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Abstract: This paper presents an optimized quantum circuit for the scrypt cryptographic algorithm.
We applied various optimization techniques to reduce the DW cost, which is the product of the
time and space complexity of quantum circuits. In our proposed method, the number of ancilla
qubits was significantly reduced through the use of optimized inverse operations, while the depth
was minimized by implementing parallel structures. For the SHA-256, we devised a structure that
achieves a substantial reduction in the number of ancilla qubits with only a slight increase in quantum
circuit depth. By cleaning the dirty ancilla qubits used in the previous round through inverse
operations, we enabled their reuse in each subsequent round. Specifically, we reduced the number of
8128 ancilla qubits, achieving this with an increase of only 6 in the full depth of the quantum circuit.
Additionally, within Salsa20/8 in SMix, we reused qubits through inverse operations and performed
some operations in parallel to reduce both the number of qubits and the overall quantum circuit
depth. Finally, our quantum circuit for scrypt demonstrates a significant reduction in the width (the
number of qubits) with only a minimal increase in the full quantum circuit depth.

Keywords: quantum implementation; grover algorithm; scrypt

1. Introduction

Quantum computers leverage the properties of quantum mechanics to utilize qubits
that can exist in both 0 and 1 states simultaneously, providing powerful computational
capabilities for specific problems. Shor’s algorithm efficiently solves the integer factoriza-
tion problem for large numbers [1], threatening the security of public-key cryptography
such as RSA. Grover’s algorithm efficiently addresses the problem of finding a desired item
in an unsorted database. While classical algorithms take O(N) time complexity, Grover’s
algorithm solves it in O(v/N) time complexity [2]. This greatly accelerates brute force
attacks for finding keys in symmetric key algorithms (e.g., AES). The advent of quantum
computers significantly threatens existing cryptographic systems, including public-key
cryptography and symmetric-key cryptography. In response, NIST has launched the Post-
Quantum Cryptography Standardization competition to find replacements for current
cryptographic standards. NIST has also proposed the cost of Grover’s algorithm attack,
using the maximum depth (MAXDEPTH) of AES as a metric to assess the quantum security
strength of block ciphers. To estimate Grover’s algorithm attack cost for a target cipher
and verify the post-quantum security levels proposed by NIST, it is necessary to imple-
ment the cipher as a quantum circuit. Quantum circuits are required inside the oracle of
Grover’s algorithm. Optimized quantum circuits allow for a more accurate determination
of post-quantum security levels. Motivated by this, many prior studies have conducted
optimized implementations of various ciphers as quantum circuits, such as LSH [3,4],
PIPO [5], SPEEDY [6], and so on [7-18].

This paper presents the implementation of a quantum circuit for scrypt. We implement
the scrypt algorithm on a quantum computer with low circuit complexity and provide a
detailed explanation of the various optimization techniques applied to achieve this. We pro-
pose a method to ancilla qubits to clean |0) through inverse operations and to reuse them in
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the next iteration. During this process, we perform inverse operations in parallel with subse-
quent operations to minimize the increase in depth. Additionally, we follow a qubit update
method, where if the pre-update value of an updated qubit is needed, we use the updated
value in the next operation and then apply the inverse operation to restore the pre-update
value. Using this method, we significantly reduce the number of ancilla qubits while only
slightly increasing the overall depth. Consequently, we reduce the circuit complexity, calcu-
lated as the product of time and space complexity (DW-cost = qubit x T-depth), for scrypt.
We provide the estimated resources for the optimized quantum circuit. To the best of our
knowledge, this is the first quantum circuit implementation for scrypt. Therefore, it is diffi-
cult to compare the optimization results of our quantum circuit with previous scrypt results.
We perform quantum circuit optimization based on the original reference implementation
of scrypt. This scrypt quantum circuit can be used to operate Grover’s algorithm to estimate
resources. Therefore, this paper will serve as the foundation for future implementations of
the scrypt algorithm in quantum circuits. Further optimization of future scrypt quantum
circuits will help us more accurately assess the post-quantum security of the algorithm.
The structure of this paper is as follows: in Section 2, related research on NIST’s PQC
Standards Competition and quantum computing is written to help understand the paper.
Section 3 explains the implementation of the proposed scrypt quantum circuit. This section
describes the optimization techniques applied to each scrypt function in detail. Section 4
estimates and analyzes the resources required for the proposed quantum circuit. We use
the projectQ [19] tool to analyze resources and verify implementation results. The DW cost
is calculated and written based on the estimated resources. Finally, Section 5 concludes
the paper.

