IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 26 October 2023, accepted 14 December 2023, date of publication 19 December 2023,
date of current version 29 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3345024

==l RESEARCH ARTICLE

Shedding Light on Blind Spot of Backward Privacy
in Dynamic Searchable Symmetric Encryption

HYUNDO YOON"“'!, MUNCHEON YU', CHAEWON KWAK2, CHANGHEE HAHN 3,
DONGYOUNG KOO"“4, AND JUNBEOM HUR"“!, (Member, IEEE)

IDepartment of Computer Science and Engineering, Korea University, Seoul 02841, South Korea

2Department of Computer Science, Dongduk Women’s University, Seoul 02748, South Korea

3Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
“Department of Convergence Security, Hansung University, Seoul 02876, South Korea

Corresponding authors: Junbeom Hur (jbhur @korea.ac.kr) and Changhee Hahn (chahn@seoultech.ac kr)

This work was supported in part by the Military Crypto Research Center funded by Defense Acquisition Program Administration (DAPA)
and Agency for Defense Development (ADD) under Grant UD210027XD.

ABSTRACT Dynamic searchable symmetric encryption (DSSE) enables users to outsource their data while
retaining the capability to search and update on the encrypted database. Although various DSSE schemes
have been proposed to achieve higher efficiency and stronger security, many of them incurred information
leakages due to the linkability between ciphertexts and queries as side information. The notions of forward
and backward privacy are defined to capture such information leakage in DSSE formally. In particular,
backward privacy guarantees that queries do not reveal their relationship with the deleted database, which is
further classified into four types (Type-I, I, II, and III) based on the types of information leakage. In this
study, we provide a backward privacy attack that exploits the information leakages and apply it to Type-I—
backward private schemes to lower their security level to Type-III. We then propose a new DSSE framework,
which is robust against the proposed attack. We apply our framework to the previous DSSE scheme (Zuo et
al., ESORICS 2019) to build the first forward and backward Type-I private DSSE scheme under the backward
privacy attack, and demonstrate its efficacy.

INDEX TERMS Dynamic searchable symmetric encryption, forward privacy, backward privacy, information
leakage.

I. INTRODUCTION

Searchable symmetric encryption (SSE) is a type of sym-
metric encryption technique that allows users to search for
encrypted data. In the majority of SSE implementations,
the client or data owner encrypts the database with a
secret key, creates search indices, and sends the database
with search indices to the server. The client then can
use a search query token associated with the keyword to
search encrypted documents matching the keyword without
decrypting them. After SSE was first introduced in [1], many
SSE studies have introduced multiple lines of works on
supporting search operations over static data. In order to
prevent the untrusted server from gaining any knowledge

The associate editor coordinating the review of this manuscript and

approving it for publication was S. K. Hafizul Islam

of the contents of documents and queries, cryptographic
primitives with strong security properties, such as oblivious
RAM (ORAM) [2] and fully homomorphic encryption
[3], were adopted to SSE schemes. Unfortunately, due to
unacceptable computational overhead of ORAMs [4], [5]
and fully homomorphic encryption for satisfying the security
requirements, many subsequent studies on SSE have focused
on improving efficiency at the expense of some information
leakage using well-defined leakage functions [6].

Based on the static SSE schemes supporting simple
search, several dynamic SSE (DSSE) schemes have also
been proposed recently to support dynamic update of
keywords related to outsourced data [7], [8], [9]. However,
conventional DSSE schemes incur linkability information
leakages between queries and data to the server. For example,
the server may be able to know that some documents to

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

146223

https://orcid.org/0000-0002-5803-3898
https://orcid.org/0000-0003-4334-0411
https://orcid.org/0000-0003-3283-5494
https://orcid.org/0000-0002-4823-4194
https://orcid.org/0000-0002-2703-0213

IEEE Access

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

be inserted currently contains keywords that have already
been searched before, or the previously deleted document
contains keywords that are being searched. These leakages
may allow the server to recover the contents of the database
or the queries. Thus, minimizing information leakage while
achieving high efficiency becomes one of the most important
problems in the DSSE literature.

Two kinds of formal privacy definitions have been
proposed: forward privacy and backward privacy. Forward
privacy [7], [10] guarantees that newly updated data entries
cannot be related to the previous search queries. On the other
hand, backward privacy guarantees that queries do not reveal
their relationship to the deleted data. Three formal definitions
of backward privacy (Type-I, II, and III) were introduced
in [11] based on its information leakage types. Recently,
Zuo et al. [12] formalized a new type of backward privacy,
Type-I—, and presented FB-DSSE satisfying the Type-1~
backward privacy. (Formal definitions of different types of
backward privacy are defined in Section-II-E.)

In this paper, we propose a backward privacy attack,
which can disclose deletion history of the target scheme.
We show this leakage can be exploited to downgrade a target
scheme of the backward privacy Type-I~ to Type-IIl. The
attack utilizes identifiers and timestamps associated with a
specific keyword in the database leaked during the update and
search process. The list of document identifiers matching the
search keyword observed at the server side, namely the result
pattern leakage, is trivially revealed if the client retrieves
the outsourced documents [13]. On the other hand, the
timestamps of update operations are leaked in schemes that
apply counter-based techniques to generate update addresses
for achieving indistinguishability from the server. To the best
of our knowledge, our attack is the first backward privacy
attack which discloses the deletion history by abusing the
update timestamp history and search result on keyword w.

We then propose a new framework that can be applied
to the existing forward-private DSSE schemes to hide
update timestamps, thereby achieving resilience against the
exploitation mentioned above. Note that our framework can
only be applied to schemes that utilize the counter for update
operations, which is a well-known method to achieve forward
privacy [11], [12], [14]. Our framework utilizes two tech-
niques: the bitmap index and dummy updates. Specifically,
we apply the proposed framework to FB-DSSE [12] as an
example of instantiation for other counter-based schemes,
and use a client-side cache for performance optimization.
Through a rigorous security analysis, we show the proposed
scheme guarantees forward and Type-I backward privacy,
which is resilient against backward privacy attack.

Our contributions are summarized as follows:

o We present a backward privacy attack, with a generic
attack scenario targeting previous backward-private
DSSE schemes.

o We define a framework, which builds an update history
hiding scheme from any forward private scheme.

146224

+ We implement our framework on FB-DSSE with the
utilization of caching technique, and demonstrate our
scheme is resilient to our attack and achieves Type-I
backward privacy by hiding the update history.

The rest of the paper is organized as follows. In Section II,
we provide cryptographic backgrounds. In Section III,
we introduce our backward privacy attack. In Section IV
and V, we propose our scheme and analyze its security.
In Section VI, we conduct a performance analysis of our
scheme. In Section VII, we provide a brief overview of the
prior works. Finally, in Section VIII, we provide a conclusion
and discuss the future work.

Il. CRYPTOGRAPHIC BACKGROUND

We introduce the notions and the cryptographic background
required for our work. We denote a security parameter by A €
N, and the concatenation by ||. By v(1) we denote a negligible
function in A. PPT stands for probabilistic polynomial time.
P(x; y) represents a protocol running between the client and
server with inputs x and y, respectively.

A. PSEUDORANDOM FUNCTIONS

Let Gen(1*) e {0, 1}* be a key generation function, and
G : {0, 1}Y* x {0, 1}} = {0, 1} be a pseudorandom function
(PRF) family. G is secure PRF if for all PPT adversaries A,
|Pr[K <« Gen(1*); ASk0O)(1*) = 1] — Pr[ARO1*) = 1]| <
v(A), where R : {0, 1}} — {0, l}l/ is a truly random function.
Henceforth, Gk (x) is represented as G(K, x) in this paper.

B. DYNAMIC SYMMETRIC SEARCHABLE ENCRYPTION
A database DB consists of pairs of document identifiers and
a keyword w. We write a pair as (id;, w) € DB if and only if
the document with identifier id; contains the keyword w. Let
W denote the set of all keywords that appear in DB, N denote
the number of document/keyword pairs, and DB(w) denote
the set of documents that contain keyword w.

