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Abstract

Although estimating the azimuth using a geomagnetic sensor is very useful, the estimation error may be very large due to the surrounding
geomagnetic disturbance. We proposed a novel method for preprocessing appropriately for geomagnetic and inertial sensor data to be suitable
for the proposed Artificial Neural Network model and training method for the model. As a result, the probability of azimuth estimation error
within 1 degree is 96.4% with regression estimation. For classification estimation, when the azimuth estimation probability is 90% or more,
the probability that the azimuth estimation error is within 1 degree is 100%.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Estimating an azimuth using a geomagnetic sensor has
long been very important in human life. However, there is a
problem in that a large error occurs in the estimated azimuth
because the earth’s magnetic field is distorted by the influence
of the surroundings indoors or outdoors with steel structures
around it [1]. Therefore, various studies have been conducted
to solve this problem.

When the geomagnetic sensor values measured in the
X-Y-Z direction are Mx , My , and Mz , respectively, while
otating the geomagnetic sensor horizontally at an arbitrary
lace, the estimated azimuth is calculated by equation −tan−1

My/Mx ). If there is no geomagnetic disturbance, when Mx
nd My are drawn on the two-dimensional plane of X-Y, they
ecome concentric circles centered on the origin. However, if
here is a geomagnetic disturbance caused by a nearby metal

aterial, the center point of the circle moves away from the
rigin, and the circle also becomes an ellipsoid or distorted
hape rather than a concentric circle. The simplest calibration
ethod is hard iron calibration, which moves the center point

o the origin, based on the maximum and minimum values
f the X and Y axes of the measured data, respectively. In
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addition, soft iron correction is performed by calculating the
distance between the major axis and the minor axis of the
ellipse, calculating the angle of rotation in the X-Y axis of
the ellipse axis, and converting it into a form close to a circle.

If the azimuth angle is calculated after forcibly fitting the
measured geomagnetic sensor data in the form of concentric
circles, the accuracy is slightly improved. However, the esti-
mated azimuth has an error of even several tens of degrees
depending on the geomagnetic measurement location even in
the same building, so there is a limit to its use for precise
azimuth measurement [2,3]. To improve the accuracy, the least
square algorithm and the inertial sensors to estimate the gravity
direction were used to estimate irregular circular models [4,5].
There is also a research result that greatly reduced the azimuth
estimation error to ±2 degrees by installing 12 geomagnetic
sensors on two vertical plates and calibrating the measurement
data to a 3D sphere manifold, but geomagnetic sensors were
used too much [6]. Also, in [7], the maximum likelihood
algorithm was used to fit the measurement data to a 3D ellip-
soid, and finally, the range of fluctuation of the compensated
sensor reading was greatly reduced. However, even if the
geomagnetic sensor measurement data is concentrically fitted,
the azimuth estimation error is not small. Since geomagnetic
sensor measurement values have very different error patterns
depending on geomagnetic disturbance, there is a fundamental
limitation in the calibration method of geometric data. In [8],
Korean Institute of Communications and Information Sciences. This is an
/licenses/by-nc-nd/4.0/).
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method of correcting the geomagnetic error while rotating in
he direction of several axes using a geomagnetic sensor, and
n acceleration sensor that measures the direction of gravity
as proposed, and azimuth error of about 1 degree to 2 degrees
as obtained. However, performance verification has not been

onfirmed because it has not been tested in various places.
Also, in [9], the geomagnetic sensor and inertial sensor data

ere measured while rotating in place at an arbitrary point.
nd after calibrating the hard iron and soft iron of the geomag-
etic sensor data, the geomagnetic sensor data was sampled at
very rotation angle of 10 degrees. A method of probabilisti-
ally analyzing the difference with concentric circles of this
ata has been proposed to determine the accuracy of the mea-
ured geomagnetic azimuth at the corresponding point. But
his is not for estimating the azimuthal angle using the data.

