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ABSTRACT According to previous studies on internal combustion engine applications using deep learning,
deep learning model should be individually optimized and trained to predict different phenomena. This study
introduces task transfer learning to predict transient nitrogen oxides (NOx), soot, and total hydrocarbon
(THC) emissions, which are the major emissions from diesel engines. Using the concept of task transfer
learning, when there is a pretrained model relevant to the target task, the model can be transferred to predict
another phenomenon by training only the last two layers with hyperparameters of the pretrained model. This
concept omits the need for optimizing and training separate models that can save computational time and
cost. The results of task transfer learning were evaluated using Worldwide Harmonized Light Vehicles Test
Procedure (WLTP) cycle data, which are representative transient cycles of the internal combustion engine,
and all possible transfer cases with NOx, soot, and THC emissions were investigated. The R2 values of
pretrained NOx, soot, and THCmodels were 0.9780, 0.9215, and 0.9390, respectively. The R2 gaps between
the pretrained and transferred models were within 0.012, with a value of 0.0015 for the NOx emission,
0.011 for the soot emission, and 0.0115 for the THC emission. The relative mean absolute errors (MAEs)
to the maximum emission values were approximately 0.57-0.82% for NOx emissions, 0.69-2.02% for soot
emissions, and 1.52-2.42% for THC emissions. These accuracy results were comparable to the accuracy of
the emission measurement device, which was better than that of the sensors for practical use in vehicles.
The results indicated that task transfer learning was valid for predicting emissions of an internal combustion
engine, and it achieved efficient organization of prediction models using a pretrained model.

INDEX TERMS Deep learning, diesel engines, task transfer learning, transient emissions.

I. INTRODUCTION
As public attention on air quality has recently increased,
emission regulations are becoming increasingly stringent to
reduce harmful emissions from internal combustion engines.

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

EURO 6, validated in 2014, defines emission standards
including those for nitrogen oxides (NOx), particulate matter
(PM), and total hydrocarbon (THC) for gasoline and diesel
vehicles [1]. The test cycle for the regulation changed
from the New European Driving Cycle to the Worldwide
Harmonized Light Vehicles Test Procedure (WLTP), which
involves a more complex driving profile to reflect real driving
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conditions. Therefore, it is difficult to predict emissions under
WLTP cycles.

A. LIMITATIONS OF DEEP LEARNING STUDIES FOR
PREDICTION OF INTERNAL COMBUSTION ENGINE
Before rising of deep learning, many statistical method-
ologies were applied to predict various phenomena of
internal combustion engines. Response surface methodology
was used to predict and optimize engine performance and
emissions [2]. Other methodologies such as analysis of
variance technique [3] and least-squares support vector
machine [4] were also utilized for modeling for performance
and emissions of diesel engines.

Recently, deep learning has achieved high accuracy in the
prediction of images and natural language processing [5].
It has been actively applied to predict engine phenomena, and
previous studies can be divided into single-task and multi-
task problems. For a single-task problem, an individual model
is used to predict only one phenomenon, and the model
has one output. On the other hand, the multi-task problem
is defined as a model that is organized to predict multiple
phenomena simultaneously with multiple outputs.

The single-task approach is a basic concept for deep
learning models to predict specific phenomena. Deep learn-
ing models recently present higher accuracy compared to
conventional equation-based models in many research areas.
However, considerable computational cost and time are
required to predict multiple phenomena because multiple
models need to be optimized and trained.

Single-task models are typically employed to predict the
performance or emissions of engines. Steady-state NOx
emissions were predicted using deep neural networks (DNN)
and genetic algorithms [6], where some hyperparameters
of the DNN model, such as the learning rate and epoch
size, were optimized using a genetic algorithm to achieve
the highest accuracy of the model. Cold start emissions of
diesel vehicles, such as carbon dioxide (CO2), NOx, and
THC, were predicted by artificial neural network (ANN)
models [7]. Separated ANN models were trained to predict
four emissions respectively with engine coolant temperature,
vehicle velocity, vehicle specific power, engine speed, and
engine torque as input variables. Using the trained models,
three engine coolant temperature scenarios were investigated
to evaluate cold start effect on the emissions. The accuracies
of NOx emissions from diesel engines were compared for
the neural network and nonlinear regression models [8]. The
data were clustered into several groups, and NOx emissions
were predicted for these groups. The accuracies of both
models were similar, but the neural network model was
better for dealing with data, not from a specific group. Long
short-term memory (LSTM) was employed to predict the
transient NOx emissions of a diesel engine [9]. The LSTM
model was evaluated using othermachine learning algorithms
such as random forest and support vector regressors. Another
study was investigated the accuracies of DNN and LSTM

