processors. By integrating these techniques with cutting-
edge NTT implementations, we achieve optimal HAETAE performance on ARMvS pro-
cessors. Our implementation utilizes 128-bit vector registers and NEON instructions of
ARMVS processors, resulting in performance improvements of up to 3.07x for NTT, 3.63 x
for inverse NTT, and 9.15x for pointwise Montgomery operations. Consequently, our
approach enhances the performance of key generation by up to 1.16x, signature generation
by up to 1.14 x, and verification by up to 1.25x.

1.1.2. First Implementation of the HAETAE on 64-bit ARMv8 Processors Using
NEON Instructions

To the best of our knowledge, we present the first implementation of the HAETAE
utilizing 64-bit ARM processors’ vector registers. ARMv8 processors, known for their high
performance, are widely used in various devices, including notebooks, mobile phones,
and tablets. Our optimized implementation aims to be applicable across many fields by
targeting widely-used processors. We believe this work will serve as a valuable resource
for researchers assessing HAETAE performance and will support further advancements in
the field.

Electronics 2024, 13, 3863

3o0f14

2. Background
2.1. KpqC Contest

In 2022, the KpqC Competition was initiated in Korea to identify and standardize a
quantum-resistant algorithm. The competition aims to stimulate the development of post-
quantum secure cryptographic algorithms within the Korean cryptographic community,
addressing the challenges presented by the progress in quantum computing. The KpqC
competition established four primary evaluation criteria. The first is cryptographic security.
Each candidate algorithm must meet rigorous security standards, and the accompanying
whitepaper must provide evidence of the defined security properties. The second criterion
is efficiency. With security being a non-negotiable requirement, the algorithms are further
assessed based on their efficiency once security is ensured. The third criterion is usability.
Algorithms should be adaptable across various platforms and systems; otherwise, their
usability would be limited, causing inconvenience. Thus, broad platform and system sup-
port are crucial to enhance the algorithm'’s versatility and practicality. The final criterion is
originality, to select the most innovative algorithm as the Korean standard for cryptography.

In the first round of the competition, 16 candidate algorithms were chosen, compris-
ing 7 PKE/KEM algorithms and 9 digital signature algorithms. The results of Round 1
were announced in December 2023, and Round 2 is currently in progress for the selected
algorithms. A total of eight algorithms advanced to Round 2, including four PKE/KEM
algorithms and four digital signature algorithms.

Research related to the KpqC competition, including side-channel analysis, security eval-
uation, security analysis, and implementation analysis, is actively being conducted [24-29].

In particular, the HAETAE algorithm was selected as one of the KpqC Round 2
candidate algorithms.

2.2. HAETAE

The HAETAE (Hyperball bimod Al modulE rejecTion signAture schemkE) is a lattice-
based signature algorithm designed to solve the challenges of the Learning With Errors
(LWE) and Short Integer Solution (SIS) problems [23]. In July 2023, it was selected as one
of the additional candidate algorithms in NIST’s PQC competition [30]. The algorithm
employs the “Fiat-Shamir with Aborts” paradigm, using rejection sampling to convert
signatures that rely on sensitive information into publicly simulatable signatures.

The Fiat-Shamir with Aborts paradigm was introduced in lattice-based cryptography
by Lyubashevsky [31,32]. In this paradigm, the verification key consists of a pair of matrices
(A, T=A-S mod q), where A is a uniformly random matrix modulo of some integer g,
and S is a small-magnitude matrix that constitutes the secret key. A signature for a message
M is constructed as an integer vector z, where z = y + S - ¢, with y being a randomly
selected small-magnitude vector and ¢ = H(A -y mod g, M) being a small-magnitude
challenge. Rejection sampling is applied to ensure that the resulting signature distribution
is independent of the secret key. The verification algorithm checks whether the vector z is
within an acceptable bound and whether ¢ = H(A-z — T - ¢ mod g, M).

The HAETAE was designed with inspiration from the "Fiat-Shamir with Aborts" sig-
nature scheme CRYSTALS-DILITHIUM, which was selected by NIST for post-quantum
cryptography standardization. However, HAETAE exhibits two significant differences. In-
stead of using a unimodal distribution as in CRYSTALS-DILITHIUM, it employs a bimodal
distribution for rejection sampling, similar to the BLISS signature scheme. Additionally, the
HAETAE utilizes hyperball uniform distributions instead of discrete hypercube uniform
distributions. It relies solely on continuous Gaussian samplers and allows for extensive
parallelization, even in the part where it calls these samplers.

To improve signature compactness, as discussed in [33], the choice of sampling and
rejection distributions plays a crucial role in determining the signature size. While the
Dilithium scheme utilizes discrete uniform distributions over hypercubes, which simplifies
implementation, these distributions are suboptimal in terms of achieving smaller signature

Electronics 2024, 13, 3863

4of 14

sizes. In contrast, the HAETAE adopts a different approach, sacrificing some ease of
implementation to achieve more compact signatures.

However, it should be noted that the HAETAE’s implementation is more complex than
CRYSTALS-DILITHIUM because it involves real-number calculations and is implemented
with floating-point numbers when sampling from the hyperball. Despite this complexity, it
offers several advantages.

The HAETAE provides signatures that are 30% to 40% smaller than those of CRYSTALS-
DILITHIUM at the same security level. Verification sizes are 20% smaller than those of
CRYSTALS-DILITHIUM. Although it involves complex computations, optimized versions
of the HAETAE are predicted to run at the same speed as CRYSTALS-DILITHIUM. The
HAETAE offers smaller signature sizes compared to CRYSTALS-DILITHIUM, along with
improved implementation aspects and better protection against side-channel attacks when
compared to FALCON and Mitaka. Moreover, most operations within the HAETAE are
relatively straightforward and amenable to constant-time implementation and masking.
The HAETAE parameters are shown in Table 1.

Table 1. Parameters of HAETAE (n is ring dimension, q is fully split modulo integer, # is infinity
norm of the secret key, and T is hamming weight of the binary challenge).