Meanwhile, there have been attempts to apply Artificial
eural Network (ANN) technology to predict geomagnetic
isturbance models using solar wind data [10]. In [11], three-
ayer neural networks with 12 neurons in a hidden layer
ere trained with geomagnetic sensor measurement data and

rue azimuth, and the average azimuth estimation error was
bout 2 degrees, and the Root Mean Square (RMS) value was
.3 degrees. Ref. [12] determined the accuracy of measured
eomagnetic sensor data using a Recurrent Neural Network
RNN) based on Long Short-Term Memory (LSTM). Ref. [13]
stimated the label with an unsupervised method and applied
1-dimensional Convolutional Neural Network (CNN) to de-

ermine the accuracy of the geomagnetic sensor data measured
hile moving. And the performance was improved compared

o the case of using the Kalman filter.
In [14], the simple LSTM with 4 hidden layers was pro-

osed to estimate the azimuthal angle using equally sampled
eomagnetic sensor data. However, the number of training data
nd test data were not enough, and the estimation error is not
mall from 0.25 degree to 2.23 degree.

Meanwhile, an ANN model combining CNN to efficiently
xtract features from the stock price data and LSTM to predict
he future value showed good performance, especially for
he times series data [15]. CNN-LSTM based on continu-
us blood pressure monitoring was tried to estimate blood
ressure [16]. However, according to [17] for power quality
isturbance detection, the performance of CNN, LSTM, CNN-
STM, and preprocessed CNN-LSTM is similar. Therefore, to

ncrease estimation performance, appropriate selection of the
NN model, understanding of data properties, preprocessing
f training data, and training method are very important.

In this paper, we have developed a novel method to apply
NNs for estimating azimuthal angles using geomagnetic and

nertial sensor data. The best ANN model from the various
ombinations of CNN, RNN, and LSTM and data prepro-
essing methods were established to maximize the estimation
ccuracy through many experiments and training processes.
t includes a training data sampling method with an equal
otation interval of 1 degree and generating the training data
ith rotating data elements. In addition, after many attempts, it
as discovered that the azimuth estimation error varies greatly
epending on the format of expressing repeated azimuth angles
ased on 360 degrees.
627
Geomagnetic sensor data was measured at a total of 181
locations, and tested with data from 62 locations not used
in training, resulting in very accurate results of an average
estimated azimuth error of 0.27 degrees and an RMS error of
0.37 degrees by regression estimation.

2. Measurement of geomagnetic and inertial sensor data

In this paper, we do not use expensive precise measuring in-
struments to measure geomagnetic sensor data, but rather that
people can easily measure them in any place using low-cost
devices such as smartphones. This is because these assump-
tions are realistic and practically applicable. In particular, to
train ANNs, geomagnetic sensor data measured in a wide
variety of places is required, but it is difficult to obtain a large
amount of sensor data if the measurement device is special and
the measurement method is difficult.

A common device such as a smartphone has a built-in ge-
omagnetic sensor, an accelerometer sensor, and a gyro sensor.
The user can measure the Mx , My , and Mz geomagnetism
values by constant time intervals in the X-Y-Z axes, re-
spectively, using the geomagnetic sensor while holding the
smartphone and rotating it in place. However, since the user
is not a mechanical device and cannot rotate at a constant
rotational speed, the geomagnetic value cannot be measured
at regular intervals of the measurement azimuth while rotating
once. While the user pauses while rotating, many geomagnetic
sensor values are measured at the corresponding azimuth. To
train a neural network, it is difficult to obtain good results if
the training data is biased to a specific value. Therefore, it
is important to measure geomagnetic sensor values at regular
intervals in the 360-degree rotation direction.

To this end, while the user rotates in place, the value of
the acceleration sensor and gyro sensor built into the smart-
phone are simultaneously collected along with the value of
the geomagnetic sensor. By applying the accelerometer and
gyro sensor values to EKF, the yaw rotation angle ϕ can be
estimated [9,14,18].