1.1. Our Contribution
1.1.1. First Quantum Circuit for Scrypt

To the best of our knowledge, this is the first quantum circuit for scrypt. The scrypt
algorithm has been implemented in various optimized implementations across different
hardware and software environments [20-22]. However, there has been no quantum circuit
result suitable for a quantum computer environment. Although optimizations such as
memory optimization have been studied for scrypt [23], we implemented the quantum
circuit based on the original reference code. We present an optimization direction for the
scrypt quantum circuit and establish a basis for assessing initial post-quantum security.
These research results will serve as a foundation for future implementations of scrypt
quantum circuits.

1.1.2. Qubit Reuse through Inverse Computation

We propose a method where, after using ancilla qubits in a clean |0) state, the dirty
qubit is returned to a clean |0) state through inverse operations, allowing them to be reused
in subsequent iterations. In SHA-256, dirty ancilla qubits that have been used can be reset to
a clean |0) state through inverse operations, enabling reuse in all loops. Using this method,
we reduced the number of qubits by 8128 in SHA-256 within PBKD F2spj 4256 with a slight
increase in depth (approximately depth 6). In the Salsa function within SMix, we avoided
using ancilla qubits for intermediate value storage during the ‘Operation on columns” and
‘Operate on rows’ steps. Instead, we updated the intermediate values directly into the
inputs. When the pre-update values of the updated qubits were needed for subsequent
operations, we used the updated values in the following operations and then applied
inverse operations to restore the pre-update values.

1.1.3. Parallel Structures in SHA-256 and Salsa20/8

We designed the internal operations to be as parallel as possible to reduce the depth of
the quantum circuit. In SHA-256, we reset the used ancilla qubits to a clean state |0) through
inverse operations and designed the circuit to reuse them in all loops. However, adding
inverse operations increases the depth of the quantum circuit. To minimize the impact of
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these inverse operations on the circuit depth, we implemented them to operate in parallel
with subsequent operations. Similarly, within the salsa function, the inverse operations
that restore the updated qubits to their pre-update state and the internal additions operate
partially in parallel with subsequent operations. Therefore, while inverse operations were
added to reduce the number of qubits, they do not significantly affect the overall depth.

1.1.4. Optimized Quantum Circuit with Low Complexity

We significantly reduced the number of ancilla qubits. To achieve this, we implemented
additional operations in parallel so that the quantum circuit depth is minimally affected.
We efficiently implemented scrypt into a quantum circuit by reducing the ancilla qubits
and depth. These results demonstrate an optimized circuit complexity (DW cost) calculated
as the product of time and space complexity.

2. Background
2.1. NIST’s PQC Standards Competition

The National Institute of Standards and Technology (NIST) initiated the Post-Quantum
Cryptography (PQC) Standards competition to address the imminent threat quantum
computing poses to classical cryptographic systems. This project, officially announced
in 2016, aims to identify and standardize cryptographic algorithms resistant to quantum
attacks. As part of this competition, NIST established the post-quantum security level
categories shown in Table 1 to classify algorithms [24-26]. These categories are defined
based on the complexity of the Grover attack that can be quantified in terms of circuit
size. The three proposed security levels (security level 1, 3, and 5) are defined based
on the security of different variants of AES, considering attacks on quantum computers.
Considering that NIST established security categories based on the depth of quantum
circuits, optimizing the depth is crucial in quantum cryptographic implementations to
determine the security level of the cryptographic algorithm accurately.