models for NOx emissions under transient conditions [10].
The accuracy of the LSTM model was slightly higher than
that of the DNN model, and time-series data pre-processing
was proposed to increase the accuracy of the DNN model to
a level similar to that of the LSTM model. Models using a
convolutional neural network (CNN) and LSTM were built
to predict fuel flow, NOx, and soot for a nonroad transient
cycle [11]. The accuracy of the LSTM model was better than
that of the CNN model to predict the transient cycle. Among
the phenomena, the soot prediction had a lower accuracy that
the NOx and fuel flow prediction.
The multi-task approach is more efficient than the

single-task approach because the optimization and training
processes are not necessary to repeat for each output.
However, the accuracy of some outputs from the multi-task
model deteriorates as multiple phenomena are predicted
using a single model. In addition, the multi-task model
is vulnerable to sensor error when it is used for practical
use. If there are errors in sensor data regarding a specific
output, all outputs of the multi-task model cannot be reliable.
However, the single-task model can be fixed by replacing a
model relating to the unreliable output.

Multi-task models have mainly been applied for perfor-
mance and emission prediction. The effects of biodiesel on
exhaust emissions have been studied using an ANN [12].
The type of biodiesel fuel and concentration of magnesium
oxide nanoparticles were the independent variables affecting
CO, THC, and NOx emissions. A 2-layer ANN model
was organized with multiple input and output structures
to predict the performance, emissions, and vibrations of a
compressed-ignition engine with biodiesel fuels [13]. The
layer configuration was tuned to achieve higher accuracy
of the output variables, including torque, power, CO, CO2,
THC, NOx, etc. The distribution of accuracy results was
between an R2 value of 0.88-0.98, according to the outputs.
Some outputs had limited accuracy because they were
predicted simultaneously with other variables by a model.
A deep learning procedure was investigated to predict
the performance, combustion, and emissions of a gasoline
engine [14]. The study introduced the pipeline modeling
concept, in which the abnormal combustion cases are filtered
out before the main prediction model for the outputs.

B. TASK TRANSFER LEARNING
To compensate for the drawbacks of single- and multi-task
approaches, task transfer learning was introduced in this
study. Task transfer learning was rarely applied to predict
phenomena of the internal combustion engine, but it is widely
studied in image and natural language processing areas.

Task transfer learning is a methodology in which a trained
model for predicting of a specific phenomenon, that is,
a pretrained model, is transformed into a model for predicting
another phenomenon by fine-tuning.

For image processing, the model for ImageNet 1000-class
classification was transferred to classify the Cifar 100-class
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dataset [15]. The authors introduced information theory for
task transfer learning and defined the H-score to quantify
the feature transferability among tasks. Computational taxo-
nomic maps have been studied for task transfer learning [16].
26 tasks in computer vision tasks were formed in a task
dictionary to cover common themes for image processing.
Then, the relationships between the training and target
tasks were investigated by evaluating the transfer-learning
dependency across the dictionary. A representation similarity
analysis method was developed for task transfer learning
of image classification [17]. Similarity scores among tasks
were computed using the defined correlation between the
models trained on different tasks. This task transfer learning
for image processing has been applied to various industries,
including medicine, beauty, and construction, to solve
practical problems. Breast cancer in mammograms was diag-
nosed using a combination of CNN and multi-task transfer
learning [18]. The knowledge of the model learned from
nonmedical images was translated into medical diagnostic
tasks. This task transfer learning increases the generalization
capability of the model. Surgical task segmentation has also
been performed for medical applications [19]. The features
and segmentation points from manually labeled data were
used to learn the segmentation policies. The policies were
employed to segment new tasks through transfer learning.
The classification task of construcion material images was
conducted by transfer learning of CNN architectures [20].
AlexNet and GoogleNet were evaluated as pretrained CNN
architectures for transfer learning. This study followed the
basic transfer learning process using a fixed feature extractor
and fine-tuning schemes.