A DSSE scheme ¥ =(Setup, Search, Update) consists
of algorithm Setup, and protocols Search, Update between a
client and a server:

e (0, EDB) <Setup(1*, DB): This algorithm runs by the
data owner or the client. For security parameter A and a
database DB, the algorithm outputs (o, EDB), where o is
the client’s local state, and EDB is an (empty) encrypted
database that is sent to the server.

o (DB(w); -) <« Search(w, o; EDB): For a client’s local
state o, the client runs a protocol in order to search
for documents containing a certain keyword w on the
encrypted database. In this paper, we only consider
search queries for a single keyword. At the end of the
protocol, the client outputs a set of document identifiers
DB(w)(empty if w ¢ W).

e (0/; EDB") <«Update(op, in,o; EDB): For a client’s
local state, the operation op € {add, del}, and a set
of input in = (id, w) pairs, the client runs protocol
for inserting entries to or removing entries from the

VOLUME 11, 2023

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

IEEE Access

database. Finally, the server and the client retrieve the
updated encrypted database EDB’ and the updated local
state o', respectively.

The information that is exposed to an adversarial server
during the execution of the protocol is captured by the leakage
function £ = (L5, £57h LUy which parameterized the
confidentiality of the DSSE scheme. The leakage during
setup, search, and updates is represented by £57, £57" and
LUpdt | respectively. A secure DSSE scheme should reveal
nothing about the database DB other than these leakages.

According to the definition of [12], security of DSSE
is modeled by the interaction with the Real and Ideal
world, called DSSEREAL and DSSEIDEAL, respectively.
DSSEREAL behaves exactly the same as the original DSSE.
On the contrary, DSSEIDEAL reflects the behavior of a
simulator S, which takes the leakage function £ of the
original DSSE as input.

If an adversary A is able to distinguish DSSEREAL from
DSSEIDEAL with a negligible advantage, the information
leakage is limited to £ only. We consider the next security
game more formally. Adversary A interacts with one of the
two worlds, DSSEREAL or DSSEIDEAL, and would like to
figure out which one it is.

e DSSEREAL 4(1): First, the adversary gets EDB by
running the Setup(1*, DB) protocol. A performs search
queries g (or update queries (op, in)). Eventually, A
outputs a bit b, where b € {0, 1}.

o DSSEIDEAL 4 s()): Simulator S with the input £5%
is executed. For search queries g (or update queries
(op, in)) generated by adversary .4, the simulator S
replies by executing the leakage function £5"(g)(or
LUPd (op, in)). Eventually, A outputs a bit b, where
b e {0,1}.

Definition 1: A DSSE scheme ¥ is adaptive-secure, if, for

any PPT adversary .4 issuing a polynomial number of queries
g, there exists a stateful PPT simulator S such that

|[Pr[DSSEREAL 4(A) = 1] — Pr[DSSEIDEAL 4 s(1) = 1]]
< negl()).

C. BITMAP INDEX

Bitmap index, a kind of data structure, has been widely
used in the database community to represent document
identifiers [15]. In detail, there is a bit-string bs of length ¢,
where £ is the maximum number of documents defined in a
scheme. The i-th bit of bs is 1 if the i-th document exists in
the database, and 0 otherwise. For example (see Fig. 1(a)),
the bit-string 101 (when £ = 3) denotes that there exists
idy and id, in the database, but not id;. By the bit-string
definition above, we can define the addition and the deletion
for a certain document using modulo addition. If we try to
add document id; (see Fig. 1(b)), we need to generate bit-
string 2! = 010 and add it to the original bit-string under
modulo n. Similarly, if we need to delete document idy (see
Fig. 1(c)), we should generate bit-string —2° = —001. Since
the maximum number of documents (= £) is 3, the bit-string

VOLUME 11, 2023

101 101m»101m=101

ifz ifu + - + +
{01 010 QoD-@-29 111
!

|| moa 22 || moa 22

111 100

id,

(a) Bitmap (b) Add
index

(c) Delete

FIGURE 1. An example of bitmap index.

—20 = —001 converts to —1 = 23 — 2 = 7 mod 23, which
is 111 in binary. That is, adding bit-string 111 to the original
bit-string means deletion for idy.

In this paper, we will use the bitmap index to represent the
document identifier. For each search protocol, the result is a
bit-string bs, which serves as a set of document identifiers (=
DB(w)). For an update operation, a bit-string bs represents the
list of document identifiers to update.

D. SIMPLE SYMMETRIC ENCRYPTION WITH
HOMOMORPHIC ADDITION

A simple symmetric encryption with homomorphic addition
[T = (Setup, Enc, Dec, Add) [16] consists of the following
four algorithms.

o n <Setup(1): For the security parameter A, it outputs a
public parameter n, where n = 2¢ denotes the message
space and ¢ is the maximum number of documents a
scheme provides.

e ¢ <« Enc(sk,m,n): For a message m, the public
parameter n and a random secret key sk(0 < sk < n),
it computes a ciphertext ¢ = (sk + m) mod n, where m
is the message (0 < m < n). Note that the secret key sk
needs to be stored for each encryption, and it can only
be used once.

e m < Dec(sk,c,n): For the ciphertext c, the public
parameter n and the secret key sk(0 < sk < n),
it recovers the message m = (¢ — sk) mod n.

e ¢ < Add(cy, c1, n): For two ciphertexts cg, ¢; and the
public parameter n, it computes ¢ = (co + ¢;) mod
n, where ¢y <—Enc(skg, mg, n), ¢ <Enc(sky, my, n),
n <—Setup(1)‘) and 0 < sk, sk; < n.

A symmetric encryption with homomorphic addition IT is
perfect-secure if, for any PPT adversary A4, their advantage
in the perfectly-security game is negligible or

AdvE 1) = [PrLA(Enc(sk, mo, n)) = 1]
— Pr[A(Enc(sk, my, n)) = 1]| < negl(}),
where n <Setup(1*) and 0 < mg, m; < n.

In this paper, we adopted homomorphic addition to
perform update operation on encrypted bitmap index

E. FORWARD AND BACKWARD PRIVACY

Forward and backward privacy are two security properties
aiming to control information leakages in DSSE. We reca-
pitulate the following definition from [10] and [12].

146225

IEEE Access

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

Definition 2: An L—adaptively — secure DSSE scheme
of a single keyword is forward private if the update leakage
function £YP4 can be written as: LY (op,w,id) =
L'(op, id) where L’ is a stateless function, op is insertion or
deletion, and id is a document identifier.

Backward privacy intends to restrict the leakages when
conducting a search on a keyword w such that the server
cannot discover entries that have already been removed.
Three different types of backward privacy with varied leakage
patterns were proposed in [11], consisting of from Type-I,
which reveals the least information, to Type-III, which reveals
the most. Zuo et al. [12] additionally introduced a new type
of backward privacy, namely Type-1".

Consider a list Q that has elements for each executed search
query. Each element consists of pair (u, w), where u is the
timestamp of the search and w is the keyword. The format
for an update is (u, op, (w, bs)), where op € {add, del} and
bs stand for a list of document identifiers to be updated.
A search pattern [6] is a type of leakage that allows an
adversary to identify identical queries and is defined as
sp(w) = {u | (u, w) € Q}. The repetition of search queries on
the same keyword w trivially reveals the search pattern. All
document identifiers that currently match w are represented
by the result pattern rp(w). Let TimeDB(w) be a function
that, given w, returns a list of all timestamp/document-
identifier pairs associated with the keyword w that have
been added to the database but not yet been removed.
That is, TimeDB(w) = {(u,bs) | (u,add,(w,bs)) €
Q and Vu/', (/, del, (w, bs)) ¢ Q}. Updates(w) is a function
that lists the timestamp u of all updates related to w or the
update history related to w. Formally, Updates(w) = {u |
(u, op, (w, bs)) € Q}. Lastly, the function DelHist(w) exposes
the history of deleted entries by offering the adversary
all (insertion timestamp, deletion timestamp) pairs. Most
importantly, it reveals which additions or deletions match
which ones. Finally, DelHist(w) = {(udd ydely | 3 ps -
(U4 add , (w, bs)) € Q and (u!, del, (w, bs)) € Q).

Given these functions, formal notions of backward privacy
can be defined with additional notation bit-string bs as
follows.

Definition 3 ([11], [12]): An L — adaptively — secure
DSSE scheme has backward privacy:

Type-I (BP-1): iff LY (op, w, bs) = L/ (op), and
L5 (w) = L"(TimeDB(w), ay).

Type-I- (BP-I"): iff LY (op, w, bs) = L (op), and
L5 (w) = L (rp(w), Updates(w)).

Type-II (BP-IN): iff LY (op, w, bs) = L (op, w), and
L5 (w) = L"(TimeDB(w), Updates(w)).

Type-III (BP-III): iff L% (op, w, bs) = L (op, w), and
L£57h(w) = L"(TimeDB(w), DelHist(w)). L' and L are
stateless funcitons, and a,, is the total number of updates
related to w.