Security Verify Key Secret Key Signature

Scheme — n q 7 Level (bytes) (bytes) (bytes)
HAETAEI20 256 64513 1 58 2 992 1376 1474
HAETAEIS0 256 64513 1 80 3 1472 2080 2349
HAETAE260 256 64513 1 128 5 2080 2720 2948

2.3. HAETAE on Cortex-M4

The HAETAE was implemented on a Cortex-M4 environment using the STM32F4-
Discovery board. The primary components affecting the computational efficiency of the
HAETAE are Keccak, NTT, and Hyperball sampling. Keccak and NTT can be replaced
with existing optimized code. Specifically, for NTT, minor modifications to the constants
allow for the reuse of Dilithium’s implementation. Keccak was replaced with a portable
Keccak implementation, which provided a simple yet significant performance improvement.
Additionally, performance was further enhanced by optimizing polynomial arithmetic and
the Gaussian sampler.

2.3.1. Polynomial Arithmetic Optimization on Cortex-M4

The HAETAE algorithm uses a modulus of g = 64,513 = 0xFC01, which is an unsigned
16-bit prime and possesses a 512th root of unity. Elements fully reduced in Z; can be stored
efficiently in either the upper or lower 16 bits of a 32-bit register. However, this storage
technique is not directly applicable for arithmetic operations. When performing lazy
reduction or addition, 17 bits are needed to store the result, and a total of 18 bits are
required when combining additions with lazy multiplication. Unfortunately, HAETAE's
modulus is incompatible with Plantard multiplication, preventing the use of this method.

Most post-quantum cryptographic algorithms use primes with 13 bits or fewer. In
such scenarios, two signed 16-bit values can be packed into a 32-bit register for more
efficient coefficient storage. This approach is beneficial when coefficients are written once
and used without modification, as 16-bit storage can be more efficient. However, there is
no instruction that takes 16-bit unsigned integers and produces a 17-bit output suitable
for modified Montgomery reduction. Dilithium’s Montgomery reduction, which uses
R = 2%, requires three instructions for implementation. Consequently, HAETAE struggles
to outperform this method and operates with 32-bit coefficients, which is consistent with
its use in other polynomial arithmetic operations beyond the expansion of the public
key polynomial.

Electronics 2024, 13, 3863

50f 14

Given the similarities between HAETAE and Dilithium, NTT optimizations for M4,
developed by Abdulrahman et al. [34], were reused in HAETAE. This optimization reduced
the NTT cycle count from 37,506 to 8047 cycles, resulting in a 4.6 x performance improve-
ment compared to the reference implementation. Similarly, the inverse NTT cycle count
was reduced from 43,116 to 8369 cycles, providing a 5.1 x speed improvement over the
reference implementation.

2.3.2. Gaussian Sampler Optimization on Cortex-M4

The Gaussian sampler in HAETAE is primarily composed of two elements: the CDT
sampler, which is responsible for sampling the most significant bits, and a fixed-point
exponential function that is used in the rejection step. Both of these components were
optimized to enhance performance. The CDT sampler operates by comparing 16-bit
uniformly sampled random values against precomputed threshold tables, generating
1s and 0Os based on the comparisons. This was parallelized using SIMD instructions
on the Cortex-M4 processor, specifically utilizing uadd16, usub16, and sel. The uaddi16
instruction adds corresponding 16-bit values into a 32-bit register, while usub16 performs
subtraction. The sel instruction selects values from two registers based on a condition,
facilitating efficient branching within loops. These instructions optimize both memory
access and loop performance, leading to a 3.9x speed improvement compared to the
reference implementation.

The exponential function was approximated through polynomial evaluation using
Horner’s method. The reference implementation performed fixed-point arithmetic with
48 fractional bits, involving 64-bit integer values and 64 x 64 to 128-bit multiplication.
Since the Cortex-M4 processor does not natively support 128-bit multiplication, each
multiplication was broken down by splitting the value ‘a” into higher bits (ah = a » 24)
and lower bits (al = a — (ah « 24)). The results were then accumulated using the
smlal instruction, which handles a 32 x 32 to 64-bit multiply-accumulate operation. This
optimization resulted in a 2.9 x speedup.

Table 2. Arrangement specifier combinations of vector register; Q: is the second and upper half
specifier. Ta, Tb is an arrangement specifier.

<Q> - 2 - 2 - 2
Ta 8h 8h 4s 4s 2d 2d
Tb 8b 16b 4h 8h 2s 4s

2.4. Target Processor: 64-bit ARMv8 Architecture

ARM is a high-performance embedded processor based on the Instruction Set Archi-
tecture (ISA). The ARMv8-A architecture supports both 32-bit AArch32 and 64-bit AArch64
modes, ensuring backward compatibility with older systems. ARMv8-A provides 32 vector
registers, each 128-bits wide, labeled from v0 to v31, alongside 31 general-purpose registers,
each 64-bits wide, labeled from x0 to x30.

The general-purpose registers can also function as 32-bit registers, denoted as w0 to w30.
Vector registers are capable of parallel operations, allowing values stored within them to be
processed in different unit sizes. Specifically, these units include byte (8-bit), half-word (16-bit),
single-word (32-bit), and double-word (64-bit) divisions, as illustrated in Figure 1. Table 2
details the arrangement specifier combinations used when applying vector instructions. Vector
instructions, often referred to as NEON, enable parallel computations using the vector registers.

The list of instructions utilized in the proposed implementations is presented in
Table 3 [35].

Electronics 2024, 13, 3863

6 of 14

128bit
|

16bit

T
8bit

Figure 1. Register packing of vector registers.