For natural language processing, conditionally adaptive
multi-task learning was studied to improve transfer learning
in natural language processing [21]. Generally, the best
performance is achieved by organizing a separate model for
each task. The authors pointed out that previous approaches
caused overfitting to low-resource tasks, catastrophic for-
getting, negative task transfer, and learning interference.
Therefore, task-conditioned modules that facilitate weight
sharing were suggested by keeping half of the weights
of a pretrained model for efficient parameter sharing and
mitigating forgetting. Cross-task transfer learning has been
applied to deep-speech enhancement models [22]. The aim
of this study was to improve the listening quality of speech
and boost the noise robustness of speech-recognition systems.
A multi-condition senone classifier trained by noisy speech
features and a clean-condition senone classifier trained by
enhanced speech features were combined with a deep speech
enhancement model with robustness to unseen background
noise.

C. OBJECTIVES
The objectives of this study were to apply task transfer
learning to predict the emissions of diesel engines and
verify their viability. Task transfer learning introduced

from other research fields could be an effective solution
for the limitation of single-task and multi-task approaches
that previous deep learning studies for internal combustion
engines had. The method for task transfer learning of internal
combustion engines was suggested using existing weights
during retraining with hyperparameters of the pretrained
model. This method provided efficient organization of
models for different emissions.

The targe emissions were transient NOx, soot, and THC,
the significant emissions of internal combustion engines,
obtained under WLTP cycles.

Fig. 1 shows the cases investigated in this study. The
accuracy results of task transfer learning were compared to
models individually optimized (Model 1 of each emission)
and trained for target emissions (Model 2 and 3 of each
emission transferred from the pretrained models of the
other emissions). For example, the NOx model that was
optimized from scratch was built as a reference model (NOx
model 1) for comparison with the transfer learning results.
Subsequently, the transferred NOx models (NOx model 2
and NOx model 3) were trained using task transfer learning
from pretrained soot (Soot Model 1) and THC models (THC
Model 1), respectively. The accuracies of the three models
were compared to evaluate the applicability of transfer
learning to emission prediction. The accuracies of the soot
and THC predictions were similar to those of the NOx case.
All possible transfer cases with the three emissions were
investigated in this study.

The main contributions of this study are as follows:
• This study applied task transfer learning to predict
emissions of the internal combustion engine. This
approach for predicting the internal combustion engine
was rarely studied by previous research.

• This study showed that the accuracy results from task
transfer learning were similar to those of the trained
models for each emission. This proves that task transfer
learning is valid for predicting internal combustion
engine phenomena.

• This study organized the process of task transfer learning
for emissions in an internal combustion engine. For task
transfer, the last two hidden layers of the pretrained
model should be trained for the target emission,
whereas the other layers are frozen during training. The
hyperparameters of the pretrained model do not need to
be changed for task transfer learning.

• This study suggests a methodology for compensation
of both single- and multi-task approaches using task
transfer learning. Efficient organization of prediction
models is achieved if there is a pretrained model,
using existing weights, and without the need of an
optimization process.

II. METHODOLOGY
A. METHOD OF TASK TRANSFER LEARNING
Transfer learning is classified by the relationships of the
domain and task between the source and target as shown in
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FIGURE 1. Investigation cases for task transfer learning in this study:
(a) NOx case, (b) Soot case, and (c) THC case.

Table 1 [23]. The relationships of domains and tasks between
source and target are used to define the traditional machine
learning and transfer learning.

The definition of inductive transfer learning is that the
learning of the target prediction function fT (·) in DT is

TABLE 1. Relationship between traditional machine learning and various
transfer learning settings [23].

performed using knowledge in DS and Ts, where TS ̸= TT .
Here, DS is the source domain, TS is the learning task, DT
is the target domain, and TT is the target task. In this study,
labeled data were available in the source domain.