The points in Fig. 1 represent the measured and uncali-
brated geomagnetic sensor values Mx and My on the 2D X-Y

lane while the user rotates in place at an arbitrary place. Since
he user cannot rotate at a constant speed, the density of dots
s not constant. In addition, hard iron geomagnetic disturbance
n which the center of the trajectory of the points deviates
rom the origin of the X-Y plane and soft iron disturbance
n which the trajectory is distorted and deviates from the
oncentric circle can be confirmed. In Fig. 1, the x marks are
eomagnetic sensor data sampled at every 10-degree rotation
ngle using an inertial sensor and EKF when the geomagnetic
ensor rotates at an irregular speed. The reason why the x
pacing looks uneven is that the measured data of Mx and

My are inaccurate due to the magnetic disturbance. In other
ords, if the ANN is trained using geomagnetic sensor data
easured at irregular rotational speeds, more data is trained for
specific azimuth, reducing estimation accuracy. In addition,

f the azimuth calculated by formula −tan−1(My/Mx ) for the
measured geomagnetic data is used as a label, a label that is
not true is used, so training does not work properly.
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Fig. 1. The points are the measured and uncalibrated geomagnetic sensor
data while the user rotates irregular speed in place. And the x marks are
geomagnetic sensor data sampled at every 10-degree rotation angle.

The yaw rotation angle estimated using the inertial sensor
and EKF is relatively accurate. Therefore, when measuring ge-
omagnetic sensor data, if the initial azimuth is accurately mea-
sured with a separate measuring instrument, other azimuths
during 360-degree rotation can be accurately estimated using
this. Therefore, the azimuth estimated at regular intervals using
this is used as a label when training the supervised neural net-
work. In addition, equal intervals can be adjusted to any size,
and as confirmed later, the size of equal intervals is related to
the accuracy of azimuth estimation using neural networks.

3. Training methods for artificial neural network

To train ANNs to have high-performance estimation ability,
it is very important to preprocess training data as suitable
for estimation purposes [19]. Therefore, the data from the
geomagnetic sensor whose rotation angle was non-uniformly
measured in Section 2 was calibrated with data sampled at
each uniform rotation angle.

In addition, due to the nature of geomagnetic sensor data,
if it rotates in place and is continuously measured, it has
unique pattern properties of Mx and My on the 2D X-Y plane.

his pattern varies from place to place but is independent of
he azimuth at which the measurements are initially taken. In
ddition, by using an inertial sensor and EKF that relatively
ccurately estimate a rotation angle, the azimuth at an arbitrary
otation angle can be accurately calculated by adding the
otation angle to the initial azimuth.

Considering the characteristics of these geomagnetic sensor
ata, and the relationship between inertial sensor data and ge-
magnetic sensor data, the ANN was trained in the following
ay.
That is, the geomagnetic sensor data for training the ANN

as sampled at each rotation angle of 1 degree, so a total
f 360 geomagnetic sensor data was measured in one place.
t this time, the azimuth angle at which the measurement

tarts is always based on the north, that is, the azimuth angle
s 0 degrees. When the ANN is trained by regression to
stimate the real-valued azimuth angle, there are a total of
60 input nodes in the neural network, and the measured 360
628
Fig. 2. The total 360 training data sequences are generated based on the
data set 0 by rotating the data elements 1 degree each.

geomagnetic sensor data corresponds to each input node. At
this time, the label is north or 0 degrees. The data input to
each input node is Mx , My , Mz and the measured azimuth,
calculated with Mx and My , as in Fig. 2.

However, in the later test stage, since the azimuth angle at
which the measurement starts is an arbitrary angle in units of
1 degree, various measurement start angles must be learned.
Therefore, as shown in Fig. 2, we create data set 0 whose
measurement start angle is north, i.e., label 0, and each data set
whose data is rotated by 1 degree based on this data set 0. The
label means the true azimuth. Finally, data set 359 with label
359 is created, and data sets from 0 to 359 are sequentially
input to the input layer to train the ANN.

In this paper, LSTM specialized for the continuity of learn-
ing data was mainly used, to train the ANN by utilizing the
characteristics of the patterns of Mx , My , Mz , and calcu-
lated azimuth angle, measured continuously while rotating the
geomagnetic sensor in place [20].

As a result of the training and testing of various ANN
models, it was found that the azimuth estimation performance
of the 4-layer CNN and LSTM model was the best.