Table 3. Summarized instruction set of ARMvS8 for HAETAE; Xd, Vd: destination register (general,

vector), Xn, Vn, Vm: source register (general, vector, vector), Vt: transferred vector register.

asm Operands Description Operation
ADD Vd.T, Vn.T, Vm.T Add Vd + Vn+Vm
Load multiple
LD ve.T, [¥n] single-element structures Ve « [Xnl
LD1R VLT, [Xn] Loagl single 1-element structurg and VET « [Xn]
replicate to all lanes (of one register).
MOV Xd, #imm Move (immediate) Xd + #imm
MOV Vd.T, Vn.T Move (vector) Vd < Vn
MOVI Vt.T, imm Move immediate (vector) Vit < #imm
MUL Vd, Vn, Vin Multiply Vd < Vn x Vm
SMULL Vd.Ta, Vn.Tb, Vm.Tb Signed Multiply Long (lower half) Vd < Vn x Vm
SMULL2 Vd.Ta, Vn.Tb, Vm.Tb Signed Multiply Long (upper half) Vd <~ Vn x Vm
SMLSL Vd.Ta, VnTb, Vm.Tb ogned Multiply-Substract Long Vd < Vn x Vm
(lower half)
SMLSL2 Vd.Ta, VnTb, Vm.Tb oigned Multiply-Substract Long Vd < Vn x Vm
(upper half)
RET {Xn} Return from subroutine Return
SHL Vd.T, Vn.T, #shift Shift Left immediate (vector) Vd + Vn <<#shift
SSHR VAT, Vn.T, #shift Signed Shift Right and immediate Vd ¢ Vn >>#shift
(vector)
Store multiple single-element
ST1 Vt.T, [Xn] structures from one, two, three, or [Xn] <~ Vt
four registers
SUB Xd, Xn, #imm Subtract immediate Xd < Xn — #imm
SUB Vd, Vn, Vm Subtract Vd < Vn — Vm
REV32 Vd.T, Vn. T Reverse elements in 32-bit words Vd < Vn of Reverse
REV16 Vd.T, Vn.T Reverse elements in 16-bit words Vd < Vn of Reverse
CBNZ Wt, Label Compare and Branch on Nonzero Go to Label
. . Vd + Vi ,V
ZIP1 Vd.T, Vn.T, Vm.T Zip vectors primary Vd \?rgt[ec‘)]gg}, vﬁg‘ﬂ]‘]
. Vd < Vn[even], Vm[even
ZIP2 Vd.T, V. T, Vimm.T Zip vectors secondary Vd « VrE[odd}, Vm{odd]]
))éggé Vd.Tb, Vn.Ta Extracted Narrow Vd +Vn
SQDMULH ~ Vd.T, Vn.T, Vin.T Signed saturating Doubling Multiply v . 5, vnxvm
returning High half
SHSUB Vd.T, Vin.T, Vm.T Signed Halving Subtract Vd + (Vn — Vm)/2
TRN1 VA.T, Vn.T, Vm.T Transpose vectors primary Vd « Vnleven], Vm[even]

Vd < Vn[odd], Vm[odd]

Electronics 2024, 13, 3863

7 of 14

2.5. Previous Implementations of Post Quantum Cryptography on 64-bit ARMv8 Processors

Kim et al. performed an optimization of CRYSTALS-DILITHIUM on 64-bit ARM
Cortex-A processors, a digital signature algorithm that has been chosen as part of the
NIST PQC standardization competition [19]. The optimizations were focused on ARMv8-A
architecture, aiming to reduce memory accesses, enable parallel processing, and efficiently
use ARM/NEON instructions. Their approach involved optimizing Number Theoretic
Transform (NTT), inverse NTT, and pointwise multiplication. For instance, memory access
was minimized by using techniques such as merging and register-holding, allowing op-
erations to be performed within registers. This significantly reduced the load and store
instructions, improving performance in embedded environments. Moreover, by utilizing
ARM-specific instructions like SMSUBL, they were able to optimize the butterfly method,
which processed two coefficients in parallel, thus speeding up signed multiplications and
Montgomery reduction. Additionally, NEON instructions, including SMULL, XTN, and
SMLSL, were used to handle multiple coefficients at once, improving performance by
operating on four coefficients simultaneously in a 128-bit vector register. As a result, their
implementation achieved substantial performance improvements, with gains of 43.83x,
113.25x, and 41.92x. for KeyGen, Sign, and Verify operations compared to the reference
CRYSTALS-DILITHIUM implementation for security level 3.

Becker et al. implemented optimizations of NTT and Barrett multiplication on ARMvS-
A using NEON instructions [21]. They combined Montgomery multiplication with Barrett
reduction, making it particularly effective for modular multiplication. Their optimiza-
tions also included interleaved multi-stage butterfly techniques, which resulted in sig-
nificant speed-ups for Saber and Kyber cryptographic operations. For example, on the
Apple M1 processor, their NTT implementation showed a 2.1x and 1.9x improvement for
matrix—vector multiplication in Kyber and Saber, respectively, compared to the reference
implementations.

Kwon et al. optimized the FrodoKEM algorithm, a post-quantum public-key encryp-
tion and key encapsulation mechanism, for 64-bit ARMvS8 processors [36]. Their work
featured parallel matrix multiplication and the use of an AES accelerator for AES-128
encryption. They introduced a method capable of generating 80 elements of the output
matrix simultaneously, applying this to FrodoKEM640. By utilizing a 128-bit vector reg-
ister and NEON instructions, their implementation outperformed a previous C-based
implementation by up to 10.22x.

Additionally, Kwon et al. optimized the Rainbow signature scheme on ARMv8 pro-
cessors [37]. Rainbow is a multivariate-based signature algorithm and was a finalist in
the NIST PQC competition. They developed a tower-field multiplication method utiliz-
ing a lookup table to enhance performance. Their implementation was also resistant to
timing attacks and achieved significant performance improvements on various processors,
including Apple A13 Bionic, Cortex-A72, and Apple M1. Their method demonstrated
a 428.73x speedup for finite field multiplications and a 114.16 x improvement for the
Rainbow signature scheme over previous reference implementations.