The problem of multi-task learning was proposed for
support vector machines [24], and it was modified for
inductive transfer learning [23]. In inductive transfer learning,

ws = w0 + vs and wT = w0 + vT (1)

where wS is the parameter for the source task, and wT is the
parameter for the target task. vSand vT are specific parameters
for each source task and target task, respectively, while w0 is
a common parameter. The transfer learning of support vector
machines can be formulated as follows [23].

min
w0,vt ,ξti

J (w0, vt , ξti )

=

∑
t∈S,T

nt∑
i=1

ξti +
λ1

2

∑
t∈S,T

∥ vt ∥
2
+ λ2∥ w0 ∥

2

s.t. yti (w0 + vt) · xti ≥ 1 − ξti

ξti ≥ 0, i ∈ {1, 2, · · · , nt } and t ∈ {S,T } (2)

Here, λ1 and λ2 are positive regularization parameters;
ξtiare slack variables measuring the error that each of the final
model wt makes on the data; J(·) is the cost function; and
||·|| is the Euclidean distance. S and T are tasks in target and
source domain, respectively. xti and yti indicate the ith term
of input and output vectors included in S and T . By applying
task transfer learning, vT is trained for the target task with a
pretrained parameter, w0.
For the deep learning model, task transfer learning for

image classification has been derived [16], and can be
modified for the regression applied in this study.

Ds→t := argmin
θ

ER∈D[Lt (Dθ (Es(R)), ft (R))] (3)

where R is the regression problem, ft (R) is the ground truth of
t for the regression problem, Lt is the loss function, Dθ is the
parameterized function, and ES (R) is the pretrained model for
the source task.

Based on the fundamentals described in (3), task transfer
learning was performed as the schematic shown Fig. 2. The
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FIGURE 2. Frozen and trained layers for task transfer learning.

weights in the last two hidden layers of the pretrained model
fS were trained again using the target data T whereas the
weights in the other hidden layer were frozen during training.
In this process, the hyperparameters of the transferred model,
including the configuration of the hidden layer, learning rate,
and batch size, were the same as those of the pretrained
model.

B. HYPERPARAMETERS
In this study, DNN models were utilized to predict emissions
using transfer learning. The DNN structure has several
hyperparameters that need to be determined. Some of the
hyperparameters were optimized by Bayesian optimization
and hidden-node determination logic [25], whereas the other
hyperparameters were set at specific values.

TABLE 2. Minimum and maximum limits of hyperparameters for the
optimization.

Table 2 presents the minimum and maximum limits of
the hyperparameters for the optimization. The target hyper-
parameters for optimization were the learning rate, learning
rate decay, number of hidden layers, number of 1st hidden
nodes, and batch size. The hidden node arrangement was
defined using the number of hidden layers and the number
of 1st hidden nodes based on hidden-node determination
logic [25]. This is because the number of iterations for the
optimization can be exponentially increased if the number
of hidden nodes is optimized using Bayesian optimization.
Therefore, some logical equations were proposed to organize
the structures of hidden layers, and the number of nodes in
each hidden layer was determined by the number of hidden

layers and the number of 1st hidden nodes. The maximum
batch size was equal to the total number of data points
consisting of four WLTP cycles, and a WLTP cycle included
18001 data points, which measured 0.1 s intervals for 1800 s.
The data configuration is presented in the following section.
The number of iterations for the Bayesian optimization
was 300, and the epochs for each iteration were varied by
early stopping callbacks [26]. The early stopping callback
determines the epochs for the iteration to achieve the best
accuracy of the model, that is, minimum validation loss.
The training process was continued for 1000 more epochs
(patience number) after the model achieved the best accuracy,
and the early stopping callback restored the best model for the
iteration.

Other hyperparameters such as the activation function,
training optimizer, and batch normalization were fixed at spe-
cific values. A detailed description of these hyperparameters
is provided in a previous study by the authors [10].

The exponential linear unit (ELU) function is introduced as
an activation function as shown in (3) [27]. The ELU function
is a modification of the rectified linear unit (RELU) function.
The RELU function has a dying RELU problem in that the
outputs of the function are all zero when the input data are
below 0. This can interrupt the weight update of the node
under certain conditions.

f (x) =

{
x if x > 0
α (exp (x) − 1) if x ≤ 0(α < 0)

(4)

Here, α is a hyperparameter of the ELU function, which
was set to 1 in this study.