Table 1. NIST post-quantum security level categories.

Level Cipher Category
1 AES 128 2157 /MAXDEPTH quantum gates
3 AES 192 2221 /MAXDEPTH quantum gates
5 AES 256 2285 /MAXDEPTH quantum gates

2.2. Quantum Computing

Quantum computing is a technology that performs calculations by leveraging the
principles of quantum mechanics [27]. Unlike classical computers, which process informa-
tion using bits, quantum computers use qubits. Qubits can exist in a superposition state,
allowing them to represent both 0 and 1 simultaneously, thereby enabling parallel com-
putation. Additionally, through the phenomenon of entanglement, interactions between
distant qubits can be maximized. These characteristics enable quantum computers to solve
certain computational problems much faster than classical computers.

Grover’s quantum algorithm [2] can significantly speed up database searches by a
factor of a square root, drastically reducing the time required to find keys in symmetric-
key cryptographic systems (e.g., AES). This implies that quantum computers could easily
attack many current symmetric-key cryptographic systems. Consequently, advancements
in quantum computing are driving the development of new cryptography, such as post-
quantum cryptography (PQC) [28].

Quantum Circuit

A quantum circuit performs quantum operations using qubits, transforming and
interacting with qubit states through quantum gates. The depth of a circuit refers to the
maximum number of computational steps involving quantum gates, while the width of a
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circuit indicates the number of qubits being processed. Thus, a quantum circuit is composed
of width, depth, and quantum gates. Major quantum gates include the X gate, CNOT gate,
and Toffoli gate, as shown in Figure 1:

_ X X X —e— X
X b X
y ——o—VY
y ———xDy z —pH— xydz
(a) X gate (b) CNOT gate (c) Toffoli gate

Figure 1. Quantum gates.

2.3. Scrypt

Scrypt is a password-based key derivation function developed by Colin Percival in
2009 [29]. It was designed to be computationally intensive and memory-hard, making it
resistant to hardware attacks, particularly those using ASICs (application-specific integrated
circuits) and GPUs (graphics processing units). This makes scrypt an ideal choice for
highly secure applications such as password hashing and cryptocurrencies. The detailed
parameters of scrypt are available in Table 2.

Table 2. Parameters in scrypt.

Parameters Meaning Remarks
passwd Password entered by user -
passwdlen; len (pwd) Length of the password -

A unique, randomly

salt generated value A positive integer
saltlen; len (salt) Length of the salt -
N CPU/memory cost parameter A power of two
r Block size parameter A positive integer
p Parallelization parameter A positive integer satisfying

Algorithm 1 presents the pseudocode for the operation of scrypt. The PBKDE2 function
generates an initial derived key B using a password (passwd) and a salt. This function
typically uses the SHA-256 hash function internally. The SMix function is a core component
of the scrypt algorithm, responsible for performing memory-hard operations to enhance
security against brute-force attacks. The function takes the following parameters: B,
the input, which is the initial derived key block and must be 128r bytes, and N, which
determines the computational cost and must be to the power of 2.

Algorithm 2 illustrates the BLOCKMIX;5,8 and SMix functions used in the scrypt
algorithm. The PBKDF2g 4256 function generates a 128rp byte string. This generated
string is divided into p blocks of equal length, and the SMix function is called for each
block. The results from the SMix function are then concatenated and used as the salt in
the final PBKDF2gp 4256 operation. In this final PBKDF2gy 4556 operation, the original
password and the new salt are used to generate the final dkLen byte output key.