Ill. PROPOSED ATTACK
In this section, we formulate leakages in traditional DSSE
schemes. We then propose our Backward Privacy Attack,

146226

TABLE 1. Security profile of prior work.

Scheme Backward | Leakage Profile Vulnerability
Privacy Updates(w) | rp(w) | to our attack

Moneta [11] Type-1 X 7/ X

Orion [14] Type-1 X 7 X

FB-DSSE [12] | Type-I— v v v/

Fides [11] Type-II 4 7 4

Mitra [14] Type-II 4 V4 4

SD, [13] Type-1I 7 7 7

SDy [13] Type-II 7/ 4 7

Aura [17] Type-IT X 7 X

exploiting the leakages in Type-(I", II) backward private
scheme to weaken the security level of the target scheme.
Finally, we classify the vulnerability of existing schemes
based on the leakage profile (Table 1).

A. LEAKAGE FORMULATION

Our attack mainly targets two leakages, which are formulated
as rp(w) and Updates(w). Before describing our attack
scenario, we first confirm that the leakage functions we
exploit are actually exposed in the existing schemes and
acceptable in the DSSE domain. Most DSSE schemes need
to execute additional protocols to retrieve the matching
documents, because their search protocols only output the
matching document identifiers. By observing the additional
protocols for data retrieval, the server or the attacker is
able to easily figure out the result of document identi-
fiers corresponding to the search query. This leakage is
unavoidable unless the actual documents are protected by
means of additional security mechanisms, e.g., ORAM [13].
Furthermore, several schemes (i.e., [10], [12], [13], [14])
deterministically generate the update token itself or its
address related to the keyword with a keyword update
counter during the update protocol at the client side. In the
search protocol, the client should initiate a token list in
accordance with counters from 1 up to the number of update
operations related to the searched keyword and send it to the
server. This immediately reveals when each update operation
took place for the keyword, since the server will receive
tokens or addresses that they have observed at the previous
update operations. That is, the update history of the searched
keyword (i.e., Updates(w)) is leaked to the server, which is
captured by definition 3, especially in Type-(I", II).

B. BACKWARD PRIVACY ATTACK

We now introduce Backward Privacy Attack. In this attack,
we show how the combination of update history leakage and
result pattern leakage gives the server enough information
to guess the deletion history. The details will be explained
below.

1) THREAT MODEL

The attacker is semi-honest such that it can observe the
interactions between the client and the server. The attacker
follows the specifications of the target scheme while striving

VOLUME 11, 2023

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

IEEE Access

to learn as much information as possible from the leakage.The
goal of the attacker is to obtain a portion of DelHist(w), which
is not allowed to be leaked in backward private schemes
stronger than Type-III.

2) ATTACK SCENARIO

Consider Q as a list of search query history and T as a list
of tokens observed at the attacker side. The element format
of list T is (u, tokens), where u is timestamp and tokens is
the entry sent from the client. For the same timestamp u, the
attacker receives the element at 7', which corresponds to the
element at Q. We also denote T'(w) as a list of tokens related
to w, but the list does not contain the information disclosing
what the keyword w exactly is.

The attack consists of the following two steps. In the first
step, the attacker observes the list of tokens (i.e., T') according
to the list of queries. By observing the search pattern leakage,
the attacker should extract a list of search history, namely
757, from the original list T. This process can also be
achieved by exploiting the update timestamp leakage. Each
element of the list 757 has the update timestamp leakage.
The update timestamp history is unique for each keyword,
and the history leaked from the later search protocol is a
super-set of the one from the earlier search protocol. So the
attacker can divide the list T by T(wy1), T(w2), ..., T(wy),
where 7 is the number of keywords that appear in Q. Note that
it does not violate the definition of forward privacy because
the attacker cannot relate the newly added entries to previous
search queries on the specific keyword w.

In the second step, the attacker identifies whether the type
of update operation performed is insertion or deletion. The
details are as follows. After every search protocol, the client
needs to execute an additional protocol to retrieve the actual
document document in the real-world scenario. During the
retrieval, the attacker observes the result pattern. We denote
the result pattern leakage in the keyword w at the time u search
by rpu(w).

Between two search protocols at the time i and j, the
difference between rp;(w) and rp;(w) represents the change
in the document identifier set. The change of identifier set
lets the attacker have sufficient information to determine the
operation type of update or the information which deletion
cancelled which addition. We denote by I; j(w) the change
of identifier set, by Il.';(w) the identifier set in rp;(w) but not
included in rp;(w), and by I i;(w) the identifier set in rp;(w) but
not included in rp;(w) between i and j related to w. If there are
k updates between the time i and j on a particular keyword
w, the adversary can learn the following information at the
period:

« The addition updates are executed at least once for each
identifier in / l+ (w).

o The deletion updates are executed at least once for each
identifier in I; ;(w).

o The cancellation happened if |[;j(w)| < k, where
1; j(w)| is the number of set I; j(w).

VOLUME 11, 2023

TABLE 2. Attack scenario example on FB-DSSE.

. . . Attacker’s knowledge
Time | Operation History W) [Up dategs))
0 Setup(l)‘)
1 Search(wy) {1} [0 [0
2 Update(add, idy, w1)
3 Update(add, idz, w1) | I} 5(w) = {idy,id2,id3}, 1] 5(w) =0
1 Update(add,, id3, w1) ' '
5 Search(wy) 1,57 [{2.3,4] [{id1,idz, ids}
6 Update(add , idg, w1) _
7 Ugdate(del, i s () =055 (w) =0
8 Search(wy) {1,5,8) | {2,3,4,6,7) | {idy,ida,id3}

Given an id(e I;j(w)), the attacker can determine the
operation, the identifier, and the keyword with probability %
by the leakage above. By collecting such information spread
out on the protocol history, the attacker can learn that which
deletion canceled which addition with the probability

1
ki X kp M
or
k3 x (k3 — 1)

The probability (1) is computed in the case where the addi-
tion for id is in the period with k; updates, and the deletion
for id is in the period with kp updates. For example, if there
is an executed search query list for a certain keyword w
and document identifier id: (1, search, w), (2, add, (w, id)),
(3, search, w), (4, del, (w, id)), (5, search, w), the attacker
can simply determine the deletion that took place at time
4 cancelled the addition at time 2 deterministically. Since
Bostetal. [11] mentioned that the search query on keyword w,
which was queried between the addition and the deletion for
document id, will clearly disclose the deleted document id,
the authors excluded the case from the definition of backward
privacy [18]. However, such an exclusion does not reflect
the real-world scenarios in which diverse search queries for
the same keyword can be made between the addition and
deletion.

The probability (2) is computed in the case where the
addition and the deletion for id are in the same period which
contains k3(> 1) updates. In this case, we can see the
probability is equal to 1 if k3 is 2, implying the attacker
can identify the cancellation information deterministically
if there are only two updates in the period, and they are
addition and deletion for the same identifier. Finally, the
part of DelHist(w) is leaked to the attacker, resulting in the
violation of Type-II or higher levels of backward privacy.

3) APPLICATION

We select FB-DSSE [12] as the target scheme, which is
the forward and Type-I~ backward private scheme. In the
paper, the authors mentioned that FB-DSSE leaks sp(w),
rp(w) and Updates(w) during the search protocol. For better
understanding, we first give a brief overview of FB-DSSE.

146227

IEEE Access

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

As the first step in performing an update operation on
keyword w, the client obtains an encrypted bit string e by
encrypting the bit string bs, using a secret key derived from
the counter value c. Note that each keyword is assigned a
unique c¢ such that c is incremented each time an update is
performed on w. The next step is for the client to use the
randomly generated search token S7 .1 in order to obtain an
encrypted index UT .41. Finally, the client sends an update
token (UT¢+1, (ec+1, Cst,)) to the server, and the server
stores in encrypted database EDB[UT 41] < (ec+1, Csr,.).

When the client performs an update in keyword w, the
client encrypts the bit string bs to get the encrypted bit
string e.41. For encrypting the bit string bs, the client
uses the incremented counter value ¢ 4+ 1 for generating a
secret key. Note that the counter value c is incremented for
every update on keyword w. In addition, the client uses a
randomly generated search token S7.4; for generating an
encrypted index UT.4;. The client finally sends an update
token (UT¢+1, (ec+1, Cst,.)) to the server, where Csr, refers
to the masked previous search token. Finally, the server stores
(ec+1, Cst.) in encrypted database EDB[UT11].