Batch normalization [28] was applied to the DNN model.
During the training process, gradient vanishing or gradient
explosion can be caused by an internal covariant shift. The
internal covariant shift inside the model was reduced using
batch normalization. As shown in (5) and (6), the mean (µB)
and variance (σB) of the mini-batch are calculated for each
feature with size m. Equation (7) presents the normalization
for feature using the mean and variance of the mini-batch
from (5) and (6). Finally, batch normalization (BNγ,β (xi)) is
performed using a linear transform with a scale factor (γ ) and
shift factor (β) to adjust the sample distributions of the mini-
batch.

µB =
1
m

∑m

i=1
xi (5)

σ 2
B =

1
m

∑m

i=1
(xi − µB)2 (6)

x̂i =
xi − µB√
σ 2
B + ϵ

(7)

yi = γ x̂i + β ≡ BN γ,β (xi) (8)

where xi and yi are ith term of input and output vectors, and ϵ

is a constant to avoid zero in the denominator for numerical
stability.

The Adam optimizer [29] was used to train the DNN
model, which includes the concepts of stochastic gradient
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and moment to perform a stable training process. In (9), the
gradient at time step t (gt ) is obtained and applied to the
first moment (mt ) by an exponential moving average of the
gradient, as shown in (10). As presented in (11), the second
rawmoment (vt ) is derived from the squared gradient (g2t ) and
the moment of the previous epoch (mt−1). Then, in (12), the
parameter (θt ) is updated using the parameter of the previous
time step (θt−1), the first moment, and the second moment
from (10) and (11).

gt = ∇θ ft (θt−1) (9)

mt = β1 · mt−1 + (1 − β1) · gt (10)

vt = β2 · mt−1 + (1 − β2) · g2t (11)

θt = θt−1 − α · mt/(
√
vt + ϵ) (12)

where g2t denotes the elementwise square operation (gt ⊙gt ),
f (θ ) is a stochastic objective function, β1 and β2 are 0.9 and
0.999, respectively, which represent the exponential decay
rates, α is the step size of one epoch that is 0.001, and ϵ is
a model constant, 10−8.

III. EXPERIMENTAL SETUP
The experimental setup described in this section is based on
previous research [30].

The displacement volume of the engine used in this study
was 2.151 L with a compression ratio of 16.0. Four WLTP
cycles were performed, with the temperature variations listed
in Table 3. Detailed information on the engine specifications
and WLTP cycles can be found in previous publications [30].

TABLE 3. Temperature conditions of WLTP cycles.

FIGURE 3. Experimental setup.

Fig. 3 presents the experimental setup. The engine was
controlled by an engine control unit (ECU) connected to the

host PC. The engine-out NOx and THC were measured using
a HORIBA MEXA 7100DEGR, and soot was measured in
real-time by a Cambustion DMS500 during transient cycles.

A 340 kW alternating current dynamometer (AVL,
Austria) was utilized to operate the engine system under
transient conditions.

FIGURE 4. Measured emissions for 4 WLTP cycles: (a) NOx, (b) soot, and
(c) THC emissions.

TABLE 4. Mean and standard deviation of NOx, Soot, and THC emissions
for WLTP cycles.

Fig. 4 presents measured NOx, soot, and THC emissions
for WLTP 1-4, and Table 4 lists the mean and standard
deviation (STD) of these emissions for the WLTP cycles.
Mean and STD values of NOx and THC emissions were
relatively similar compared to those of soot emission. The
level of the mean values of NOx and THC emissions was
of the order of 102, and the STD was of the order of 101.
However, soot emission had a mean and STD of the order
of 10−2. These differences affected the similarity of weights
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inside neural networks while the task transfer learning was
performed, as described in ‘Results and Discussion’ section.

The duration of the WLTP cycles was 1800 s, and data
were obtained every 0.1 s for the cycles. Therefore, each
cycle consisted of 18001 data points, including the data at
the time step when the measurement started (t = 0). Because
the experiments were conducted for four WLTP cycles, the
total number of data points was 72004. These data were
randomly distributed to the training (60%, 43204), validation
(20%, 14400), and test (20% 14400) sets to organize the
deep-learning models and evaluate the effects of transfer
learning.

Table 5 lists the input variables in this study. The input
variables comprised 13 statuses of the engine measured by
the ECU. The NOx, soot, and THC emissions that were
target outputs were respectively combined with these input
variables as datasets.

TABLE 5. Input variables.