4. Experiments

Using smartphones Samsung Galaxy Note 5 and S10, data
from the geomagnetic sensor, accelerometer sensor, and gyro
sensor were measured in the X, Y, and Z axes, respectively,
at 10 msec time intervals starting from the north direction.
For all geomagnetic sensor data measurements, rotation angles
were estimated by applying inertial sensor data and EKF, and
geomagnetic sensor data was sampled every time the rotation
angle increased by 1 degree. That is, 360 pieces of Mx , My ,
Mz data, and the calculated azimuth become the basic training
data set, and the label at this time becomes 0 degrees or north.
In addition, according to the label azimuth rotated by 1 degree,
the Mx , My , Mz data, and the calculated azimuth angle are
also rotated to become another learning data set. Since there
are 360 rotations in all, the ANN is trained with a total of 360
data set sequences for one location as in Fig. 2.

Sensor data was measured at 181 locations in a total of
five buildings. Data from 119 locations were used to train
the ANN, and data from separated 62 locations were used for
testing. A total of 360 training data sets and labels are created



J. Oh and S. Kim ICT Express 10 (2024) 626–631

b
f
s
2

t
d
o
3
a
a
o
v

t
b
t
t
d
f
f
m
c
s
I
e
d
e
t

u
m
d

b
b
t
A
b
m
e
t

w
e
i
i
c
g
i
p
a
C

y rotating the data in a circular shift method by 1 degree
or each data in one place. Therefore, a total of 42,840 data
ets were used for training, and the azimuth was estimated for
2,320 test data sets.

The data set used in the test is the same as the format of
he dataset used in training, as shown in Fig. 2. Mx , My , Mz
ata, and the calculated azimuth are input to 360 input nodes
f the input layer. However, only one random data set among
60 data sets is entered and the corresponding label is used
s a true azimuth. Therefore, 360 test data sets of different
zimuths can be created and tested at one test location. At the
utput node of the output layer, the estimated azimuth in real
alue format is output.

Firstly, the azimuth was estimated using only LSTM, but
he performance was poor, so learning was attempted by com-
ining CNN and LSTM. According to the attribute of CNN
o extract features from the consecutive geomagnetic data and
he attribute of LSTM to predict the value for the times series
ata, the combined CNN and LSTM could show better per-
ormance. Fig. 3(a) shows the azimuth estimation performance
or various ANN methods and conventional methods fitting the
easured geomagnetic sensor data in the form of concentric

ircles. The model that connects 4 CNN layers and LSTM
hows better performance than the model using only LSTM.
t can be seen that the cumulative probability of the azimuth
stimation error is 96.4% within 1 degree and 99% at 1.85
egrees. Also, for 90% of all test data, the azimuth estimation
rror is within 0.7 degrees. The performance is much better
han when using CNN with 4 layers or RNN. CNN4+LSTM 1

is the result of training by rotating the learning data in units
of 1 degree, and CNN4+LSTM 10 is training by rotating it in

nits of 10 degrees. Since the rotation method by 1 degree has
uch better performance, it can be confirmed that the training

ata preprocessing method we proposed is appropriate.
(b) is the estimation performance according to the num-

er of different CNN layers, and CNN4+LSTM has the
est performance. (c) is the azimuth estimation result of
he CNN4+LSTM method for the five measured buildings.
ccuracy is different for each measurement data of buildings,
ut except for “Wu”, which has a large influence on geo-
agnetic disturbance due to its steel structure, most of the

stimation errors are within 1 degree, and the consistency of
he estimation performance can be confirmed.

(d) is a performance analysis according to whether or not
Mz data is included and how to mark the calculated azimuth

hen training the ANN. Considering the azimuth estimation
rror performance, Mz data is not used to calculate the az-
muth, but it is better to include it as in CNN4+LSTM XYZ
n the training data for ANN learning. In addition, the azimuth
alculated as −tan−1(My/Mx ) included in the training data
oes around based on 360 degrees due to the nature of the az-
muth. However, it was confirmed that the azimuth estimation
erformance is much better when monotonically increased to
llow the azimuth to be marked more than 360 degrees as in
NN4+LSTM XYZ mono, rather than folded to less than 360

degrees.
Fig. 4(a) is part of the code for programming the ANN

model of CNN4+LSTM with TensorFlow [21], which shows
629
Fig. 3. Accumulated azimuth estimation error probability according to
various ANN models, sensor data measurement locations, and mark method
of calculated azimuth. (a) the azimuthal estimation performance for various
ANN methods and conventional methods, (b) the estimation performance ac-
cording to the number of different CNN layers, (c) the azimuthal estimation
result of the CNN4+LSTM method for the five measured buildings, and (d)
the performance analysis according to whether or not data is included and
how to mark the calculated azimuth when training the ANN.
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Fig. 4. A TensorFlow code for the CNN4+LSTM model and the learning
curve. (a) the TensorFlow code for the CNN4+LSTM model, and (b) the
learning curve for the model.