Sim et al. implemented Classic McEliece, a code-based key encapsulation algorithm,
on ARMvVS [38]. They introduced parallelization techniques, leveraging the commutative
property of certain operations. Their optimizations resulted in a maximum performance
gain of 2.82x compared to previous C implementations.

3. Proposed Method

CRYSTALS-DILITHIUM is a digital signature algorithm selected for NIST PQC stan-
dardization, and many researchers have conducted research to optimize CRYSTALS-
DILITHIUM [39]. Among them, there are studies that optimally implemented CRYSTALS-
DILITHIUM on the ARMvVS8 processors [19,21].

Building on this body of work, we have adapted similar techniques used in the
optimized NTT implementation of the HAETAE on the Cortex-M4 for our ARMvS8 imple-
mentation. By leveraging the modifications made to the previously optimized Dilithium'’s

Electronics 2024, 13, 3863

8 of 14

NTT implementation, we were able to achieve significant performance improvements on
the ARMv8 platform.

3.1. Optimized Implementation of NTT Utilizing NEON Instructions

Montgomery reduction is a technique used in modular arithmetic to efficiently com-
pute the modulo operation of large integers [40]. By replacing the division operation in
modular multiplication with a sequence of simpler operations, Montgomery reduction
improves computational efficiency. This method is particularly beneficial in polynomial
arithmetic, where element-wise modular polynomial multiplication reduction helps opti-
mize polynomial multiplication.

The Number Theoretic Transform (NTT) is a mathematical transformation akin to the
Fast Fourier Transform (FFT) but specifically designed to operate within finite fields or
rings [41,42]. This specialization makes NTT particularly suitable for modular arithmetic
operations, which are fundamental in cryptographic applications. Unlike the FFT, which
operates over real or complex numbers, NTT works with integers modulo, a prime or com-
posite number, thereby enhancing its applicability in contexts where modular arithmetic
is essential.

Mathematically, for a polynomial P(x) of degree n — 1 over a finite field IF; or a ring
7y, the NTT is defined as:

P(w") =) P(x) - @™)

where w denotes a primitive n-th root of unity modulo g or N, and w* represents the k-th

power of this root. This formulation allows for the efficient transformation of polynomial

coefficients into a domain where polynomial multiplication can be performed more quickly.
The NTT can also be represented in matrix form as:

X=W-P)

In this matrix representation:

* Xis the vector of NTT coefficients.
* Wis the NTT matrix, where each element is derived from the powers of w.
¢ Pis the vector of polynomial coefficients.

To further explain the matrix form calculation, the NTT matrix W is constructed by
computing the powers of the primitive root w. Specifically, each element W; ; of W is defined
as w'/ mod g, where w is a primitive n-th root of unity, and g is the modulus (typically
a prime number in cryptographic applications). The matrix multiplication X = W - P
transforms the vector of polynomial coefficients P into the NTT domain, represented by
the vector X. This matrix form of the NTT enables efficient computation, especially when
leveraging parallel processing in hardware implementations.

NTT plays a crucial role in efficient polynomial multiplication, which is a fundamen-
tal operation in many cryptographic algorithms. In particular, the HAETAE, a crypto-
graphic algorithm selected for post-quantum security, utilizes NTT to perform polynomial
multiplications efficiently. This capability significantly enhances its performance and
security features.

Overall, the NTT’s ability to transform polynomial coefficients into a frequency domain
representation, execute multiplications, and then revert via the Inverse NTT (Inv_NTT)
dramatically reduces the computational complexity compared to traditional polynomial
multiplication methods. This reduction in complexity is particularly beneficial for crypto-
graphic algorithms like the HAETAE, where numerous polynomial operations are integral
to its functionality.

In our implementation of NTT on ARMv8 processors, we leverage the 128-bit vector
registers provided by NEON instructions. ARMv8 processors feature NEON, which allows

Electronics 2024, 13, 3863

9 of 14

for parallel processing of multiple data elements in a single instruction. However, the movi
instruction, used to load values into vector registers, has a fixed range. To accommodate
this, we must efficiently manage the modular Q value and its inverse within the constraints
of the 128-bit registers. Specifically, we use four 32-bit values with identical data packed
into a single 128-bit vector register. This packing allows for efficient parallel computation
and reduces the overhead associated with handling individual values.

Algorithm 1 outlines the polynomial pointwise Montgomery operation. Lines 1-4
load four 32-bit modular Q values into the 128-bit register (v3). Lines 5-14 load four 32-bit
modular invsere_Q values into the 128-bit register (v4). Lines 15-26 perform the polynomial
pointwise Montgomery operation. By taking advantage of the capability to load four 32-bit
values into the 128-bit vector register, the number of multiplication operations required,
which would otherwise be 256, is reduced to 64.

Algorithm 1 Element-Wise Modular Polynomial Multiplication Utilizing NEON Instruction;
(x0: Result of the multiplication operation, x1, x2: Inputs for the multiplication operation)

// mk_Q
1: MOVI.4s v3, #0xfc 15: MOV x25, #64
2: REV16 v3.16b, v3.16b 16: loop_j:
3: MOVI.4s v5, #0x01
4: ORR.16b v3, v3, vb 17: LD1 {v1.4s}, [x1], #16

18: LD1 {v2.4s}, [x2], #16

// mk_Q_Inv
5. MOVI.4s v4, #0x38 // mont_reduce
6: MOVI.4s vb, #0x0f 19: SQDMULH v6.4s, v0.4s, v2.4s
7: REV32 v4.16b, v4.16Db 20: MUL.4s v27, v2, v4
8: SHL.4s v5, vb, #16 21: MUL.4s v7, v0, v27
9: ORR.16b v4, v4, vb 22: SQDMULH v16.4s, v7.4s, v3.4s
10: MOVI.4s v5, #0x04 23: SHSUB.4s v6, v6,v16
11: REV16 v5.16b, vb5.16b
12: ORR.16b v4, v4, vb 24: ST1 v6.4s, [x0], #16
13: MOVI.4s vb, #0x01 25: ADD x25, x25, #-1
14: ORR.16b v4, v4, vb 26: CBNZ x25, loop_j