The computing environment consisted of an Intel®
Xeon® Gold 6230 @ 2.10 GHz central processing unit, 256
GB RAM, NVIDIA Geforce RTX 2080 Ti with 12 GB of
a graphical processing unit, and Windows 10 OS. Python
3.7 was used as a programming language; Keras v.2.3.1 with
the TensorFlow backend was used as the deep learning library
in this study.

IV. RESULTS AND DISCUSSION
A. RESULTS OF INDIVIDUALLY TRAINED MODELS
As a conventional training process for the prediction of target
emissions, that is, NOx, soot, and THC, three individual
models were optimized and trained in this study. Each NOx,
soot, and THCmodel was the reference model to evaluate the
results of task transfer learning on the emission prediction,
as well as the pretrained model of task transfer learning for
other emissions.

Table 6 presents the optimized hyperparameters of the
NOx, soot, and THC models and their optimization times.
The node arrangement was derived using the hidden-node
determination logic [25] with the number of hidden layers
and number of 1st hidden nodes. The first 13 nodes indicate
the input dimension of the data, and the last one is the
output dimension of the model. When applying task transfer
learning, the transferred model adopts the hyperparameters
of the pretrained model. For example, the soot model

TABLE 6. Optimized hyperparameters of NOx, Soot, and THC models and
their optimization time.

TABLE 7. Accuracy results of NOx, Soot, and THC models.

transferred from the pretrained NOx model, Soot Model 2,
utilizes the hyperparameters of NOx Model 1 in Table 6.
Specifically, NOxModel 1 (pretrained model), Soot Model 2,
and THC Model 2 (transferred model) adopted the same
hyperparameters. The transferred models from Soot Model 1
(NOx Model 2 and THC Model 3) utilized the same set of
hyperparameters as their pretrainedmodel. NOx Model 3, and
Soot Model 3 had the same hyperparameters as THCModel 1
because they originated from THC Model 1.

The accuracy results of NOx Model 1, Soot Model 1, and
THC Model 1 are listed in Table 7. According to the test set
accuracies, NOx emissions were predicted more accurately
than the other emissions. Overall, the R2 values for the
test set, which are the representative indices indicating the
model’s accuracy, were over 0.92. These levels could be
recognized as accurate under transient conditions. A detailed
analysis of the models is presented next section with the
results of the transferred models.

B. RESULTS OF TASK TRANSFER LEARNING
Using the pretrained models provided in the previous section,
task transfer learning was performed for all cases of NOx,
soot, and THC emissions. The last two hidden layers of the
pretrained models were trained again to transfer to other
emission models with the hyperparameters of the pretrained
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models. Task transfer learning reduces computational cost
and time by eliminating repetitive optimization processes for
the organization of models.

TABLE 8. Transfer learning results for NOx, Soot, and THC emissions.

Table 8 presents the accuracies of transfer learning for
NOx, soot, and THC emissions, respectively. By comparing
the test set accuracies, the pretrained models were found to
be more accurate than the transferred models. However, the
R2 gaps between the models were within 0.012, with a value
of 0.0015 for the NOx emission, 0.011 for the soot emission,
and 0.0115 for the THC emission. In the case of the prediction
of the transient emissions, the difference in the R2 value of
0.0015 (0.15% compared to the R2 value of NOx Model 1)
can be recognized as a similar accuracy level. In the cases
of soot and THC emissions, the accuracy differences were
acceptable considering the optimization and training times.
The times for hyperparameter optimization applied to the
Soot Model 1 and THCModel 1 were 881598.2 s (10.2 days)

and 738262.5 s (8.5 days), respectively, as presented in
Table 6, and they required additional training time to obtain
results, as listed in Table 8. However, the transferred models
did not require optimization processes because they utilized
the hyperparameters of the pretrained model. They required
only training time, with a minimum of 4162.0 s (1.2 hours)
on THCModel 2 and a maximum of 121924.0 s (1.4 days) on
THC Model 3. Therefore, with an accuracy reduction in R2

values of only 0.011 and 0.015, they reduced the computation
time by several days.