The SMix function is a core component of the scrypt algorithm responsible for its
memory-hard properties. According to the scrypt RFC [29], the recommended block size
parameter is = 8. With this parameter, the initial input block for SMix is only 1 kB,
making it suitable for the cache. However, the SMix function expands this 1 kB block
into an array of N blocks. These blocks are then accessed iteratively in a pseudorandom
order determined by the contents of previously accessed blocks. If N is sufficiently large,
the SMix function becomes memory-bound, resulting in significant computational costs for
running scrypt.
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Algorithm 1 Scrypt algorithm

Input: passwd, passwdlen, salt, saltlen, N, r, p

// (Bo...Bp_1) <~ PBKDF2(P,S,1,p x MFLen)
1: PBKDF2g a256(passwd, passwdlen, salt, saltlen, 1, B, px128x 1)

2: for(i=0toi<p):
3. SMix(B;, N) // B; < MF(B;,N)

/ /DK < PBKDF2(P, B,1,dkLen)
4: PBKDF2gp aps56(passwd, passwdlen, B, p x 128 x 1, 1, buf, buflen)

Algorithm 2 BLOCKMIX,,;5,8 and SMix algorithms

: function SMix(B, N)

X<+ B

: for (i=0 to i<N) :

Vi~ X

X <= BLOCKMIX41508(X)

AR

6: for(i=0toi< N):
. j < Integerify(X) mod N
X ¢ BLOCKMIXg1508 (X ® V;)

9: function BLOCKMI X4,
10: X < By,

11: for(i=0toi<2x7):

12: X < salsa20g(X & B;)

13: Vi X

3. Quantum Circuit on Scrypt

In this section, we describe the implementation of scrypt in a quantum circuit. The
key operations of scrypt include SMix and PBKDF2gp 425¢. Within the SMix function,
the Salsa20/8 (Salsa20/8 is the 8-round version of Salsa20 [30]) algorithm is utilized,
and the SHA-256 algorithm is employed within the PBKDF2g; 4256 function.

The ultimate goal of our scrypt quantum circuit implementation is to reduce the circuit
complexity, i.e., the product of time and space complexity (DW cost; width x T-depth),
by adjusting the depth-width balance of the scrypt quantum circuit to be used in the Grover
Oracle. To achieve this, we introduced parallel structures and optimization methods
into the scrypt quantum circuit. We designed a structure for SHA-256 that significantly
reduces the number of ancilla qubits with only a slight increase in depth. To minimize
the number of ancilla qubits used in each round, we cleaned and reused the dirty ancilla
qubits from the previous round through inverse operations, allowing their continuous use
in each round. In the salsa20/8 function within SMix, we avoided using ancilla qubits for
storing intermediate values during the ‘Operation on columns’ and ‘Operate on rows’ steps.
Instead, we updated the intermediate values directly in the inputs. When the pre-update
values were needed for subsequent operations, we used the updated values and then
applied inverse operations to restore the pre-update values. Thus, we did not use ancilla
qubits to store the updated results. This approach allowed the inverse operations to restore
the updated qubits to their pre-update state, and the internal additions operated partially
in parallel with subsequent operations, thereby reducing the overall depth. As a result, we
added the inverse operation to reduce the number of qubits, but it did not significantly
affect the full depth.
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3.1. Notation

In this paper, qubits are represented as arrays. For example, a 32-length qubit x
is written as x[i], where 0 < i < 31. An array declared with a certain data type, such
as an unsigned 32-bit integer array X|[n], is represented as an n x 32 array. To avoid
confusion, we distinguish between one-dimensional and two-dimensional qubit arrays
using lowercase and uppercase letters, respectively (lowercase: one-dimensional qubit
arrays, uppercase: two-dimensional qubit arrays). We use mixing-XOR (hereafter called
m-XOR) in the internal optimization process. m-XOR, introduced in [13], is a method that
transforms the creating operations of CNOT gates into updating operations to minimize
qubit usage. Here, a creating operation refers to an out-of-place operation that stores the
result of 2 ® b in c (c = a ® b), while an updating operation refers to an in-place operation
that stores the result of a ® b in qubit b (b = a @ b).