the detailed ANN model description, and (b) is the learning
curve of it. The kernel size of the CNN is 3, 32 feature maps
are generated, and “relu” is used as the activation function. In
addition, max pooling with a stride of 2 and a pool size of 3
was used between CNNs. In the LSTM layer, tanh was used
as an activation function, and in the output layer, “relu” was
used as an activation function. Since the training data set is
large, batch learning was performed with 256 data at a time,
and it converged at about 300 epochs.

On the other hand, CNN4+LSTM was trained by clas-
sification estimation using the geomagnetic sensor and the
calculated azimuth data. In this case, the output layer consists
of 360 output nodes meaning estimated azimuth, respectively,
and the previous layer uses a softmax layer to estimate ac-
curacy probabilities corresponding to output nodes from 0
degrees to 359 degrees. Among the probabilities output from
360 output nodes, the node corresponding to the largest value
is selected as the estimated azimuth. Training data, labels, test
data, and learning methods are the same as those of regression
estimation.

Table 1 is the result of estimating the azimuth in units of
1 degree by classification estimation. Accuracy probability is
the probability of the output node of the output layer. And hit
630
Table 1
Azimuth estimation error probability in classification estimation.

Accuracy
probability

Hit
ratio

Azimuth estimation
error angle [deg.]

True ratio
for the hit case
with the est. error

0.98 0.61 0
1

0.89
0.11

0.96 0.80 0
1

0.88
0.12

0.94 0.87 0
1

0.87
0.13

0.92 0.89 0
1

0.87
0.13

0.90 0.90 0
1

0.86
0.14

ratio is the proportion of test data sets with a node, whose
probability is greater than the accuracy probability among the
360 output nodes, for 22,320 test data sets. The true ratio is
the ratio of the test data set to the estimated azimuth error for
22,320 test data sets when there is an output node greater than
the accuracy probability.

The case of generating an accuracy probability of 98% or
more among 360 output nodes for a test data set is 61% for
the entire 22,320 test data sets. In this case, the case where
the estimated azimuth error is 0 degrees is 89%, and the case
where the estimated azimuth error is 1 degree is 11%. No
errors greater than 2 degrees occurred. In addition, 90% of
the test data sets estimated the node with an accuracy of 90%
or more. And in this case, the estimated azimuth error is 86%
for 0 degrees and 14% for 1 degree, so the difference from the
98% case is not large.

As a result, when the azimuth is estimated with an accuracy
of 90% or more among the output node values for a test data
set, the probability that the azimuth is true is 86% or more,
and the probability of an error within 1 degree is 100%. In
other words, when the neural network model is trained by the
method proposed in this paper, in the case of classification
estimation, the azimuth estimation error shows very good
performance that is within 1 degree. Fig. 5 shows an enlarged
part view of CNN4+LSTM estimation results for any three
test places, and the estimated azimuthal angles match well with
true angles.

5. Conclusion

In this paper, we proposed a novel method to apply ANNs
for estimating azimuthal angles using geomagnetic and inertial
sensor data measured rotating in one place. The best ANN
model of four CNN layers and an LSTM layer was developed,
and a training data sampling method with an equal rotation in-
terval, generating the training data with rotating data elements,
and the format of expressing repeated azimuth angles were
verified. It shows much better performance compared to the
conventional method.

As future research, it is necessary to collect and learn sensor
data from more diverse types of places, and to estimate instan-
taneous geomagnetic azimuth while moving without rotating
in place.
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Fig. 5. Enlarged part view of CNN4+LSTM estimation results for three test
places.
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