The accuracy of the pretrained model affected the accuracy
of the transferred model. Considering the same task, the
accuracy of the transferred model was relatively higher when
the accuracy of the pretrainedmodel was high. The accuracies
of the pretrained models were in the order of NOx Model
> THC Model 1 > Soot Model 1. As an example of the
transferred NOx models, NOx Model 3 was more accurate
than NOx Model 2 because of the accuracy of THC Model 1,
which was pretrained model of NOx Model 3, was higher
than the accuracy of Soot Model 1, which was the pretrained
model of NOx Model 2. The transferred soot and THCmodels
presented the same tendency as the NOx case.
There was a noticeable tendency in the training times of

the transferred models. Compared to the models transferred
from NOx or THC pretrained models, it took more time to
train NOx Model 2 and THCModel 3, which were transferred
using the pretrained soot model. Because the learning rate of
the soot pretrained model (Soot Model 1) was much smaller
than those of NOx Model 1 and THCModel 1, more time was
required to train the transferred models from the pretrained
soot model. In terms of training time, it is recommended to
utilize NOx or THC emissions instead of soot emissions to
organize the pretrained model if the option is available.

Table 9 provides the statistical results for the NOx, soot,
and THC models for WLTP cycles, and figures from Fig. 9
to Fig. 10 in Appendix present the emission profiles under
WLTP cycles by comparing the measured data and model
results. The accuracies for WLTP cycles calculated using
the mean absolute error (MAE) showed similar levels in
Models 1 – 3 for all emissions. In particular, the transferred
models (Models 2 and 3) exhibited similar accuracy.

The MAEs relative to the maximum emission values were
approximately 0.57-0.82% for NOx emissions, 0.69-2.02%
for soot emissions, and 1.52-2.42% for THC emissions. The
linearity of the HORIBA MEXA 7100 DEGR, which is a
measurement device for NOx and THC emissions, was 1%
of the maximum measurement range (5000 ppm) or 2% of
the reading scale. The NOx emission results were better than
the linearity of the measurement device. The error in the
soot and THC emissions were similar to those of the device.
The measurement devices used in this study were accurate
equipment used in the laboratory, and they were much more
accurate than sensors for practical use, especially in vehicles.
Therefore, the results of all models in Table 9 are comparable
to those of the measurement devices and better than the
accuracies of the commercial sensors for the vehicles.
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TABLE 9. Statistical results of NOx, Soot, THC models for WLTP cycles.

Task transfer learning in this study was performed by
retraining the last two hidden layers of the pretrained model
while the weights of the other hidden layers were maintained.
Representatively, weights in the last two layers of NOx
Model 1, Soot Model 2, and THC Model 2 were analyzed.
Soot Model 2 and THC Model 2 were transferred from NOx
Model 1, and they had the same configuration of hidden
layers and nodes.

Before the analysis, notations were defined to indicate the
location of the weights inside the model. As shown in Table 7,
NOx Model 1 had nine hidden layers; therefore, the nodes
of the 8th and 9th layers were trained again to transfer the
model to Soot Model 2 and THC Model 2. Fig. 5 presents
the configuration of the last part of NOx Model 1 for transfer
learning. Only the connections from node 1 of the 8th layer
are shown in the figure, and other connections are omitted for
clarity. Weights from the 8th layer to the 9th layer are marked
as wi−j, where i indicates the node of the 8th layer and j is the
node of the 9th layer. Likewise, weights from the 9th layer to
the output layer are denoted as wk because there is only one
hidden node in the output layer.

Fig. 6 presents weights inside the models from the 8th layer
to the 9th layer. The patterns and colors of NOx Model 1 and
THCModel 2 are similar, which implies that the value ranges
of weights are not significantly different. However, the colors
of Soot Model 2 are more vivid than those of NOx Model 1
and THC Model 2. The weights of the NOx Model 1 were,

FIGURE 5. Weight Notations in the 8th layer, the 9th layer, and output
layers of NOx Model 1, Soot Model 2, and THC Model 2.

thus, remarkably changed during the retraining process to
Soot Model 2 compared to transferring to THCModel 2. This
tendency can also be observed in the weights of the last layer,
from the 9th layer to the output layer, in Fig. 7. The weight
values in the last layer of NOx Model 1 and THC Model 2
were slightly different while the weights of Soot Model 2
were much smaller than those of the other models.