3.2. Addition in Scrypt

SHA-256 in PBKDF2 and Salsa20/8 in the SMix function use the (21 + 3)-depth
quantum adder proposed in [31]. The quantum adder uses n-bit a and b as inputs along
with a 1-bit ancilla ¢, performing an in-place addition: ADD(a,b,c) = (a,a ® b, c). Here,
a retains its original value, while b is updated to a®b. The ancilla c is input in a clean |0)
state and remains clean after the operation, allowing it to be reused in subsequent addition
operations. Consequently, this quantum circuit allows for addition using only a single
qubit as the ancilla.

3.3. SHA-256 in PBKDF2g1 A256

Within the password-based key derivation function 2 (PBKDF2gp a2s56), SHA-256
operates. We implemented the SHA-256 quantum circuit in PBKDF2 by significantly
reducing ancilla qubits while slightly increasing the depth. The operations performed in
SHA-256 are as follows:

Chix,y, 2) = ((x & (1°2))"2);

Maj(x, y,2) = ((x&(y | 2)) | (v&2));

SHR(x, n) = (x > n);

ROTR(x,n) = ((x > n) | (x < (32 —n)))

S0(x) = (ROTR(x,2)"ROTR(x,13)"ROTR(x,22));
S1(x) = (ROTR(x,6)"ROTR(x,11)"ROTR(x,25));
s0(x) = (ROTR(x,7)"ROTR(x,18)"SHR(x,3));
s1(x) = (ROTR(x,17)"ROTR(x,19)"SHR(x, 10)).

Algorithms 3-5 illustrate the quantum circuits for S0, 51, and Maj functions in
PBKDF2gpj 4256, respectively. We propose a method to reuse ancilla qubits (S04uc, Slanc,
and Maj,pc1 3 in the algorithms) by returning them to a clean |0) state through inverse
operations, allowing them to be reused in each iteration of the functions. Thus, inverse
operations can reset ancilla qubits to |0), enabling their reuse in all loops.

We reduce the full depth of the quantum circuit by ensuring that the 517, S0t, and Maj*
operations run in parallel with subsequent operations. Figure 2 illustrates the parallel
processing of the RND operations within SHA-256. 51T and SO run in parallel with the
subsequent operations Ch and Maj, respectively, while Maj' operates in parallel with the
Add operation of the next RNDr function. Using this method, we reduced the number
of qubits by 8128 with only a slight increase in depth (approximately 6) when SHA-256
operates once. As a result, the S0uyc, S1anc, and Maj,y,c1,3 qubits can continue to be reused
in the next round of the RNDr function in PBKDF2gp 4256-
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Figure 2. RNDr function of PBKDF2g o256 with inverse functions (S 1t, s0t, Ma j*) operating in parallel.

Algorithm 3 SO quantum circuit in SHA-256

Input: x, h, S04,c

1: oPoint 1: Start inverse operation

2: for (i=0to 32):

30 SOgncli] + CNOT(x[(i + 2)%32], SOanc[i])
4 SOgpci] < CNOT (x[(i + 13)%32], SOanc[i])
5 SOancli] <= CNOT(x[(i + 22)%32], SOanc|i])
6: oPoint 2: End inverse operation

7: h < Add(SOuue, h)

8: oStart inverse operation from Point 1 to Point 2.

Algorithm 4 51 quantum circuit in SHA-256

Input: x, h, S14,

1: oPoint 1: Start inverse operation

2: for (i=0to32):

3. Slgycli] +— CNOT(x[(i + 6)%32], Slanc[i])
4 Slapcli] + CNOT (x[(i + 11)%32], Slanc[i])
5. Slancli] < CNOT(x[(i + 25)%32], S1ancli])
6: oPoint 2: End inverse operation

7: h < Add(S1apc, h)

8: // Reset S1p. to clean |0)

9: oStart inverse operation from Point 1 to Point 2.