Lines 19-23 implement the Montgomery reduction technique proposed in [21]. The pro-
cess begins with the use of the sqdmulh instruction, which performs signed multiplication
of two 32-bit integers a and b, then adds twice the result of this multiplication to itself,
and finally returns only the high-order bits of the result, which helps in efficiently managing
the results of large multiplications within a limited bit-width. Following this, the shsub
instruction is used, which subtracts one value (b) from another (a) and then divides the
result by two, effectively providing a shifted result that simplifies subsequent operations.
In this reduction process, the intermediate result obtained from sqdmulh is denoted as c.
The result of the modular reduction on b is stored in a temporary register. This temporary
value is then multiplied by a, producing a new value referred to as al. Subsequently, a1l
is combined with the modular inverse of Q in the register using the sqdmulh instruction
again. The final value is computed by performing additional operations with ¢ and using
the shsub instruction, which refines the result to ensure correctness in the Montgomery
reduction step.

The Montgomery reduction operation in Algorithm 1 is implemented using the tech-
niques from both [19,21]. Lines 19-23 in Algorithm 1 specifically reflect the techniques
from [21]. Additionally, our paper includes results implemented using the techniques from
both [19,21].

Electronics 2024, 13, 3863

10 of 14

3.1.1. Optimized Implementation of NTT

Algorithm 2 is part of the NTT multiplication operation. The input values alj] and
a[j+len] are loaded. alj] is loaded into vl and a[j+len] is loaded into v0. In this process,
the a[j] value and a[j+len] value are loaded from one address value (x0), so the address
value is directly moved to the desired location and the value is loaded into the register.
Afterwards, a multiplication operation is performed, and although the n value of the ring
dimension is 256, since parallel implementation is performed, the multiplication operation
is performed with 32 operations.

Algorithm 2 Part of NTT utilizing NEON instruction; (x0: Result of the multiplication
operation, x1, x2: Inputs for the multiplication operation)

.macro len128 9: MUL.4s v7, vO, v27
1: MOV x15, #32 10: SQDMULH v16.4s, v7.4s, v3.4s
2: LD1R v2.4s, [x1], #4 11: SHSUB.4s v6, v6,v16
3: loop_1128: 12: SUB.4s v0, v1, v6

13: ST1 v0.4s, [x0]
4: LD1 vi.4s, [x0] 14: ADD x0, x0, #-512
5. ADD x0, x0, #512 15: ADD.4s v1, v1, v6
6: LD1 v0.4s, [x0] 16: ST1 v1.4s, [x0], #16
// mont_reduce 17: ADD x15, x15, #-1
7. SQDMULH v6.4s, v0.4s, v2.4s 18: CBNZ x15, loop_i128
8: MUL.4s v27, v2, v4 .endm

3.1.2. Data Reordering as a Permutation

To implement the NTT and inverse NTT operations in parallel, masking must be
applied to the 32-bit values used in the multiplication operation. Masking is achieved
through a data reordering technique. In order to optimize the parallel implementation
of operations using the same zeta value, data reordering was used for some operations.
Figure 2 illustrates part of this data reordering process. The top two data values represent
the state before register realignment, while the bottom two images show the state after
register realignment. The task of rearranging the upper two register arrays to match the
lower two arrays was efficiently accomplished using the ZIP1, ZIP2, and TRN1 instructions.

— X[0] X[1] X[2] X[3]
e PP PP PP PP PP]
1 Y A Y A Y A Y J

X[4] X[5] X[6] X[7]
LT T T T T T T T T TT
L Y A Y A Y A Y J

— X[0] X[2] X[4] X[6]
LI T T T I T T T T T T]
L A A A)

T T T T

X[1] X[3] X[5] X[7]

Figure 2. Data Reordering using Neon instruction. The upper section (a) shows the data before
reordering, while the lower section (b) displays the data after reordering. (v1 and v2 is vector register).

Electronics 2024, 13, 3863

11 of 14

3.2. Optimized Implementation of Inverse NTT
Pre-Computation

The zeta value used in the inverse NTT operation is derived by repeatedly applying
the inverse NTT operation to the zeta value used in the NTT operation. Since the zeta value
required for the inverse NTT operation is a value that inverts the sign of the value located
at the end of the zetas array, this value can be precomputed. Therefore, this paper proposes
precomputing the zeta value for the inverse NTT and then using the precomputed value
during the inverse NTT calculation.

Apart from this, the inverse NTT operation was implemented similarly to the NTT
operation. Algorithm 3 illustrates part of the inverse NTT operation.

Algorithm 3 Part of Inverse NTT utilizing NEON instruction; (x0: Result of Multiplication
Operation, x1, x2: Input of Multiplication Operation)

.macro lenl 15: MOV.4s v6, v8
1: MOV x13, #32 16: ADD.4s v8, v9, v6
17: SUB.4s v9, v6, v9
2: loop:
3: LD1 {v2.4s}, [x1], #16 // mont_reduce
4: MUL.4s v27, v2, v4 18: SQDMULH v6.4s, v9.4s, v2.4s
5. LD1 {v1.2s}, [x0], #8 19: MUL.4s v7, v9, v27
6: LD1 {v0.2s}, [x0], #8 20: SQDMULH v16.4s, v7.4s, v3.4s
21: SHSUB.4s v6, v6,v16
// data_reordering
7: TRN1.4s v17, v1, vO 22: ZIP1.4s vO, v8, v6
8: TRN2.4s v18, v1, vO 23: ZIP2.4s v1, v8, v6
9: LD1 {v1.2s}, [x0], #8
10: LD1 {v0.2s}, [x0] 24: ADD x0, x0, #-24
11: TRN1.2s v12, vi1, vO 25: ST1 {v0.4s}, [x0], #16
12: TRN2.2s v19, v1, vO 26: ST1 {v1.4s}, [x0], #16
13: ZIP1.2d v8, v17, vi12 27: ADD x13, x13, #-1
14: ZIP1.2d v9, v18, v19 28: CBNZ x13, loop

.endm

4. Evaluation

In this section, we present the performance evaluation of the proposed implementation
compared to the reference C implementation [23]. The implementations were developed
using Xcode 15.4 and executed within the Xcode IDE. The evaluations were performed on
a 2021 MacBook Pro 16” equipped with an Apple M1 Pro chip, operating at up to 3.2 GHz.
To achieve optimal performance, the code was compiled using the -03 optimization flag,
which ensures maximum speed.