For the search on keyword w, the client sends search
token ST, and a key K, and counter value ¢ specific to
the search keyword w. Then, the server uses K, and ST;
to get the encrypted index UT;, where i € {0, ..., c}. The
server retrieves all of the encrypted bit string e; by accessing
EDB[UT;]. In this procedure, by observing the access pattern
of EDB, an adversary is able to identify when the updates
on keyword w have occurred (i.e., Updates(w)). The server
adds all of the encrypted bit string ¢ and sends it to the client.
Then, the client decrypts it and outputs the final bit string for
retrieval of the matching documents. When the client retrieves
the matching documents, the client needs to send the final bit
string to the server.

4) ATTACK EXAMPLE

Table 2 displays an example operation history on FB-DSSE
and the attacker’s knowledge according to the leakage
function. In the example, the attacker should learn (sp(w),
Updates(w), rp(w)) for each search operation. Since extract-
ing protocol for a certain keyword can be achieved by
exploiting sp(w) or Updates(w), we consider the keyword
wi as an example without loss of generality. By comparing
the result pattern between two search protocols at time 1 and
time 5, the adversary can figure out the change of the
result document identifiers or I s(w) (= I 1+ sw) Ul 1_ s(w)).
Thus, the attacker should simply know that there is at least
one addition operation for each identifier in Iir s(w) =
{idy, idy, id3}. As shown in Table 2, there are three update
operations between time 1 and time 5 and the attacker knows
that from Updates(w). The attacker successfully estimates
the operation/document identifier pair in the list of updates
between time 1 and time 5 at a rate of % The leakage
information from the search protocol at time 5 and 8 is
more critical than above. The attacker knows that there are
two updates on the period, but no change happened between

146228

the two results. These leakages give the attacker enough
information to know that the cancellation of addition and
deletion occurred. The attacker can observe that the two
updates cancel each other (which is a part of DelHist(w)).
Moreover, the disclosure of confidential information leads to
the downgrade of backward privacy level in FB-DSSE from
Type-I" to Type-IIL.

C. ATTACK ON PREVIOUS SCHEMES

In Table 1, we analyze the state-of-the-art forward and
backward private (Type-(I,I7,II)) schemes under our threat
model. Note that backward privacy Type-I schemes do
not leak Updates(w). Specifically, search operations in
Moneta [11] and Orion [14] do not leak timestamps of update
history by applying oblivious components in their update and
search protocols. FB-DSSE [12], Fides [11], and Mitra [14]
are vulnerable to our attack, since their search protocols
leaks Updates(w) and rp(w). SD, and SD,; schemes [13]
utilize the static result-hiding technique [19]. Even though
they did not explicitly address document retrieval procedure,
these schemes still need to execute an additional protocol to
receive matching documents. During the retrieval protocol,
these schemes inevitably reveal the result pattern to the
attacker. Hence, SD, and SD, are also vulnerable to our
attack. Lastly, in Aura [17], the client requests the server
only for the insertion operations, whereas the deletion is
conducted locally by the client. Thus, the server cannot learn
the timestamp of deletions, allowing Aura to be resilient to
our attack.

Countermeasures: The countermeasure to our attack is
preventing the server from observing result pattern leak-
age or/and update history leakage. As we mentioned in
Section III-A, the result pattern leakage is inescapable due
to the retrieval protocol, even though they use oblivious
approaches such as ORAM. On the other hand, hiding
update history can be achieved using oblivious compo-
nents [20], [21]. However, high computational overhead
and additional search roundtrips are inevitable due to the
oblivious components. Therefore, in this paper, we focus
on hiding the update timestamp leakage (i.e., Updates(w)),
by leveraging the dummy access based on the bitmap index
representation, which is much more lightweight than the
oblivious components.

IV. SCHEME CONSTRUCTION

In this section, we propose a framework for hiding the
update history with dummy updates, and our scheme
construction based on it. Specifically, we targeted the
leakage information caused by the counter value, thus the
proposed framework is only valid for the counter-based
DSSE schemes. However, considering forward privacy is the
most important security requirement of DSSE and typically
achieved by counter-based approaches, our work addresses
an important open problem of significant impact and has high
applicability.

VOLUME 11, 2023

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

IEEE Access

A. A GENERIC FRAMEWORK FOR UPDATE HISTORY
HIDING SCHEME

As we mentioned in Section III-A, in the traditional forward
private schemes [10], [12], [13], [14], the server examines
all of the update tokens for the update operations that took
place before the search query to achieve forward privacy.
Thus, the update history is exposed to the server. To prevent
update history leakage, we let the client send dummy update
operations to the server. The details of how our framework
can be applied to counter-based DSSE scheme is explained
below.

Assume that the DSSE scheme X supports update
operations with the local update counter map CT. For the
updated entry (op, w, id), the update token for the server is
generally derived from CT[w] during the update protocol.
After that, the client increases the update counter related
to w by 1. To hide the update history from the server, our
framework additionally sends dummy updates with the actual
update. We denote the number of dummy update operations
by ndummy. Keywords of the dummy operation are randomly
selected from the keyword space W, and identifiers for
the dummy update are also generated on the client side.
To minimize the client storage cost, we set the candidate
identifier space size m to be less than or equal to the maximum
number of documents for updated id of the dummy update.
In order to retain the correctness of search results, the client
should keep tracking the information of dummy updates.
Note that id can be treated as a bit-string (see Fig. 1).
The bit-string related to dummy updates is computed with
addition without losing its data, and is stored in the local
map CTaummy[w]. At the end of the search protocol, the
client removes its bit-string before retrieving the actual search
result. Due to the dummy update, the server cannot know
which is the actual update, leading to obfuscation of the
update history in the server’s view.

Even though the technique we described above can
hide the update history of the counter-based approaches,
extra computational and communicational overheads are
unavoidably incurred as a trade-off. Furthermore, additional
dummy update tokens in the server may waste the server’s
storage as much as the number of dummy updates. In order
to handle these trade-off, we propose an improved scheme
by building our framework on FB-DSSE [12] with some
modifications.

B. SCHEME OVERVIEW

We construct our scheme based on FB-DSSE [12], which
leaks the update history during the search protocol. Homo-
morphic addition in FB-DSSE can be used to address
the aforementioned drawbacks, and avoid the leakage of
the update type (i.e., addition or deletion) to the server.
Specifically, when generating update tokens with the update
counter, FB-DSSE additionally generates one more token
which serves as a linker between the recent update address
and the current update address. In the search protocol, the

VOLUME 11, 2023

server can check all of the update addresses with this linker,
summate the update tokens, and store it in the new address.
In the summation step, the bit-string is computed using
the homomorphic addition, leading to the reduction in the
overhead caused by the dummy update. However, since it is
only conducted at the end of the search protocol, it is difficult
to prevent redundancy of dummy update tokens if no search
operation is performed for some keywords.

To avoid this problem, we re-organize the summation step
(from the search protocol to the update protocol). That is, the
scheme runs the update operation in which the server finds
the recent update address and directly updates its token with
the homomorphic addition. As a result, the update address
stored in the server is limited to one per keyword all the time,
which enables the server to maintain only the limited number
of update tokens. Nevertheless, the proposed construction
induces another concern in that the server should determine
whether the current updated address is accessed during the
earlier search operation, which violates the definition of
forward privacy.

To guarantee forward security, we modified some pro-
cedures of the instantiation. First, the server deletes the
correlated search result after the server returns it to the client.
Thus, it is impossible for the server to identify the relationship
between the previous search and current update when the
server performs updates for the same keyword. Second, the
client temporarily stores search results in the cache, ensuring
the correctness of the result of later search operations related
to the same keyword. Suppose that a search query for a certain
keyword w is performed. If the following request is a search
operation for the same keyword, the client can just return
the result from the cache without interaction with the server.
If it is an update operation for the same keyword, the client
should send the update token which is a sum of the current
update bit-string and the past search result in the cache to
the server, and remove the past result from the cache. Note
that the newly updated address must be different from the
removed address. To maintain constant storage overhead on
the client when cache removal rarely happens, we set a cache
size threshold. When the cache data size becomes larger than
the threshold, the client removes results stored in the cache
by forcing update of it before the search operation or sending
it to the server as a dummy update of the next update.

C. SCHEME CONSTRUCTION

We describe a formal construction of our scheme. The
proposed scheme takes a keyed PRF Fx with a key K and
simple symmetric encryption with homomorphic addition
IT = (Setup, Enc, Dec, Add) as primitives. The algorithm of
the proposed scheme is described in Algorithm 1.