The quantum circuits of s0 and s1 are shown in Algorithms 6 and 7. In s0 and s1,
the SHR operation performs an n-bit right shift, filling the n-bit portion with zeros, so CNOT
does not operate in this n-bit region. Consequently, we omitted the shift operation by not
applying CNOT in the n-bit portion. To exclude the CNOT operation for n bits, the number
of loop iterations is set to 32 — n (where n = 3,10) in line 4 of Algorithms 6 and 7. This
approach can reduce the use of CNOT gates. Additionally, through the m-XOR method,
we modified the result of CNOT(ROTR(x,17),ancilla) and CNOT(ROTR(x,18), ancilla)
for subsequent unused h to CNOT(ROTR(x,17),h) and CNOT(ROTR(x,19), h), thereby
reducing the number of ancilla qubits. ROTR performs an n-bit right rotation, but in a
quantum computer that executes bitwise operations, the rotation operation can be omitted
by adjusting the indices of the control qubits.
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Algorithm 5 Maj quantum circuit in SHA-256

Input: x, h, Mﬂjanclr MajancZ/ Majancf&

1: for(i=0t032):
20 Majguali] < Tof foli(yl[i], z[i], Majane1 [i])

: //OR-gate operation
: for(i=0t032):

Majaper|i] « Tof foli(yli], z[i], Majanca[i])

O N1 O Ul o W
N
b
—~~

11: for (i=0to 32):
122 Majanesli] < Tof foli(x[i], Majauca[i], Majancs[i])

13: //OR-gate operation (Reset Maj;pc2)

14: for i=0t032):

15 y[i] < X(yl[i])

ol e XEH)
7. Majanca|i] < Tof foli(yli], z[i], Majanc2[i])
18 yli] + X(yli])

19: z[i] <= X(z[i])

200 Majaueai] < X(Majane[i])

21: //OR-gate operation.

22: for (i=0to 32):

23 Majoye[i] < X(Majape[i])
2 Majaeli] X (i)

25 Majauea[i] <= Tof foli(Majane [i], Majancsi], Majanea[i])
26: Majouer[i] < X(Majane[i])

27 Majaesli] < X(Majancsli])

28:  Majaueai] < X(Majancea[i])

29: h <+ Add(Majm’lCZIh)

30: for (i=0to 32):
31: Mu]‘unc3[‘] — TOffOli( M

, z[z:], Majanes [z]) / /Reset Majanc3
32 Majgyqli] < Tof foli(yli], z[i], Majanca [i]) / /Reset Majgyc1

Algorithm 6 s0 quantum circuit in SHA-256

Input: x, h
1: for (i=0to 32):
2. h[i] <~ CNOT(x[(i + 7)%32], h[i])
3. h[i] <~ CNOT(x[(i + 18)%32], h[i])

=

// hupdate
for(i=0t032 — 3):
h[i] <~ CNOT(x[i + 3], hli])

ISANRSL
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Algorithm 7 s1 quantum circuit in SHA-256

Input: x, h
1: for (i=0to 32):
2. h[i] + CNOT(x[(i 4+ 17)%32], hli])
3. h[i] + CNOT(x[(i 4+ 19)%32], hli])

4: // hupdate
5. for (i=0to 32 — 10):
6:  hli] «+ CNOT(x[i + 10], h[i])

3.4. Salsa20/8 in SMix

Salsa20/8 is the eight-round version of Salsa20 and is used within the SMix function
of scrypt. Figures 3 and 4 illustrate the operations in the columns and rows of Salsa20/8,
respectively. In the Figure, + represents the in-place addition of two qubits, while +' per-
forms the inverse addition. Each CNOT operation performs a right shift of # bits (<&n) on
the control qubit. Instead of separately performing the shift operation on the control qubit,
we adjusted the index to operate. We will refer to this method as index-rotating, which
allows us to omit the shift operation on the qubits. X is a 16 x 32 array of qubits and is
denoted as X[i][j] (wWhere 0 < i <16 and 0 < j < 32). Therefore, X[0], X[1],- - - , X[15] repre-
sent an array of 32 qubits. The CNOT gate for a two-dimensional array X, i.e., CNOT(X[i1],
X|ip]), involves XOR operations between X[i1][j] and X[iz][j], where j ranges from 0 to
31. Thus, 32 CNOT gates are used. The Add operation utilizes the adder described in