For performance benchmarking, the optimized HAETAE algorithm was tested by
recording the execution time (in milliseconds) over 10,000 iterations. Additionally, we
measured the time (in milliseconds) for 1,000,000 iterations to evaluate the performance of
the state-of-the-art NTT implementation techniques, including the optimizations proposed
in this paper.

The performance measurement results of the high-speed HAETAE algorithm are
shown in Table 4, and the performance measurement results for the multiplication imple-
mentation using state-of-the-art techniques are presented in Table 5.

Electronics 2024, 13, 3863 12 of 14

Table 4. Performance evaluation result of HAETAE algorithm (unit: ms); notation (B): best performance.

Cheon et al. [23] This Work This Work (B)
Keygen Sign Verify Keygen Sign Verify Keygen Sign Verify

HAETAE120 1288 7616 400 1126 6869 322 1114 6818 316
HAETAE180 1502 4198 694 1303 3749 554 1295 3721 545
HAETAE260 2407 76,081 862 2173 67,758 710 2177 66,864 692

Scheme

Table 5. Performance evaluation results of the NTT algorithm implementation using the latest
implementation techniques (unit: ms); notation (B): best performance.

Cheon et al. [23] This Work This Work (B)

NTT 900 319 293
Inverse NTT 1157 373 319
Poly pointwise Montgomery 247 58 27

The performance results of applying the masking technique proposed in this pa-
per, combined with state-of-the-art NTT implementation techniques that incorporate pre-
computation, are detailed below.

Initially, employing the implementation technique outlined in [19], we observed signif-
icant performance improvements. Specifically, this optimized approach achieved enhance-
ments of 2.82x for the NTT operation, 3.10x for the Inverse-NTT operation, and 4.72 x for
pointwise Montgomery multiplication.

Further gains were achieved using an alternative implementation technique referenced
in [21]. This method demonstrated even more substantial performance improvements,
with enhancements of 3.07 x for NTT, 3.63 x for Inverse-NTT, and a remarkable 9.15x for
pointwise Montgomery operations.

When these advanced techniques were applied to the HAETAE encryption algorithm,
the performance metrics were as follows: For HAETAE120, the key generation (Keygen)
operation saw a performance improvement of 1.16 %, the signature (Sign) operation im-
proved by 1.12x, and the verification (Verify) operation realized a 1.27x boost. Similarly,
for HAETAE180, the Keygen operation improved by 1.16x, the Sign operation by 1.13x,
and the Verify operation by 1.27x. Finally, for HAETAE260, the Keygen operation demon-
strated a performance increase of 1.11x, the Sign operation improved by 1.14 x, and the
Verify operation exhibited a performance enhancement of 1.25x.

5. Conclusions

In this paper, we proposed optimized implementations of the HAETAE digital signa-
ture algorithm for ARMvS processors and evaluated their performance on Apple M1 Pro
processors. Our approach leverages NEON instructions inherent to the ARMvS architecture,
allowing us to capitalize on its parallel processing capabilities. We applied masking and
pre-computation techniques to state-of-the-art NTT implementation methods, achieving
substantial performance improvements.

Especially, our optimized implementations achieved performance improvements of up
to 3.07x for the NTT operation, up to 3.63x for Inverse-NTT, and up to 9.15x for pointwise
Montgomery multiplication. These advancements translate directly into the performance
metrics of the HAETAE algorithm. Specifically, the key generation algorithm demonstrated
a performance improvement of up to 1.16x, the signing algorithm saw an enhancement
of up to 1.14x, and the verification algorithm exhibited an impressive improvement of up
to 1.25x.

These findings highlight the efficacy of the proposed techniques in improving HAETAE'’s
performance on ARMvS8 processors. The significant improvements in NTT and Mont-
gomery operations contribute directly to the overall efficiency of the HAETAE algorithm,
making it more appropriate for use in resource-limited environments.

Electronics 2024, 13, 3863 13 of 14

In future research, we suggest investigating additional optimizations for NTT multi-
plication on ARMvV8 processors, aiming to surpass the performance of existing methods.
Moreover, the optimizations presented in this work could potentially be extended to other
cryptographic primitives, such as digital signatures and hash functions.

Author Contributions: Software, M.S. and M.L.; Writing—original draft, M.S.; Writing—review
& editing, H.S.; Supervision, H.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00264, Research on
Blockchain Security Technology for IoT Services, 50%) and this work was supported by Institute of
Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2022-0-00627, Development of Lightweight BloT technology for Highly
Constrained Devices, 50%).

Data Availability Statement: The data supporting the reported results are available at https://github.
com/minjoo97/HAETAE_on_ARMVS.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Feynman, R.P. Simulating physics with computers. In Feynman and Computation, CRC Press: Boca Raton, FL, USA, 2018;
pp. 133-153.

Shor, PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,
41, 303-332. [CrossRef]

Grover, LK. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, Philadelphia, PA, USA, 22-24 May 1996; pp. 212-219.

Choi, C.Q. IBM’s Quantum Leap: The Company Will Take Quantum Tech Past the 1,000-Qubit Mark in 2023. IEEE Spectr. 2023,
60, 46-47. [CrossRef]

Yan, B.; Tan, Z.; Wei, S; Jiang, H.; Wang, W.; Wang, H.; Luo, L.; Duan, Q.; Liu, Y.; Shi, W.; et al. Factoring integers with sublinear
resources on a superconducting quantum processor. arXiv 2022, arXiv:2212.12372.