1) SETUP

The algorithm is run by a client. It takes as input the security
parameter A. It then selects a secret key K and an integer n,
where n = 2¢ and ¢ is the maximum number of documents
that can be supported by the scheme. The setup algorithm

146229

IEEE Access

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

Algorithm 1 Forward and Backward Type-I Private DSSEP

Setup(l’\):

I: K < Gen(1*),n < H.Setup(lk)
2: CT, CT¢uches EDB < empty map
3: 0 < (n,K,CT, CTeuche)

4: Send EDB to server

Update(w, bs, o; EDB):
Client:

1: WList < {w}, TList <
2: for i = 1 t0 ngymmy do

3 Randomly select w; in W

4 WList < WList U {w;}

5: end for

6: Randomly change the order of WList

7: for j = 0 t0 ngummy do

8: w; < WList[j]

9: ij < Fg(W)), (cntge, cntypa, bspaa) <— CT[w;]
10: if (cntgye, cntypa, bspaa) is NULL then

11: cntge < 0, entypg <= 0 bspagg < 0

12: end if

13: addrj < H\ (ij, cntgpe)

14: skj < H2(ij, cntgrellcntypg + 1)

15: if w; in CT4¢pe then

16: bsj < CTgche[w;] and remove CT cqepe[w;]
17: if w; = w then

18: ej < I1.Enc(skj, bs; + bs, n)

19: else

20: ej <— I1.Enc(skj, bsj, n)

21: end if

22: else

23: if wj = w then > For the actual update
24: ej <— I1.Enc(skj, bs, n)

25: else > For dummy updates
26: bSqummy < {0, 1}

27: bSpad < bSpad + DS gummy

28: ej < I1.Enc(sk;j, bsqummy, 1)

29: end if

30: end if

31: CT[w;] < (cntye, cntypg + 1, bSpaa)

32: T; < (addrj, ej)

33: TList < TList U {T}}
34: end for

35: Send TList to server

Server:

1: for i = 1 to TList.size do

2 (addr;, ej) < TList[i]

3 if EDB[addr;] is NULL then

4 EDBladdr;] < e¢;

5: else

6 EDBJladdr;] < I1.Add(EDB|addr;], e;, n)
7 end if

8: end for

Search(w, o; EDB):

Client:

1: if win CT4cne then

2 return CT ;50 [W]

3: end if
4: Ky < Fg(W), (cntgye, chtypa, bspaa) < CT[w]
5. if cntypq = 0 then

6: return ¢

7: end if

8: addr < H|(K,,, chtg)
9: Send addr to server

Server:

1: Sum, < EDB[addr]
2: Send Sum, to client and remove EDB[addr]

Client:

1: Sumg, < 0

2: fori =1 to cntypq do

3 ski <= Hy (K, cntge|i)

4 Sumg, < Sumg, + sk; mod n

5: end for

6: bs < I1.Dec(Sumygy, Sume, n) — bspaq

7: CTeachelw] < bs, CT[w] < (cntge + 1,0, 0)
8: return bs

also generates three empty maps, CT, CT¢4cne, and EDB,
where CT is to store the counters and dummy bit-string for
each keyword in W, CT¢ycp, is to store the temporary search
results from the server, and EDB is to store an encrypted
database. Finally, it outputs the encrypted database EDB and
the local state 0 = (n, K, CT, CT4cne). The client keeps
(K, CT, CTqche) as a secret.

2) UPDATE

When performing an update operation, the client takes as
input (w, bs), where w is the keyword for the update operation
and bs is the bit-string representing the updated identifiers.

146230

At first, the client initiates a keyword list WList, which
consists of updated keywords. For each keyword in the list,
the client generates a location of the update token in the
server addr and an update token e. The location addr is
computed via H; with Ky, and the search counter cnty.;
and the secret key sk for homomorphic addition is computed
via H, with ij and cntge||cntypg + 1. The update token
e is encrypted with the key sk by using simple symmetric
encryption with homomorphic addition. This process runs
for every keyword in the keyword list, but there is a slight
difference depending on whether the keyword is in the cache.
If the keyword is in the CTgcpe, the bit-string for the update

VOLUME 11, 2023

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

IEEE Access

operation should be the sum of the current update bit-string
(0 if the keyword is for dummy update) and the past search
result. The entry in the CT.4cn should be removed for the
client’s storage. By contrast, if the keyword is not in the
CTqache, the bit-string for the update operation is bit-string
bs for the current update or bSgymmy, Which is generated
on-the-fly, for dummy updates. Note that the client should
store the information about the dummy update to maintain
the correctness of the search result. Thus, the client add
bSqummy and bspaq which represents the sum of bit-string
for the dummy update. The bit-string bs,qq, which is stored
locally, serves as a padding on the result bit-string for each
keyword, and it should be removed before getting the correct
results of the search query. We should adjust the size of
bspaa so that it does not give too much overhead to the client
storage. For instance, if we set the length of bs,aq to 8 bits,
the corresponding client-side storage is 0.13 MB for each
keyword. It can be achieved by selecting the negative number
bSgummy> which is a deletion update. After that, the client
renews the local map CT with changed entries, and sends
the update token list to the server. Since the token list is
generated from the keyword list which has random order,
the server cannot know which one is for the actual update.
On the server side, it accesses the address addr, obtains the
value Sum,, adds it with the update token e, and saves it. This
process was originally conducted in the search protocol of
FB-DSSE, however, we re-organized it as a procedure of the
update protocol as described before. Due to the property of
homomorphic encryption, adding the newly update token to
the original one serves as an update operation without loss of
security. Also, because each memory access is independent,
this task can be processed in parallel.

3) SEARCH

For the keyword w, the client first accesses the local
cache CT.ycpe to get the recent search result. If it hits, the
client can just return its value and terminate the search
algorithm. Otherwise, the client should get the result via
the interaction with the server. The client generates K,
via PRF Fg, and gets addr, the address in the server, via
the hash function H; with (K, cntg,) corresponding to
CT[w] at the state o. The client then retrieves the update
token Sum, by sending addr during the interaction with the
server. After sending the token, the server should remove
its value from the EDB. The client computes the secret
key Sumg, for decryption, which is generated via hash
functions H, with (K, cntgcllcntypq). The client decrypts
Sum, with Sumg; using the decryption function of the simple
symmetric encryption with homomorphic addition. Finally,
after removing the fake identifiers for update bspqq, the client
gets the search result bs at the end of the search protocol while
storing it on the local cache for later search queries. Since the
update history observed at the server contains a number of
dummy updates, it is impossible to learn the actual update
history.

VOLUME 11, 2023

4) DISCUSSION

The proposed framework is designed to enhance the security
level and efficiency of stateful counter-based DSSE schemes.
However, for unstateful DSSE schemes, it is challenging to
apply our framework. For instance, the caching technique
we used in our framework cannot be easily applied to
the schemes that leverages revocation, because revocation
typically re-generates the secret key and re-encrypts the
indices in EDB. Thus, it is very challenging to identify
whether the cached value and the newly generated search
token are from the same document, which is an important
open problem as a future work in the secure DSSE literature.

V. SECURITY ANALYSIS

In this section, we provide a security analysis of the proposed
scheme. Our analysis follows the methodology in [10]
and [12]. The proposed scheme is denoted by &.

Theorem 1 (Adaptive Security of Scheme ®): Let F be a
secure PRF, I1 = (Setup, Enc, Dec, Add) be a perfectly
secure simple symmetric encryption with homomorphic
addition, and Hj;, H> be random oracles. We define
Lo = (L5 Egpdt), where L3 (w) = (rp(w), a,,) and
,Cgpdl(op, w, bs) = op. Then @ is L¢ - secure.

Proof: Here, we utilize the simulator S for simulating
the perspective of adversary A who uses the leakage Lo =
(L5reh, L',gp ' which follows below step:

1) SIMULATION OF SETUP

The secret key K and an integer n are set, following the Setup
in Algorithm 1. Also, three empty maps, CT, CT¢4cpe, and
EDB are initialized.

2) SIMULATION OF UPDATE
When S performs the update operation, keyword w and a
bit string bs are used as input. In the simulation of update
operation, the keyword list WList is initiated for selecting
dummy updates. For all the keywords selected, the location
of update token addr in the server and an update token e is
generated. The counter value is used to generate the key for
encrypting the update token. S sends the generated update
tokens to 4. For addition and deletion updates, there are no
differences between them, thus whether the update is addition
or deletion is indistinguishable from A’s view. Therefore,

Updt
Lg (op,w, bs) = op.

As for the keyword w that has never been searched before,
a new random key is selected and stored in a table Key when
querying F to generate a key. Otherwise, the key from table
Key corresponding to w is used. Consequently, the probability
of distinguishing F from a truly random function by an
adversary Bj is Advl;lfgl Q).