From Fig. 6 and Fig. 7, the retraining process for the
task transfer learning from NOx Model 1 to THC Model 2
can be considered as fine-tuning to assign a new task to the
pretrainedmodel. However, the transfer fromNOx Model 1 to
Soot Model 2 involved a larger change in weight values. This
difference was caused by the data distribution of NOx, soot,
and THC emissions. The statistics for the emissions presented
in Table 4 show that the mean values and STD values for both
the NOx and THC emissions were of the order of 102 and 101,
respectively. However, for the soot emissions, the values for
the mean and STD were of the order of 10−2. Therefore, the
weights of NOx Model 1 should be more drastically changed
to transfer the model to Soot Model 2 to reflect the data
distribution.

Weight similarities between the models were also observed
in cases of transferred models from the pretrained soot and
THC models, as presented in Fig. 8. The numbers of last
hidden nodes of Soot Model 1 and THC Model 1 were
12 and 6, respectively; therefore, the number of k nodes
indicated on the x-axis of the figures was different according
to the pretrained model. As shown in Fig. 8 (a), the pretrained
soot model (Soot Model 1) was transferred to NOx Model 2
and THC Model 3, and the weights of the models exhibited
similar tendencies according to the data distribution. The
pretrained THC model (THC Model 1) was fine-tuned to
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FIGURE 6. Weights from the 8th layer to the 9th layer: (a) NOx Model 1,
(b) Soot Model 2, and (c) THC Model 2.

transfer to NOx Model 3, and the weights of THC Model 1
were further changed to convert into Soot Model 3, as shown
in Fig. 8 (b).

FIGURE 7. Weights of the last layer, from the 9th layer to output layer.

FIGURE 8. Weights of the last layer: (a) transferred models from Soot
Model 1, and (b) transferred models from THC Model 1.

V. CONCLUSION
In this study, task transfer learning mainly utilized in image
and natural language processing areas was introduced to
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FIGURE 9. NOx emission profiles of measured data, and NOx Models 1-3: (a) WLTP 1, (b) WLTP 2, (c)
WLTP 3, and (d) WLTP 4.
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FIGURE 10. Soot emission profiles of measured data, and Soot Models 1-3: (a) WLTP 1, (b) WLTP 2, (c)
WLTP 3, and (d) WLTP 4.
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FIGURE 11. THC emission profiles of measured data, and THC Models 1-3: (a) WLTP 1, (b) WLTP 2, (c)
WLTP 3, and (d) WLTP 4.
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predict the emissions of internal combustion engines. The
target emissions were the transient NOx, soot, and THC
emissions. All possible transfer cases between the three
emissionswere investigated.WLTP cycles were introduced to
evaluate the accuracy of the model under transient conditions.

1) Task transfer learning was performed by training the
last two hidden layers of the pretrained model for the
target emission, while the other layers were frozen
during training. The hyperparameters of the pretrained
model were utilized for task transfer learning.

2) The accuracies of the individually trained and trans-
ferred models were compared to evaluate the validity
of task transfer learning. The R2 values were 0.9765-
0.9780 for the NOx models, 0.9105-0.9215 for the soot
models, and 0.9275-0.9390 for the THC models. The
R2 gaps between pretrained and transferred models
were 0.0015 for the NOx emission, 0.011 for the soot
emission, and 0.0115 for the THC emission. These R2

values below 0.012 could be considered as similar-level
in accuracy. The relative MAEs of models applying
WLTP cycles were comparable to those of the emission
measurement device, which had better accuracy than
commercial sensors for vehicle installation.

3) It took approximately 8-10 days to individually opti-
mize the models for each emission. Using transfer
learning, it was not necessary to repeat this optimiza-
tion process to predict different emissions from the
pretrained emission. From this point of view, the small
accuracy reduction caused by task transfer learning can
be considered acceptable because of the significantly
higher efficiency achieved by the process of the model
organization.

This study proved the validity of task transfer learning
for predicting phenomena of an internal combustion engine.
Through task transfer learning, deep learning models were
effectively transferred to predict another task. In this study,
the major emissions of diesel engines under transient
conditions were utilized to verify the task transfer learning.

Task transfer learning had been validated for outputs
corresponding to similar categories of emission in this study.
Subsequently, it would be meaningful for this study to
progress by applying task transfer learning to phenomena
related to different categories such as fuel efficiency,
performance, and emissions.

APPENDIX
See Figs. 9, 10, and 11.
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