Hossain, M.; Kayas, G.; Hasan, R.; Skjellum, A.; Noor, S.; Islam, S.R. A Holistic Analysis of Internet of Things (IoT) Security:
Principles, Practices, and New Perspectives. Future Internet 2024, 16, 40. [CrossRef]

Kumar, A.; Ottaviani, C.; Gill, S.S.; Buyya, R. Securing the future internet of things with post-quantum cryptography. Secur. Priv.
2022, 5, €200. [CrossRef]

Balogh, S.; Gallo, O.; Ploszek, R.; Spatek, P; Zajac, P. ToT security challenges: Cloud and blockchain, postquantum cryptography,
and evolutionary techniques. Electronics 2021, 10, 2647. [CrossRef]

Kumari, S.; Singh, M.; Singh, R.; Tewari, H. Post-quantum cryptography techniques for secure communication in resource-
constrained Internet of Things devices: A comprehensive survey. Softw. Pract. Exp. 2022, 52, 2047-2076. [CrossRef]

Shamshad, S.; Riaz, F,; Riaz, R.; Rizvi, S.S.; Abdulla, S. An enhanced architecture to resolve public-key cryptographic issues in the
internet of things (IoT), employing quantum computing supremacy. Sensors 2022, 22, 8151. [CrossRef]

Malina, L.; Popelova, L.; Dzurenda, P.; Hajny, J.; Martinasek, Z. On feasibility of post-quantum cryptography on small devices.
IFAC-PapersOnLine 2018, 51, 462-467. [CrossRef]

NIST PQC Project. Available online: https://csrc.nist.gov/Projects/post-quantum-cryptography (accessed on 21 July 2024).
KpqC Competition. Available online: https:/ /kpqc.or.kr/competition.html (accessed on 21 July 2024).

Oder, T.; Speith, J.; Holtgen, K.; Giineysu, T. Towards practical microcontroller implementation of the signature scheme Falcon.
In Proceedings of the Post-Quantum Cryptography: 10th International Conference, PQCrypto 2019, Chongging, China, 8-10 May 2019;
Revised Selected Papers 10; Springer: Berlin/Heidelberg, Germany, 2019; pp. 65-80.

Chen, M.S,; Chou, T. Classic McEliece on the ARM cortex-M4. In IACR Transactions on Cryptographic Hardware and Embedded
Systems; IACR: Lyon, France, 2021; pp. 125-148.

Sim, M.; Eum, S.; Kwon, H.; Kim, H.; Seo, H. Optimized implementation of encapsulation and decapsulation of Classic
McEliece on ARMvS. Cryptol. ePrint Arch. 2022,2022/1706. Available online: https://eprint.iacr.org/2022 /1706 (accessed on
23 September 2024).

Nguyen, D.T.; Gaj, K. Fast falcon signature generation and verification using armv8 neon instructions. In Proceedings of the
International Conference on Cryptology in Africa; Springer: Berlin/Heidelberg, Germany, 2023; pp. 417-441.

Huang, J.; Adomnicdi, A.; Zhang, J.; Dai, W.; Liu, Y,; Cheung, R.C.; Kog, C.K.; Chen, D. Revisiting Keccak and Dilithium
Implementations on ARMv7-M. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024, 2024, 1-24. [CrossRef]

Kim, Y.; Song, J.; Youn, T.Y.; Seo, S.C. Crystals-Dilithium on ARMv8. Secur. Commun. Netw. 2022, 2022, 5226390. [CrossRef]

https://github.com/minjoo97/HAETAE_on_ARMv8
https://github.com/minjoo97/HAETAE_on_ARMv8
http://doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1109/MSPEC.2023.10006669
http://dx.doi.org/10.3390/fi16020040
http://dx.doi.org/10.1002/spy2.200
http://dx.doi.org/10.3390/electronics10212647
http://dx.doi.org/10.1002/spe.3121
http://dx.doi.org/10.3390/s22218151
http://dx.doi.org/10.1016/j.ifacol.2018.07.104
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://kpqc.or.kr/competition.html
https://eprint.iacr.org/2022/1706
http://dx.doi.org/10.46586/tches.v2024.i2.1-24
http://dx.doi.org/10.1155/2022/5226390

Electronics 2024, 13, 3863 14 of 14

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Seo, S.C.; An, S. Parallel implementation of CRYSTALS-Dilithium for effective signing and verification in autonomous driving
environment. ICT Express 2023, 9, 100-105. [CrossRef]

Becker, H.; Hwang, V.; Kannwischer, M.].; Yang, B.Y.; Yang, S.Y. Neon ntt: Faster dilithium, kyber, and saber on cortex-
a72 and apple ml. Cryptol. ePrint Arch. 2021, 2021/986. Available online: https://eprint.iacr.org/2021/986 (accessed on
23 September 2024). [CrossRef]

Seo, H.; Sanal, P; Jalali, A.; Azarderakhsh, R. Optimized implementation of SIKE round 2 on 64-bit ARM Cortex-A processors.
IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2659-2671. [CrossRef]

Cheon,].H.; Choe, H.; Devevey,].; Giineysu, T.; Hong, D.; Krausz, M.; Land, G.; Méller, M.; Stehlé, D.; Yi, M. Haetae: Shorter
lattice-based fiat-shamir signatures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024, 2024, 25-75. [CrossRef]

Kwon, H.; Sim, M.; Song, G.; Lee, M.; Seo, H. Evaluating kpqc algorithm submissions: Balanced and clean benchmarking
approach. In Proceedings of the International Conference on Information Security Applications; Springer: Berlin/Heidelberg, Germany,
2023; pp. 338-348.