3) SIMULATION OF SEARCH

For a search query on keyword w, if the keyword has not been
searched previously, the location of the update token addr is
computed with Hj. A outputs the last update token Sum, for

146231

IEEE Access

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

the keyword w. Finally, S decrypts Sum, to retrieve the final
bit string. For retrieving the documents, the final bit string is
sent to server, which leaks rp(w).

For the random oracle H, which is used to decrypt the
update token Sum,, A does not know the key that was used
for encryption. Even though the total number of updates
performed on w (i.e., a,,) is leaked, this leakage also includes
the dummy updates performed on w in the perspective of
A. Thus, the probability that A guesses correctly for a
given keyword is 1/2*. Suppose that .4 makes polynomial
p queries. Then, the probability is p/2*. Moreover, when
decrypting the update token, A needs the counter value for
w, which is the leakage defined in Ef{“h(w). Therefore, the
probability of distinguishing the simulated H> from the real
execution and building a reduction 5 is limited to Adv?ﬁ By

4) CONCLUSION

For the updates, the indistinguishablity is guaranteed due
to the dummy updates and the selection of random string.
Moreover, the use of dummy updates allows A to not
be able to distinguish the real update from the dummy
one. For the searches, if the keyword has been searched
beforehand, the search result stored in the CT.,qhe 1S used,
which prevents A from learning any meaningful information.
Lastly, the CT,4cpne hides the search pattern sp(w) by retrieving
bs without interacting with the server. By integrating all
simulation results, a PPT adversary A has the following
advantage:

Pr[DSSEREAL}(X) = 1] — P{DSSEIDEAL, 5(\) = 1]
< AdviRE (1) + Advpy 5, +p/2".

Therefore, the probability of distinguishing the real execution
from the simulated one is negligible in A. It also shows that
the proposed scheme leaks only the information permitted by
the Type-I backward privacy defined in Definition 3. This
concludes our proof. [|

Next, we show that the proposed scheme & guarantees
forward and Type-I backward privacy. Firstly, forward
privacy is guaranteed in the scheme @, by letting the update
token be generated with incremented counter value cnt bound
to a specific keyword w. This state value cnt prevents A
from generating a search query to retrieve newly added
document containing keyword w. Next, backward privacy
is guaranteed because A is unable to learn the update
history(Updates(w)). Specifically, the dummy updates pre-
vent A from identifying which keyword w is the target for
the actual update. Furthermore, the deletion and addition
operations are indistinguishable because they are processed
via the same protocol.

VI. EXPERIMENTAL ANALYSIS

In this section, we analyze the proposed scheme in com-
parison with the state-of-the-art DSSE schemes that provide
stronger backward privacy than Type-III (specifically, Orion
(Type-I) [22], FB-DSSE (Type-17) [12], Aura (Type-1I) [23]).

146232

301 —— Bit-length = 107

Time (ms)

2 4 6 8
Number of Dummy Updates

FIGURE 2. Update time according to ngymmy-

50

—— Bit-length = 107

40

-

0 8 10

2 4 6
Number of Dummy Updates

FIGURE 3. Search time according to ngymmy-

A. IMPLEMENTATION SETTINGS

We implement our scheme, FB-DSSE [12], Orion [22]
and Aura [23] in C++ using OpenSSL [24] library to
construct PRF and hash function in the system with Win-
dows 10 operating system, Intel Core i7-10700K processor
running at 3.80GHz, and 32GB of RAM. Notably, this
system is utilized as both the client and the server in
the evaluation. For the dummy update of our scheme, the
keyword is randomly selected from the keyword space, and
the length of dummy bit-string is set to 3 for the client’s
local storage. The time for retrieving actual documents
from the search result is not measured because it is
negligible.

B. PERFORMANCE EVALUATION OF OUR SCHEME

We now provide a fine evaluation of the proposed scheme.
We first evaluate the computational time of our scheme
according to the number of dummy update operations.
We perform the update operation for each keyword 20 times
on the empty database. The update time includes client token
generation and server update time; the search time includes
token generation, server search time, and client decryption
time.

As shown in Fig. 2, the update time linearly increases
to the number of dummy updates. On the other hand, the
search time in our scheme remains almost constant as shown
in Fig. 3, implying the number of dummy updates does not

VOLUME 11, 2023

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

IEEE Access

TABLE 3. Dataset statistics.

Dataset File # of File | # of Keywords
Enron Mail [25] text 500,000 12,366
COCO [26] image 163,957 91
o 0175] —— Enron Mail
—— COCOo
: 0.150 4
O
o 0125
(9]
<
O 0.100
S
— 0.0751
o
Q@ 0.050
o
o
8 0.025
2 0.000 4

4b 60 éU 160
Time (hours)

FIGURE 4. Storage overhead of CT qpe-

affect the search latency significantly. It is because dummy
updates do not incur extra computation overhead during the
search protocol. Since our search protocol needs to access
only one address to get the update token, most of the search
time is required for modular operations to remove the fake
bit-string from the client. Note that the fake bit-string can be
generated from the value which is less than or equal to the
maximum number of documents supported by the scheme
(three in our experiment). The removal time is reduced due
to the small size of the fake bit-string. That is, the search time
of our scheme is only affected by the maximum number of
documents.

Next, we evaluate the storage overhead of our scheme
using two datasets: Enron email and COCO image datasets,
as described in Table 3. The Enron email dataset [25]
comprises 500,000 text documents including 12,366 unique
keywords. On the other hand, the COCO image dataset [26]
consists of 163,957 image files associated with 91 unique
keywords. Notably, in the COCO dataset, these keywords
represent the objects depicted in the images, employed
for image categorization. The Enron dataset has a size of
1.3 GB, while the COCO dataset has a significantly larger
size of 25 GB. In our scheme, the bit length corresponds
to the number of files, and each keyword necessitates a
bitmap index for search result retrieval. Consequently, for
the Enron mail dataset, the server requires 772.875 MB
of storage capacity to store the necessary information for
search purposes. As this storage requirement accounts for
50% of the dataset volume, the storage overhead may initially
appear substantial. It is worth noting that the Enron dataset
is predominantly text-based, with a considerable number of
keywords contained within a single file. However, when our
scheme is applied to the other formats, such as images,
the ratio of dataset volume to the storage needed for the
encrypted index diminishes significantly. In the case of the

VOLUME 11, 2023

TABLE 4. A comparison of storage costs among different schemes.

Scheme Client-side Storage | Sever-side Storage
Aura [17] O(Wd) O(WlogD)
FB-DSSE [12] O(W log D) O(W log D)
Orion [14] o) O(N)
Proposed O(W log D) O(W log D)

*W: the total number of distinct keywords; D: the total
number of documents; N: the total number of updates; d:
the size of search result matching w

COCO dataset, which encompasses 91 object categories for
image classification, our scheme necessitates only 1.87 MB
of storage on the server. This represents less than 0.0001% of
the dataset volume, indicating a considerably reduced storage
overhead [25], [26].

To evaluate the storage overhead on the client-side for
CT¢ache, we conduct a simulation using a distribution model
for data insertion, deletion, and keyword search operations
with the Enron and COCO datasets. In our evaluation, we
assume that data insertion follows a Poisson distribution with
a mean duration denoted as A. Similarly, deletion follows
an exponential distribution with a mean duration of ﬁ,
while search requests follow an exponential distribution with
a mean duration of 4. Additionally, we assume that the
keyword frequency of each dataset follows a Zipf distribution.
By conducting this simulation, we can quantitatively analyze
the storage overhead on the client-side when utilizing
CTeache. Figure 4 illustrates the results obtained from a
simulation conducted over a duration of 100 hours, using
parameter values of p— 3, L _ 40, and % = 1.
The horizontal axis of the figure represents time in hours,
while the vertical axis represents the storage consumption
of CT¢ache- As indicated in Table 4, the proposed scheme
exhibits higher storage overhead compared to Orion [14],
which provides a similar level of backward privacy. Orion
needs 0.098 MB for Enron Mail dataset and 0.0007 MB
for COCO dataset on the client-side. However, based on
the simulation results, the storage overheads of CT4cpe are
limited to a maximum of 0.187 MB for the Enron Mail
dataset and 0.006 MB for the COCO dataset. It is important
to note that the storage overhead varies depending on the type
of operations performed, as the values stored in the cache
are removed during update operations. Consequently, the
additional storage overhead on the client-side can be deemed
an acceptable trade-off considering the improved efficiency
in search latency.