Section 3.2.
X[o] |+ <7+ +H<<9 \L.
i H=7{ 7} ] —
X[
X[3
X[4) [+} [t Tk
X([5] {+} ’:‘T +IH<«9 Jtif
X[6)
X[7)
X[8 [+ [t T8t h
X[ [+ [t +H<BH 1k
X[10
x[11]
xp2) LH=TH b E +]
X[13 [+ [H =18
X[14]
X[15
X[o]
X1
{+} [ H <181 1h X[2)
X[4]
X[5]
TH<7H TR [+ ] xl6]
<> [+] [t < 84t X[7)
X8|
X[
L H=oH X
[+ H=<7H 1y £ {+} [+ X[11]
x[12]
x[13]
+ FHH<nH b X[14]
] LG = 5 X[1s)

Figure 3. Operation on columns in Salsa20/8.
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L M= e -

[+} [+t < 18+t X
I I
i + X[9]

E Sl

D

+H< 7+t

Ex = b : X[15]
Figure 4. Operation on rows in Salsa20/8.

4. Evaluation

In this paper, we optimized the quantum circuit for scrypt by adjusting the width-
depth balance. To operate Grover’s algorithm, the quantum circuit of the target cipher,
scrypt in this case, must be placed inside the oracle. This allows us to estimate the quantum
resources needed for Grover’s key search. We presented a quantum circuit for scrypt.
Tables 3 and 4 show the estimated quantum resources for the internal functions of scrypt.
The quantum resources needed for these quantum circuits were estimated using the Pro-
jectQ tool [19]. We designed a structure for SHA-256 that significantly reduces the number
of ancilla qubits with only a slight increase in depth. To minimize the number of ancilla
qubits allocated in each round, we cleaned the dirty ancilla qubits used in the previous
round through inverse operations, allowing continuous use in each round. In the SO
function, 2048 ancilla qubits were used (64 loops x 32), and in the S1 function, 2048
ancilla qubits were used (64 loops x 32). In the Maj function, 6144 ancilla qubits were
used (64 loops x 96). However, through inverse operations, we reduced the number of
ancilla qubits to 32 in the SO function, 32 in the S1 function, and 2048 in the Maj function
(64 loops x 32), reducing a total of 8128 qubits. The inverse operations were designed
to run in parallel with subsequent operations, resulting in an increase of only 6 in the
total depth of the quantum circuit used for inverse operations. Furthermore, in Salsa20/8
within SMix, we reused qubits through inverse operations and performed some parallel
operations to reduce both the number of qubits and the full depth, while the m-XOR and
index-rotating techniques were used to reduce the number of quantum gates. As a result,
our quantum circuit ultimately showed a significant reduction in width (number of qubits)
with almost no increase in full depth.
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Table 3. Quantum resource estimation for the scrypt quantum circuit.

Quantum Gates

Function Qubit
Toffoli CNOT X
SHA-256 in PBKDEF2 17,100 58,448 137,888 63,231
Salsa20/8 in SMix 1040 16,592 145,776 16,060

Table 4. Quantum resource (decomposed quantum gate) estimation for the scrypt quantum circuit

and DW cost.
X Quantum Gates
Function T-Depth  Full Depth DW-Cost
T Tt
SHA-256 in PBKDF2 179,230 225,774 292,240 138,358 1.1 x 2%
Salsa20/8 in SMix 57,448 58,424 82,960 35,050 1.28 x 226

5. Conclusions

In this paper, we applied optimization techniques to reduce the DW cost in a scrypt
quantum circuit. By implementing inverse operations, we reduced the number of qubits
used, and by designing a parallel structure, we minimized the circuit’s depth. We also
estimated the quantum resources required for this implementation. To the best of our
knowledge, this is the first quantum circuit implementation of scrypt. Therefore, these
findings will serve as a foundation for future scrypt quantum circuit implementations and
can be used to assess the quantum security level.
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