Cottaar, J.; Hovelmanns, K.; Hiilsing, A.; Lange, T.; Mahzoun, M.; Pellegrini, A.; Ravagnani, A.; Schéage, S.; Trimoska, M.;
de Weger, B. Report on evaluation of KpqC candidates. Cryptol. ePrint Arch. 2023, 2023/1853. Available online: https:
/ /eprint.iacr.org/2023 /1853 (accessed on 23 September 2024).

Choi, Y,; Kim, M.; Kim, Y; Song, J.; Jin, J.; Kim, H.; Seo, S.C. KpgBench: Performance and Implementation Security Analysis of
KpqC Competition Round 1 Candidates. IEEE Access 2024. [CrossRef]

Lee, J.; Lee, Em.; Kim, J. Security Analysis on TIGER KEM in KpqC Round 1 Competition Using Meet-LWE Attack. J. Korea Inst.
Inf. Secur. Cryptol. 2023, 33, 709-719.

Ikematsu, Y,; Jo, H.; Yasuda, T. A security analysis on MQ-Sign. In Proceedings of the International Conference on Information Security
Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 40-51.

Kim, S.; Lee,EM.; Lee, J.; Lee, M.].; Noh, H. Security Evaluation on KpqC Round 1 Lattice-Based Algorithms Using Lattice
Estimator. In Proceedings of the International Conference on Information Security and Cryptology; Springer: Berlin/Heidelberg,
Germany, 2023; pp. 261-281.

NIST PQC Project: Digital Signature Schemes. Available online: https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-
signatures (accessed on 21 July 2024).

Lyubashevsky, V. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In Proceedings of the International
Conference on the Theory and Application of Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 598-616.

Lyubashevsky, V. Lattice signatures without trapdoors. In Proceedings of the Annual International Conference on the Theory and
Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2012; pp. 738-755.

Devevey, J.; Fawzi, O.; Passelegue, A.; Stehlé, D. On rejection sampling in lyubashevsky’s signature scheme. In Proceedings of the
International Conference on the Theory and Application of Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany,
2022; pp. 34-64.

Abdulrahman, A.; Hwang, V.; Kannwischer, M.J.; Sprenkels, A. Faster kyber and dilithium on the cortex-m4. In Proceedings of the
International Conference on Applied Cryptography and Network Security; Springer: Berlin/Heidelberg, Germany, 2022; pp. 853-871.
Armv8-A Instruction Set Architecture. Available online: https://developer.arm.com/documentation/den0024/a/An-
Introduction-to-the- ARMvS8-Instruction-Sets (accessed on 21 July 2024).

Kwon, H.; Kim, H.; Sim, M.; Eum, S.; Lee, M.; Lee, WK_; Seo, H. ARMing-Sword: Scabbard on ARM. In Proceedings of the
International Conference on Information Security Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 237-250.

Kwon, H.; Kim, H.; Sim, M.; Lee, W.K,; Seo, H. Look-up the Rainbow: Table-based Implementation of Rainbow Signature on
64-bit ARMv8 Processors. ACM Trans. Embed. Comput. Syst. 2023, 22, 80. [CrossRef]

Sim, M.; Kwon, H.; Eum, S.; Song, G.; Lee, M.; Seo, H. Efficient Implementation of the Classic McEliece on ARMv8 Processors.
In Proceedings of the International Conference on Information Security Applications; Springer: Berlin/Heidelberg, Germany, 2023;
pp. 324-337.

Ducas, L,; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. Crystals-Dilithium: A lattice-based digital
signature scheme. In JACR Transactions on Cryptographic Hardware and Embedded Systems; IACR: Lyon, France, 2018; pp. 238-268.
Montgomery, P.L. Modular multiplication without trial division. Math. Comput. 1985, 44, 519-521. [CrossRef]

Chung, CM.M.; Hwang, V.; Kannwischer, M.].; Seiler, G.; Shih, C.J.; Yang, B.Y. NTT multiplication for NTT-unfriendly rings:
New speed records for Saber and NTRU on Cortex-M4 and AVX2. In IACR Transactions on Cryptographic Hardware and Embedded
Systems; IACR: Lyon, France, 2021; pp. 159-188.

Zhang, N.; Yang, B.; Chen, C,; Yin, S.; Wei, S.; Liu, L. Highly efficient architecture of NewHope-NIST on FPGA using low-
complexity NTT/INTT. In IACR Transactions on Cryptographic Hardware and Embedded Systems; IACR: Lyon, France, 2020;
pp- 49-72.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.icte.2022.08.003
https://eprint.iacr.org/2021/986
http://dx.doi.org/10.46586/tches.v2022.i1.221-244
http://dx.doi.org/10.1109/TCSI.2020.2979410
http://dx.doi.org/10.46586/tches.v2024.i3.25-75
https://eprint.iacr.org/2023/1853
https://eprint.iacr.org/2023/1853
http://dx.doi.org/10.1109/ACCESS.2024.3361316
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://developer.arm.com/documentation/den0024/a/An-Introduction-to-the-ARMv8-Instruction-Sets
https://developer.arm.com/documentation/den0024/a/An-Introduction-to-the-ARMv8-Instruction-Sets
http://dx.doi.org/10.1145/3607140
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X

	Introduction
	Contribution
	Applying State-of-the-Art NTT Implementation Techniques
	First Implementation of the HAETAE on 64-bit ARMv8 Processors Using NEON Instructions

	Background
	KpqC Contest
	HAETAE
	HAETAE on Cortex-M4
	Polynomial Arithmetic Optimization on Cortex-M4
	Gaussian Sampler Optimization on Cortex-M4

	Target Processor: 64-bit ARMv8 Architecture
	Previous Implementations of Post Quantum Cryptography on 64-bit ARMv8 Processors

	Proposed Method
	Optimized Implementation of NTT Utilizing NEON Instructions
	Optimized Implementation of NTT
	Data Reordering as a Permutation

	Optimized Implementation of Inverse NTT

	Evaluation
	Conclusions
	References