C. PERFORMANCE COMPARISON WITH FB-DSSE

We now compare our scheme with FB-DSSE. Similar to the
previous experiment, we perform the update operation for
each keyword and search operation for the keyword. The time
for update and search operations of our scheme and FB-DSSE
with different bit lengths are given in Fig. 5 and Fig. 6,
respectively. The bit length means the maximum number of
files supported by the scheme.

146233

IEEE Access

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

N M Proposed(Ngummy=1)
10 —— Proposed(Ngummy=5)
Proposed(Ngymmy=10)

£ 10 FB-DSSE
[}
£
F 10
IR _—
=) 7—7)*”’//
(U
10° 10° 10" 10° 10° 10
Bit Length

FIGURE 5. Comparison of update time with FB-DSSE.

Proposed(ndummy=1)

10 { — Proposed(Ndummy=5)
Proposed(ndummy=10)
T . FB-DSSE
E 10
)
=
Fio!

10 10° 10" 10° 10° 10
Bit Length

FIGURE 6. Comparison of search time with FB-DSSE.

1) UPDATE TIME

Fig. 5 shows the average update time for 20 update
operations. Compared to FB-DSSE, our scheme executes
additional operations related to the dummy update, resulting
in extra computational overhead. That is, the update time
of our scheme with ngummy is approximately ngummy +
1 times slower than the scheme FB-DSSE. However, note that
FB-DSSE has lower backward privacy level as it leaks the
update history, leading to vulnerability to our attack.

2) SEARCH TIME

Fig. 6 illustrates the comparison of search time. In the
search protocol of our scheme, the server is able to directly
access one address to get the update token, while FB-DSSE
needs to access multiple addresses according to the update
history. On the server side, the search time of our scheme
is independent of the total number of update operations.
Nonetheless, since the client locally stores the information
of the dummy update, the client needs to operate additional
modular additions for each dummy counter to calculate
accurate results. Despite the need for additional computation
on the client side, the entire search time of our scheme is 1.5 x
to 2.5x faster than FB-DSSE under the cases of different bit
lengths.

D. PERFORMANCE COMPARISON WITH ATTACK
RESILIENT SCHEMES

Since the main goal of our scheme is to make it resilient to
Backward Privacy Attack, we also compared our scheme to
the previous schemes that are resilient to the attack. For the
comparison, we set the maximum number of files supported

146234

Update
7 Search

o

dms)

Time
o
=

S
o

00130014 SBC0014 o 0.014
Proposed Proposed Proposed Orion
(Naummy=1) (Ndummy=5) (Ndummy=10)

e
=]

FIGURE 7. Comparison of schemes that are resilient to backward privacy
attack.

o

—— Without Dummy Update
—— With 10 Dummy Updates
With 15 Dummy Updates
—— With 30 Dummy Updates
—— With 50 Dummy Updates

I g 4
S o %

Average Success Rate of the Attack
(=1
[}

4
S

1 23456 7 8 91011121314151617 18 1920
Keyword Rank

FIGURE 8. Average of the attack success rate.

by the scheme as 100. In each scheme, we run insertion
operations (update operation for our scheme) 20 times for
each keyword, and then perform the search operation for the
keyword. The comparison result is given in Fig. 7. The results
illustrate that our scheme considerably outperforms the other
schemes during both the search and the update operations.

1) COMPARISON WITH ORION

The search protocol of Orion [14] conceals the update history
by utilizing ORAM. The update time of Orion is about 12 x
to 58 x slower, and its search time is 23 x slower than our
scheme due to the computational overhead of ORAM.

2) COMPARISON WITH AURA

Aura [17] makes deletion operation oblivious to the server.
As shown in the figure, the update time of Aura is close to
our scheme with 10 dummy updates. However, Aura shows
the largest search latency among all of the schemes, because
the search protocol of Aura needs to decrypt tokens with the
key which is found at GGM tree [27]. When it comes to the
update time, Aura is 1.1x faster than our scheme when our
scheme supports 10 dummy updates, and our scheme is about
4 x faster than Aura when our scheme supports one dummy
update. Moreover, the search time of our scheme is 76 x faster
than that of Aura regardless of the number of dummy updates.

E. EFFECTIVENESS OF RESILIENCE
We evaluate the resilience of the proposed framework to
our backward privacy attack by conducting a simulation in

VOLUME 11, 2023

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

IEEE Access

diverse distribution models of keyword insertion, deletion,
and keyword search in the cloud storage.

According to the distribution models in [28] for file transfer
and in [29] for the search, we designed a simulation by
assuming that an update operation to the pair (keyword, file
identifier) follows a Poisson distribution with the rate A.
This pair’s lifespan follows an exponential distribution with
a mean duration l, while the search request on the identical
keyword follows an exponential distribution with a mean
duration ,. We also assume that the keyword frequency
follows a Zipf distribution.

Based on the distribution model, we evaluate the resilience
of the proposed scheme by measuring the probability of
the successful guess of the correct deletion time for each
identifier by the attacker. We simulate the success rate for the

top-20 most frequent keywords, when A = 3, ﬁ = 30 and

% = 20. For each keyword, we measured the average

success rate for each identifier during the update operations
over 10,000h timespan and repeated this simulation 10 times.
Fig. 8 shows the attack success rate on average in several
cases. In the figure, we can see that the larger the keyword
rank, i.e., a low frequency, the greater attack’s success rate
when dummy updates are not used. We also can observe
that the attack’s success rate is dramatically decreased even
though deploying only 10 dummy updates.

VII. RELATED WORK

Song et al. [1] first presented an SSE scheme con-
struction with linear-time search capability. Since then,
Curtmola et al. [6] have provided a formal security
definition of SSE and a sublinear-time construction.
Kamara et al. [9], and Kamara and Papamanthou [8] proposed
SSE schemes for sublinear-time updates in the encrypted
databases.

Since the concept of forward privacy was introduced in [7],
forward private DSSE schemes have been widely researched,
and various works have been proposed to improve its security
and efficiency [2], [10], [11]. Backward privacy was first
mentioned in [30], and Bost et al. [11] have formalized the
definition of backward privacy and classified it into Type-I,
II, and III categories based on the amount of the leakage
information. Chamani et al. [14] proposed three forward
and backward private schemes, called Mitra (Type-II),
Orion (Type-I), and Horus (Type-III). Demertzis et al. [13]
presented three DSSE schemes with constant permanent
client storage and efficient search. Zuo et al. [12] designed
a scheme called FB-DSSE, which satisfies both forward
privacy and Type-I- backward privacy. They use the
homomorphic addition and bit-string representation in their
scheme to achieve Type-I~ backward privacy. Sun et al. [17]
introduced a new cryptographic primitive named Symmet-
ric Revocable Encryption, and also presented a practi-
cal and non-interactive backward privacy Type-II DSSE
scheme without using the trusted environment and oblivious
component.

VOLUME 11, 2023

There are other works that have been introduced recently
in the DSSE literature that have considered different
client-server models or different types of query from that
of ours. Liu et al. [31] introduced Eurus that leverages
ORAM as a core building block. Eurus enhances the
efficiency and security by employing a multi-server model
for constructing an ORAM-friendly protocol. Wu and
Li [32] also introduced a multi-path ORAM for forward
and backward private DSSE schemes, aiming to support
conjunctive query. Chamani et al. [33] introduced a DSSE
scheme for the multiple user setting, and provided a
security definition for multi-user DSSE settings in the
presence of the corrupted users. Guo et al. [34] introduced
a forward private verifiable DSSE scheme for conjunctive
query. Specifically, they provided a new design of veri-
fication tag and applied it to DSSE to support backward
privacy.

VIil. CONCLUSION AND FUTURE WORK

In this study, we proposed a novel backward privacy attack
on Dynamic Symmetric Searchable Encryption (DSSE). Our
attack leverages only the data originally permissible in the
backward private schemes to disclose deletion records, which
are protected in the schemes that offer greater protection
than Type-III backward privacy. Under our backward privacy
attack, the leakage information from even the backward
privacy Type-I~ scheme could be exploited to weaken its
security level. We also presented a framework to hide update
history by utilizing dummy updates without sacrificing
search correctness. Finally, we constructed a novel scheme
by applying the update history hiding technique to FB-
DSSE. To the best of our knowledge, we proposed the first
forward and Type-I backward privacy scheme without using
the oblivious component.

However, our attack only aims to stateful DSSE schemes,
especially counter-based ones. Applying our method to
stateless schemes is not so trivial issue. For instance, if the
schemes use revocation mechanisms, our caching mechanism
can hardly be applied, because the client cannot match the
newly generated token with cached values. Therefore, how to
extend our method into stateless DSSE schemes is one of the
important future works.

ACKNOWLEDGMENT
(Hyundo Yoon and Muncheon Yu contributed equally to this
work.)

REFERENCES

[1] D. Xiaoding Song, D. Wagner, and A. Perrig, “Practical techniques
for searches on encrypted data,” in Proc. IEEE Symp. Secur. Pri-
vacy., May 2000, pp. 44-55.

[2] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: Efficient
oblivious ram in two rounds with applications to searchable encryption,”
in Proc. Annu. Int. Cryptol. Conf. Cham, Switzerland: Springer, 2016,
pp. 563-592.

[3] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” TACR Cryptol. ePrint Arch., Tech. Rep., 2012, p. 144,
vol. 2012.

146235

IEEE Access

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27]

C. Bosch, P. Hartel, W. Jonker, and A. Peter, ““A survey of provably secure
searchable encryption,” ACM Comput. Surv., vol. 47, no. 2, pp. 1-51,
Jan. 2015.

M. Naveed, “The fallacy of composition of oblivious ram and searchable
encryption,” TACR Cryptol. ePrint Arch., Tech. Rep., 2015, p. 668,
vol. 2015.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘““Searchable

symmetric encryption: Improved definitions and efficient
constructions,” J. Comput. Secur., vol. 19, no. 5, pp.895-934,
Nov. 2011.

Y.-C. Chang and M. Mitzenmacher, ‘‘Privacy preserving keyword searches
on remote encrypted data,” in Proc. Int. Conf. Appl. Cryptography Netw.
Secur. Cham, Switzerland: Springer, 2005, pp. 442-455.

S. Kamara and C. Papamanthou, ‘“Parallel and dynamic searchable
symmetric encryption,” in Proc. Int. Conf. Financial Cryptography Data
Secur. Cham, Switzerland: Springer, 2013, pp. 258-274.

S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM Conf. Comput. Commun. Secur.,
Oct. 2012, pp. 965-976.

R. Bost, “Xogogs: Forward secure searchable encryption,” in Proc. 2016
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 1143-1154.

R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic primitives,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1465-1482.

C.Zuo, S.-F. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, ‘‘Dynamic searchable
symmetric encryption with forward and stronger backward privacy,” in
Proc. Eur. Symp. Res. Comput. Secur. Cham, Switzerland: Springer, 2019,
pp. 283-303.

I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papamanthou,
“Dynamic searchable encryption with small client storage,” TACR
Cryptol. ePrint Arch., Tech. Rep., 2019, p. 1227, vol. 2019.

J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili,
“New constructions for forward and backward private symmetric search-
able encryption,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 1038-1055.

V. Sharma, “Bitmap index vs. B-tree index: Which and when,” Oracle
Technol. Netw., 2005.

C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of
encrypted data in wireless sensor networks,” in Proc. 2nd Annu. Int. Conf.
Mobile Ubiquitous Syst., Netw. Services, 2005, pp. 109-117.

S.-F. Sun, R. Steinfeld, S. Lai, X. Yuan, A. Sakzad, J. Liu S. Nepal,
and D. Gu, “Practical non-interactive searchable encryption with forward
and backward privacy,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2021,
pp. 1-18.

J. Wang and S. S. M. Chow, “Forward and backward-secure range-
searchable symmetric encryption,” Proc. Privacy Enhancing Technol.,
vol. 2022, no. 1, pp. 28-48, Jan. 2022.

D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” IACR Cryptol. ePrint Arch., Tech.
Rep., 2014, p. 853, vol. 2014.

D. Micciancio, “Oblivious data structures,” in Proc. 29th Annu. ACM
Symp. Theory Comput., 1997, pp. 215-226.

E. Stefanov, M. Van Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path ORAM: An extremely simple oblivious ram
protocol,” J. ACM JACM, vol. 65, no. 4, pp. 1-26, 2018.
(2020). Ghareh Chamani. [Online]. Available:
com/jgharehchamani/SSE

(2018). MonashCybersecurityLab. [Online]. Available: https://github.
com/MonashCybersecurityLab/Aura

E. A. Young, T. J. Hudson, and R. Engelschall, “OpenSSL: The open
source toolkit for SSL/TLS,” OpenSSL, Tech. Rep., 2011.

B. Klimt and Y. Yang, “Introducing the Enron corpus,” in Proc. CEAS,
2004, pp. 92-96.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in Computer Vision—ECCV. Zurich, Switzerland: Springer,
2014, pp. 740-755.

O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” J. ACM, vol. 33, no. 4, pp. 792-807, Aug. 1986.

https://github.

146236

(28]

[29]

(30]

(31]

(32]

(33]

(34]

G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, ‘“Modeling data
transfer in content-centric networking,” in Proc. 23rd Int. Teletraffic
Congr. (ITC), Sep. 2011, pp. 111-118.

T. Fenner, M. Levene, and G. Loizou, “A stochastic evolutionary model
generating a mixture of exponential distributions,” Eur. Phys. J. B, vol. 89,
no. 2, pp. 1-7, Feb. 2016.

E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic search-
able encryption with small leakage,” IACR Cryptol. ePrint Arch.,
Tech. Rep., 2013, p. 832, vol. 2013.

Z. Liu, Y. Huang, X. Song, B. Li, J. Li, Y. Yuan, and C. Dong, “Eurus:
Towards an efficient searchable symmetric encryption with size pattern
protection,” IEEE Trans. Dependable Secure Comput., vol. 19, no. 3,
pp. 2023-2037, May 2022.

Z. Wu and R. Li, “OBI: A multi-path oblivious RAM for forward-and-
backward-secure searchable encryption,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 2023, pp. 1-16.

J. G. Chamani, Y. Wang, D. Papadopoulos, M. Zhang, and R. Jalili,
“Multi-user dynamic searchable symmetric encryption with corrupted
participants,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 1,
pp. 114-130, Jan. 2023.

C. Guo, W. Li, X. Tang, K. R. Choo, and Y. Liu, “Forward private verifiable
dynamic searchable symmetric encryption with efficient conjunctive
query,” IEEE Trans. Dependable Secure Comput., early access, 2023.

HYUNDO YOON received the B.S. degree in
computer science from Korea University, Seoul,
South Korea, in 2019. He is currently with
Korea University, in computer science (combined
course). His research interests include information
security, cloud computing security, and applied

cryptography.

MUNCHEON YU received the B.S. degree from
Kukmin University, Seoul, in 2021, and the M.S.
degree from the Department of Computer Science
and Engineering, College of Informatics, Korea
University, South Korea, in 2023. His research
interest includes applied cryptography.

CHAEWON KWAK is currently pursuing the B.S.
degree with the Department of Computer Science,
Dongduk Women’s University, South Korea. Her
research interest includes applied cryptography.

VOLUME 11, 2023

H. Yoon et al.: Shedding Light on Blind Spot of Backward Privacy in DSSE

IEEE Access

CHANGHEE HAHN received the B.S. and M.S.
degrees in computer science from Chung-Ang
University, Seoul, South Korea, in 2014 and
2016, respectively, and the Ph.D. degree from
the Department of Computer Science and Engi-
neering, College of Informatics, Korea Uni-
versity, South Korea, in 2020. He was with
Korea University as a Postdoctoral Researcher,
from 2020 to 2021. He is currently an Assistant
Professor with the Department of Electrical and

Information Engineering, Seoul National University of Science and Tech-
nology, Seoul. His research interests include information security and cloud

computing security.

VOLUME 11, 2023

DONGYOUNG KOO received the B.S. degree in
computer science from Yonsei University, Seoul,
South Korea, in 2009, and the M.S. and Ph.D.
degrees in computer science from KAIST, in
2012 and 2016, respectively. He is currently
an Associate Professor with the Department of
Convergence Security, Hansung University, Seoul.
His research interests include information security,
secure cloud computing, and cryptography.

JUNBEOM HUR (Member, IEEE) received the
B.S. degree in computer science from Korea
University, Seoul, South Korea, in 2001, and
the M.S. and Ph.D. degrees in computer sci-
ence from KAIST, in 2005 and 2009, respec-
tively. He was with the University of Illinois at
Urbana—Champaign as a Postdoctoral Researcher,
from 2009 to 2011. He was with the School of
Computer Science and Engineering, Chung-Ang
University, South Korea, as an Assistant Professor,
from 2011 to 2015. He is currently a Professor with the Department of
Computer Science and Engineering, Korea University. His research interests
include information security, cloud computing security, mobile security, and

applied cryptography.

146237

